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In this supplemental material we briefly recap the basic
relations for the electrodynamics of light and atoms, and
further illustrate the role of collective excitations for the
example of synthesizing optical magnetism. We provide
some additional details of the spherical harmonics used to
decompose the far-field radiation and the scattered light
and excitations of the Huygens’ surface. We show an
additional demonstration of the Huygens’ surface in the
generation of a single orbital angular momentum state
with ~ angular momentum per photon.

SI. ELECTRODYNAMICS OF LIGHT AND
ATOMS

SI.A. Equations of motion

In the main section we characterize the optical re-
sponse of both the unit-cell and the many-atom array by
writing the equations of motion as ḃ = iHb + F where b

is the vector of polarization amplitudes P(j)
σ and F repre-

sents the external driving by the incident light. To see the
origin of these equations we note that in the limit of low
light intensity, the polarization amplitudes obey [S1, S2]

d

dt
P(j)
µ =

(
i∆(j)

µ − γ
)
P(j)
µ + i

ξ

D
ê∗µ · ε0Eext(rj), (S1)

where ξ = 6πγ/k3, the single atom linewidth is γ =

D2k3/6π~ε0, and ∆
(j)
µ = ω−ω(j)

µ are the the detunings of
the m = µ level of atom j from resonance. The light and
atomic field amplitudes here refer to the slowly varying
positive frequency components, where the rapid oscilla-
tions exp(−iωt) at the laser frequency have been factored

out. Each amplitude P(j)
µ at position rj is driven by the

field,

Eext(rj) = E(rj) +
∑
l 6=j

E(l)
s (rj), (S2)

which consists of the the incident field E(r) and the scat-

tered field ε0E
(l)
s (r) = G(r − rl)dl from the dipole mo-

ment dl of each other atom l. The scattered field expres-
sion equals the usual positive-frequency component of the
electric field from a monochromatic dipole d, given that
the dipole resides at the origin and the field is observed

at r [S3]:
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1
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r
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r3
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}
− d

3ε0
δ(r) , (S3)

with n̂ = r/r and k = ω/c.
Inserting Eq. (S2) into Eq. (S1), with the dipole mo-

ment expressed in terms of the polarization as dj =

D
∑
µ êµP(j)

µ , gives

d

dt
P(j)
µ =

(
i∆(j)

µ − γ
)
P(j)
µ + iξ

∑
l 6=j

G(jl)µν P(l)
ν

+i
ξ

D
ê∗µ · ε0E(rj), (S4)

with G(jl)µν = ê∗µ · G(rj − rl)êν . The linear equations of
motion can then be written in matrix form as above.

This equation also describes the decay of a single pho-
ton excitation. The full quantum dynamics of the atomic
system for a given initial excitation and in the absence of
a driving laser follows from the quantum master equation
for the many-atom density matrix ρ,

ρ̇ = i
∑
j,ν

∆ν

[
σ̂+
jν σ̂
−
jν , ρ

]
+ i

∑
jlνµ(l 6=j)

Ω(jl)
νµ

[
σ̂+
jν σ̂
−
lµ, ρ

]
+
∑
jlνµ

γ(jl)νµ

(
2σ̂−lµρσ̂

+
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+
jν σ̂
−
lµρ− ρσ̂

+
jν σ̂
−
lµ

)
,

(S5)
where σ̂+

jν = (σ̂−jν)† = |ejν〉 〈gj | is the raising operator to
the excited state ν on atom j. The diagonal terms of the

dissipative matrix are γ
(jj)
νν = γ, while the off-diagonal el-

ements of the dissipation and interaction terms are given
by the real and imaginary parts of

Ω(jl)
νµ + iγ(jl)νµ = ξG(jl)νµ . (S6)

Restricting to the subspace of at most a single excita-
tion, and assuming a pure initial state, the density matrix
splits into one excitation and zero excitation parts,

ρ = |ψ〉 〈ψ|+ pg |G〉 〈G| , (S7)

where |ψ〉 represents a single excitation and can be ex-
panded over the atomic sites,

|ψ〉 =
∑
j,ν

P(j)
ν (t) σ̂+

jν |G〉 , (S8)
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and |G〉 is the ground state. Regarding single-particle
expectation values, the dynamics can equally be de-
scribed by the evolution of a vector b of these amplitudes

P(j)
ν [S4], which obey the same equations as the classical

polarization in the absence of drive, ḃ = iHb.

SI.B. Collective excitation eigenmodes

In both the case of the evolution of a single atomic
excitation and the case of driven classical polarization,
the optical response of the lattice is then characterized
by the eigenvectors vn and eigenvalues δn + iυn, of the
evolution matrix H [S5]. While the eigenmodes are not
orthogonal, due toH being non-Hermitian, we find in our
numerics that they always form a basis. Hence, the state
at a time t can be expanded in this basis b(t) =

∑
n cnvn.

We define the quantity

Lj =
|vTj b(t)|2∑
i |vTi b(t)|2

, (S9)

as a measure of the relative occupation of each collective
mode [S6].

SII. EIGENMODES OF A SINGLE UNIT-CELL

We display in Fig. S1 the excitation eigenmodes of a
single isolated unit-cell of a planar array used to gener-
ate optically active magnetism [Fig. 1(a) in the main sec-
tion]. Each unit-cell consists of four atoms and therefore
12 eigenmodes of which three are degenerate with some
of the other modes and are obtained by trivial symmetry
transformations of the dipole orientations. The proper-
ties of the eigenmodes are listed in Table 1 of the main
section.

SIII. COUPLING TO COLLECTIVE
MAGNETIC MODE

The excitation of a collective mode consisting of mag-
netic dipoles in a planar array via the coupling between
electric dipole eigenmodes (EDM) and magnetic dipole
eigenmodes (MDM) is described by a two-mode model
[Eq. (2) in the main section]. The incident field with the

polarization (êy + êz)/
√

2 drives the EDM. The EDM
in the y and z direction are clearly degenerate due to
symmetry, and so the excited symmetric combination is
also an eigenmode, with amplitude Pe. When all the elec-
tronically excited levels are degenerate, this mode evolves
independently of the MDM of amplitude Pm which is not
excited.

When the level shifts are not equal (∆
(j)
±,0 6= 0), Pe and

Pm no longer describe eigenmodes, and these are coupled
together (as generally could the other eigenmodes of the

∆
(j)
±,0 = 0 system). As shown in Fig. S1, the array of

FIG. S1. The orientation of the atomic dipoles for the eigen-
modes of an isolated square unit-cell, with the same ordering
as Table 1 of the main section, for the spacing a = 0.15λ.
Top and middle row: in-plane modes consisting of (a) electric
dipole, (b) magnetic dipole (n = 4), (c-e) electric quadrupole
modes, and (f) mixed multipole character. Bottom row:
modes with x polarization consisting of (a) Electric dipole
and (b-c) mixed multipole. Note the modes shown in (a), (f),
and (i) are each doubly degenerate due to lattice symmetry.
The ordering of the sites given in the text for the atomic level
shifts is illustrated in (b).

FIG. S2. The collective linewidths υe and υm of the electric
and magnetic dipole modes as a function of total atom number
N for a lattice with a = 0.15λ and d = 0.5λ. While the
linewidth of the magnetic mode depends strongly on N , the
linewidth of the electric mode is almost constant, starting at
υm = 3.4 for a single unit-cell and rising to 3.7 at N = 1600.
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atoms in the yz plane [Fig. 1(a) in the main section] has
two separate families of modes, those with polarization in
the x direction out of the plane and those with polariza-
tions in the plane. To avoid coupling the drive to those

out of plane modes we choose ∆
(j)
+ = ∆

(j)
− on each atom.

Then, to couple the EDM to the alternating phases of
the y and z components of the MDM, we choose the re-
maining level shifts to have similarly alternating signs:

(δ
(±)
(4j+1), δ

(±)
(4j+2), δ

(±)
(4j+3), δ

(±)
(4j+4)) = δ(2, 0, 2, 0), (S10a)

(δ
(0)
(4j+1), δ

(0)
(4j+2), δ

(0)
(4j+3), δ

(0)
(4j+4)) = δ(0, 0, 2, 2), (S10b)

where the ordering of the atoms is shown in Fig. S1(b).
The periodic variation of the level shifts can be pro-

duced by the ac Stark shift of an external standing-wave
laser with the intensity varying along the principal axes
of the array, such that the levels m = ±1 are shifted us-
ing an intensity variation along the z direction and the
shift of the m = 0 state with the intensity variation along
the y direction. In the both cases the intensity maxima
are then separated by the distance d between the adja-
cent unit-cells. Suitable transitions could be found, e.g.,
with Sr or Yb. For example, for the 3P0 → 3D1 tran-
sition of 88Sr the resonance wavelength λ ' 2.6µm and
the linewidth 2.9 × 105/s [S7]. For the case of optical
lattices the periodicity of the sinusoidal potential for the
same transition with a magic wavelength may be cho-
sen as 206.4nm and can also be modified to achieve the
right periodicity by tilting the propagation direction of
the lasers forming the lattice. Alternatively, atoms in
different hyperfine states could occupy different lattice
sites [S8], with the associated description of the atom-
light dynamics [S2, S5], or the trapping potential strength
for tweezers could possibly be spatially varied.

With this choice of level shifts given by Eq. (S10) we
obtain [Eq. (2) in the main section],

∂tP(j)
e = (iδe + i∆− υe)P(j)

e + δP(j)
m + f, (S11a)

∂tP(j)
m = (iδm + i∆− υm)P(j)

m + δP(j)
e . (S11b)

The effective dynamics of Eqs. (S11) can represent both
a single unit-cell in isolation and the entire array of mul-
tiple unit-cells, but the collective resonance line shifts
and linewidths of the EDM and MDM, δe,m and υe,m,
respectively, can considerably differ in the two cases, and
generally vary with the number of unit-cells (Fig. S2).
The driving field is denoted by f = iξε0E0/D. The alter-

nating signs of ∆
(j)
−,0 mean there is no coupling to other

unit-cell eigenmodes with different symmetries.
The steady state of Eqs. (S11) is easily solved and we

find the ratio of the MDM and EDM amplitudes to be∣∣∣∣PmPe
∣∣∣∣ =

∣∣∣∣ δ

iδm + i∆− υm

∣∣∣∣ . (S12)

On resonance, ∆ = −δm, the ratio of amplitudes is de-
termined by the collective linewidth υm. As shown in

Fig. S2 the linewidth of the MDM rapidly narrows as
a function of the array size and becomes strongly sub-
radiant. It is this collective resonance narrowing which
allows the amplitude of the MDM to become large com-
pared with the EDM amplitude, even for relatively small
detuning strength δ.

Equations (S11) are similar to those describing the
electromagnetically-induced transparency [S9] of ‘dark’
and ‘bright’ states of noninteracting atoms in which case
the atom population can be trapped in the dark state.
In the present case, the dark state is represented by a
collective eigenmode, resulting from the resonant dipole-
dipole interactions. It is this collective subradiant nature
of the mode that drives the excitation into the MDM.

SIV. SPHERICAL HARMONICS

The multipole moments of the lattice unit-cells are
characterized from the far-field radiation by decompos-
ing the field in terms of vector spherical harmonics [S3]
[Eq. (1) in the main section]. The vector spherical har-
monics are defined in terms of the ordinary spherical har-
monics Ylm(θ, φ) as Ψlm = r∇Ylm and Φlm = r×∇Ylm
where r is the vector from the origin to the observa-
tion point, θ is the polar angle with the x axis, and φ
is the azimuthal angle from the y axis in the yz plane.
They are orthogonal;

∫
Ψ∗lmΨl′m′dΩ =

∫
Φ∗lmΦl′m′dΩ =

l(l + 1)δll′δmm′ ,
∫

Ψ∗lmΦl′m′dΩ = 0, and so the coeffi-
cients α can be found by projecting onto the correspond-
ing vector harmonic.

SV. HUYGENS’ SURFACE

For analyzing the properties of the Huygens’ surface,
the contributions of the both incident and scattered light
are included. The scattered light can be calculated by
summing up all the light scattered from all the atoms in
the array. We have verified that the transmission of light
at distances λ . ξ �

√
A from a planar array of uniform

excitations, where A denotes the area of the array, can
also be estimated by [S10–S13]

ε0E = E0êyeikξ +
ik

2A
∑
k

[dk − êx · dkêx] ei(ξ−xk),

(S13)

where the second term denotes the scattered field ES

and the first term is the incident field. This expression
has been used together with the microscopic calculation
to analyze Huygens’ surface, e.g., in Fig. 3 in the main
section.

In Fig. S3 we show the magnitude and the phase of
the total transmitted field, and also the contribution of
the scattered field alone. Fig. S3(b) shows that while
the phase of the scattered field covers a range of π, the
total field has a full range of 2π. The contribution from
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(a) (b)

FIG. S3. (a) The magnitude and (b) the phase of the total
transmitted light and the scattered light for the same param-
eters, as Fig. 3(a) in the main section.

(a) (b)

FIG. S4. (a) The transmitted intensity and (b) phase 5λ
from a 20 × 20 Huygens’ surface (d = 0.8λ, a = 0.15λ). An
incident Gaussian beam with waist 5λ is transformed into an
orbital angular momentum beam with angular ~ momentum
per photon. Variations in the transmission are compensated
by moving the center of the input beam a distance λ in the
−y direction.

electric and magnetic dipoles in a Huygens’ surface add
to give a scattered field with magnitude up to twice the
incident field, as shown in Fig. S3(a), allowing for close
to total transmission even when the scattered field is π
out of phase with the incident light.

In the main text we demonstrate the Huygens’ sur-
face by transforming a Gaussian into a superposition
of orbital angular momentum (OAM) states. The sur-
face can also be used to create single OAM states, where
E ∝ exp (ilφ) where φ is the azimuthal angle in the plane,
with OAM l~ per photon [S14]. The resulting intensity
and phase is shown in Fig. S4 for l = 1, with a charac-
teristic 2π phase winding around the center.
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