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Quantum time crystals are systems characterised by spontaneously emerging periodic order in the
time domain1. A range of such phases has been reported (e.g. reviews 2–4). The concept has even been
discussed in popular literature5–8, and deservedly so: while the first speculation on a phase of broken
time translation symmetry did not use the name “time crystal”9, it was later adopted from 1980’s
popular culture7. For the physics community, however, the ultimate qualification of a new concept is
its ability to provide predictions and insight. Confirming that time crystals obey the general dynamics
predicted by quantum mechanics is a necessary step in that direction. We study two adjacent quantum
time crystals experimentally. The time crystals, realised by two magnon condensates in superfluid
3He-B, exchange magnons leading to opposite-phase oscillations in their populations — AC Josephson
effect10 — while the defining periodic motion remains phase coherent throughout the experiment.

A magnon Bose-Einstein condensate (BEC) in superfluid 3He-B is a macroscopic quantum state described by a
simple wavefunction Ψ = |Ψ|ei(−µt/h̄+ϕM), where µ is the chemical potential11. Magnons are quanta of transverse spin
waves, corresponding to magnetisation M that precesses at frequency f = µ/(2πh̄) around the external magnetic field
H, starting from initial phase ϕM. Each magnon carries −h̄ of spin, yielding total number of magnons N ∝ |Ψ|2 ∝ β2

M,
where βM is the deflection angle of M from the equilibrium direction along H. Here we assumed that β is small, which
is satisfied in all the experiments presented in this Letter. In general, Bose-Einstein condensates are an established
platform for studying both DC and AC Josephson effects12–17.

The manifest feature of magnon quasiparticle condensation is the emergence of coherence of the precession frequency
and phase18–25. It is important that the coherence is spontaneous and that the precession period is not influenced by
the mechanism that creates the magnons. This can be confirmed by pumping magnons to a higher-frequency level in
a confining trap, from which magnons then fall to the ground level, thereby choosing a period independent of that
of the drive26. This periodic, observable motion in a many-body system constitutes the essence of a time crystal.
It is detected in our system using nuclear magnetic resonance techniques (NMR), based on coupling the precessing
magnetisation to nearby pick-up coils (“NMR coils”, see Fig. 1).

In NMR experiments, magnon time crystals in superfluid 3He-B are characterised by two timescales27. The first
timescale τE ∼ 0.1 s describes how quickly precession in the condensate becomes coherent, following the pumping of
incoherent magnons. The second timescale τN is magnon lifetime. The system reaches exact particle conservation in
the limit τN → ∞, which in an isolated sample container is approached exponentially as temperature decreases. In
practice there are losses in the pick-up coils that are coupled to the precessing spins in order to control and observe
the condensate28. As long as τN � τE , the coherently precessing condensate approximates a ground state at a fixed
magnon number, thus approaching the original Wilczek prediction of a time crystal in the ground state of a quantum
system. On the other hand, if losses are completely eliminated, the time-dependent state becomes unobservable. This
reflects the no-go objection to Wilczek’s suggestion of a time crystal in equilibrium29. In the experiments presented
here τN ∼ 3 s.

One can then either observe the phenomena that emerge during this slow decay, or compensate for the losses by
pumping the system continuously. Under continuous pumping, the condensate spontaneously finds a magnon number
that corresponds to the chemical potential µ set by the pumping frequency30,31 (typically N ≥ 1012). This is the
traditional way of studying time crystals2–4. On the other hand, free decay with the pumping turned off realises
time crystals in a novel, unperturbed environment26. This is particularly instrumental for studying dynamics and
interactions of magnon-BEC time crystals, providing a fundamental advantage as compared with continuous pumping:
it removes the need to distinguish potential artefacts of the external driving force. In return for allowing the system
to decay, one also gains direct access to all the observables relevant to the Josephson effect. This advantage is
detailed below. These features make magnon condensates an ideal laboratory system for studying time crystals, their
dynamics, and related emergent phenomena such as the Josephson effect.

Magnons are trapped in the middle of the sample container cylinder by the combined effect of the superfluid order
parameter distribution (“texture”), and an axial minimum in the magnetic field28,32. This yields an approximately
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harmonic three-dimensional trap. When a free surface is introduced 3 mm above the field minimum, the textural
trap forms two local minima and, hence, splits the magnon BEC spectrum into two physical locations: (1) The bulk
trap remains approximately harmonic. (2) An additional surface trap emerges, see Fig. 1. States in the measured
experimental spectrum are identified based on their dependence on the profile of the magnetic trap, controlled by
changing the current in the pinch coil. In what follows we concentrate on studying the lowest-energy state of each of
the two traps.

The measurement begins by populating both the bulk and the surface traps using a radio-frequency (RF) pulse,
delivered via the pick-up coils. The duration, frequency, and amplitude of the pulse are chosen so that the two
traps are populated approximately equally. The signal recorded from the pick-up coils after the pulse ends is then
visualised using time-windowed Fourier analysis (Fig. 2a). When the pumping is turned off, the condensate populations
decrease slowly due to dissipation as seen in the decrease of recorded signal amplitude from both condensates. The
bulk condensate frequency also increases during the decay by 20 Hz. This is because the textural trap feels the local
pressure of magnons via spin-orbit interaction, and thereby becomes expanded when the number of magnons is large,
making the trap shallower30,31,33. The surface trap is rigidified by the textural boundary condition set by the free
surface. Hence, the frequency of the surface condensate only changes by 7 Hz. During decay, the period (frequency) of
each condensate is independent of the driving pulse. Together with their relatively slow decay rates, the macroscopic
population of each condensate, and the fact that each state is the ground state in it’s trap, this justifies calling the
observed states time crystals26. In what follows we refer to the magnon-condensate time crystals simply as “(time)
crystals”.

In addition to the traces corresponding to the time crystals, Fig 2 also features two side bands. The side bands
are separated from the main traces by the frequency difference between the two crystals, which changes slowly in
time. We interpret the side bands as follows: The phase difference between the time crystals follows d(ϕb −ϕs)/dt =

−(µb − µs)/h̄, where the phase ϕb,s = −µb,st/h̄ + ϕ
(b,s)
M and the indices b, s refer to the bulk and surface crystals,

respectively. The changing phase difference therefore drives an alternating Josephson supercurrent of constituent
particles between the time crystals. This is seen as amplitude oscillations of the two signals, producing the side
bands.

Amplitude oscillations of the two main traces should result in a total of four side bands in the Fourier analysis,
located symmetrically around each main trace. However, the frequency of the amplitude oscillations is set by the
difference of the time crystal precession frequencies, equal to the difference of their chemical potentials (Fig. 2b).
Therefore two of the produced side bands coincide exactly with the main traces because the side bands’ frequecy
separation from the main traces matches exactly with the frequency separation of the main traces. Thus, only two
side bands are seen. These observations are characteristic to the AC Josephson effect13,14. The remarkable advantage
of the time crystal as compared to superfluids and superconductors is that all four variables in the canonical Josephson
equation (ϕb,ϕs, µb,µs) are now measured directly in the same experiment.

We fit the measured signal, in short time windows, directly with two sine curves. This allows extracting the
signal amplitude from each time crystal separately (Fig. 2c). The result shows that the bulk crystal signal amplitude
(population) oscillates at a frequency equal to the frequency difference of the bulk and the surface time crystals.
The surface crystal signal shows similar oscillations with the opposite phase, as expected for AC Josephson effect.
The surface crystal however also features in-phase oscillations. Below we demonstrate, using numerical simulations,
that the bulk crystal oscillation modifies the textural trapping potential around it periodically, and the modification
propagates along the texture to change the shape of the surface time crystal. This shape change modifies the effective
filling factor of the surface crystal between the pick-up coils, hence changing the resulting signal, while the magnon
number in the surface time crystal is not affected by this modification.

It is worth emphasising that in the frame rotating with frequency µ/h̄, the azimuthal angle of magnetisation ϕM

in each of the two time crystals only drifts very slowly over more than 106 periods of oscillation (Fig. 2e). This
change is continuous despite the population exchange, and the decay of the overall magnon number. The azimuthal
angle can be extracted by feeding the signal recorded from the pick-up coils to a software lock-in amplifier, locked
to the frequency extracted from FFT analysis in Fig. 2a. The Josephson oscillations are filtered out by choosing a
lock-in time constant longer than the Josephson frequency. Furthermore, the remaining drift can be attributed to the
inaccuracy of the used reference frequency, meaning that the actual phase stability is probably better than that shown
in Fig. 2e: The typical full width at half maximum of the peaks in the FFT analysis is ∼ 5 Hz, which corresponds to
a drift speed of one period per ∼ 0.4 s. The phase stability culminates the robustness of the time crystal, well-defined
periodicity being the defining feature of broken time translation symmetry.

Let us confirm that the trapping potential connects the two time crystals indirectly by building a self-consistent
numerical simulation of the two underlying magnon condensates in the flexible trap (see Methods). The calculation
qualitatively reproduces the remarkable features seen in the experiment (Fig. 2d): The signal from the surface time
crystal shows twice shorter period than the signal from the bulk crystal. This is caused by changes in the shape
of the surface trap, imposed by oscillations in the bulk crystal population. The calculation is quasi-static, meaning



3

that the trap is assumed to adjust to changes in the magnon distribution instantaneously. This explains why the
signal from the surface crystal in simulations is aligned differently with the bulk crystal oscillations than observed in
the experiment. Comparing the amplitude of the simulated oscillations with the experiment also supports the view
that the observed Josephson oscillations in the two recorded experimental signals correspond to equal and opposite
changes in the populations of the two time crystals. The oscillations of the trapping potential also directly change the
precession frequencies of both condensates31,33, thus changing the frequency difference in phase with the population
changes. That should result in distortion of the sinusoidal population exchange, yielding additional side bands in
Fig. 2. In practice this effect is too weak to be distinguished in the experiment.

In conclusion, we report an experimental realisation of two adjacent quantum time crystals that exchange constituent
particles via the AC Josephson effect. The time crystals are created in a flexible trap in superfluid 3He-B, emerging as
two spatially separate magnon BECs associated with coherent spin precession. The configuration of two interacting
condensates is stabilised in the proximity of a free surface of the superfluid. The Josephson population oscillations
between the two time crystals are seen as opposite-phase amplitude variations in the measured signals from the two
time crystals. Flexibility of the trapping potential connects the two time crystals also indirectly, providing additional
interaction that results in an in-phase component of oscillation, as verified by numerical simulations. In the rotating
frame, the azimuthal angle of each of the two time crystals remains stable and well defined in the course of all these
perturbations. Notably, all the observables that characterise the AC Josephson effect, the time crystal precession
phases and their chemical potentials, are directly measured in the same experiment. This relatively novel phase of
matter therefore deserves its place in physicists’ vocabulary.

It remains an interesting task for future to study more sophisticated time crystal interactions. For instance, one
could simulate the Hamiltonian of a Penrose-type “gravitationally” induced wave function collapse34 by allowing two
time crystals in their flexible traps to collide. On the other hand, long-lived coherent quantum systems with tunable
interactions, such as the robust time crystals studied here, provide a platform for building novel quantum devices
based on spin-coherent phenomena35. For example, the dependence of the chemical potential on the time crystal
populations, coupled by the Josephson junction, could be used as a shunting “capacitor” for the junction, forming an
equivalent to the transmon qubit. Such devices based on macroscopic spin coherence could perhaps be implemented
even at room temperature17,25,36.
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METHODS

Experiment

We cool superfluid helium-3 down to 130 µK (0.14 Tc) using a nuclear demagnetisation cryostat38. Temperature
is measured using quartz tuning forks39,40. The superfluid transition temperature at 0 bar pressure is Tc = 930 µK.
The superfluid is contained in a quartz-glass cylinder (radius 3 mm), placed in an external magnetic field of about
25 mT, aligned along the axis of the container. We emphasise that the results in the present Letter are not specific
to this field or temperature: similar AC Josephson oscillations were observed down to 17mT and at temperatures up
to 0.2 Tc.

The sample container is surrounded by transverse coils, needed for creating and observing the magnon condensate
using NMR. First, the coils can be used to create a transverse radio-frequency (RF) field Hrf , which tips magnetisation
within the coils by a small amount. This allows pumping magnons into the sample. Second, the coils are used for
recording the resulting coherent precession of magnetisation that induces an electromotive force (EMF) into the
pick-up coils (Fig. 1).

The free surface is located 3 mm above the centre of the magnetic field minimum. The distance of the free
surface is determined by comparing the observed magnon spectrum with the numerical model described below, and
confirmed by measuring the pressure of 3He gas in a calibrated volume that results from the removal of liquid from
the originally fully-filled sample container. The free surface distorts the textural trap and splits the magnon spectrum
into two physical locations, as detailed in the main text. Analysis of the whole observable spectrum will be published
separately41.

Simulation

The magnon wave function follows a Schrödinger equation

ih̄
∂Ψ

∂t
= − h̄2

2m
∆Ψ + U(r)Ψ , (1)

where m is the magnon mass. The trapping potential U(r) is formed by the magnetic field |H(r)| = 2π
|γ|fL(r) and the

superfluid order parameter:

U(r) = UH + Utext ≡ 2πh̄fL(r) + h̄
2Ω2

B

5πfL
sin2(βL(r)/2) . (2)

Here fL(r) is the (local) Larmor frequency, ΩB is the B-phase Leggett frequency, γ the gyromagnetic ratio of 3He,
and the order parameter distribution is parametrised by the angle of the orbital anisotropy axis, βL(r), measured
from the direction of the magnetic field H, oriented along the cylinder axis. Where the notation fL is used without
an explicit reference to position, this means Larmor frequency in the middle of the bulk trap, corresponding to the
minimum of the harmonic trapping potential.

We simulate the magnon condensates in a quasi-static approximation using a two-step model following the lines of
Refs. 31,33,42. The first step is to calculate the trapping potential in the absence of magnons, and solve the corre-
sponding magnon spectrum numerically. This is achieved by minimising the free energy functional of the equilibrium
superfluid32,43, including the orienting effects of the magnetic field, sample container walls, and the free surface. These
competing effects combine as allowed by the gradient energy which opposes rapid changes of the order parameter dis-
tribution. These free energy contributions are detailed by equations (1,3,4) in Ref. 43. The effect of the free surface is
assumed to be described by the same parameter values that apply to solid walls, and the magnetic field is calculated
based on the known geometry of the coil system.

In the absence of the free surface, these contributions result in an approximately harmonic trap for magnons in
the middle of the sample container cylinder28,38. In the presence of the free surface the two spatially-separated
components of the calculated spectrum semi-quantitatively correspond to those observed experimentally41, but all
the states touching the free surface are shifted upwards by roughly 150 Hz in the simulation as compared with the
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experimental spectra. While this means that the surface condensate shape is not described perfectly, it provides a
more-than-sufficient starting point for the purposes of the present work. Finding detailed quantitative agreement
remains a task for future studies.

The second step in the model construction is to enable non-zero magnon density. The textural part of the trapping
potential feels local magnon density due to spin-orbit interaction, and the corresponding free energy contribution is

Fso =
2h̄Ω2

B

5πfL
|Ψ(r)|2 sin2(βL(r)/2) . (3)

Therefore the textural part of the trapping potential, parametrised by βL(r), is time-dependent in the presence
of changing magnon density, which makes equation (1) difficult to solve directly. However, for a fixed magnon
distribution, the free energy contribution due to magnons can be included in the textural free energy minimisation.
A self-consistent solution of equation (1) for given magnon number can then be found by fixed point iteration, as
described in Refs. 33,42. Signal from the condensates is calculated according to the EMF induced in the pick-up
coils due to the coherently precessing magnetisation in each condensate. We calibrate the simulation signal amplitude
using the measured frequency shift as a function of signal amplitude33. Josephson oscillations are emulated in our
model by adding opposite-phase equal-amplitude oscillations of magnon number between the two condensates.

Magnons placed in the surface-touching condensate change the trap confining them less than those placed in the
bulk condensate, as seen in Fig. 2a. This is because the boundary condition for the texture set by the free surface
is orders of magnitude stronger than the effect of magnons. For simplicity, we therefore neglect the effect of the
surface condensate population altogether in the calculation of the trapping potential. In our experiments the bulk
condensate frequency is slightly higher than that of the surface-touching condensate. In the simulation we tune the
current in the pinch coil such that the bulk condensate has the lowest frequency in the system, 50 Hz below the
surface condensate frequency in the limit of zero magnons. This allows finding a self-consistent solution at all magnon
numbers straightforwardly, as the self-consistency step in the simulation targets the the bulk condensate only. This
simplification does not change the textural connection between the bulk condensate and the surface condensate, or
the coupling of the condensates to the pick-up coils.
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FIG. 1. Experimental setup: Quartz-glass sample container cylinder is filled partially with superfluid 3He-B, leaving a
free surface of the superfluid approximately 3 mm above the centre of the surrounding coil system. The space above the free
surface is vacuum due to the vanishing vapour pressure of 3He at sub-mK temperatures. Magnons can be trapped in this
configuration in two separate locations, in bulk (coloured blue) and touching the free surface (coloured red). Transverse NMR
coils are used both for RF pumping of magnons into the BECs, and for recording the induced signal from the coherently
precessing magnetisation M. The amplitude of the recorded signal is proportional to βM, the tipping angle of M, and its
frequency corresponds to the precession frequency of the condensate. The condensates are trapped by the combined effect
of the distribution of orbital anisotropy axis of the superfluid (green arrows) via spin-orbit coupling, and a minimum of the
external magnetic field created using a pinch coil. The external field H is oriented along the z axis of the sample container.
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FIG. 2. Time crystal AC Josephson effect: (a) Two co-existing magnon-BEC time crystals, created with an RF drive
pulse at t = 0, are seen as peaks in the Fourier spectrum of the signal recorded from the NMR coils. For clarity, the exciting
pulse is left just outside the time window shown here. The FFT amplitude refers to the voltage measured from the pick-up
coils (NMR coils) after pre-amplification, and fL = 833 kHz is the Larmor frequency. The upper trace corresponds to the
magnon-BEC time crystal in the bulk, and the lower trace to the time crystal touching the free surface. The bulk trap is the
more flexible of the two, and the bulk time crystal frequency hence increases during the decay more than that of the surface
crystal. Population oscillations between the time crystals result in amplitude oscillations of the two signals, seen as two side
bands. (b) The changing frequency difference of the two time crystals (black line) matches the frequency of the population
oscillations between them, extracted from the bulk crystal side band (magenta dotted line). (c) Direct fits to the recorded signal
at the frequency of the bulk crystal (blue dash line) and the surface crystal (solid red line) reveal AC Josephson oscillations
of population between the two crystals: the opposite-phase component of the amplitude oscillation is attributed to the AC
Josephson effect, while the in-phase component in the surface crystal signal is due to trapping potential changes imposed by
the bulk crystal oscillations. (d) The numerical simulation reveals that changes in the bulk crystal population (blue dash line)
distort the trapping potential, adding an additional component to the calculated signal from the surface crystal (solid red line).
(e) The azimuthal angle of precessing magnetisation ϕM in the rotating frame in the bulk crystal (blue dash line) and the
surface crystal (solid red line) are extracted by feeding the raw signal to a software lock-in amplifier, locked to the corresponding
frequency traces in panel a.


