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Abstract: The point spread function (PSF) effect is ubiquitous in remote sensing images and imposes a 11 

fundamental uncertainty on subpixel mapping (SPM). The crucial PSF effect has been neglected in existing 12 

SPM methods. This paper proposes a general model to reduce the PSF effect in SPM. The model is applicable 13 

to any SPM methods treating spectral unmixing as pre-processing. To demonstrate the advantages of the new 14 

technique it was necessary to develop a new approach for accuracy assessment of SPM. To-date, accuracy 15 

assessment for SPM has been limited to subpixel classification accuracy, ignoring the performance of 16 

reproducing spatial structure in downscaling. In this paper, a new accuracy index is proposed which considers 17 

SPM performances in classification and restoration of spatial structure simultaneously. Experimental results 18 

show that by considering the PSF effect, more accurate SPM results were produced and small-sized patches 19 

and elongated features were restored more satisfactorily. Moreover, using the novel accuracy index, the 20 

quantitative evaluation was found to be more consistent with visual evaluation. This paper, thus, addresses 21 

directly two of the longest standing challenges in SPM (i.e., the limitations of the PSF effect and accuracy 22 

assessment undertaken only on a subpixel-by-subpixel basis). 23 

 24 
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1. Introduction 28 

 29 

Land cover mapping is a common process in remote sensing in which land cover information is extracted 30 

from remotely sensed images. Mixed pixels, which generally contain more than one type of classes (Fisher, 31 

1997), are a common phenomenon in remote sensing images. Conventional hard classification allocates each 32 

mixed pixel to a single land cover class. This can lead to the loss of a large amount of the latent land cover 33 

information in the observed images and is, thus, sub-optimal for land cover mapping. Spectral unmixing is a 34 

technique to estimate the class proportions at the original spatial resolution (hereafter, coarse proportions), but 35 

it fails to provide the spatial distribution of the land cover classes within each mixed pixel (i.e., at a scale finer 36 

than the original pixel). As a result, subpixel mapping (SPM) was developed for application to the coarse 37 

proportions estimated by spectral unmixing. SPM divides each coarse pixel into subpixels and assigns class 38 

labels to these subpixels, thus, providing more spatially detailed hard land cover information than conventional 39 

hard classification (Atkinson, 1997). 40 

SPM is generally performed based on the assumption of spatial dependence, that is, spatially proximate 41 

observations are considered to be more likely to belong to the same class than more distant ones. Therefore, the 42 

objective of SPM can be characterized as the maximization of spatial dependence under the constraint that the 43 

coarse class proportions are honored. Over the past decades, various algorithms have been developed for SPM. 44 

In terms of the characterization of spatial dependence, SPM can be categorized mainly into two groups. One 45 

group describes the spatial relation between a subpixel and its neighboring pixels (i.e., subpixel-to-pixel-based 46 

methods), including subpixel/pixel spatial attraction model (SPSAM) (Mertens et al., 2006), area-to-point 47 

kriging (ATPK) (Wang et al., 2018), indicator co-kriging (ICK) (Jin et al., 2012), kriging (Verhoeye and De 48 

Wulf, 2002), back-propagation neural network (Wu et al., 2011), radial basis function (RBF) interpolation 49 
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(Wang et al., 2014a) and double-calculated spatial attraction model (DSAM) (Wu et al., 2018). The other group 50 

describes the spatial relation between a subpixel and its neighboring subpixels (i.e., subpixel-to-subpixel-based 51 

methods). Solutions in this group include pixel-swapping algorithm (PSA) (Atkinson, 2005), Hopfield neural 52 

network (HNN) (Tatem et al., 2001), genetic algorithm  (Mertens et al., 2003) and maximum a posteriori 53 

(MAP) (Zhong et al., 2015). Moreover, some methods combine both types of spatial dependences (Chen et al., 54 

2018a; Ling et al., 2014). In all these methods, although spatial dependence is described in different ways, 55 

SPM is applied to the output of spectral unmixing, namely, the coarse class proportions. 56 

To circumvent the heavy dependence on the coarse proportions, SPM can be applied directly to the original 57 

coarse remote sensing images. Commonly used solutions are spatial-spectral models (e.g., Markov random 58 

field (MRF) (Chen et al., 2020; Li et al., 2014; Tolpekin and Stein, 2009)). These methods can reduce the 59 

uncertainty propagated from the coarse proportions to some extent. However, spatial-spectral models may not 60 

be beneficial for reproducing spatial structure information when relaxing the reliance on coarse proportions, as 61 

more emphasis is placed on the spatial part (always characterized by a local smoothness term) by assigning a 62 

larger weighting parameter. This process can produce over-smooth predictions, which can fail to reproduce 63 

small-sized patches and elongated features. Thus, appropriate weighting parameters need to be determined for 64 

spatial-spectral-based SPM. Moreover, the spatial part needs to be characterized more reasonably. 65 

In recent years, SPM has also been extended from the conventional spatial domain to the spatial-temporal 66 

domain for time-series images and spatial-temporal SPM methods have been developed (Li et al., 2017; Zhang 67 

et al., 2017), which can make use of the temporal information in time-series images. In addition, learning-based 68 

SPM methods have been investigated which assume similarities in spatial structure between the target data and 69 

auxiliary training data (Chen et al., 2018b; Ling and Foody, 2019; Ma et al., 2019). 70 

In existing spectral unmixing and SPM, it is assumed that each pixel consists solely of the signal within its 71 

scanning area (Kaiser and Schneider, 2008; Settle, 2005). However, the point spread function (PSF) effect 72 

exists ubiquitously in remote sensing images and influences the observed images greatly. The PSF effect 73 

originates from the physical, optical and electronic properties of sensors (Markham, 1985; Peng et al., 2015). 74 
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Mathematically, due to the PSF effect, the pixel value (e.g., reflectance, radiance, digital number, etc.) is a 75 

weighted convolution of contributions from both the observed pixel and its neighboring pixels. Such an effect 76 

leads to large errors in pixel values of both dark and bright areas. Specifically, the proportion value for dark 77 

targets surrounded by bright backgrounds is biased upwards, and the proportion value for bright targets 78 

surrounded by dark pixels is biased downwards. Therefore, the PSF effect constitutes an inherent source of 79 

uncertainty in each observed coarse pixel (Huang et al., 2002) and in all land cover mapping based on spectral 80 

unmixing and SPM. 81 

In previous studies, the PSF effect was demonstrated to affect greatly the accuracy of the coarse proportions 82 

produced by spectral unmixing (Townshend et al., 2000; Wang et al., 2018). As a pre-processing step 83 

necessary for SPM, this inaccuracy in the coarse proportions will also affect the reliability of SPM directly. 84 

Specifically, in existing SPM methods, the PSF-contaminated coarse proportions are used as the „coherence 85 

constraint‟ where the number of subpixels for each class is fixed accordingly. As a result, almost all existing 86 

SPM methods fail to account for the great impact of the inherent PSF. Wang and Atkinson (2017) proposed an 87 

optimization-based method to account for the PSF effect in the SPM process. This is one of the very few 88 

studies that considers the PSF effect in SPM. Specifically, a HNN model is constructed where the proportion 89 

constraint is characterized as the difference between the observed PSF-contaminated coarse proportion and the 90 

coarse proportion simulated by convolving the interim SPM realization with the PSF. The proportion 91 

constraint guides the optimization process and the optimal SPM solution is approached gradually. It was 92 

demonstrated that by considering the PSF effect, the HNN-based method can produce more accurate SPM 93 

predictions. However, the main limitation of HNN is that it fails to reproduce small-sized features. This is 94 

because the energy function of the HNN is characterized by a local smoothness term and a coherence constraint 95 

term, in which the constraint is always not strictly satisfied and the coarse proportions are not perfectly 96 

maintained based on the assumption of local smoothness during the optimization process. This is different 97 

from SPM methods that honour perfectly the coarse proportions. As a result, small-sized objects that produce 98 
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small proportions cannot be guaranteed to be represented by the HNN in most cases. Furthermore, the 99 

computational burden is heavy as a large number of iterations is required in the optimization process. 100 

Different from the above-mentioned method that is developed based on a specific SPM model (e.g., HNN), 101 

in this paper, a general solution is proposed to reduce the PSF effect in SPM. The core idea of the solution is to 102 

consider the PSF effect in the pre-spectral unmixing process and provide enhanced coarse proportions for SPM 103 

(Wang et al., 2018). In this case, the determination of the number of subpixels for each class within each coarse 104 

pixel in the post-SPM process is guided by the enhanced coarse proportions. Hence, the proposed model based 105 

on the enhanced coarse proportions is suitable for any existing SPM methods that use spectral unmixing as a 106 

pre-processing step, including both the subpixel-to-pixel and subpixel-to-subpixel classes of method 107 

mentioned earlier. The advantage of the general solution is that it can restore satisfactorily small-sized patches 108 

while consuming less time. In this paper, both the subpixel-to-pixel (i.e., ATPK) and the subpixel-to-subpixel 109 

(i.e., PSA) method classes are extended to account for the PSF effect. 110 

As acknowledged widely, SPM is essentially a hard classification technique performed at a finer spatial 111 

resolution than the original data. Quantitative assessment of the accuracy of SPM based on classification at the 112 

level of the smallest unit (i.e., subpixel) is accepted as valuable (Foody, 2002). However, SPM is also a 113 

downscaling technique involving transformation of spatial scale (Ge et al., 2019). Therefore, the accuracy 114 

assessment applied to the results of SPM should concern not only the per-subpixel performance of the 115 

classification, but also the ability to recover interesting spatial structure features and boundary information 116 

after downscaling. In recent years, increasing attention has been paid to the ability to reproduce finer resolution 117 

spatial structure information in land cover using SPM. For example, Ling et al. (2012) extracted rectangular 118 

building objects at a finer spatial resolution conditional upon prior shape information. Moreover, Atkinson 119 

(2004) used the two-point histogram to characterize spatial pattern, and the optimal SPM prediction was 120 

assumed to be the one that was most similar in spatial structure to that of the available training image. To the 121 

best of our knowledge, however, existing accuracy evaluation of SPM is based universally on subpixel 122 

classification accuracy, neglecting the accuracy of reproducing spatial structure. Therefore, there is a great 123 
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need for a new accuracy index that can account for the accuracies of subpixel classification and spatial 124 

structure reproduction simultaneously for SPM. 125 

To fill the need mentioned above, as another contribution in this paper, a new accuracy index for more 126 

comprehensive evaluation of SPM is proposed which evaluates the restoration of spatial structure in addition to 127 

conventional classification-based indices (e.g., producers‟ accuracy (PA), users‟ accuracy (UA) and overall 128 

accuracy (OA). The semivariogram has been used widely to quantify the spatial variation in land cover (Curran, 129 

1988). It is used to characterize the spatial structure in the land cover class map predicted by SPM in this paper. 130 

The accuracy of the semivariogram can be quantified straightforwardly to represent the accuracy of restoring 131 

spatial pattern. On this basis, an integrated error index is proposed coupled with a conventional 132 

classification-based index. 133 

The main contributions of this paper are, thus, twofold. 134 

1) A general solution is proposed to reduce the influence of the PSF in SPM and to produce more reliable 135 

subpixel land cover maps. The PSF effect has seldom been considered in SPM and the reliability of the 136 

predicted subpixel maps is affected greatly. The proposed model provides a completely new insight to 137 

reduce the PSF effect. It is suitable for any existing SPM methods using spectral unmixing predictions as 138 

input. Moreover, it can reproduce small-sized and elongated features and is computationally fast. 139 

2) A new error index is developed for more objective quantitative evaluation of SPM prediction. Accuracy 140 

assessment for SPM is a long standing issue (Atkinson, 2009). It is crucial to evaluate the performance of 141 

both the classification and downscaling (i.e., spatial structure reproduction) aspects of SPM. Along with 142 

conventional classification accuracy-based evaluation, the proposed error index uses the semivariogram 143 

to assess the accuracy of spatial structure reproduction simultaneously. This paper, thus, provides a first 144 

step towards more comprehensive, integrated accuracy assessment for SPM. 145 

The remainder of this paper is divided into four sections. The second section first introduces the mechanism 146 

of the proposed general solution for considering the PSF effect in SPM. The extended versions of two types of 147 

SPM methods are then introduced in Section 2.2, followed by details of the proposed error index in Section 2.3. 148 
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The third section provides the experimental results for three datasets to demonstrate the effectiveness of the 149 

proposed SPM method and the proposed accuracy index. Section 4 discusses open issues in the proposed 150 

general SPM method and the new accuracy index, followed by a conclusion in Section 5. 151 

 152 

2. Methods 153 

 154 

2.1. The proposed general SPM model considering the PSF effect 155 

As a post-processing technique of spectral unmixing, SPM uses the coarse proportion data predicted from 156 

spectral unmixing as input. Therefore, the coarse proportions play an important role in SPM. In existing SPM 157 

methods, the coarse proportions are assumed not to be influenced by the PSF effect (Wang et al., 2018). As 158 

depicted by Wang and Atkinson (2017), however, the PSF effect is ubiquitous in reality and influences greatly 159 

the spectral unmixing results. To provide more reliable input and enhance SPM, it is important to reduce the 160 

influence of the PSF effect in the pre-processing spectral unmixing. 161 

Based on this idea, in this paper, a general model that is suitable for any SPM methods using spectral 162 

unmixing predictions as input is proposed to reduce the impact of the PSF on SPM. Specifically, the ideal 163 

coarse proportions not contaminated by the PSF effect are estimated by a downscale-then-upscale process, as 164 

shown in Fig. 1. The principles are introduced explicitly below. 165 

Suppose ( )kF v  is the ideal fine spatial resolution proportion (hereafter, fine proportion) for class k (k=1, 166 

2, …, K, where K is the number of land cover classes) in subpixel v  located within coarse pixel V. The ideal 167 

fine proportions are not contaminated by the PSF effect. The coarse proportions ( )kF V  for class k predicted 168 

from spectral unmixing can be described as a convolution of the ideal fine proportions (Wang et al., 2018) 169 

( ) ( )*k k VF V F v h                                                                        (1) 170 

where * is the convolution operator and Vh  is the PSF filter. 171 

In the existing literature on spectral unmixing, the coarse proportions in a pixel are assumed to be the 172 
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average of the fine proportions of all subpixels located within the coarse pixel (i.e., a non-PSF or an ideal 173 

square wave filter Vh  is assumed). In reality, however, the actual PSF Vh  is distinctly different from the ideal 174 

Vh , and Vh  is commonly assumed to be a Gaussian PSF (Van der Meer, 2012, Wang et al., 2018). The 175 

Gaussian filter can characterize appropriately the influence of neighboring subpixels on the coarse proportions 176 

of the center pixel: subpixels closer to the center of the pixel hold greater weight, and more importantly, the 177 

spatial coverage the of PSF is generally larger than a coarse pixel (i.e., not only the subpixels falling in the 178 

center coarse pixel, but also neighboring subpixels that contribute to the coarse proportions of the center pixel). 179 

According to Eq. (1), once the PSF is known, the ideal fine proportion ( )kF v  can be predicted from the 180 

PSF-contaminated spectral unmixing prediction ( )kF V . This process is essentially downscaling. To solve the 181 

inverse problem by downscaling, the key is to account for the PSF and more precisely, the contributions of 182 

neighboring pixels to the coarse proportions of the center pixel. As a powerful method for downscaling, the 183 

ATPK method can achieve this by relating the semivariogram at different scales using the PSF. It is, thus, 184 

adopted to estimate each fine proportion in this paper. Specifically, the ATPK-derived fine proportion is 185 

calculated as a linear weighted sum of the coarse proportions in neighboring pixels as follows: 186 

1

ˆ ( ) ( )
N

k j k j

j

F v F V


                                                                   (2) 187 

where j  is the weight for neighboring coarse pixel jV  and N is the number of neighboring pixels. The 188 

weights j  
(j=1, 2, …, N) are calculated based on a kriging matrix composed of semivariograms at different 189 

spatial resolutions. More details can be found in Kyriakidis (2004). 190 

Notably, when solving the downscaling problem under the PSF effect in Eq. (2), the condition (i.e., 191 

constraint) in Eq. (1) needs to be satisfied. The ATPK method holds the advantage that once the predictions 192 

ˆ ( )kF v  are convolved with the PSF Vh , the original coarse proportions will be reproduced exactly, that is, Eq. (1) 193 

is strictly satisfied (Kyriakidis, 2004) 194 

ˆ ( ) ( ).k V kF v h F V                                                                     (3) 195 
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Therefore, ˆ ( )kF v  is considered to be a reliable solution to the ideal fine proportion identified in Eq. (1). After 196 

the ideal fine proportions are predicted, they can be convolved with the ideal square wave filter Vh  to estimate 197 

the coarse proportion ( )kT V  not contaminated by the PSF effect 198 

ˆ ˆ( )= ( )* .k k VT V F v h                                                                       (4) 199 

More precisely, based on the definition of Vh , the enhanced coarse proportion for class k can be further 200 

simplified as the average of fine proportions ˆ ( )kF v  in subpixels located in jV . That is, for each pixel jV , we 201 

have 202 

2

,2
1

1ˆ ˆ( )= ( )
s

k j k i j

i

T V F v
s 

 .                                                                   (5) 203 

where ,i jv  are the subpixels within the coarse pixel jV . Before the enhanced coarse proportion ˆ ( )kT V  is used 204 

for post-SPM, it needs to be further normalized so that the sum of proportions of all classes in each pixel is 205 

equal to one. 206 

 207 

Coarse proportions

AverageATPK

SPM

Methods

Fine proportions Enhanced proportions SPM results

Downscale considering PSF Upscale using a square wave filter

ˆ ( )kT Vˆ ( )kF v( )kF V
PSF filter Vh Square wave filter Vh

ˆ ˆ( ) ( )k k VT V F v h 
1

( ) ( )
N

k j k j

j

F̂ v F V




ˆ. . ( ) ( )k V ks t F v h F V 

 208 

Fig. 1. Systemic framework of SPM methods considering the PSF effect. 209 

 210 

2.2. SPM based on the general model 211 
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Based on the goal of maximizing spatial dependence, SPM methods can be divided into two main types. One 212 

is based on the spatial dependence between a subpixel and its neighboring subpixels, while the other is based 213 

on the spatial dependence between a subpixel and its neighboring coarse pixels. The goal of both methods can 214 

be quantified as maximizing an objective function characterizing spatial dependence. Specifically, for each 215 

coarse pixel jV  in the coarse image containing K land cover classes, the mathematical model of the goal is 216 

2

2

, ,

1 1

2

,

1

2

,

1

max  ( ) ( )

. . ( ) 1,  1,2,...,

ˆ     ( )= ( )  1,2,...,

K s

j k i j k i j

k i

K

k i j

k

s

k i j k j

i

G D v I v

s t I v i s

I v T V s k K

 







 







 ,

                                                     (6) 217 

where jG  is the objective function, ,i jv  is a subpixel located in coarse pixel jV  and ,( )k i jD v  is the quantified 218 

spatial dependence of subpixel ,i jv  for class k. ,( )k i jI v  is a class indicator defined as follows 219 

,

,

1,  if subpixel  belongs to class 
( ) .

0, otherwise.

i j

k i j

v k
I v




=                                               (7) 220 

The two constraints in Eq. (6) mean that each subpixel is assigned to only one class and the subpixels for each 221 

class (e.g., class k) need to satisfy the coherence constraint provided by the coarse proportion (e.g., ˆ ( )kT V ). 222 

It is clear that once the enhanced coarse proportion ˆ ( )kT V  is predicted, it can be used for any SPM methods 223 

that use it as input, including both subpixel-to-subpixel-based and subpixel-to-pixel-based methods. The 224 

adaptation of the two groups of methods to the enhanced coarse proportions is introduced below. 225 

1) Subpixel-to-pixel methods considering the PSF effect: For the subpixel-to-pixel class of SPM methods, 226 

,( )k i jD v  in Eq. (6) is described explicitly as 227 

, ,

1

ˆ( )= ( , ) ( )
SPN

SP

k i j SP i j n k n

n

D v v V T V


                                                            (8) 228 

where nV  is the coarse neighbor of subpixel ,i jv  and a window size of 5×5 coarse pixels were considered in this 229 
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paper. SPN  is the number of neighboring coarse pixels. Additionally, ,( , )SP i j nv V  is a distance-dependent 230 

weight function for the dependence between subpixel ,i jv  and neighboring pixel nV . 231 

For the subpixel-to-pixel class of methods, ,( )SP

k i jD v  calculated in Eq. (8) is the soft class value for each 232 

subpixel and takes a value between 0 and 1. The final subpixel class is determined using a class allocation 233 

method, based on the rank of the estimated soft class values and proportion constraint. This group of SPM 234 

methods is also termed soft-then-hard SPM (STHSPM) in Wang et al. (2014b). The methods falling into this 235 

group include bilinear or bicubic interpolation, SPSAM, ATPK and ICK. These methods hold the advantage of 236 

small computational cost. In this paper, the class allocation is performed in units of class (i.e., the UOC method 237 

in Wang et al. (2014b)). 238 

2) Subpixel-to-subpixel methods considering the PSF effect: For the subpixel-to-subpixel class of SPM 239 

methods, ( )k iD v  in Eq. (6) is described as 240 

, ,

1

( ) ( , ) ( )
SSN

ss

k i j SS i j n k n

n

D v v v I v


                                                           (9) 241 

where nv  is the neighboring subpixel of ,i jv  and a window size of 5×5 subpixels were used in this paper. 242 

( )k nI v  has the same meaning as in Eq. (7). In addition, ,( , )SS i j nv v  is a distance-based weight function for the 243 

dependence between subpixel ,i jv  and neighboring subpixel nv . Accordingly, the sum of ,( )ss

k i jD v  multiplied 244 

by the class indicator is maximized to obtain the optimal SPM result under the constraint conditions in Eq. (6). 245 

This class of method requires a number of iterations to approach the optimal solution. Common choices for 246 

this type of SPM method are PSA, genetic algorithm and HNN. These methods can recover small targets, but 247 

generally take a relatively long time for optimization. 248 

 249 

2.3. The proposed index for evaluation of SPM accuracy 250 

For quantitative assessment of SPM, the existing classification-based evaluation schemes (e.g., PA, UA and 251 

OA) have been used widely, as SPM is essentially a hard classification technique. However, it is known that 252 
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SPM is also a downscaling technique that reproduces land cover information at a finer spatial resolution than 253 

the observed images. For this scale change process, we should also be concerned about the reproduction of the 254 

spatial structure information in land cover, including the shape of objects and the spatial pattern of each land 255 

cover class. Classification-based evaluation methods evaluate classification accuracy on the basis only 256 

per-pixel or, in the SPM case, per-subpixel and fail to account for spatial structure. An example is provided in 257 

Fig. 2 to illustrate this issue. Suppose a coarse pixel covers a gray target and white background (Fig. 2(a)). 258 

Three possible predictions for the two classes are shown in Fig. 2(b)-(d). All per-subpixel classification 259 

accuracies (including PA, UA and OA) are larger for Fig. 2(b) than for Fig. 2(d). However, the reproduction of 260 

the spatial structure (i.e., linear feature) in Fig. 2(d) is obviously closer to the reference than in Fig. 2(b). For 261 

some SPM methods that are not completely slavish to the coarse proportions (e.g., HNN) the prediction, as 262 

shown in Fig. 2(c), also produces larger accuracies than that in Fig. 2(d). Thus, it is necessary to use a more 263 

suitable index for objective quantitative evaluation of SPM. 264 

 265 

(a)                                  (b)                                  (c)                                  (d) 266 

 267 

 Background      Target 268 

Fig. 2. A schematic example illustrating the limitations of using only classification-based indices for evaluation of SPM. (a) 269 

Reference land cover map. (b) Prediction 1 where OA=17/25 and PA=UA=6/10 for target. (c) Prediction 2 where OA=21/25 and 270 

PA=6/10, UA=1 for target. (d) Prediction 3 where OA=15/25 and PA=UA=5/10 for target. 271 

 272 

1) Error of semivariogram: The semivariogram is widely acknowledged to be able to reflect the spatial 273 

structure of land cover classes (Curran, 1988). It is proposed to evaluate quantitatively the accuracy of 274 

reproducing spatial structure using SPM in this paper. The semivariogram is calculated on a subpixel scale 275 

binary land cover map of each class. For class k, the semivariagram at lag h  is calculated as 276 
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( )
2

1

1
( ) [ ( ) ( )]

2 ( ) i i

N

k k k

i

I v I v
N

 



 
h

x x hh
h

                                               (10) 277 

where ( )N h  is the number of paired pixels at lag h , ix  and i x h  are the locations of 
i

vx  and 
i

v x h , and 278 

( )
ikI vx

 and ( )
ikI v x h

 have the same meaning as in Eq. (7). 279 

Large ( )k h  indicates that the difference between the paired pixels at lag h  for class k is large (i.e., a large 280 

spatial variance). Therefore, the semivariograms characterise the nature of the spatial dependence, and do this 281 

per land cover class (Balaguer-Beser et al., 2013; Curran, 1988). In this way, the semivariogram is a suitable 282 

function to assess the (dis)similarity of spatial structure between different images. The mean absolute error 283 

(MAE) is a common choice to quantify the difference between data and it is used to evaluate the „error‟ of the 284 

semivariogram (i.e., the difference between semivariograms of the SPM predictions and the reference) in this 285 

paper. 286 

2) The proposed integrated error (IE) index: As mentioned earlier, SPM has two characteristics, that is, 287 

classification and downscaling. Thus, it is desirable to develop an index that can reflect the accuracy in both 288 

parts. Suppose kPA  represents the PA of class k in the SPM results (i.e., subpixel classification accuracy). In 289 

our proposed integrated error index ( kIE ), kPA  of classification and MAE of semivariogram are considered 290 

simultaneously to fully evaluate the SPM accuracy, expressed as 291 

(1 )k k kIE PA MAE                                                                   (11) 292 

where   and   are two parameters controlling the contributions of pixel classification and spatial structure 293 

recovery accuracies. In this paper, for simplicity, both parameters are set to 1, and then the proposed new index 294 

kIE  can be simplified as 295 

(1 ) .k k kIE PA MAE                                                                  (12) 296 
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As seen in Eq. (12), the proposed index kIE  evaluates the error of SPM results for each land cover class in 297 

terms of both subpixel prediction accuracy (i.e., by 1 kPA ) and spatial structure prediction accuracy (i.e., by 298 

kMAE  of semivariograms). The larger the value, the smaller the accuracy of SPM. 299 

 300 

3. Experiments 301 

 302 

To demonstrate the effectiveness of the proposed SPM approach in reducing the PSF effect as well as the 303 

new index for accuracy assessment, experiments on four datasets were implemented. To evaluate the method 304 

objectively, the reference fine spatial resolution land cover maps need to be known perfectly. Therefore, for the 305 

first three datasets, simulated coarse resolution data were used, which can also help to concentrate solely on the 306 

performance of SPM (Atkinson, 2009). Specifically, the available land cover map was degraded with a PSF to 307 

simulate coarse proportions contaminated by the PSF effect. To further account for the greater uncertainty in 308 

real spectral unmixing processes (i.e., for real data), for the fourth dataset a simulated coarse multispectral 309 

image was used to examine the performance of SPM. The widely used Gaussian PSF was considered in the 310 

experiments. The width of the PSF was set to half of the coarse pixel size. Two zoom factors s were tested: 4 311 

and 8. For example, s=4 means that each 4×4 subpixels are aggregated to a coarse pixel when simulating the 312 

coarse data and each coarse pixel is devided into 4×4 subpixels in SPM. 313 

As mentioned earlier, the proposed general SPM model for considering the PSF is shown theoretically to be 314 

suitable for any SPM methods using spectral unmixing as pre-processing. To validate the generalization ability 315 

of the proposed model for reducing the effect of PSF on SPM, the two typical families of methods based on 316 

different spatial dependencies (as introduced in Section 2.2) were implemented. Specifically, considering their 317 

encouraging performances demonstrated in the literature, the ATPK and PSA methods were used for the 318 

subpixel-to-pixel and subpixel-to-subpixel cases, respectively. To validate the benefit of considering the PSF 319 

effect, SPM based on the enhanced coarse proportions and the original PSF-contaminated coarse proportions 320 

(i.e., without considering the PSF effect) were compared. Moreover, the recently developed HNN method 321 
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accounting for the PSF effect (Wang and Atkinson, 2017) was also used as a benchmark method. In summary, 322 

five methods were tested, namely, HNN-with-PSF, PSA-without-PSF, PSA-with-PSF, ATPK-without-PSF 323 

and ATPK-with-PSF, where “with-PSF” means SPM was performed on the enhanced proportions (i.e., the 324 

PSF effect is considered), while “without-PSF” means SPM was performed on the original PSF-contaminated 325 

proportions. 326 

The first three datasets are from the National Land Cover Database 2001 (NCLD 2001), as shown in Fig. 3. 327 

Each land cover map has a size of 496×496 pixels. The first map covers an area in Ohio, the second an area in 328 

South Carolina and the third an area in California. Four classes are presented in the three maps, namely, water, 329 

urban, agriculture and forest. The last dataset is a Landsat 7 Enhanced Thematic Mapper plus (ETM+) image 330 

acquired in August 2001 which covers farmland in the Liaoning Province, China, again with four land cover 331 

classes (marked as C1-C4). The spatial extent is 240×240 Landsat pixels. 332 

 333 

3.1. Proportion results 334 

The proposed model accounts for the PSF effect in the pre-processing spectral unmixing and enhances the 335 

original coarse proportions. Thus, it is critical to evaluate the coarse proportions before and after the 336 

consideration of the PSF effect. For objective assessment, the land cover map was degraded by a square wave 337 

filter to produce reference coarse proportions. 338 

 339 

(a)                                                           (b)                                                           (c) 340 

   341 
Water  Urban  Agriculture  Forest 342 

Fig. 3. The 30 m land cover maps (496×496 pixels) used in the experiments. (a) Ohio. (b) South Carolina. (c) California. 343 
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(a) 344 

    345 
(b) 346 

    347 
(c) 348 

    349 
(d) 350 

    351 
(e) 352 

    353 

    354 

Fig. 4. 240 m coarse proportion images of Ohio (s=8, 62×62 pixels). (a) Reference produced by convolving the 30 m land cover map 355 

in Fig. 3(a) with an ideal wave square PSF. (b) PSF-contaminated proportion images produced by convolving Fig. 3(a) with a 356 

Gaussian PSF. (c) Enhanced proportion images produced by reducing the PSF effect in spectral unmixing. (d) Absolute value of 357 

proportion error between the PSF-contaminated proportion image and the reference. (e) Absolute value of proportion error between 358 

the enhanced proportion image and the reference. From left to right are the results for water, urban, agriculture and forest. 359 
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 360 

Fig. 4 shows the 240 m coarse propotion images for each class for the Ohio dataset. Fig. 4(a) shows the ideal 361 

coarse propotions without the PSF effect (i.e., degrading Fig. 3(a) using a 8×8 square wave PSF). The 362 

proportion images contaminated by the Gaussian PSF are displayed in Fig. 4(b). Fig. 4(c) shows the enhanced 363 

coarse proportions produced by the proposed ATPK-based downscale-then-upscale method. Due to the 364 

negative impact of the PSF effect, Fig. 4(b) is obviously ambiguous. Compared to Fig. 4(b), the images in Fig. 365 

4(c) are much brighter and visually closer to the reference in Fig. 4(a). For clearer comparison between Fig. 4(b) 366 

and Fig. 4(c), the absolute value of the proportion errors (i.e., compared to the reference) of the two types of 367 

proportions are shown in Fig. 4(d) and Fig. 4(e). The error images in Fig. 4(d) are much darker than Fig. 4(e), 368 

suggesting that the proportion error is reduced obviously in the enhanced proportions. Specifically, in most 369 

cases, the proportion errors in Fig. 4(d) are close to 0.2 while those in Fig. 4(e) are less than 0.1. 370 

 371 

Table 1 Quantitative assessment (in terms of RMSE and CC) on each land cover class for the three datasets 372 

 

Class 

RMSE CC 

Original proportion Enhanced proportion Original proportion Enhanced proportion 

O
h

io
 

s=
4

 

Water 0.0267 0.0130 0.9935 0.9984 

Urban 0.0560 0.0323 0.9853 0.9948 

Agriculture 0.0709 0.0390 0.9875 0.9961 

Forest 0.0674 0.0350 0.9842 0.9954 

s=
8

 

Water 0.0312 0.0134 0.9905 0.9981 

Urban 0.0553 0.0309 0.9827 0.9942 

Agriculture 0.0722 0.0383 0.9850 0.9955 

Forest 0.0735 0.0374 0.9770 0.9934 

S
o

u
th

 C
ar

o
li

n
a 

s=
4

 

Water 0.0307 0.0139 0.9885 0.9975 

Urban 0.0609 0.0331 0.9748 0.9920 

Agriculture 0.0882 0.0452 0.9713 0.9914 

Forest 0.0945 0.0467 0.9745 0.9928 

s=
8

 

Water 0.0342 0.0176 0.9829 0.9951 

Urban 0.0544 0.0296 0.9735 0.9913 

Agriculture 0.0815 0.0453 0.9635 0.9869 

Forest 0.0928 0.0499 0.9644 0.9877 

C
al

if
o

rn
ia

 s=
4

 

Water 0.0146 0.0057 0.9953 0.9992 

Urban 0.0313 0.0193 0.9787 0.9916 

Agriculture 0.0291 0.0152 0.9698 0.9903 

Forest 0.0443 0.0250 0.9817 0.9938 

s=
8

 

Water 0.0210 0.0079 0.9900 0.9984 

Urban 0.0240 0.0155 0.9849 0.9934 

Agriculture 0.0270 0.0139 0.9629 0.9880 

Forest 0.0401 0.0214 0.9822 0.9944 

 373 
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In Table 1, the root mean square error (RMSE) and CC were listed for quantitative evaluation between the 374 

predicted proportions (i.e., original proportions contaminated by the PSF or enhanced proportions) and real 375 

proportions for all three datasets. Two degradation factors (s=4 and 8) were used to simulate the coarse 376 

proportions. As shown in Table 1, by considering the PSF effect, the RMSEs of the enhanced proportions are 377 

much smaller than those of the original PSF-contaminated proportions in all cases. More precisely, the RMSEs 378 

of the enhanced proportions are reduced by around 0.01 to 0.05. Meanwhile, the CCs of the enhaced 379 

proportions are larger than those for the original PSF-contaminated results. Specifically, the increase in CC by 380 

considering the PSF effect ranges from 0.005 to 0.025. Thus, the errors in the coarse proportions are reduced 381 

obviously by considering the PSF effect. 382 

 383 

3.2. Qualitative evaluation on SPM results 384 

The five methods (HNN-with-PSF, PSA-without-PSF, PSA-with-PSF, ATPK-without-PSF and 385 

ATPK-with-PSF) were applied based on the input enhanced or original coarse proportions. Figs. 5-7 display 386 

the SPM results (s=4) of the five methods for the three datasets. Moreover, the hard classification (HC) results 387 

based on the original coarse proportion images (i.e., HC-without-PSF) and enhanced coarse proportion images 388 

(i.e., HC-with-PSF) were provided. By HC, the classes of all subpixels in each coarse pixel are determined as 389 

the class with the maximum proportion. 390 

Obviously, the boundaries of each class in the HC results are jagged and some elongated features smaller 391 

than a coarse pixel are eliminated completely; see Fig. 5(b1), Fig. 5(c1), Fig. 6(b1), Fig. 6(c1), Fig. 7(b1) and 392 

Fig. 7(c1). Compared to the HC results, the SPM methods produce more detailed, continuous and visually 393 

pleasing boundaries. In the five SPM results, without considering the PSF effect, the resulting maps of 394 

PSA-without-PSF and ATPK-without-PSF contain many sporadic artifacts, presenting noisy pixels around 395 

class boundaries. Furthermore, the urban class is scattered into several patches, which actually is a linear 396 

feature in the reference map, as shown in Fig. 5(e1), Fig. 5(g1), Fig. 6(e1) and Fig. 6(g1). Compared to the 397 

results of ATPK and PSA without considering the PSF, ATPK-with-PSF and PSA-with-PSF produce more 398 
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continuous results and the class boundaries are smoother and closer to the reference maps, see Fig. 5(f1), Fig. 399 

5(h1), Fig. 6(f1) and Fig. 6(h1). It should be noted, however, that the elongated roads are incorrectly merged by 400 

PSA. The reason is that PSA tends to aggregate small-sized patches when maximizing the spatial dependence 401 

within the coarse pixel. With respect to the HNN-with-PSF method, it produces over-smooth results, especially 402 

for the urban and agriculture classes, see Fig. 5(d), Fig. 6(d) and Fig. 7(d). 403 

 404 

(a)                                          (b)                                          (c)                                          (d) 405 

    406 
(e)                                          (f)                                          (g)                                          (h) 407 

    408 
(a1)                                        (b1)                                        (c1)                                        (d1) 409 

    410 
(e1)                                        (f1)                                        (g1)                                        (h1) 411 

    412 
Water  Urban  Agriculture  Forest 413 
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Fig. 5. The SPM results for the Ohio dataset with a zoom factor of 4 (496×496 pixels). (a) Reference. (b) HC-without-PSF. (c) 414 

HC-with-PSF. (d) HNN-with-PSF (Gaussian PSF). (e) PSA-without-PSF (i.e., with ideal square PSF). (f) PSA-with-PSF (Gaussian 415 

PSF). (g) ATPK-without-PSF (i.e., with ideal square PSF). (h) ATPK-with-PSF (Gaussian PSF). (a1)-(h1) Zoomed subareas of 416 

(a)-(h). 417 

 418 

(a)                                          (b)                                          (c)                                          (d) 419 

    420 
(e)                                          (f)                                          (g)                                          (h) 421 

    422 
(a1)                                        (b1)                                        (c1)                                        (d1) 423 

    424 
(e1)                                        (f1)                                        (g1)                                        (h1) 425 

    426 
Water  Urban  Agriculture  Forest 427 

Fig. 6. The SPM results for the South Carolina dataset with a zoom factor of 4 (496×496 pixels). (a) Reference. (b) HC-without-PSF. 428 

(c) HC-with-PSF. (d) HNN-with-PSF (Gaussian PSF). (e) PSA-without-PSF (i.e., with ideal square PSF). (f) PSA-with-PSF 429 
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(Gaussian PSF). (g) ATPK-without-PSF (i.e., with ideal square PSF). (h) ATPK-with-PSF (Gaussian PSF). (a1)-(h1) Zoomed 430 

subareas of (a)-(h). 431 

 432 

(a)                                          (b)                                          (c)                                          (d) 433 

    434 
(e)                                          (f)                                          (g)                                          (h) 435 

    436 
Water  Urban  Agriculture  Forest 437 

Fig. 7. The SPM results for the California dataset with a zoom factor of 4 (496×496 pixels). (a) Reference. (b) HC-without-PSF. (c) 438 

HC-with-PSF. (d) HNN-with-PSF (Gaussian PSF). (e) PSA-without-PSF (i.e., with ideal square PSF). (f) PSA-with-PSF (Gaussian 439 

PSF). (g) ATPK-without-PSF (i.e., with ideal square PSF). (h) ATPK-with-PSF (Gaussian PSF). 440 

 441 

Overall, after reducing the PSF effect, both PSA and ATPK show more accurate results than the original 442 

versions as well as the recently developed HNN-with-PSF method. Moreover, the inter-comparison reveals 443 

that by reducing the PSF effect, ATPK can produce visually more accurate predictions (e.g., the linear features 444 

of the urban class can be restored more accurately). 445 

 446 

3.3. Quantitative evaluation on SPM results using conventional classification-based index 447 

Table 2 lists the OAs of the two HC methods (i.e., HC-without-PSF and HC-with-PSF) and all five SPM 448 

methods of both s=4 and s=8 for the three datasets. As observed from the table, for the same method, when the 449 

PSF effect is considered, greater accuracy can be produced. For example, all OAs of HC-with-PSF are larger 450 
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than those of HC-without-PSF. For the five SPM methods, for the case of s=4 for the Ohio dataset, the OA of 451 

ATPK-with-PSF is 0.8951 while the OA of ATPK-without-PSF is 0.8731. The OAs of PSA-with-PSF and 452 

PSA-without-PSF are 0.8968 and 0.8672, respectively. The advantage of considering the PSF is also obvious 453 

for the other two datasets. For example, by considering the PSF effect, the accuracy gains of both ATPK and 454 

PSA are about 0.03 for the South Carolina dataset with s=4. Noticeably, although the OAs of HC results are 455 

larger than that those of ATPK-without-PSF and PSA-without-PSF, the visual comparison in Figs. 5-7 reveals 456 

that the HC results are substantially different from the reference. Furthermore, contrary to the visual results in 457 

Figs. 5-7, where HNN-with-PSF is found to be less accurate, the OAs of HNN-with-PSF are the largest 458 

amongst the five methods. 459 

The accuracy for each land cover class was also analyzed, as shown in Figs. 8 and 9, where the PA and UA of 460 

the two HC methods and the five SPM methods for the three datasets are provided. Obviously, both the PA and 461 

UA of the results produced by considering the PSF are larger than those without considering the PSF; see the 462 

difference between the deep blue and yellow bars, the difference between the green and orange bars, and the 463 

difference between the blue and magenta bars. For example, with respect to ATPK-with-PSF, the PA values of 464 

water, urban, agriculture and forest are increased by about 0.026, 0.031, 0.013 and 0.035, respectively, when 465 

compared with ATPK-without-PSF for the Ohio dataset with s=4. As for PSA, the PA values of the four classes 466 

are increased by about 0.025, 0.041, 0.014 and 0.040 after considering the PSF. Furthermore, the statistical 467 

results for the largest PA or UA in all 24 cases (two zoom factors for each of the three datasets, each of which 468 

covers four classes) are provided in Table 3. The results suggest that, in terms of both the PA and UA, 469 

HNN-with-PSF produces the greatest accuracy in most cases. 470 

Overall, based on the quantitative analysis in terms of classification accuracy (i.e., PA in Fig. 8, UA in Fig. 9 471 

and OA in Table 1), the HNN-with-PSF method is found to be a more accurate SPM method in most cases. 472 

This conclusion, however, conflicts obviously with that drawn from visual inspection in Figs. 5-7 where 473 

HNN-with-PSF fails to reproduce many features such as linear features and small-sized patches. Moreover, the 474 

boudaries of the HC results in Figs. 5-7 are severely jagged, but the classification accuracies of the HC results 475 
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are larger than those for ATPK-without-PSF and PSA-without-PSF in some cases. The conflicts suggest that 476 

per-subpixel classification accuracy-based quantitative evaluation cannot fully reflect the quality of the SPM 477 

results. Consequently, assessment of SPM in terms of the new error index that integrates both accuracies of 478 

classification and spatial structure reproduction is provided below. 479 

 480 

Table 2 OAs of the two HC and five SPM methods for the three datasets 481 

 
Zoom 

factor 

HC- 

without- 

PSF 

HC- 

With- 

PSF 

HNN- 

with- 

PSF 

PSA- 

without- 

PSF 

PSA- 

with- 

PSF 

ATPK- 

without- 

PSF 

ATPK- 

with- 

PSF 

Ohio 
s=4 0.8688 0.8722 0.9036 0.8713 0.8974 0.8731 0.8951 

s=8 0.8117 0.8175 0.8504 0.7745 0.8180 0.8014 0.8247 

South 

Carolina 

s=4 0.7896 0.7959 0.8292 0.7814 0.8238 0.7902 0.8256 

s=8 0.7091 0.7164 0.7435 0.6335 0.6890 0.6824 0.7129 

California 
s=4 0.9532 0.9544 0.9584 0.9469 0.9554 0.9513 0.9571 

s=8 0.9422 0.9430 0.9492 0.9257 0.9344 0.9325 0.9378 

 482 

 Ohio South Carolina California 

s=
4

 

   

s=
8

 

   
 HC-without-PSF  HC-with-PSF  HNN-with-PSF  PSA-without-PSF  PSA-with-PSF 483 

 ATPK-without-PSF  ATPK-with-PSF 484 

Fig. 8. PA of each class for the three datasets. 485 
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 Ohio South Carolina California 
s=

4
 

   

s=
8

 

   
 HC-without-PSF  HC-with-PSF  HNN-with-PSF  PSA-without-PSF  PSA-with-PSF 489 

 ATPK-without-PSF  ATPK-with-PSF 490 

Fig. 9. UA of each class for the three datasets. 491 

 492 

Table 3 Statistical results of PA and UA amongst the SPM results 493 

 Cases of largest PA Cases of largest UA 

HNN-with-PSF 10 17 

ATPK-with-PSF 9 5 

PSA-with-PSF 5 2 

 494 

3.4. Assessment on SPM in terms of the semivariogram 495 

1) Qualitative evaluation of semivariogram: Fig. 10 shows the semivariograms of the reference maps, the 496 

HC results and five SPM results for the three datasets. Through visual checking, the following observations can 497 

be made. 498 

First, the semivariograms of the HC methods are very different from those of the SPM methods as well as the 499 

references. The reason is that the HC methods produce jagged boudaries and eliminate most of the elongated 500 

details. Furthermore, the HNN-with-PSF semivariograms in all cases are the most different from the references, 501 

which means that the HNN-with-PSF method is the least accurate amongst all SPM methods in reproducing the 502 

reference semivariograms. This is because HNN-with-PSF produces over-smooth results and loses a large 503 

Water Urban Agriculture forest
0.6

0.7

0.8

0.9

1.0
U

A
 o

f 
ea

ch
 c

la
ss

Class

Water Urban Agriculture forest
0.5

0.6

0.7

0.8

0.9

1.0

U
A

 o
f 

ea
ch

 c
la

ss

Class

Water Urban Agriculture forest

0.6

0.7

0.8

0.9

1.0

U
A

 o
f 

ea
ch

 c
la

ss

Class

Water Urban Agriculture forest
0.6

0.7

0.8

0.9

1.0

U
A

 o
f 

ea
ch

 c
la

ss

Class

Water Urban Agriculture forest
0.5

0.6

0.7

0.8

0.9

1.0

U
A

 o
f 

ea
ch

 c
la

ss

Class

Water Urban Agriculture forest

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
A

 o
f 

ea
ch

 c
la

ss

Class



 

 

25 

number of small-sized patches and linear features, see Figs. 5-7. This leads to obviously smaller spatial 504 

variability (i.e., smaller semivariances). 505 

 506 
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  HC-without-PSF  PSA-without-PSF  ATPK-without-NOPSF  HNN-with-PSF 

 HC-with-PSF  PSA-with-PSF  ATPK-with-PSF  Reference 

Fig. 10. Fine spatial resolution semivariograms of the results of the two HC and five SPM methods for the three datasets. 507 

 508 

Second, compared to the results of ATPK-without-PSF and PSA-without-PSF, the semivariograms of the 509 

ATPK-with-PSF and PSA-with-PSF methods are more consistent with those of the references, suggesting that 510 

the SPM results are closer to the references and are more accurate. Compared with the visual results in Fig. 5-7, 511 

clearer boundaries and more linear features are restored by ATPK-with-PSF and PSA-with-PSF, and the 512 

produced spatial structures are more similar to those of the reference maps. Thus, by reducing the PSF effect, 513 

both ATPK and PSA can produce more accurate predictions in terms of the semivariogram. 514 
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Overall, the abovementioned conclusion based on the semivariogram is consistent with the conclusion 515 

drawn from visual inspection in Figs. 5-7. This means that the semivariogram is able to provide a more 516 

resonable index for quantitative evaluation of SPM methods in terms of reproducing spatial structure. Hence, 517 

the assessment based on the semivariogram is provided below. 518 

2) Quantitative evaluation using the MAE: The MAE of semivariogram is shown in Fig. 11 to evaluate 519 

quantitatively the accuracy of semivariograms for each class. It can be concluded from the barcharts that as the 520 

PSF effect is considered, the MAE values of both ATPK-with-PSF and PSA-with-PSF decrease. For example, 521 

when considering the PSF effect using ATPK for the Ohio dataset with s=4, the MAE values of water, urban, 522 

agriculture and forest are reduced by about 0.0005, 0.0006, 0.0017 and 0.0013, respectively. 523 

 524 

 Ohio South Carolina California 

s=
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 HC-without-PSF  HC-with-PSF  HNN-with-PSF  PSA-without-PSF  PSA-with-PSF 525 

 ATPK-without-PSF  ATPK-with-PSF 526 

Fig. 11. The MAE of semivariogram of each class for the three datasets. 527 

 528 

Furthermore, consistent with the visual assessment of spatial structure in Fig. 10, HNN-with-PSF produces 529 

the largest MAE amongst the five SPM methods in most cases because of the loss of small-sized features and 530 

over-smooth artifacts. However, for the water class in the California dataset, the MAE of HNN-with-PSF is 531 
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smaller than that of PSA-without-PSF and ATPK-without-PSF. The reason for this phenomenon is that the 532 

water class is compact in the reference map, which complies with the advantage of HNN in reproducing 533 

compact objects. Moreover, the MAEs of the HC results are larger than all SPM results. 534 

In summary, the evaluation based on MAE generally agrees with that of visual comparison of the 535 

semivariogram in Fig. 10. Thus, from the perspective of reproducing spatial structure, the MAE of the 536 

semivariogram is an appropriate choice for quantitative evaluation. 537 

 538 

3.5. Assessment based on the proposed integrated error (IE) index 539 

 540 

 Ohio South Carolina California 
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4
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8
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 ATPK-without-PSF  ATPK-with-PSF 542 

Fig. 12. The proposed IE index of each class for the three datasets. 543 
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In this section, the proposed IE index was used to evaluate SPM in terms of both subpixel prediction and 545 

spatial structure prediction. As deduced by the visual comparison from the barcharts in Fig. 12, when the PSF 546 

effect is considered, much smaller IE values are produced. For example, for the South Carolina dataset with 547 
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ATPK-without-PSF for the water, urban, agriculture and forest classes, respectively. Moreover, compared to 549 

the HC predictions, the IEs of all SPM predictions are smaller, which means more accurate results are produced 550 

by SPM. 551 

In all SPM circumstances, compared to ATPK-with-PSF and PSA-with-PSF, HNN-with-PSF produces the 552 

largest IE values, due to the small spatial variation of its over-smooth prediction. This means that the HNN 553 

results are less accurate, although they have the largest per-subpixel classification accuracies. Thus, the new 554 

index IE-based quantitative evaluation leads to the same conclusion as for visual inspection, suggesting that the 555 

new index is a reliable choice for quantitative evaluation of SPM methods. 556 

 557 

3.6. Assessment based on computing efficiency 558 

Computational burden is an important factor to evaluate SPM methods. The computing times of the five 559 

methods are listed in Table 4. All experiments were performed on an Intel Core i7 with the MATLAB 9.5 560 

version. For PSA, the number of iterations was set to 3000. For HNN-with-PSF, the time step was set to 0.001, 561 

the steepness of the thah function was set to 10, and the number of iterations was 3500. 562 

 563 

Table 4 Consuming time of the five methods (s=8, in units of seconds) 564 

 ATPK-without-PSF ATPK-with-PSF HNN-with-PSF PSA-without-PSF PSA-with-PSF 

Ohio 78 80 60300 36 126 

South Carolina 79 81 66400 60 140 

California 78 81 24100 51 124 

 565 

As listed in Table 4, HNN-with-PSF took the longest time (over 10 hours while the other methods took about 566 

1 to 4 minutes). PSA-with-PSF took more time than PSA-without-PSF, as pre-processing is required to predict 567 

the enhanced coarse proportions. ATPK (including both ATPK-withour-PSF and ATPK-with-PSF), is 568 

generally faster as the subpixel-to-pixel-based method does not require iteration. Therefore, the proposed 569 

model can effectively reduce the PSF effect in SPM without scarificing computing efficiency. 570 

 571 

 572 
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3.7. Experiments on the multispectral image 573 

To further examine the effectiveness of the proposed general SPM model and the proposed IE index, a 574 

synthesized multispectral image was used in this experiment. Specifically, the 30 m Landsat 7 ETM+ image 575 

was used as the original dataset, as shown in Fig. 13(a). The corresponding 30 m reference land cover map was 576 

drawn manually, see Fig. 13(b). A multispectral image was synthesized (see Fig. 13(c)) based on the mean and 577 

variance of each land cover class in the original 30 m Landsat image in Fig. 13(a). The synthesized 578 

multispectral image was upscaled with a factor of 8 using a Guassian PSF to produce a 240 m coarse 579 

multispectral image, see Fig. 13(d). More details of the simulation process can be found in Wang and Atkinson 580 

(2017). In this way, the uncertainty of the 30 m reference map can be avoided and we can focus solely on the 581 

performances of spectral unmixing and SPM. 582 

 583 

(a)                                          (b)                                          (c)                                          (d) 584 

    585 
 C1  C2  C3  C4 586 

Fig. 13. The multispectral image used in the experiment. (a) Original 30 m Landsat ETM+ image (bands 432 as RGB, 240×240 587 

pixels). (b) 30 m reference land cover map drawn manually from (a) (240×240 pixels). (c) 30 m synthesized multispectral image 588 

(bands 432 as RGB, 240×240 pixels). (d) 240 m coarse multispectral image produced by degrading (c) with a Gaussian PSF and a 589 

degradation factor of 8 (30×30 pixels).  590 

 591 

(a) 592 

    593 
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(b) 594 

    595 

    596 

Fig. 14. 240 m proportion error images for the multispectral image (s=8, 30×30 pixels). (a) Absolute value of proportion error 597 

between the PSF-contaminated proportion image and the reference. (b) Absolute value of proportion error between the enhanced 598 

proportion image and the reference. From left to right are the results for C1, C2, C3 and C4. 599 

 600 

The proportion errors (i.e., compared to the reference created by upscaling Fig. 13(b) using a 8×8 square 601 

wave filter) of the two types of proportions (i.e., the PSF-contaminated proportion and the enhanced proportion) 602 

are shown in Fig. 14(a) and Fig. 14(b). It is seen that the errors are reduced noticeably by considering the PSF 603 

effect in spectral unmixing. More precisely, the decreases in RMSEs are about 0.03, 0.04, 0.03 and 0.02 for C1, 604 

C2, C3 and C4, respectively. The results of the two HC and five SPM methods are shown in Fig. 15. Three 605 

observations can be made from the visual evaluation. First, all five SPM methods produce more elegant 606 

boundaries than HC, suggesting the advantages of SPM. Second, failing to account for the PSF effect, 607 

ATPK-without-PSF and PSA-without-PSF predictions are occupied by spurs on the boundaries of the land 608 

cover objects. By considering the PSF effect, the ATPK-with-PSF and PSA-with-PSF predictions are closer to 609 

the reference. For example, the boundaries in Fig. 15(e) are jagged and many noisy patches exist, but those for 610 

PSA-with-PSF in Fig. 15(f) are more continous, especially for classes C2 and C3. As the HNN-with-PSF 611 

method is not completely slavish to the coarse proportions, it can remove noisy artifacts and produce a smooth 612 

result. However, as marked by the white circle, the linear features (e.g., for class C1) are incorrectly predicted 613 

as crowed patches by the HNN-with-PSF and some of them even disappear; see Fig. 15(d). In contrast, these 614 

linear features are reproduced satisfactorily by PSA-with-PSF and ATPK-with-PSF, see Fig. 15(f) and Fig. 615 

15(h). 616 
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 617 

(a)                                          (b)                                          (c)                                          (d) 618 

    619 
(e)                                          (f)                                          (g)                                          (h) 620 

    621 
 C1  C2  C3  C4 622 

Fig. 15. The SPM results for the multispectral image with a zoom factor of 8 (240×240 pixels). (a) Reference. (b) HC-without-PSF. (c) 623 

HC-with-PSF. (d) HNN-with-PSF (Gaussian PSF). (e) PSA-without-PSF (i.e., with ideal square PSF). (f) PSA-with-PSF (Gaussian 624 

PSF). (g) ATPK-without-PSF (i.e., with ideal square PSF). (h) ATPK-with-PSF (Gaussian PSF). 625 

 626 

The OAs of the methods are listed in Table 5. The OAs of PSA-with-PSF and ATPK-with-PSF are 0.8916 627 

and 0.8905, with a gain of about 0.03 over those produced without considering the PSF effect. However, 628 

contrary to the visual evaluation where HNN-with-PSF is found to be over-smooth and less accurate, the OA of 629 

HNN-with-PSF is the largest among the five SPM methods. The semivariograms of all results are shown in Fig. 630 

16. It can be observed that the ATPK-with-PSF and PSA-with-PSF semivariograms are closer to the reference 631 

than both HC and HNN-with-PSF, indicating that more accurate spatial structure is reproduced. Furthermore, 632 

based on the proposed IE index, as provided in Fig. 17, ATPK-with-PSF and PSA-with-PSF tend to be more 633 

accurate. The conclusion is consistent with that drawn from visual comparison. Therefore, the proposed 634 

general solution to reduce the PSF effect in SPM is also applicable to the more challenging case (i.e., SPM of 635 

original multispectral images) and, further, the IE index is a feasible comprehensive choice for quantitative 636 

evaluation of SPM methods. 637 
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 638 

Table 5 OAs of the five SPM methods for the multispectral image 639 

 

HC- 

without- 

PSF 

HC- 

with- 

PSF 

HNN- 

with- 

PSF 

PSA- 

without- 

PSF 

PSA- 

with- 

PSF 

ATPK- 

without- 

PSF 

ATPK- 

with- 

PSF 

OA 0.8495  0.8542  0.9186  0.8595  0.8916  0.8634  0.8905  

 640 

C1 C2 C3 C4 

    
 HC-without-PSF  PSA-without-PSF  ATPK-without-NOPSF  HNN-with-PSF 

 HC-with-PSF  PSA-with-PSF  ATPK-with-PSF  Reference 

Fig. 16. Fine spatial resolution semivariograms of the results of the two HC and five SPM methods for the multispectral image. 641 

 642 
 HC-without-PSF  HC-with-PSF  HNN-with-PSF  PSA-without-PSF  PSA-with-PSF 643 

 ATPK-without-PSF  ATPK-with-PSF 644 

Fig. 17. The proposed IE index of each class for the multispectral image. 645 

 646 

4. Discussion 647 

 648 

4.1. Generalization ability of the proposed SPM model 649 

The proposed general model that considers the PSF effect is not designed for a specific SPM method, but any 650 

method where spectral unmixing predictions can be slotted in. To investigate the model performance in the 651 
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experiments, two typical SPM methods (i.e., PSA and ATPK) were considered and the performances were 652 

compared with the HNN-with-PSF method developed in our previous research (Wang and Atkinson, 2017). 653 

Theoretically, the ATPK-with-PSF method should use ATPK twice, first to produce the enhanced coarse 654 

proportions by considering the PSF effect, and second to downscale the coarse proportions in SPM. However, 655 

the differences between the two ATPK results for the three datasets used in the experiments were found to be 656 

very small (i.e., the differences in CCs are smaller than 0.0020). Thus, ATPK was used only once in the 657 

experiments in this paper. The experimental results show that the enhanced coarse proportion is an important 658 

premise of SPM. Exploiting this capability, the proposed model is applicable for many existing methods, 659 

including subpixel-to-pixel-based (e.g., RBF (Wang et al., 2014a) and SPSAM (Mertens et al., 2006)), 660 

subpixel-to-subpixel-based methods (e.g., GA (Mertens et al., 2003) and MAP (Zhong et al., 2015)) and also 661 

hybrid methods combining these two types of dependencies (Chen et al., 2018a; Ling et al., 2014). Based on 662 

this character and encouraging performances of the ATPK- and PSA-based methods in this paper, in future 663 

research, it would be interesting to conduct a systematic study by comparing all existing SPM methods to 664 

identify the most effective solutions to reduce the PSF effect. Moreover, it is undoubtedly worthwhile to 665 

examine the performance in tackling the PSF effect when developing more advanced SPM methods in future. 666 

 667 

4.2. Solutions to one stage SPM 668 

This paper demonstrated the use of enhanced coarse proportions to be an effective strategy for SPM, which 669 

is essentially a two-stage approach composed of enhancing spectral unmixing by reducing the influence of the 670 

PSF effect and SPM based on the enhanced coarse proportions. The uncertainty in the first stage can be 671 

propagated to the second stage directly. To control the uncertainty in both spectral unmixing and SPM jointly, 672 

it would be worthwhile to develop a one-stage SPM model that can account for the PSF directly in SPM. The 673 

spatial-spectral model, such as Markov random field (MRF)-based method (Tolpekin and Stein, 2009), 674 

facilitates to SPM from original multispectral images in one stage through considering spatial dependences and 675 

spectral constraints simultaneously. When adopting the one stage spatial-spectral SPM model for reducing the 676 
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influence of the PSF effect, the PSF can be considered in the spectral term, where the PSF-convolved spectra of 677 

interim SPM realizations need to be compared to the original coarse spectra and the difference used to guide 678 

optimization. However, there may be several challenges. First, no theory is universally applicable for 679 

estimating the parameter controlling the spatial and spectral parts, which remains an open problem. The 680 

over-parameterized spatial-spectral model may lead to tendentious fitting, resulting in lower accuracy for SPM. 681 

Specifically, over-weighting the spatial term may lead to an over-smooth result, which is disadvantageous for 682 

preserving spatial detail. Conversely, over-weighting the spectral term may fail to account for spatial 683 

correlation, resulting in discontinuous artifacts with noise. Second, similar to HNN, the spatial term of the 684 

MRF is always defined based on local smoothness, which means the MRF is more suitable for homogeneous 685 

areas. For areas with strong heterogeneity and dominated by small patches and elongated features, a more 686 

appropriate spatial term needs to be defined. This may require additional data or prior information. Finally, 687 

when considering the PSF effect by the one stage spatial-spectral model, subpixels in the neighboring coarse 688 

pixels are also involved in characterizing the spectral term. Convergence of the spatial-spectral model may not 689 

be achieved when more subpixels are involved in optimization. 690 

 691 

4.3. Uncertainties in HNN 692 

In this paper, the HNN-with-PSF method from previous research was used as a benchmark for comparison in 693 

the experiments. It should be noted, however, that the HNN was not originally designed for linear features and 694 

small-sized patches, and the spatial correlation is characterized based on an eight-neighborhood which is 695 

suitable for the H-resolution case (i.e., most of the coarse pixels are smaller than the objects of interest). For the 696 

L-resolution case (i.e., the objects of interest fall within a coarse pixel) (Atkinson, 2009), the alternative pattern 697 

matching-based HNN (Tatem et al., 2002) is a more appropriate choice to reproduce small-sized features. 698 

However, a training dataset or auxiliary information at the target fine spatial resolution is required for this type 699 

of HNN. Additionally, the spatial pattern in the prior knowledge needs to be sufficiently similar to that of the 700 

target area. This is not the case for PSA and ATPK as used in this paper, which can be performed without any 701 
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additional dataset. Thus, for fair comparison, the H-resolution HNN model was applied in this paper, as was 702 

done in (Wang and Atkinson, 2017). Certainly, although such additional data for the L-resolution HNN are 703 

difficult to acquire in general, their value for enhancement should be borne in mind. 704 

 705 

4.4. Uncertainties in accuracy assessment 706 

1) Uncertainties in the semivariogram function: Although the semivariogram was shown to be effective for 707 

evaluating the reproduction of spatial structure, there are still uncertainties that should be noted. First, in the 708 

experiments, the semivariogram for quantitative evaluation is assumed to be a scalar which only evaluates the 709 

difference in categorical values between a pixel and its neighbors in four directions. As acknowledged widely, 710 

land cover features are sometimes direction-dependent. Therefore, calculating the semivariogram separately 711 

for different directions seems to be a more reasonable choice. However, it is unclear how greatly the 712 

consideration of directions will increase the reliability of reflecting spatial structure, as the assumption of a 713 

scalar has been commonly used in geostatistics. Second, although curve-fitting is generally adopted for 714 

semivariograms (especially in kriging interpolation), uncertainty exists in the fitting process (e.g., different 715 

choices for fitting functions). The reliability of the semivariogram is crucial for small lags, which plays key 716 

role in reflecting spatial structure. If curve-fitting is required, it would be more appropriate to consider a 717 

weighting scheme that gives larger weights for semivariograms at small lags, rather than the conventional 718 

equal scheme. It would be important to determine the weights reliably. In addition, it should be noted that for 719 

ATPK, the input of the fine-to-fine semivariogram is estimated by deconvolution of the coarse semivariogram 720 

extracted from the coarse proportion image, as performed in this paper. For accuracy assessment based on the 721 

semivariogram, the reference semivariogram is normally calculated using the reference land cover map. When 722 

such a reference map is unavailable (i.e., an unsupervised case), the estimated fine-to-fine semivariogram 723 

might be used for accuracy assessment. In this case, the accuracy will also be a function of the deconvolution. 724 

2) Alternatives to the semivariogram: The semivariogram captures only the differences between two points 725 

(e.g., A to B and B to A lead to the same difference) (Atkinson, 2009). Alternatively, the two-point histogram 726 
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(Atkinson, 2004) can distinguish directional differences and captures strictly double the information of the 727 

semivariogram. However, two-point statistics are weak in characterizing continuous spatial patterns (e.g., river 728 

and roads). Multi-point statistics (MPS) (Mariethoz et al., ,2010) characterize the relations between multiple 729 

points simultaneously based on a template and, thus, captures more information than traditional two-point 730 

statistics. Thus, it would be worthwhile to consider MPS for accuracy evaluation of SPM in future research. 731 

3) Considerations of the proposed integrated error index: The results presented in this paper validate the 732 

reliability of the proposed integrated error index. Two issues can be borne in mind for further possible 733 

refinements. First, in the integrated error index, we used an accuracy index PA for evaluating the performance 734 

of subpixel level classification, rather than UA of each class. This is because the denominator in calculating 735 

UA is the total number of pixels for each class in the resulting map, while the denominator for PA is that in the 736 

reference map. Thus, when calculating the classification accuracy using PA, only the numerator (i.e., the 737 

number of correctly classified pixels) varies and the denominator is fixed for each method. This is different 738 

from UA, in which both the numerator and denominator vary. This can lead to an unreasonably large accuracy 739 

in some cases. For example, the UA of the target in Fig. 2(c) is 100%, which means it is perfectly correctly 740 

classified. From visual inspection, however, this accuracy is inappropriate. Therefore, compared to PA, the 741 

uncertainty in using UA for the integrated index is larger and PA is more appropriate for further integrated 742 

accuracy assessment. 743 

Second, the idea of the new index can be generalized as ( , 1 )k k kf MAE PA where ( )kf  presents the 744 

accuracy for land cover class k, kMAE  of semivariogram evaluates the reproduction of spatial pattern and 745 

1 kPA  evaluates the classification error for class k. This releases the space for defining more advanced indices 746 

and opens new avenues for SPM evaluation. For example, other functions can be developed as alternatives to 747 

the multiplication operator in this paper. It would also be interesting to explore effective solutions to determine 748 

the weighting parameters more reasonably. In addition, indices such as the structure similarity index measure 749 

(SSIM) (Wang et al., 2004) and intersection over union (IoU) (Rezatofighi et al., 2019) that can evaluate the 750 

similarity between spatial structures can also be potentially considered in future research. 751 
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 752 

4.5. Utilization of auxiliary data 753 

The proposed model enhances SPM by considering the PSF effect, where no auxiliary information is 754 

required. As an ill-posed problem, however, uncertainty exists inevitably in SPM and effective usage of 755 

supplementary information has generally been a focus of SPM. Various sources of additional information  have 756 

been used to tackle the uncertainty issue in SPM over the past decades, such as digital elevation models (DEM) 757 

(Ling et al., 2008), multiple shifted images (Ling et al., 2010; Wang et al., 2017), point constraints (Wang et al., 758 

2020), height information from Light Detection And Ranging (LiDAR) elevation (Nguyen et al., 2005), 759 

training images (Jia et al., 2019; Ling and Foody, 2019), and panchromatic images (Nguyen et al., 2011). 760 

Recently, temporal information from time-series images shows great potential in SPM as well (Li et al., 2017; 761 

Zhang et al., 2017). All these data have great potential in enhancing the proposed general SPM model where 762 

the supplementary information has not been incorporated yet. How to control jointly the influences of the 763 

auxiliary data and the PSF is a critical issue. 764 

 765 

5. Conclusion 766 

 767 

The PSF effect, which is ubiquitous in optical remote sensing, influences SPM greatly and has been a main 768 

obstacle to increase the accuracy of subpixel land cover maps. However, it has seldom been considered in 769 

existing SPM methods. The recently developed HNN-with-PSF method (Wang and Atkinson, 2017) is one of 770 

the very few examples tackling the PSF issue in SPM. However, the method fails to restore small-sized patches 771 

and produces over-smooth predictions. Moreover, it is computationally expensive. This paper proposed a 772 

general model to reduce the influence of the PSF effect in SPM. The proposed model considers the PSF effect 773 

in the pre-spectral unmixing process, and is suitable for any SPM method which uses spectral unmixing 774 

predictions as input. 775 
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SPM is a technique for both classification and downscaling. In the existing SPM literature, however, 776 

accuracy assessment is performed based solely on classification, ignoring the ability to reproduce spatial 777 

structure in the downscaling process. The classification accuracies of some SPM predictions can be very large, 778 

but may fail to reproduce spatial structure satisfactorily (e.g., some small-sized patches and linear features are 779 

lost entirely, or the shape of the predicted objects is substantially different from the reference). To fill this need, 780 

a new index considering both aspects was proposed for more reliable quantitative evaluation of SPM. 781 

Experiments on four datasets were performed for validation of the proposed SPM model and error index. 782 

Five methods (i.e., HNN-with-PSF, PSA-without-PSF, PSA-with-PSF, ATPK-without-PSF and 783 

ATPK-with-PSF) were examined. The conclusions are as follows. 784 

1) The proposed SPM model is an effective solution for reducing the PSF effect. From both qualitative and 785 

quantitative assessment, the proposed model can produce more accurate SPM predictions than those 786 

without considering the PSF effect. 787 

2) The proposed general model accounting for the PSF effect is applicable for both subpixel-to-pixel-based 788 

(e.g., ATPK in this paper) and subpixel-to-subpixel-based (e.g., PSA in this paper) methods. Both 789 

extended versions outperform the recently developed HNN-with-PSF method by reproducing more 790 

small-sized patches and more accurate spatial structure. 791 

3) The discrepancy between visual evaluation and conventional classification-based accuracy reveals that 792 

the classification-based index fails to evaluate the reproduction of spatial structure in SPM. The proposed 793 

integrated error index combining both subpixel prediction accuracy and spatial structure prediction 794 

accuracy is more appropriate, and is more consistent with the conclusion from visual inspection. 795 

4) The proposed model is computationally much faster than the recently developed HNN-with-PSF method. 796 
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