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Highlights 24 

Cultivation intensities of soils significantly affect black carbon characteristics. 25 

High cultivation intensity increased Pb in ion exchange fraction on black carbon. 26 

Ion exchange and hydrogen bonded Pb fractions accounted for about 80% of total Pb. 27 

Black carbon had high potential to retain Pb in stable form (by 18.7 - 21.1 mg kg−1). 28 

Pb amount in ion exchange fraction was highly correlated with CEC of black carbon. 29 

 30 
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Abstract 35 

The knowledge about lead (Pb) sorption on soil-derived black carbons (SBCs) under different cultivation 36 

intensities of soils is limited. In this study, chemical and spectroscopic methods were applied to investigate the 37 

Pb sorption mechanisms on SBCs in soils from a forest land, a rubber plantation area, and a vegetable farm with 38 

none, less and highly intensive cultivation, respectively, that are located in the Hainan Island of China. Results 39 

showed that the specific surface area and cation exchange capacity of the SBCs from the less and highly 40 

intensive cultivation soils were 4.5- and 2.7-fold, and 1.3- and 1.8-fold higher compared to that of SBC from the 41 

no-cultivation soil, which subsequently enhanced the Pb sorption capacities of SBCs in iron exchange fraction. 42 

Ion exchange and hydrogen bonded Pb fractions together accounted for about 80% of total Pb sorbed on all 43 

SBCs at an externally added 1,000 mg L−1 Pb solution concentration. The O=C−O groups also played key roles 44 

in Pb sorption by forming complexes of O=C−O−Pb−O and/or O=C−O−Pb. Overall, SBCs in soils under all 45 

studied cultivation intensities showed high potential to sorb Pb (with the maximum absorbed Pb amount of 46.0 46 

to 91.3 mg g−1), and increased Pb sorption capacities of the studied soils by 18.7 - 21.1 mg kg−1 in the stable 47 

fraction (complexation). Therefore, SBC might be a potential environment-friendly material to enhance the Pb 48 

immobilization capacity of soil. 49 

 50 

Keywords: Aging of organic carbon; biochar; sequential desorption; TG/DTG; XPS. 51 

 52 

Abbreviations: SBC: soil-derived black carbon; BC: black carbon; SOC: soil organic carbon; SSA: specific 53 

surface area; CEC: cation exchange capacity; ICP-MS: inductively coupled plasma mass spectrometer; PTEs: 54 

potentially toxic elements; TG/DTG: thermogravimetric and differential thermogravimetric; XPS: X-ray 55 

photoelectron spectroscopy. 56 
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1. Introduction 58 

Sorption of potentially toxic elements (PTEs) on solid matrices such as soils and sediments is one of the key 59 

components which determine the fate and behavior of PTEs in the environment (Chiou, 2002; Shaheen et al., 60 

2013). It has been recognized that various forms of soil organic matter (SOM) could serve as dominant 61 

environmental “compartments” for the sorption and accumulation of PTEs (Zhou et al., 2018). Black carbon 62 

(BC) serves as a chemically and biologically stable form of SOM which exists in the soil over a long period 63 

(Liang et al., 2008; Qi et al., 2017). As one form of BCs, biochar has been found to be an excellent material for 64 

adsorption of organic pollutants (Qin et al., 2018; Zhang et al., 2019; Chen et al., 2020a) and PTEs (Ali et al., 65 

2020; Imran et al., 2020; Yin et al., 2020). The BC may significantly affect the sorption and immobilization of 66 

PTEs in soils in a wide range of biogeochemical processes (Liang et al., 2006; Qi et al., 2017), and could be 67 

regarded as an eco-friendly and potential material to immobilize PTEs in soil (Nie et al., 2018; Bandara et al., 68 

2020; Wei et al., 2020). Therefore, the sorption capacity and the specific mechanisms of BC for metal ion 69 

retention are of great importance in remediation of contaminated soils. 70 

Biomass-derived BC exists ubiquitously in soils to varying extents as a result of deliberate vegetation 71 

burning, wildfires or emissions from energy production units (Schmidt and Noack, 2000). For example, the 72 

2019-20 fire season in eastern Australia is attracting considerable international attention where millions of ha of 73 

temperate forest areas have been burnt during the fire (Nolan et al., 2020). It has caused serious ecological 74 

damage, along with that a large amount of charcoal, the product of the incomplete combustion of vegetation 75 

(Pereira et al., 2014), was produced. Aging of charcoals (a fraction of BCs) in the soil results in the formation of 76 

persistent soil organic carbon (SOC) (Bennett et al., 2020), including soil-derived black carbon (SBC). The 77 

SBCs from natural formation or artificial amendments, however, have high specific surface area (SSA), high 78 

cation exchange capacity (CEC), and various organic functional groups. These characteristics might increase the 79 

../../../Users/zqj/AppData/Local/youdao/dict/Application/8.5.3.0/resultui/html/index.html#/javascript:;
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sorption capacity of PTEs on SBC during the PTE remediation processes (Qi et al., 2017). In recent years, 80 

artificial BC such as biochar has been successfully applied as a highly efficient soil amendment to immobilize 81 

PTEs (Liu et al., 2018; Li et al., 2019a; Li et al., 2020). 82 

Exploration of the sorption and immobilization potential of PTEs by natural BC in soils is also immensely 83 

important since the global BC stock in waters, sediments, and soils combined is 300 to 500 giga–metric tons of 84 

carbon (Jaffé et al., 2013). Previous studies reported that aging of biochar following soil application changes its 85 

physiochemical properties while forming a range of biochar-derived organic materials (Mia et al., 2017). 86 

Moreover, crop cultivation practices can increase the association of charcoal with soil minerals, e.g., silicates, 87 

phosphates, aluminum oxides, and iron oxides in soils, thereby changing the elemental characteristics of 88 

charcoal (Hardy et al., 2017). The above changes in elemental compositions cause a modification of the 89 

physiochemical properties of charcoals and BC affecting their capacity to immobilize PTEs (Bandara et al., 90 

2020). Few studies also claim that intensive cultivation of soils can change the PTE retention efficiency of SBC 91 

(Zahedifar, 2017). 92 

It is difficult for agricultural and forestry soils to avoid PTE pollution in the process of land development 93 

and utilization due to a rapid development of social economy, industry and urbanization. Unraveling the sorption 94 

characteristics and mechanisms of PTEs on SBC from agricultural and forestry soils can help exploring the 95 

potential of BC or biochar in influencing the immobilization of PTEs in agricultural and forestry lands. The 96 

natural tropical rainforest in the Bawangling Forest Region (108.88°-109.33°E, 18.86°-19.20°N) of Hainan 97 

island in China (Lu et al., 2018) was rarely disturbed for replacing its plantations, and has therefore existed for 98 

several thousand years without any cultivation (Zhang et al., 2010; Wang et al., 2017a), except a serious damage 99 

caused by people for creating more farmland or for obtaining more forest resources about 600 years ago in the 100 

Ming Dynasty (Dodson et al., 2019). The lands nearby the Bawangling Forest Region have been cultivated for 101 
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about 60 years (Lu et al., 2018). Rubber trees near the Bawangling Forest Region was adopted as the secondary 102 

plantation under less intensive cultivation (cultivated about 20 years ago) system, while vegetables were grown 103 

twice a year in some lands under highly intensive cultivation system. It could be hypothesized that the 104 

physicochemical properties (e.g., CEC, elemental composition and organic functional groups) of SBCs under 105 

the less intensive cultivation system would be significantly different from those of the highly intensive 106 

cultivation system and no cultivation system, which would further affect the sorption capacities and mechanisms 107 

of Pb (a representative PTE) by SBCs from these systems. 108 

The sorption mechanisms of PTEs on artificial BC (e.g., biochar) in aqueous solutions have been reported 109 

extensively (Li et al., 2019b; Yang et al., 2019; Fang et al., 2020). The major mechanisms involved in the 110 

removal of PTEs from aqueous solutions using biochars were ion-exchange, electrostatic attraction, outer-sphere 111 

and/or inner-sphere complexation, surface precipitation and/or co-precipitation (Wang et al., 2019). Several 112 

methods including potentiometric titration, sequential extraction, thermal analysis techniques such as 113 

thermogravimetric (TG) and differential thermogravimetric (DTG) analyses, and X-ray photoelectron 114 

spectroscopy (XPS) have been proven as useful methods to study the characteristics of organic functional 115 

groups and thermal stability of organic components on BCs, and analyze the interactions between carbon-based 116 

adsorbents and PTE adsorbates (Plante et al., 2009; Li et al., 2019b; Xia et al., 2019). These methods were used 117 

to investigate Pb sorption characteristics and mechanisms of SBCs from different soils in the current study. 118 

In this study, we separated three SBCs from the soils under different cultivation systems (i.e., no-cultivation, 119 

less intensive cultivation, and highly intensive cultivation) in the Hainan island of China to conduct Pb sorption 120 

and desorption experiments on SBCs. The specific objectives of this work are to: (1) characterize the elemental 121 

composition and physicochemical properties of the SBCs; (2) explore sorption and desorption characteristics of 122 

SBCs for Pb; and (3) investigate the sorption mechanisms of Pb onto SBCs. 123 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/electrostatics
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 124 

2. Materials and methods 125 

2.1. Soil collection and separation of black carbon 126 

Three surface soils (0–20 cm depth) were collected in triplicate from the three sampling sites (without any 127 

artificial black carbon added), including a natural tropical rainforest (109.09°E, 19.13°N) in the Bawangling 128 

Forest Region (Hainan Province of China), a rubber tree plantation area (109.50°E, 19.53°N), and a vegetable 129 

farm (109.57°E, 19.48°N) near the Bawangling Forest Region. The three collected soil samples represented 130 

no-cultivation, less intensive cultivation and highly intensive cultivation systems, respectively, and referred to as 131 

Soil 1, Soil 2 and Soil 3. Following sample collection, soil pH was determined in a soil suspension (soil:water = 132 

1:2.5(w/v)) according to Li et al. (2020), while soil organic carbon was determined using the K2Cr2O7 method 133 

(Bao, 2000). The pH value of Soil 1, Soil 2 and Soil 3 was 4.53, 4.98 and 4.64, while the soil organic carbon 134 

content was 31.01, 12.15 and 9.10 g kg−1, respectively. The clay, silt, and sand particles were 13, 24 and 63%, 135 

and 18, 37 and 45% in Soil 1 and Soil 2, respectively. The soil particle fractions with particle size less than 10 136 

μm, between 10 and 50 μm, and greater than 250 μm were 33.0, 23.2 and 43.8%, 40.8, 29.4 and 29.8%, and 13.7, 137 

56.8 and 29.5% in Soil 1, Soil 2 and Soil 3, respectively. 138 

The SBC particles (with diameter > 0.5 mm) were selected and picked from Soil 1 (no-cultivation), Soil 2 139 

(less intensive cultivation) and Soil 3 (highly intensive cultivation) using superfine stainless forceps according 140 

to Dong et al. (2017), and referred to as BC-N, BC-L and BC-H, respectively. The SBC particles were 141 

suspended into deionized water at a ratio of 1:10 (w/v) and shaken slightly to remove soil particles adhered to 142 

the SBC particles. The SBC particles were then washed three times with deionized water, and put in a 60 °C 143 

drying oven until the weight of the particles reached a constant value (Koide et al., 2011). All SBC particles 144 

were ground and passed through a 0.15 mm sieve, and stored for further use.  145 
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 146 

2.2. Preparation of Pb-loaded black carbon 147 

Lead-loaded SBCs were prepared by adding 1.0 g of SBC into 500 mL of 10, 20, 40, 80, 150, 300, 600 and 148 

1000 mg L−1 of Pb aqueous solutions (by dissolving analytical grade Pb(NO3)2) at pH 5.0 in Erlenmeyer flasks. 149 

Ucun et al. (2003) reported Pb precipitation (Pb(OH)2) at pH 5.5. In this study, the pH value of solutions was 150 

selected at 5.0 since the pH of the studied soils ranged from 4.5 to 5.0. The flasks were capped with rubber plugs, 151 

agitated on a thermostatic reciprocating shaker at 220 rpm (25 °C) for 24 h. Then, the aqueous solutions were 152 

filtered through a 0.45 μm cellulose-acetate membrane filter paper, and the residual Pb-loaded SBCs was 153 

washed with deionized water, and air-dried at room temperature prior to further analysis. 154 

 155 

2.3. Characterization of black carbon 156 

Total hydrogen (H), carbon (C), and nitrogen (N) contents of SBCs were measured using an elemental 157 

analyzer (Vario ELIII - Elementary Company, Germany). The oxygen (O) content was calculated by the 158 

difference assuming that the SBC was composed only of H, C, N, and O (Wu et al. 2012). Ash content of the 159 

SBCs was determined by placing crucibles containing the samples in a muffle furnace at 750°C for 6 h 160 

(D1762-84, 2007). The crucibles were kept with lids in a desiccator for 1 h for cooling, and then weighed. Pore 161 

volume and SSA of SBCs were measured by N2 adsorption isotherms (ASAP2460, Micromeritics, USA) 162 

applying the Brunauer-Emmett-Teller (BET) equation (Brunauer et al., 1938). The contents of acidic functional 163 

groups of SBCs were determined by the Boehm titration method (Boehm, 1994). The CEC of SBCs was 164 

determined following 1 M ammonium acetate (pH 7) extraction method (Wu et al., 2017). In order to measure 165 

total carbon content of SBCs in soils, soil samples were digested using peroxide to remove non-BC. Twenty 166 

grams of air-dried soil was treated with 30% (w/w) peroxide (initially 10 mL, with daily additions up to a total 167 
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of 30–50 mL until no further bubbles appeared), and heated on a hot plate at 90 °C to ensure maximum non-BC 168 

removal (Liang et al., 2006). Total carbon content of SBCs in soils was then measured using the 169 

K2Cr2O7-heating method (Bao, 2000). The total carbon content of BC-N, BC-L and BC-H in Soil 1, Soil 2 and 170 

Soil 3 was 0.81, 1.58 and 1.08 g kg−1, therefore, the weight content of BC-N, BC-L and BC-H in the soils was 171 

1.65, 3.30 and 2.36 g kg−1, respectively (WBC = TBC × EC%, while WBC, TBC and EC% refer to weight content of 172 

SBCs in soils, total carbon content of SBCs in soils, and carbon percentage of SBCs, respectively). 173 

Thermogravimetric (TG) and differential thermogravimetric (DTG) analyses curves were obtained using a 174 

thermogravimetric analyzer (SDT Q600, TA Instruments, USA) at a heating rate of 10 °C min−1 from 30 °C to 175 

1000 °C under a controlled atmosphere of N2 (50 mL min−1) with an initial material mass of 30 mg. Fourier 176 

transform infrared (FTIR) analysis of SBCs before Pb sorption was conducted according to Wu et al. (2016). 177 

Spectra were collected using a TENSOR 27 FTIR spectrophotometer (Bruker Company, Germany) scanning 178 

from 4000 to 400 cm−1 (wavenumber) at a resolution of 2 cm−1. The X-ray photoelectron spectroscopy (XPS, 179 

AXIS SUPRA, Japan) was used to measure the bonding energies of C, O, and Pb on the SBCs and Pb-loaded 180 

SBCs prepared at 1000 mg L−1 Pb aqueous solution (scans for C 1s, O 1s and Pb 4f). Samples were freeze-dried, 181 

ground to powder in the anaerobic chamber, and pressed into pellets. The energy range was 0−1000 eV for 182 

wide-scan spectra (Li et al., 2020). 183 

 184 

2.4. Sorption experiments 185 

A stock solution of 1000 mg L−1 Pb was prepared by dissolving Pb(NO3)2 in 0.01 M NaNO3 solution. 186 

Sorption kinetics was determined by determining sorption amounts at various time intervals (5, 10, 15, 20, 30, 187 

40, 60, 120, 240, 480, 960 and 1440 min) at pH 5.0. The pH value of suspension was adjusted with 0.1 M NaOH 188 

or 0.1 M HNO3 solution to simulate a typical soil water situation (Li et al., 2019b). Sorption isotherm 189 
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experiments were carried out with different initial Pb concentrations (10, 20, 40, 80, 150, 300, 600 and 1000 mg 190 

L−1) at pH 5.0. Both sorption kinetics and isotherm experiments involved an adsorbent suspension with a 191 

SBC:solution ratio of 1:25 (w/v) in 50 mL tubes (Wu et al., 2017). These tubes were agitated on a rotating 192 

shaker at 220 rpm and 25 °C for 24 h. The solutions were filtered (< 0.45 μm filter) and preserved in test tubes 193 

(Li et al., 2019b). Concentrations of Pb in the filtrates were measured using an inductively coupled plasma mass 194 

spectrometer (ICP-MS, Thermo Fisher-X series, USA). The released alkali or alkaline earth metals (such as Na+, 195 

K+, Mg2+ and Ca2+) from the original SBCs in the supernatant (under Pb concentration of 1000 mg L−1) were 196 

also analyzed by ICP-MS. The corresponding release of Na+, K+, Mg2+ and Ca2+ from the SBCs with deionized 197 

water (at the same pH) served as the control. All treatments in the sorption experiments were conducted in 198 

triplicate. 199 

 200 

2.5. Desorption experiments 201 

Lead fractionation in Pb-loaded SBCs (prepared in section 2.2 of this study) during desorption experiments 202 

was conducted using the method modified from Andreas and Zhang (2014). The sorbed Pb was fractionated into 203 

(i) physical sorption, (ii) ion exchange, (iii) hydrogen bonding, and (iv) complexation fractions. The physical 204 

sorption fraction is affected by van der Waals force between Pb and SBC surface, ion exchange fraction is 205 

attributed to the cation exchange between Pb and other cations on SBC surface, hydrogen bonding fraction is 206 

formed by hydrogen bonds between Pb forming hydrates [Pb(H2O)2+ 

6 ] and oxygen-containing functional groups 207 

on SBC surface, and complexation fraction is influenced by coordination reaction of Pb on SBCs surface 208 

(Andreas and Zhang, 2014). Accordingly, 0.05 g of Pb-loaded SBC was added into a 50 mL plastic tube. All 209 

tubes with samples were placed on a reciprocating shaker at 25 °C and rotated at 220 rpm, and then sequentially 210 

extracted with (i) 25 mL ultrapure water shaking for 2 h, (ii) 8 mL CH3COONH4 (1 M, pH=7) shaking for 6 h, 211 
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(iii) 10 mL CH3COOH (4.37 M) + NH2OH·HCl (0.04 M) shaking for 5 h, and (iv) 10 mL sodium 212 

pyrophosphate (0.1 M) shaking for 5 h, respectively, to determine the above four Pb fractions. The suspensions 213 

were centrifuged at 5000 rpm for 20 min (at 25 °C) using a centrifuge machine (H2050R, Cence, China), and 214 

filtered using 0.45 μm cellulose-acetate membrane filters. Lead concentrations in the filtrates were measured 215 

using ICP-MS. 216 

The sorption kinetics of Pb onto SBC was analyzed by the pseudo-first-order and pseudo-second-order 217 

models, the sorption isotherms of Pb onto SBCs were analyzed by the Langmuir and Freundlich models (Text 218 

S1 of the Supporting Information). 219 

The Pb sorption capacity of the SBCs in physical sorption fraction (Qphy), ion exchange fraction (Qexc), 220 

hydrogen bonding fraction (bond with oxygen-containing function groups, Qhyd), complexation fraction (Qcom) 221 

and total sorption fraction (Qtot) were calculated by the Langmuir model fitting. 222 

 223 

2.6. Statistical analysis 224 

Results were expressed on a dry mass basis, and shown as mean ± standard deviation (SD) of three 225 

replicates per treatment. The standard deviation bars of results were added in specific figures. The fitting of the 226 

Langmuir and Freundlich models, pseudo-first-order and pseudo-second-order models, and the graphing of XPS 227 

spectra were done using the software Origin 9.0 (Origin Lab, USA). 228 

 229 

3. Results and discussion 230 

3.1. Properties of soil-derived black carbons 231 

Elemental properties of the SBCs are shown in Table 1. The N content of SBCs increased 1.25- and 232 

2.23-fold in Soil 2 (BC-L) and Soil 3 (BC-H) under the low and high cultivation intensity compared to that in 233 
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Soil 1 (BC-N) under no cultivation (the control). Values were presented by 1.64 and 2.36% N contents of BC-L 234 

and BC-H, respectively, while 0.73% for BC-N (the control). The H and O contents of SBCs were slightly 235 

increased with the increasing cultivation intensity from the control (3.61 and 46.5%) to low (3.87 and 46.6%) 236 

and high (3.90 and 47.8%) (Table 1). However, the C content slightly decreased (49.1, 47.9 and 45.9% C 237 

contents of BC-N, BC-L and BC-H, respectively) under the elevated cultivation intensity (Table 1). This might 238 

be attributed to the enhanced disturbances of soils and weathering of SBCs by various cultivation practices, e.g., 239 

ploughing, wetting and drying, and water and fertilizer management (Hardy et al., 2017). During farming of the 240 

land, the above practices inputted more N into the soil than the no-cultivation system, and accelerated the 241 

decomposition of BCs in the soil by bringing down the C:N ratio (Hardy et al., 2017). As a result, labile 242 

C-containing groups such as aromatic and aliphatic groups of SBCs were decomposed by microorganisms 243 

(Kuzyakov et al., 2009). Meanwhile, an increasing proportion of H and O-rich functional groups such as 244 

carboxyl, carbonyl and O-alkyl were formed on SBCs during the BC mineralization (Kuzyakov et al., 2009; Mia 245 

et al., 2017). Additionally, a high proportion of N-containing groups could increase the reaction ratio of 246 

positively charged N-containing functional groups in soil to negatively charged C-containing functional groups 247 

on SBCs under a high cultivation intensity (Hardy et al., 2017; Mia et al., 2017; Wang et al., 2018). This might 248 

contribute to the increase in N content of SBCs with increasing soil cultivation intensity. Similarly, Hardy et al. 249 

(2017) reported that charcoal in cropland over long cultivation time had higher O and H contents and N-alkyl 250 

groups than short cultivation duration due to enhanced weathering of various C substrates. 251 

The higher the ratio of H/C and O/C in SBC, the lower is the aromaticity of SBC, and the more abundant is 252 

the organic functional groups such as hydroxyl and carboxyl groups (Wu et al., 2012; Wu et al., 2016). The 253 

order of H/C and O/C ratios of SBCs was: BC-H > BC-L > BC-N (Table 1). Thus, the H/C and O/C ratios 254 

increased under elevated weathering and cultivation disturbances of SBCs. These might be attributed to the 255 
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increased phenol, carbonyl and carboxyl functional groups which were created by the oxidation of SBC surfaces 256 

during the aging of BCs under high cultivation intensity (Cao et al., 2019). The total content of acidic functional 257 

groups (the sum of carboxylic acid (RCOOH), weak acid ester (RCOR'), and phenolic hydroxyl groups (AOH)) 258 

in BC-H (1.70 mmol g−1) and BC-L (1.71 mmol g−1) was higher than that of BC-N (1.57 mmol g−1; Table 1), 259 

which also indicated that hydroxylation and carboxylation of SBCs could be enhanced by increased cultivation 260 

intensity and aging. As reported by Mukherjee et al. (2014), the advanced oxidation of SBCs most likely created 261 

phenol, carboxyl and carbonyl functional groups at the edge of aromatic rings on the surfaces. Mia et al. (2017) 262 

found that progressive aging of biochar (artificial BC) also led to a gradual formation of surface functional 263 

groups such as phenolic, carboxyl, and carbonyl groups. The results of this study are consistent with those of 264 

previous studies, showing that aging of charcoals in soil resulted in the oxidation of their surfaces (Lehmann et 265 

al., 2005; Hardy et al., 2017). Accordingly, both H/C and O/C ratios of charcoal could be increased through 266 

elevated aging intensities (Cheng et al., 2008; Pereira et al., 2014). 267 

The CEC of three SBCs ranged from 128–227 cmol kg−1 (Table 1) with the order of BC-H (227.3 cmol 268 

kg−1) > BC-L (166.4 cmol kg−1) > BC-N (128 cmol kg−1). Under the low and high cultivation intensity of the 269 

soils, a gradual aging resulted in the value of SSA of BC-L and BC-H to be 4.5- and 2.7-fold higher than that of 270 

BC-N (Table 1). Thus, more sorption sites might be presented on the surface of BC-L and BC-H than BC-N, 271 

which could increase CEC of SBCs. The higher total content of acidic functional groups of BC-L and BC-H 272 

might also be responsible for the increase in CEC compared to that of BC-N in this study. Similarly, previous 273 

studies reported that CEC of charcoal increased over increasing aging intensity (Cheng et al., 2008). The CEC, 274 

variety of active functional groups and SSA were reported to affect the sorption capacities of biochar toward 275 

PTEs, including Pb sorption and immobilization (Lu et al., 2017; Wu et al., 2017; Li et al., 2019b). 276 

The peak intensity of functional groups on SBCs including the aromatic ring C=O stretching of β-diketone 277 
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ligands (1620–1580 cm−1) (Li et al., 2019b), and cyclic anhydride C−O−C stretching (1300–1199 cm−1) (Li et 278 

al., 2019b; Mumtaz et al., 2019) vibrations decreased with increasing cultivation intensity (Fig. 1), while the 279 

intensity of aliphatic C–H asymmetric stretching (2920 cm−1), R–CH3 symmetric stretching (2850 cm−1) (Chen 280 

et al., 2020b), and non-cyclic anhydride C−O−C stretching (1150–1060 cm−1) vibrations increased (Fig. 1). 281 

These changes were contributed likely by the hydrolyzation or decomposition of cyclic anhydride of carboxylic 282 

acid, and formation of C–H and R–CH3 contained functional groups on SBCs during the increased cultivation 283 

intensity of the soils. 284 

 285 

3.2. Sorption and desorption of Pb from Pb-loaded SBCs 286 

The kinetics of Pb sorption on the three SBCs at pH of 5.0 are presented in Fig. S1 (Supporting Information). 287 

The sorption kinetics of Pb on the three SBCs were expressed well by the pseudo-second-order model, rather 288 

than pseudo-first-order model, which was indicated by their respective r2 values (Table S1). About three hours 289 

was required for Pb sorption on the three BCs to reach the equilibrium likely through predominant 290 

chemisorption processes (Lu et al., 2012; Bandara et al., 2020). 291 

The sorption isotherms of Pb on BC-N and BC-H were interpreted by the Langmuir model with r2 values of 292 

0.981 and 0.920, respectively (Table S2, Fig. 2). Fitting of sorption data to the Langmuir model indicated that 293 

the Pb sorption on BC-N and BC-H occurred mainly through surface monolayer interactions (Wu et al., 2017). 294 

However, the Freundlich model provided a better fit than the Langmuir model for BC-L with a r2 value of 0.925 295 

(Table S2, Fig. 2), which indicated that the Pb sorption on BC-L was predominated by a multilayer sorption 296 

process (Xia et al., 2019). 297 

The maximum Langmuir sorption capacity values of Pb on BC-N, BC-L and BC-H under the same 298 

experimental conditions were 75.6, 46.0 and 91.3 mg g−1, respectively. Only a few previous studies reported the 299 
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sorption of Pb on SBC. Wang et al. (2011) showed that the wheat-residue derived BC could sorb Pb up to 0.65 300 

mmol g−1 (equal to 134 mg g−1) at Pb concentration of 20 mmol L−1. The sorption capacity of wheat-residue 301 

derived BC was higher than that of the three SBCs in this study. However, the maximum amount of Pb sorption 302 

to biochar (artificial BC) produced from different agricultural biomass might range from 13.1 to 88.7 mg g−1 303 

(Table S3). Unraveling the sorption mechanisms of Pb to different SBCs can help to understand the difference in 304 

the sorption capacities of SBCs for Pb. The exact Pb fractions on Pb-loaded SBCs would be able to reveal the 305 

related sorption mechanisms of Pb to SBCs. 306 

In the desorption experiments, the total Pb amount (Qtot) and Pb amount of four sorbed fractions, e.g., 307 

physical sorption (Qphy), ion exchange (Qexc), hydrogen bonding (Qhyd) and complexation (Qcom) fractions are 308 

shown in Fig. 3. With the increase of initial concentration of Pb, the amount of Pb in Qphy, Qcom, Qhyd, and Qexc 309 

fractions reached the sorption equilibrium successively, indicating that the exact saturation order of the four Pb 310 

fractions was Qphy, Qcom, Qhyd, and Qexc. The Qexc, Qhyd, Qcom and Qtot on the three types of Pb-loaded SBCs were 311 

all found to be well fitted to the Langmuir model (Table S4) with high r2 values ranging from 0.971 to 0.987, 312 

which was attributed to the fact that Pb desorption from Pb-loaded SBCs was a reverse process on Pb sorption 313 

to SBCs (Andreas and Zhang, 2014). 314 

The percentage of sorbed Pb in Qhyd and Qcom fractions of Pb-loaded SBCs (at Pb concentration of 1000 mg 315 

L−1) significantly decreased from 48.9 and 20.1% to 43.4 and 12.7% under no-cultivation in comparison to the 316 

low cultivation intensity, while decreased to 43.0 and 13.1% under high cultivation intensity (Fig. 4). The 317 

percentage of Pb in the Qexc fraction on SBCs however increased from 26.8% to 35.1 and 39.0%, respectively, 318 

from no-cultivation to low and high cultivation intensities. Results showed that Qexc and Qhyd were the two most 319 

important Pb fractions on the three Pb-loaded SBCs. The sum of Pb amounts in Qexc and Qhyd of the three 320 

Pb-loaded SBCs was ranging from 35.2 to 56.1 mg g−1, and accounting for 75.7 to 82.0% of total sorbed Pb 321 
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(Table S5 and Fig. 4). Previous research also reported that biochar could remove metal ions from aqueous 322 

solutions by various mechanisms including electrostatic attraction, complex formation, reduction and 323 

precipitation (Lu et al., 2012; Li et al., 2019b). Similarly, Andreas and Zhang (2014) reported that metal sorption 324 

onto soil-derived humin (a specific organic matter) in freshwater media was dominated by hydrogen bonding 325 

and ion exchange fractions. 326 

The content of BC-N, BC-L and BC-H in the soils was 2.85, 5.69 and 4.07 g kg−1, while Pb amount in the 327 

Qcom fraction of these Pb-loaded SBCs was 11.52, 5.68 and 8.95 mg g−1, respectively (Table S5 and Fig. 4). The 328 

complexation (Qcom) fraction of Pb was presented to be stable since the extracting agents such as ultrapure water, 329 

CH3COONH4 (1 M, pH=7), CH3COOH (4.37 M) and NH2OH·HCl (0.04 M) could not extract this Pb fraction 330 

(Andreas and Zhang, 2014) from the Pb-loaded SBCs. Therefore, we inferred that the BC-N, BC-L and BC-H 331 

might increase the capacity of Soil 1, Soil 2 and Soil 3 to adsorb Pb as a stable (complexation) fraction by 19.0, 332 

18.7 and 21.1 mg kg−1 (Table S5), respectively.  333 

 334 

3.3. Sorption mechanisms of Pb to SBCs 335 

It was reported that the efficacy of various biochars derived from different biomass materials to adsorb PTE 336 

contaminants depends on its properties, e.g., surface area, pore size distribution, ion-exchange capacity (Bandara 337 

et al., 2020) and surface oxygen-containing functional groups (Xia et al., 2019) representing different sorption 338 

mechanisms. Accordingly, the sorption mechanisms of Pb onto SBCs were divided into the following four parts. 339 

(1) Physical sorption: The orders of Qphy on Pb-loaded SBCs and SSA of SBCs were both in the order: 340 

BC-L > BC-H > BC-N (Table S5 and Table 1), while the SSA values of SBCs was highly correlated to Qphy 341 

fractions on Pb-loaded SBCs with a correlation coefficient (R2) value of 0.94 (Fig. S2a). Similar results were 342 

reported by Zhang et al. (2019) who realized that the surface area of a sludge-based biochar was improved after 343 
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activation by different activators, thus improving its physical Pb sorption capacity. Moreover, Ngambia et al. 344 

(2019) found that tunnels on the rods of sludge derived carbon provided a high surface area, extra sorption sites 345 

and interspace for easy contamination diffusion contributing to surface physical adsorption.  346 

(2) Ion exchange: The CEC values of SBCs were highly correlated to the Qexe fractions of Pb-loaded SBCs 347 

with a correlation coefficient (R2) of 0.833 (Fig. S2b). Moreover, the CEC values of SBCs and Qexe fractions of 348 

Pb on Pb-loaded SBCs all followed the order: BC-H > BC-L > BC-N (Table S5 and Table 1). Therefore, the Qexe 349 

fraction of Pb-loaded SBCs might be mainly attributed to the cation exchange mechanism of Pb sorption on 350 

SBCs. 351 

The sum amounts of Na+, K+, Mg2+ and Ca2+ released in the supernatants after Pb sorption onto BC-N, BC-L 352 

and BC-H were equivalent to 13.3, 15.6 and 18.6 mg Pb g−1, accounting for 23.1, 34.9 and 27.2% of the total Pb 353 

sorbed by BC-N, BC-L and BC-H (prepared under Pb concentration of 1000 mg L−1), respectively (Table S6). 354 

The sum amounts of Na+ and K+ (mono-valent cations), which could be related to the electrostatic ion exchange 355 

with Pb (Lu et al., 2012) since they cannot form precipitates or be coordinated with surface functional groups of 356 

BCs, were equivalent to 5.32, 3.0 and 3.67 mg Pb g−1 accounting for 34.5, 19.1 and 13.8% of the Qexc values on 357 

Pb-loaded BC-N, BC-L and BC-H, respectively (Table S6). Meanwhile, the sum amounts of Mg2+ and Ca2+ 358 

(divalent alkaline earth cations), which could originate from the exchange sites of inorganic minerals and the 359 

chelated surface functional groups such as R-COO−Me or R−O−Me on SBCs, were equivalent to 7.95, 12.6 and 360 

15.0 mg Pb g−1 accounting for 51.6, 80.2 and 56.1% of the Qexc, respectively (Table S6). Our results showed that 361 

the exchange sites adsorbed or chelated Pb fractions in Qexc of Pb-loaded SBCs were far more than that of the 362 

electrostatically ion exchanged Pb fraction, indicating that chelation might have played a more important role 363 

during the sorption process (Lu et al., 2012). Similar result was reported by Li et al. (2019b) that ion exchange 364 

was the main mechanism for Pb sorption by coconut-fiber biochar with electrostatic ion exchange and chelation 365 
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processes. 366 

(3) Hydrogen bonding: The results of TG and DTG thermograms of the three SBCs are shown in Fig. S3. 367 

The TG and DTG analyses detected three endothermic peaks between 30 and 180 °C, 300 and 350 °C, and 380 368 

and 560 °C for all samples (Fig. S3). Previous studies ascribed the endothermic peak at temperatures below 369 

200 °C to the loss of adsorbed water, while that near 325 °C to decarboxylation (volatilization of −COOH) and 370 

further dehydroxylation (volatilization of −OH) of surface organic functional groups, and that around 475 °C to 371 

the thermal reaction of the aromatic nuclei of organic matter (Plante et al., 2009). Carbohydrates and other 372 

aliphatic compounds would be pyrolyzed at 300 to 350 °C in the TG analysis (Plante et al., 2009), the weight 373 

loss of SBCs (Fig. S3; attributed to volatilization of −COOH and −OH), however, were highly correlated to the 374 

sum content of AOH and RCOOH groups (Table 1) with a R2 value of 0.966 (Fig. S2c).  375 

Moreover, the sum contents of AOH and RCOOH of SBCs were significantly correlated with Pb amount in 376 

the Qhyd fraction (with a R2 value of 0.833; Fig. S2d). This might be attributed to the activities of −COOH and 377 

−OH groups to adsorb Pb in aqueous solution through hydrogen bonding. It was reported that Pb would be 378 

present mainly as the species of Pb2+ at pH 4 in aqueous solution, then the amount of Pb2+ would decrease with 379 

an increase of pH to 5.5 due to Pb(OH)+ formation (Ucun et al., 2003). Ucun et al. (2003) observed Pb 380 

precipitation (Pb(OH)2) when the initial pH of a biosorption medium was adjusted to pH 5.5. Thus, Pb2+ and 381 

Pb(OH)+ were likely to be adsorbed onto SBCs through hydrogen bonding at pH 5.0 as the Qhyd fraction in this 382 

study. 383 

(4) Complexation: In order to elucidate the complexation mechanism, the XPS spectra of C and O groups on 384 

the surface of SBCs with and without Pb loading were obtained for C 1s, O 1s and Pb 4f regions, and the 385 

corresponding changes in the functional groups were determined (Fig. 5 and Table 2). The peak at the binding 386 

energy of Pb 4f between 138 and 143 eV was found in all Pb-loaded SBC samples (Fig. 5b), which confirmed 387 



19 

that Pb was successfully complexed by the functional groups on SBCs. The binding energy of Pb 4f5/2 and 388 

4f7/2 on Pb-loaded SBCs decreased to 143.79 eV and 138.89 eV in comparison with Pb(NO3)2 that centered at 389 

145.0 eV and 139.9 eV (Batrusaitis et al., 2012; Xin et al., 2012), respectively, indicating the presence of strong 390 

affinity between SBC and Pb ions by newly formed Pb−O groups (Zhang et al., 2017). 391 

As shown in Fig. 5c−h, three principal C species, i.e., C−C/C=C/C−H (hydrocarbon) at 284.7 eV, C−O 392 

(aromatic) at 286.4 eV and C=O/O−C=O (carboxylic carbon) at 288.4 eV, and two O species such as C−O at 393 

531.9 eV and C=O at 532.8 eV were identified in the three SBC samples (Deng et al. 2017; Xia et al., 2019). After 394 

Pb sorption, the peak intensities of C−O (aromatic) significantly decreased, while that of O=C−O (carboxylic 395 

carbon) and C=O significantly increased (Table 2). These results indicated that O=C−O groups played key roles 396 

in Pb sorption by forming complexes of O=C−O−Pb and/or O=C−O−Pb−O (Yamada et al., 2014; Wang et al., 397 

2015). 398 

Overall, the above four mechanisms all likely attributed to Pb sorption onto SBCs, while they had various 399 

degrees of contributions. However, the amount of Pb adsorbed onto SBCs was dominated by the ion exchange, 400 

hydrogen bonding and complexation fractions. The amount of Pb in the physical sorption, ion exchange and 401 

hydrogen bonding fractions on Pb-loaded SBCs were highly correlated with SSA, CEC and the sum contents of 402 

hydroxyl and carboxyl functional groups on SBCs, respectively. 403 

 404 

4. Conclusions 405 

The amount of Pb adsorbed onto different SBCs was dominated by the ion exchange and hydrogen bonded 406 

fractions, which together accounted for about 80% of the total sorbed Pb, and was mainly attributed to CEC and 407 

hydrogen bonding capacities of free carboxyl and hydroxyl groups of SBCs. The increased cultivation intensity 408 

and aging of SBCs increased the H/C, O/C ratios and CEC of the SBCs compared to that with no cultivation. 409 
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Therefore, the Pb sorption capacity of SBCs in the ion exchange fraction increased with the increasing 410 

cultivation intensity of soils. The maximum Pb sorption capacities of SBCs in this study were as high as that of 411 

biochars produced from various agricultural biomasses. Moreover, the SBCs might increase the Pb sorption 412 

capacities of the studied soils by 18.7 - 21.1 mg kg−1 in stable fractions, which might not be released readily. 413 

Overall, SBCs in soils under all studied cultivation intensities showed high potential to sorb and retain Pb in a 414 

stable form. Increasing SBC content in soil during land management and utilization could befittingly be an 415 

environment-friendly method to enhance the potential Pb immobilization capacity of soils. Further research 416 

should be carried out to determine the PTE sorption capacity of SBCs in ecologically and climatically different 417 

soils, so as to establish a database of PTE immobilization capacity of SBCs in soils. 418 
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Figure captions 608 

Fig. 1. The FTIR spectra of SBC samples. 609 

Fig. 2. Isotherms of Pb sorption on SBCs. 610 

Fig. 3. Total Pb amounts and Pb amounts of four fractions on the three Pb-loaded SBCs prepared under increasing initial 611 

concentration of Pb. 612 

Fig. 4. Amounts of Pb in different Pb fractions on Pb-loaded SBCs under Pb concentration of 1000 mg L−1. 613 

Fig. 5. XPS wide scan spectra of Pb 4f, C 1s and O 1s (a), high-resolution spectra of Pb 4f region (b), and high-resolution 614 

spectra of C 1s regions (c−h) on SBCs before and after Pb sorption. 615 
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Fig. 1. The FTIR spectra of SBC samples, the sample ID of BC-N, BC-L and BC-H refer to SBC selected from Soil 1, Soil 2 619 

and Soil 3, respectively. 620 
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Fig. 2. Isotherms of Pb sorption on SBCs. 623 
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Fig. 3. Total Pb amounts and Pb amounts of four fractions on the three Pb-loaded SBCs prepared under increasing initial 627 

concentration of Pb. 628 
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 630 

Fig. 4. Amounts of Pb in different Pb fractions on Pb-loaded SBCs under Pb concentration of 1000 mg L−1. 631 
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Fig. 5. XPS wide scan spectra of Pb 4f, C 1s and O 1s (a), high-resolution spectra of Pb 4f region (b), and high-resolution 637 

spectra of C 1s regions (c−h) on SBCs before and after Pb sorption. 638 
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Table 1. Composition and selected properties of SBCs. 640 

Sample ID 

Elemental component (%) Atomic ratio   n(RCOOH) 

(mmol g−1) 

n(RCOR') 

(mmol g−1) 

n(AOH) 

(mmol g−1) 

CEC 

(cmol kg−1) 

SSA (m2 g−1) 

C H N O H/C O/C (O+N)/C   

BC-N 49.1 3.61 0.73 46.5 0.88 0.71 0.72   0.53 ± 0.02 0.70 ± 0.03 0.34 ± 0.04 128.0 ± 24.9 7.51 ± 1.1 

BC-L 47.9 3.87 1.64 46.6 0.97 0.73 0.76   0.49 ± 0.01 1.13 ± 0.19 0.09 ± 0.01 166.4 ± 13.4 34.1 ± 2.7 

BC-H 45.9 3.90 2.36 47.8 1.02 0.78 0.83   0.03 ± 0.01 0.64 ± 0.03 1.03 ± 0.01 227.3 ± 11.7 20.3 ± 1.8 

Notes: Results are means ± SD (n = 3), the sample ID of BC-N, BC-L and BC-H refer to SBC selected and picked from Soil 1 (no-cultivation), Soil 2 (less intensive cultivation) and Soil 3 641 

(highly intensive cultivation), respectively. While the RCOOH, RCOR', and AOH refer to carboxylic acid, weak acid ester, and phenolic hydroxyl groups, respectively. 642 
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Table 2. Peak positions and relative contents of surface functional groups determined from C 1s and O 1s XPS spectra for 643 

SBCs before and after Pb sorption. 644 

Sample ID 

  Bonds and groups of C 1s   Bonds and groups of O 1s 

  C−C/C=C/C−H C−O C=O/O−C=O   C=O C−O 

BC-N Beam energy (eV) 284.7 286.4 288.4  531.9 532.8 

 Atomic percentage (%) 58.2 28.3 13.6  59.7 40.3 

BC-N-Pb Beam energy (eV) 284.7 286.3 288.3  532 532.8 

 Atomic percentage (%) 57.4 27.5 15.1  62.3 37.7 

BC-L Beam energy (eV) 284.7 286.4 288.4  532 532.9 

 Atomic percentage (%) 67.5 22.2 10.3  61.8 38.2 

BC-L-Pb Beam energy (eV) 284.7 286.3 288.3  531.8 532.8 

 Atomic percentage (%) 67.7 21.8 10.5   62.4 37.6 

BC-H Beam energy (eV) 284.8 286.3 288.3  531.9 532.7 

 Atomic percentage (%) 73.2 19.3 7.5  64.5 35.5 

BC-H-Pb Beam energy (eV) 284.8 286.3 288.3  531.9 533.2 

 Atomic percentage (%) 72 18.5 9.5  77.4 22.6 

 645 
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Text S1. 671 

The pseudo-first-order (Eq. 1) and pseudo-second-order (Eq. 2) models used in this study: 672 

          1 673 

               2 674 

where, k1 (h−1) and k2 (h−1·(g mg−1)) are the rate constants of the pseudo first-order and pseudo-second order 675 

models, respectively. While, qe and qt is the amount of Pb sorbed by SBC at equilibrium and at time (t) in mg g−1, 676 

respectively. 677 

The Langmuir (Eq. 3) and Freundlich (Eq. 4) models used in this study: 678 

        3 679 

                           4 680 

where, qe (mg g−1) and Ce (mg L−1) are the amounts of Pb sorbed by SBC for a given initial Pb concentration, 681 

and the concentration of Pb in solution at equilibrium, respectively. While, qm (mg g−1) is the maximum amount 682 

of Pb adsorbed at equilibrium, KL (L mg−1) is the Langmuir constant; n and Kf ((mg g−1)·(mg L−1)−n) are 683 

equilibrium constants relating to sorption intensity and sorption capacity of the Freundlich model, respectively. 684 

685 
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Table S1. Parameters of pseudo-first-order and pseudo-second-order kinetic models for Pb sorption on SBCs. 686 

Sample ID 

Pseudo-first-order Pseudo-second-order 

qe (mg g
−1) k1 (1 h

−1) r2 qe (mg g
−1) 

k2 (g mg
−2h

−

1) 

r2 

BC-N 31.18 7.22 0.795 32.92 0.356 0.998 

BC-L 27.33 0.89 0.787 30.66 0.034 0.979 

BC-H 49.11 13.19 0.992 50.63 0.592 0.999 

 687 

Table S2. Parameters of Langmuir and Freundlich isotherm models for Pb sorption on SBCs. 

Sample ID 

Langmuir Freundlich 

qm (mg g
−1) KL (L mg

−1) r2 Kf (mg (1−n) Ln g
−1) n r2 

BC-N 75.6 0.916 0.981 29.11 0.182 0.847 

BC-L 46.0 1.064 0.854 17.53 0.193 0.925 

BC-H 91.3 0.675 0.920 32.13 0.191 0.728 

 688 

689 
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Table S3. Sorption capacities of different biochars for removing Pb from aqueous solution at pH of 5.0. 690 

Type of biochars Metal ion Qm (mg g
−1) References 

Oak bark char Pb2+ 13.1 Mohan et al. 2007 

Pomelo peel biochar Pb2+ 88.7 Zhao et al., 2018 

Coconut-fiber biochar Pb2+ 79.4 Li et al., 2019 

Raw sugarcane bagasse biochar Pb2+ 81.9 Inyang et al., 2011 

Corn stover biochar Pb2+ 63.3 Li et al., 2018 

Digested sugar beet biochar Pb2+ 51.4 Inyang et al., 2012 

 691 

Table S4. The parameters (r2) of Langmuir model for different Pb fractions on Pb-loaded SBCs under increasing 692 

initial Pb concentrations. 693 

Sample ID Physical interaction Ion exchange Hydrogen bond Complexation Total amount 

BC-N ˗ 0.984 0.983 0.971 0.969 

BC-L ˗ 0.986 0.968 0.979 0.987 

BC-H ˗ 0.966 0.973 0.984 0.983 

 694 
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Table S5. Amounts of Pb in different fractions on Pb-loaded SBCs (prepared under Pb concentration of 1000 mg L−1). 695 

Sample ID 

Amount of Pb in different fractions (mg g−1) Amount of sorbed Pb 

in a stable form in 

soil (mg kg
−1)

α
 

Physical 

adsorption 

Ion exchange Hydrogen bonding complexation 

Total amount of 

desorption 

BC-N 2.44 15.41 28.10 11.53 57.48 19.0 

BC-L 3.97 15.74 19.45 5.68 44.84 18.7 

BC-H 3.37 26.68 29.46 8.95 68.46 21.1 

αThe amount of sorbed Pb in a stable form in soil (attribute to SBC sorption) was calculated by the equation: Qsta = MSBC × Qcom, where Qsta, MSBC, and Qcom refer to the 696 

amount of stable Pb (in mg kg−1), the content of SBC in soil (in g kg−1), and amount of Pb in complexation fraction (in mg g−1), respectively. 697 
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Table S6. Equivalents of adsorbed Pb by released cations from Pb-loaded SBCs. 698 

Sample ID K+ (mg g−1) Na+ (mg g−1) Ca2+ (mg g−1) Mg2+ (mg g−1) 

BC-N 1.32 ± 0.03 4.00 ± 0.96 7.12 ± 0.88 0.83 ± 0.01 

BC-L 0.97 ± 0.12 2.03 ± 0.28 12.3 ± 1.78 0.33 ± 0.03 

BC-H 0.98 ± 0.02 2.69 ± 0.44 14.5 ± 3.51 0.47 ± 0.01 
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Fig. S1. Kinetics of Pb sorption on SBCs, a) pseudo-first-order kinetic model; b) pseudo-second-order kinetic 701 

model. 702 
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Fig. S2. Correlations between the amount of Pb in different fractions on Pb-loaded SBCs and specific properties 706 

of SBCs. a) physical adsorption fraction vs. specific surface area; b) ion exchange fraction vs. CEC; c) weight 707 

loss of −COOH and –OH groups on SBCs vs. the sum content of RCOOH and AOH functional groups on SBCs; 708 

and d) hydrogen bonding fraction vs. the sum content of RCOOH and AOH functional groups on SBCs. 709 
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  711 

 712 

Fig. S3. Thermogravimetric (TG, black line) and differential thermogravimetric (DTG, red line) curves of SBC samples: a) 713 

BC-N, b) BC-L, and c) BC-H. 714 

715 
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