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Abstract

Age-related cochlear synaptopathy (CS) has been shown to occur in rodents with minimal

noise exposure, and has been hypothesized to play a crucial role in age-related hearing

declines in humans. Because CS affects mainly low-spontaneous rate auditory nerve fibers,

differential electrophysiological measures such as the ratio of the amplitude of wave I of

the auditory brainstem response (ABR) at high to low click levels (WIH/WIL), and the

difference between frequency following response (FFR) levels to shallow and deep amplitude

modulated tones (FFRS-FFRD), have been proposed as CS markers. However, age-related

audiometric threshold shifts, particularly prominent at high frequencies, may confound the

interpretation of these measures in cross-sectional studies of age-related CS. To address

this issue, we measured WIH/WIL and FFRS-FFRD using highpass masking (HP) noise to

eliminate the contribution of high-frequency cochlear regions to the responses in a cross-

sectional sample of 102 subjects (34 young, 34 middle-aged, 34 elderly). WIH/WIL in the

presence of the HP noise did not decrease as a function of age. However, in the absence of HP

noise, WIH/WIL showed credible age-related decreases even after partialing out the effects of

audiometric threshold shifts. No credible age-related decreases of FFRS-FFRD were found.

Overall, the results do not provide evidence of age-related CS in the low-frequency region

where the responses were restricted by the HP noise, but are consistent with the presence

of age-related CS in higher frequency regions.
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1. Introduction

Hearing loss is one of the most common chronic conditions in older adults (Lin et al.,

2011). Besides a loss of sensitivity at high frequencies, age-related hearing declines include

deficits in processing sounds at suprathreshold levels, and difficulties understanding speech

in noise (Humes et al., 2012). While some of these declines may be due to dysfunction of the

outer hair cells (OHCs), and of the inner hair cells (IHCs) in the cochlea (Schmiedt, 2010),

there is increasing evidence of contributions from other age-related physiological changes

at the level of the cochlea, and of the central auditory system (Caspary et al., 2008; Ouda

et al., 2015).

Cochlear synaptopathy (CS) has been hypothesized to play a major role in age-related

hearing declines (Kujawa and Liberman, 2015; Liberman and Kujawa, 2017). CS has been

widely documented in rodents as a result of acoustic trauma: Noise exposures titrated to

cause only temporary threshold shifts, in the absence of permanent OHC damage, have been

shown to result in a permanent loss of synapses between the IHCs and auditory nerve fibers

(Kujawa and Liberman, 2009). This loss of afferent synapses is thought to affect mainly

auditory nerve fibers with low and medium spontaneous firing rates (L/M-SR fibers) that

are considered to be important for coding sounds at high levels. Direct evidence for a greater

involvement of L/M-SR fibers in CS was obtained in guinea pigs by Furman et al. (2013).

Indirect evidence comes from the observation that while CS does not affect neurophysiologi-

cal responses at low stimulus levels, it leads to reductions of neurophysiological responses at

supra-threshold stimulus levels, in particular of wave I of the auditory brainstem response

(ABR), of the frequency following response (FFR) to high-frequency (∼1-kHz) amplitude

modulation (Shaheen et al., 2015), and of the middle ear muscle reflex (Valero et al., 2016,

2018).

Sergeyenko et al. (2013) observed age-related CS in CBA/CaJ mice raised in a quiet

environment. They found that IHC synaptic counts, estimated from IHC ribbon survival,

progressively declined across the lifespan. This loss of afferent synapses was mirrored by
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progressive reductions of wave I of the ABR at supra-threshold levels that occurred before

significant changes in distortion product otoacoustic emissions (DPOAEs), which index OHC

function, and in wave I ABR thresholds were observed. Noise exposure titrated to cause

only temporary threshold shifts at a young age has been shown to accelerate age-related CS

(Fernandez et al., 2015).

Parthasarathy and Kujawa (2018) also observed a progressive decline of IHC synaptic

counts with age that preceded hair cell losses in CBA/CaJ mice. They measured FFRs to

1024 Hz amplitude modulated (AM) tones at several levels, and modulation depths (MDs).

FFR amplitudes were generally reduced as a function of age across levels. As predicted by the

CS model of Bharadwaj et al. (2014), FFR growth functions with level became progressively

shallower as a function of age, but at equal sensation levels rather than at equal SPLs.

FFR amplitude at a sensation level of 30 dB correlated with the degree of synaptic loss.

However, in contrast to the prediction of the Bharadwaj et al. (2014) model, FFR growth

functions with MD had similar shapes across the age range. Age-related declines of IHC

ribbon synapses have also been observed in gerbils (Gleich et al., 2016).

Evidence consistent with age-related CS in humans comes from post-mortem studies

of temporal bones. After synaptic disconnection the peripheral axons of spiral ganglion

neurons (SGNs) degenerate, followed after a delay by the SGNs bodies. Post-mortem studies

of human temporal bones have shown steady age-related declines of SGN peripheral axons

(Wu et al., 2019), IHC synaptic ribbons (Viana et al., 2015), and SGN bodies (Makary et al.,

2011), that precede or exceed hair cell loss. However, it is unclear whether the age-related

degeneration of SGNs found in human temporal bones mainly affects L/M-SR fibers.

Two recent studies have sought to identify a neural correlate of age-related CS in humans

by measuring wave I ABR amplitude as a function of stimulus level, which is expected to

have a shallower growth rate as a result of CS affecting mainly L/M-SR fibers. Johannesen

et al. (2019) measured wave I amplitudes at levels from 90 to 110 dB ppeSPL in a group of

94 participants ranging in age from 12 to 68 years. The growth of wave I amplitude with

level decreased with age, and this effect was still present when wave I amplitude/level slopes

were adjusted for the effect of audiometric thresholds at 12 kHz. This result suggests that
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the effect of age on ABR amplitude growth was not simply due to age-related increases in

high-frequency audiometric thresholds.

Grose et al. (2019) measured wave I ABR amplitude at levels of 95, and 105 dB ppeSPL

in a group of 10 young, and a group of 10 older listeners. They found that wave I amplitude

growth with stimulus level was reduced in the older listener group. Although the older

listener group had near-normal hearing up to 4 kHz, many had varying degrees of hearing

loss above 4 kHz.

An important factor to consider when interpreting the results of these studies is that the

cochlear regions contributing to wave I depend on stimulus level. The ER-3A (Etymotic

Research Inc., Elk Grove, U.S.A.) earphones commonly used in these studies (e.g. Johan-

nesen et al., 2019; Grose et al., 2019) have a low-pass frequency response with a spectral

plateau from about 1.5 to 4 kHz. While at low stimulus levels basilar membrane excita-

tion is restricted around cochlear sites with characteristic frequencies close to those of the

stimulus, as the level increases the excitation spreads towards the base of the cochlea (i.e.

towards cochlear places with higher characteristic frequencies) (Ruggero et al., 1997; Robles

and Ruggero, 2001). Moreover, the contributions of more basal sites tend to dominate ABR

wave I (Don and Eggermont, 1978; Eggermont and Don, 1980) because traveling wave dis-

persion is lower at more basal cochlear sites, leading to more synchronized firing of neurons

with high characteristic frequencies (Dau et al., 2000; Dau, 2003). A recent study (Lee et al.,

2019) also found that compound action potentials to high-level tone bursts recorded in non-

human animals, which are often assumed to originate predominantly from the cochlear place

at the characteristic frequency of the tone, can originate from cochlear regions far offset from

the characteristic frequency. Responses to low and high level stimuli may thus differ not

only for the types of neurons [L/M-SR or high spontaneous rate (H-SR)] contributing to

them, but also for the cochlear regions contributing to them. A greater reduction of wave

I amplitude to high compared to low level stimuli may thus reflect greater sensorineural

deficits (possibly other than CS) in more basal cochlear regions compared to more apical

cochlear regions, rather than deficits specifically affecting L/M-SR fibers. Therefore, a shal-

lower growth of the ABR wave I amplitude/level function with age, while consistent with
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CS, does not provide compelling evidence in its favor. Comparing ABRs to high and low

level stimuli obtained with highpass masking techniques that restrict the cochlear region

from which the responses originate (Don and Eggermont, 1978; Eggermont and Don, 1980)

would provide a more specific test of the CS hypothesis.

Restricting the cochlear region from which the ABRs originate would additionally make

it easier to disentangle possible CS effects from the effects of age-related losses of hearing

sensitivity, which are especially prominent at high frequencies. Dysfunction of the OHCs

is expected to decrease mainly responses at low stimulus levels, producing steeper wave I

amplitude/level functions (Verhulst et al., 2016, 2018), rather than the shallower ampli-

tude/level functions predicted by CS. However, this picture is likely to be more complex if

one considers dysfunction of the IHCs as an additional source of loss of hearing sensitivity,

because IHC dysfunction may reduce responses both at low and at high stimulus levels, and

may give rise to shallow wave I amplitude/level functions (Saremi and Stenfelt, 2013; Heinz

and Young, 2004; Heinz, 2015). It is possible to use audiometric thresholds as covariates

to statistically partial out the effect of age-related losses of hearing sensitivity on ABRs,

as done by Johannesen et al. (2019). However, one issue with this approach is that wide

cochlear regions may contribute to neurophysiological responses: using thresholds at each

audiometric frequency as covariates can lead to overfitting, while using average thresholds

over wide frequency regions can be problematic if they do not contribute equally to the neu-

rophysiological response. Restricting the cochlear regions from which the responses originate

make it easier to statistically control for possible audiometric confounds; moreover, these

cochlear regions can be restricted to those low-frequency regions that are least affected by

age-related hearing loss.

In the current study, ABRs and FFRs were recorded in the presence of a highpass

masking noise that effectively restricted the cochlear sites where the responses originate to

low-frequency regions (Don and Eggermont, 1978) with minimal differences in audiomet-

ric thresholds across the age range. Residual age-related audiometric threshold differences

within this restricted cochlear region were also partialed out statistically. In addition, ABRs

were also recorded in quiet, and average audiometric thresholds at low and high frequency
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regions were used as a covariates to minimize possible confounding effect of hearing loss.

On the basis of previous models of CS (Bharadwaj et al., 2014; Plack et al., 2016) we

used differential measures to separate the effects of CS from general age-related reductions

of electrophysiological responses. In particular, we assessed the ABR wave I amplitude ratio

between responses at high and low stimulus levels, and the FFR amplitude difference between

AM tones with shallow and full MD. The predictions of CS models on differential measures

are based on the assumption that CS affects mainly L-M/SR fibers (Bharadwaj et al., 2014;

Plack et al., 2016; Grose et al., 2019; Johannesen et al., 2019). This will be the working

assumption on which the evidence for age-related CS in the current study will be assessed.

However, in the Discussion, we will also consider the possibility that this assumption is, at

least for age-related CS, incorrect. ABRs and FFRs were acquired for a large cohort (n=102)

of participants across the age range (18–73). These electrophysiological recordings were part

of a larger study on the same cohort of participants that included psychophysical measures

of temporal coding, measures of speech perception in noise, and cognitive measures. This

paper will present only the results of the electrophysiological tests, the results of the other

tests, and their relations to the electrophysiological results will be presented in future papers.

2. Methods

2.1. Participants

A total of 170 participants from three age groups (young: 18–39, middle-aged: 40–59,

elderly: >60 years old) were enrolled in the study. Sixty-eight participants either failed to

meet the selection criteria outlined below, or withdrew from the study. Only the data of

the 102 participants who completed the study will be presented. Selection criteria included

audiometric thresholds for both ears below 20 dB HL at octave frequencies from 0.125 to 2

kHz, and below 40 dB HL at 4 kHz. No selection criteria were imposed for frequencies above

4 kHz. Participants with audiometric threshold asymmetries between the left and right ear

larger than 20 dB at any frequency from 0.125 to 4 kHz were excluded from the study.

Due to the use of an incorrect calibration table for the headphones used in the audiometric
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tests the actual cutoff thresholds differed by a few dBs with respect to the nominal cutoff

thresholds listed above. Using the correct calibration table, five elderly, two middle-aged,

and two young participants would not have passed the selection. However, these listeners

had thresholds below 30.5 dB HL for audiometric frequencies up to 2 kHz, and below 37

dB HL at 4 kHz. Given that their thresholds were only slightly above the cutoff criteria,

and given that audiometric thresholds were used as continuous covariates, the data of these

listeners were included in the analyses. An otoscopic examination was performed prior to

the beginning of the tests, and participants with earwax occlusions were excluded from the

study.

Recruitment continued until 34 participants from each age group had completed the

study. Within each age group 27 females, and seven males completed the study. Towards

the end of the study recruitment was targeted to ensure that the proportion of females to

males would be the same across the three age groups.

Participants were asked to report the number of years of musical practice (with a musical

instrument or vocal) they had. They gave written informed consent for participation in the

study, and received an hourly wage. All the experimental procedures were approved by the

Lancaster University Research Ethics Committee.

2.2. Recording procedures

EEG responses were recorded using a Biosemi ActiveTwo (BioSemi B.V., Amsterdam,

The Netherlands) system with a 16,384 Hz sampling rate. Gold plated cup electrodes were

placed on the forehead just below the hairline (high forehead; HF), on each mastoid, and

on the neck at the level of the 7th cervical vertebra (C7). Gold plated clip electrodes

were attached to each earlobe. Gold foil tiptrodes were used to deliver the stimuli and

provide additional electrodes in the ear canal. The common mode sense and driven right leg

electrodes were place on the forehead. During the recording listeners reclined comfortably on

a reclining chair in a double-walled IAC (IAC Acoustics, Winchester, UK) soundproof booth,

and were asked to relax and refrain from extraneous body movements. The stimuli were

generated digitally with a 32-bit resolution, and a 48-kHz sampling rate in Python (Python
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Software Foundation, Delaware, United States); they were sent to a 24-bit RME Hammerfall

DSP multiface digital-to-analog converter (RME Intelligent Audio Solutions, Germany), and

were played via mu-metal shielded Etymotic ER-3A insert earphones in rarefaction polarity.

Triggers marking the start of a stimulus were sent to the Biosemi receiver from additional

channels of the soundcard after being transformed to discrete pulses by a custom-built device.

The EEG data were processed offline using custom scripts written in Julia (Bezanson et al.,

2017).

2.3. ABR stimuli

A 100-µs click was bandpass filtered between 0.35 and 3 kHz. Two milliseconds of the

output sequence resulting from the convolution of the click and the filter centered at the

peak of the click was used as the stimulus. The clicks were presented at levels of 105 and

80 dB ppeSPL. They were either presented in quiet, or were embedded in a 20-ms burst of

highpass (HP) pink noise filtered between 3.5 and 8 kHz. Schematic time-, and frequency-

domain representations of the click embedded in HP noise are shown in Figs. 1A, and 1B,

respectively. To minimize the ABR to the onset of the noise, the noise was gated on and off

with 5-ms raised-cosine ramps. Furthermore, the click onset time was drawn randomly from

a uniform distribution between 5 and 13 ms after the onset of the noise on each stimulus

presentation. Because the averaging was synchronized to the onset of the click, the resulting

8-ms jitter in the relative onset of the noise should have eliminated the contribution of the

noise onset to the ABR average. The noise had a spectrum level of 65 and 40 dB SPL at 1

kHz, respectively for the 105, and 80 dB ppeSPL clicks. In pilot studies this noise level was

found to completely mask the response to a click bandpass filtered between 0.35 and 8 kHz

when the noise was bandpass filtered in the same frequency region.

Ten thousand stimuli were presented for each stimulus condition. To minimize the record-

ing time the clicks were presented alternately to each ear. The stimuli were presented at

a combined rate across the two ears of 14.1 stimuli per second (the silent interval between

noise bursts was 50.9 ms). Monoaurally the stimulus presentation rate was of 7.05 stimuli

per second.
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2.4. ABR processing

The continuous EEG recordings were bandpass filtered offline between 0.1 and 1.5 kHz

using a 256-taps zero-phase-shift finite-impulse-response (FIR) filter. The data from the HF

electrode were referenced to the ipsilateral earlobe (IERL), ipsilateral tiptrode (ITPR), and

ipsilateral mastoid (IMST) electrodes to obtain three different montages that are commonly

used in ABR studies (Møller, 2006; Hood, 2015). However, the data from the HF-IMST

montage were not retained for subsequent analyses. The rationale for this choice is detailed

in the Supplementary Materials (SM). The HF-ITPR and HF-IERL data were modeled

jointly in the statistical analyses; however, for brevity, and because i) the results across

the two montages were largely similar, ii) the HF-ITPR electrode may provide a larger and

slightly more reliable wave I due to its proximity to the wave I generator (Bauch and Olsen,

1990; Prendergast et al., 2018), only the HF-ITPR results will be shown and discussed in

the main manuscript. The HF-IERL results are shown in the SM.

The triggers marking the onset of the stimuli in the EEG recordings were delayed by 0.9

ms to compensate for the acoustic delay introduced by the earphone tubes. The recordings

were then segmented from -3 to 12 ms relative to click onset, and baseline corrected using

a 3-ms baseline. The segments for each stimulus, montage, and ear were averaged using

an iterative-weighted average (Riedel et al., 2001) for each participant. Responses from the

left and right ears were then averaged together to increase the signal-to-noise ratio (SNR).

Grand averages for each stimulus were computed across all participants.

ABR peaks and troughs for wave I and wave V were identified using a semi-automatic

peak-picking procedure which is described in detail in the SM.

2.5. FFR stimuli

FFRs were elicited by two simultaneous diotic AM tones, one with a low carrier fre-

quency (CF) of 0.6 kHz (LCF tone), and one with a high carrier frequency of 2 kHz (HCF

tone). A schematic representation of the stimuli is shown in Fig. 1C. The tones had a du-

ration of 450 ms, including 10-ms raised-cosine on and off ramps. On each trial the low

and high CF tones were always modulated at a different modulation frequency (MF) close

9



to 100 Hz (MF1=93.3, MF2=102.2, MF3=111.1, MF4=120 Hz). There were four stimulus

configurations resulting from the combination of the CF/MF employed: LCFMF1/HCFMF3,

LCFMF2/HCFMF4, LCFMF3/HCFMF1, LCFMF4/HCFMF2. The two tones were both modu-

lated either with 100%, or with 70% MD.

The AM tones were generated by sinusoidally amplitude modulating a 75 dB SPL pure

tone. Therefore the level of the resulting AM tones was 76.76 dB SPL for the tone with

100% MD, and 75.95 dB for the tone with 70% MD. The tones were embedded in pink

noise to reduce the contribution of H-SR fibres to the recorded FFRs. The pink noise was

presented at a spectrum level of 40 dB SPL re. 100 Hz, in a frequency region from 20 to 3000

Hz, with notches two equivalent rectangular bandwidths (Glasberg and Moore, 1990) wide

around the CFs so as to form three noise bands (20–515, 694–1773, and 2253–3000 Hz). A

pink noise bandpass filtered from 3 to 8 kHz, with a spectrum level of 50 dB SPL at 4 kHz

was presented with the AM tones to eliminate the contribution of high-frequency cochlear

regions to the FFR. In pilot studies this noise level was found to nearly completely mask

the FFR to the AM tones when the noise was bandpass filtered between 0.4 and 8 kHz. All

noise bands were independent between the two ears.

One thousand sweeps for each combination of stimulus configuration and MD were col-

lected. Half sweeps were collected with the stimulus presented in rarefaction polarity, and

half were collected with the stimulus presented in condensation polarity. FFRs were col-

lected in four blocks of 2000 trials. On each block, 250 trials per stimulus configuration and

MD were presented in a random order. The inter-stimulus interval was jittered between 25

and 75 ms.

2.6. FFR processing

The triggers marking the onset of the stimuli in the EEG recordings were delayed by 0.9

ms to compensate for the acoustic delay introduced by the earphone tubes. The continuous

EEG recordings were bandpass filtered offline between 0.06 and 1 kHz using a 256-taps FIR

filter. The data from the HF electrode were referenced to the C7, linked earlobes (LERL),

linked mastoids (LMST), and linked tiptrodes (LTPR) electrodes to obtain four different
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montages. The recordings were then segmented from -5 to 450 ms relative to stimulus

onset, and baseline corrected using a 5-ms baseline. The segments for each stimulus were

averaged using an iterative-weighted average (Riedel et al., 2001). Addition, and subtraction

waveforms were obtained by respectively summing, or subtracting the averages for the stimuli

presented in opposite polarities (rarefaction, condensation). The resulting waveforms were

windowed using a hamming window, and the waveform spectra were computed via fast

Fourier transforms (FFTs). For each of the target signal frequencies the level of the signal

and of the noise were estimated from the FFT obtained from the corresponding segmentation

procedure. The signal level was estimated by the power at the FFT bin closest to the signal

frequency. The noise level was estimated by summing the power of six bins above and below

the signal bin, but excluding the two bins immediately below, and the two bins immediately

above the signal bin to minimize the effects of spectral leakage on the noise estimate. The

signal and noise levels were used to compute SNRs for the envelope (ENV) frequencies

of both carriers from the addition waveforms, and for the temporal fine structure (TFS)

frequencies (CF-MF, CF, and CF+MF) of the low-frequency carrier from the subtraction

waveforms (Goblick and Pfeiffer, 1969; Greenberg et al., 1987). The TFS frequencies of the

high-frequency carrier were too high to elicit FFRs (Krishnan, 2007).

The average SNR of the CF+MF component was close to zero for all electrode montages,

probably because this component was not sufficiently resolved at the level of the basilar

membrane to generate a FFR, and the data of this component were discarded from further

analyses. Averaging across stimuli and the remaining ENV and TFS components, the SNR

differences between the four montages were < 1 dB. Given that SNR differences between

montages were small, and because we are not aware of data suggesting that one montage

would be optimal for detecting CS over the other montages, the data from all montages

were used and modeled jointly in the statistical analyses. For brevity, only the average

across-montage data, and the main effects estimated across montages, will be presented and

discussed in the paper. Montage-specific data and effects are presented in the SM.
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2.7. FFR group delay estimation

FFR latencies were estimated via group delay using the algorithm described by King

et al. (2016). The different MFs of the AM tones used to elicit the FFRs generated four

components with closely spaced frequencies that could theoretically be used for group delay

estimation in three frequency regions: the frequency region of the MF (∼ 100 Hz) which

could be used to estimate the ENV latency, and the frequency regions of the lower (CF

- MF), and upper (CF + MF) side bands of the LCF AM tone, which could be used to

estimate the TFS latency.

Only components with an SNR > 6.64 dB were used for group delay estimation. These

components have < 1% probability to occur under the null hypothesis of equivalent signal

and noise power according to an F2,2m test (Dobie and Wilson, 1996), where m is the number

of bins used to compute the noise power (m = 12 in this case). Group delay estimates were

calculated only if all four components for each target frequency passed the SNR criterion.

Group delay estimates for the ENV and TFS components were respectively derived from

the addition, and subtraction waveforms.

The King et al. (2016) algorithm estimates group delay by selecting the best least-square

fit of components phases vs frequencies among the fits obtained by all possible unwrappings

of the phases that are consistent with group delays in a given latency range. For this

study, all phase unwrappings leading to latencies in the 0–30 ms range were considered.

Only fits with a mean squared error (MSE) < 0.01 were retained. All other details of the

unwrapping and fitting procedure that are not explicitly mentioned here were the same as

those described in King et al. (2016), and we refer readers to that paper for a full description

of the algorithm. Given the above constraints, missing latency data could be due to either an

insufficient number of components passing the minimum SNR criterion, or to best fits failing

the maximum MSE criterion. Because more than 75% of the latency data were missing for

the CF-MF TFS component (and the CF+MF component had already been excluded from

further analyses due to its low SNR), the TFS latency data were not analyzed further. For

the ENV component ∼ 28% of latency data points were missing.
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2.8. Noise exposure

Lifetime noise exposure was estimated via the structured interview developed by Lutman

et al. (2008), which estimates the duration and level of noise exposure for a range of activities.

One unit of noise exposure calculated via the interview corresponds to an eight hour daily

exposure, for five days a week, for a year, to a noise level of 90 dBA. The estimated noise

exposure was summed across all activities (occupational or recreational) to estimate the

total cumulative noise exposure (TCNE). For the analyses the TCNE was log-transformed

using base 10, so that a unit difference in the log10-transformed TCNE corresponds to a

tenfold difference in noise exposure energy. Further details of the noise exposure interview

are presented in the SM.

2.9. Audiometric thresholds

Audiometric thresholds were measured for pure tones at octave frequencies from 0.125 to

8 kHz (clinical frequency range) as well as for pure tones at 12 and 16 kHz (extended high-

frequency range) using a two-interval two-alternative forced-choice task with an adaptive

two-down one-up transformed up-down procedure tracking the 70.7% correct point on the

psychometric function (Levitt, 1971). Details of the procedure are presented in the SM.

2.10. Statistical analyses

All analyses were performed using Bayesian models implemented by Markov Chain

Monte Carlo (MCMC) simulations using JAGS (Plummer, 2003) and R (R Core Team,

2020). The data were analyzed using robust mixed-effect multiple regression models which

included both categorical and continuous predictors, as well as random effects of sub-

jects. Details of the models are given in the SM, and the model code is available at

https://osf.io/s3bd9/?view only=44b7ffd0524240208774e3a8e97963b7.

Effects were summarized by 99% credibility intervals (CIs) of the posterior distribution

of the parameter of interest. These indicate that, according to the model, the parameter

has a 99% probability of being enclosed within the bounds of the interval. The use of

CIs to summarize the results of the study is in line with calls from different schools of
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statistical thought for a shift from crude null hypothesis testing to explicit estimation of the

size of parameters of interest, and the uncertainty of these estimates (Gardner and Altman,

1986; Schmidt, 1996; Kruschke and Liddell, 2018; McShane et al., 2019). This approach

emphasizes the idea that statistical results provide graded evidence, or different degrees of

(un)certainty regarding a hypothesis, avoids conflating statistical significance with practical

and/or theoretical significance, and acknowledges that single studies can rarely provide on

their own conclusive evidence for or against an effect. Nonetheless, it is difficult to summarize

succinctly the results of a large-scale study without making some categorical statements.

For this reason we will refer to parameters whose 99% CIs excludes zero as being credibly

different from zero to highlight the most salient findings, but we will also emphasize the size

and uncertainty of effect estimates.

2.10.1. ABR wave amplitudes model

Log wave amplitude was used as the dependent variable (Bramhall et al., 2017, 2019b;

Carcagno et al., 2019). Wave I and wave V amplitudes were modeled jointly. The data

from the HP masking noise conditions were modeled separately from the data collected in

quiet. The independent variables for the HP masking noise model included wave (I or V),

click level (80 or 105 dB ppeSPL), montage (HF-ITPR or HF-IERL), sex, age, average pure

tone thresholds between 0.5 and 2 kHz (PTA0.5−2), and log10TCNE, as well as a series of

interaction terms between these predictors. All model terms and priors are listed in Table S3

of the SM. PTA0.5−2 was included as a predictor because even though all participants had

near normal audiometric thresholds below 4 kHz, there were residual threshold differences

across the age range, with higher thresholds in this low-frequency region with increasing

age. Sex was included as a predictor because of its known association with ABR wave

amplitudes (Don et al., 1993). The model for ABR amplitudes in quiet was similar to the

one for ABR amplitudes in HP masking noise, but included average pure tone thresholds

between 4 and 12 kHz (PTA4−12) as an additional predictor (and the interactions of PTA4−12

with other predictors) to account for high-frequency audiometric losses. Model terms for

ABR amplitudes in quiet are listed in Table S4.
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A censored data analysis (Kruschke, 2014; Lunn et al., 2012) was used to deal with

missing amplitude data due to undetectable peaks: all peak amplitudes that were missing

were coded as being< 0.38 nV, which was the lowest recorded amplitude value in the dataset.

The Bayesian model then jointly estimated the value of the missing data and the likelihood

function of the model given the constraints that the missing data are positive (constraint

enforced by the log model) and < 0.38 nV. Similar approaches have been used before in

the analysis of ABR (Bramhall et al., 2019b) or electrocochleography data (Gajewski et al.,

2004).

2.10.2. ABR wave latencies model

Wave I and wave V peak latencies, in ms, were modeled jointly. The statistical model for

ABR wave latencies included the same predictors used in the model for ABR wave amplitude.

Unlike the wave amplitudes model, no censoring was used for ABR wave latencies, because

no assumptions could be made on the distribution of the actual latency values of the missing

latency datapoints. Model terms for ABR latencies in HP noise, and in quiet are listed in

Tables S5, and S6, respectively.

2.10.3. Amplitude and latency FFR ENV models

For FFR amplitudes the dependent variables consisted of the FFR SNR at the ENV

frequencies of both carriers; these were modeled jointly. The independent variables included

CF (0.6, or 2 kHz), MD (70%, or 100%), montage, age, average pure tone thresholds between

1 and 2 kHz (PTA1−2), log10TCNE, and years of musical experience, as well as a series of

interaction terms between these predictors, which are listed in Table S7. Because four

different MFs were used to allow the estimation of group delay, for each combination of

CF X MD four measurements were available per participant. These four measurements

were averaged before being entered into the analysis. The choice of frequencies included

in the PTA1−2 predictor was dictated by the fact that the highest contributions to FFRs

come from cochlear places higher than an octave above the center frequency (Dau, 2003;

Ananthanarayan and Durrant, 1992), and contributions above 3 kHz were masked by the

HP noise. Musical experience was added as a predictor to the FFR models because it has
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been found to be associated with FFR metrics (e.g. Wong et al., 2007; Bidelman et al.,

2011). Because the distribution of the number of years of musical experience was right

skewed, a cube root transformation was applied to this variable before statistical analyses;

this transformed variable will hereafter be referred to as MUS.

The model structure of the FFR latencies model was the same as that of the FFR

amplitudes model just described. Model terms are listed in Table S9. The dependent

variables for the latencies model consisted of the latencies estimated by the group delay

algorithm.

2.10.4. FFR TFS model

For each participant 16 TFS measurements were available, given by 4 MFs X 2 MDs X

2 frequencies (CF-MF, and CF). None of these factors was of interest in the analysis, so the

16 measurements were averaged before being entered into the model. The FFR TFS model

was essentially the same as the FFR ENV model, except for the fact that it did not include

as independent variables CF (because only the LCF TFS responses were used), MD, and

the interactions of these variables with the other independent variables. The model terms

are shown in Table S8.

3. Results

3.1. Predictor variables

Fig. 2 shows the audiometric thresholds for the participants included in the study, while

Fig. 3A, and 3B show, respectively, log10TCNE, and the number of years of musical expe-

rience as a function of age. Table 1 shows correlations among predictor variables used in

this study, along with 99% CIs computed with a Bayesian model based on that of Lee and

Wagenmakers (2014, chap. 5, see SM for details). Not all of the predictors shown in the

table were used in all models (e.g. PTA4–12 was only included for the ABR model in quiet

in which high-frequency cochlear contributions were not noise masked), for details of the

predictors used in each model see Section 2.10. For simplicity the correlations of the PTA1–2
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variable used in the FFR models have been omitted from the table because they were very

similar to the correlations of the PTA0.5–2 variable.

PTA0.5–2 PTA4–12 Log10TCNE Music 3
√
Y

Age 0.37 (0.13–0.57) 0.84 (0.74–0.90) 0.02 (-0.23–0.28) 0.1 (-0.16–0.34)

PTA0.5–2 0.49 (0.27–0.67) -0.11 (-0.35–0.15) -0.03 (-0.28–0.23)

PTA4–12 0.06 (-0.21–0.29) -0.06 (-0.31–0.19)

Log10TCNE -0.01 (-0.26–0.25)

Table 1: Matrix of correlation coefficients among the predictor variables. 99% CIs are shown in brackets.

As expected, age was highly correlated with PTA4−12
1. Despite the fact that all listen-

ers had normal or near normal hearing up to 2 kHz, age had a moderate correlation with

PTA0.5−2. PTA0.5−2 and PTA4−12 were moderately correlated. None of the other predictors

had sizeable correlations. It is notable that in this sample, age was not associated with

increased log10TCNE. This may reflect geographical or historical peculiarities of the partic-

ipants sample, as well as the fact that they were a self-selected sample of volunteers from

the general population. For most listeners the major contributor to TCNE was recreational

noise exposure, and this tended to be concentrated in their youth years. Nonetheless TCNE

had a large spread across the sample, varying over more than three orders of magnitude.

3.2. ABR wave amplitudes

ABR grand averages for the HF-ITPR montage are shown in Fig. S1 separately for each

age group. It should be emphasized that although the grand averages are shown in this figure

1The high correlation between age and PTA4−12 may suggest a multicollinearity issue for the ABR

model in quiet which included both these predictors. However, (i) the variance inflation factors (VIFs)

for age (3.44), and PTA4−12 (4.06) were moderate, and serious multicollinearity issues generally occur for

VIFs > 10 (Hair et al., 2014); (ii) the use of shrinkage priors reduces the instability of coefficients caused

by multicollinearity (Chatterjee and Hadi, 2006; Hair et al., 2014). In any case, multicollinearity does not

lead to biased estimates of the regression coefficients; the major negative consequence of multicollinearity is

increased uncertainty in the estimates of the affected regression coefficients (Voss, 2005). This uncertainty

is reflected in the width of their CIs (Kruschke, 2014).
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as a function of discrete age groups for illustrative purposes, age was used as a continuous

variable in all the analyses. Fig. 4 shows the ABR wave I and V amplitudes measured for

each participant in each condition as a function of age with the HF-ITPR montage. For some

conditions wave amplitudes for some participants were rather low. In order to estimate the

noise floor we ran the same peak-picking algorithm used to find wave I on an equivalent time

window in the pre-stimulus baseline. The geometric mean of the peak-trough amplitude of

this dummy wave in the pre-stimulus baseline was 41.87 nV (geometric sd=1.91). Note that

this is likely a slight overestimate of the mean “noise floor”, because the average excluded

3.9% of the datapoints for which the peak-trough amplitude of the dummy wave could not

be estimated. The mean noise floor is denoted in the figure by the shaded gray area. For

all conditions, most of the datapoints fell well above this average noise floor.

From Fig. 4 it is apparent that, in quiet, wave I amplitude at the high stimulus level

decreased considerably as age increased, while in HP noise, there was no apparent age-related

decrease in wave I amplitude. The opposite pattern occurred at the low stimulus level, with

an apparent age-related decrease of wave I amplitude in HP noise, and little change with

age in quiet. Fig. 5 shows the effects of age on wave amplitudes estimated by the multiple

regression models for the ABR in quiet and in HP masking noise. The results for the ABR

in quiet indicate a credible decrease in wave I amplitude as a function of age at the high

stimulus level after controlling for the effect of covariates. The median of the posterior

distribution for this decrease was ∼ 17% per age decade (CI: 8 – 26 %). Importantly there

was also a credible age-related decrease of the wave I amplitude ratio between the high and

the low stimulus levels, with a posterior median of ∼ 13%, and CIs ranging from about 1 to

24%. There was no evidence of age-related changes in wave V at either stimulus level.

The results for the HP noise condition show a credible age-related decrease of wave V

at the low stimulus level, with a posterior median of ∼ 14% per age decade (CI: 8 – 21

%). For wave I at the low stimulus level there was also a credible age-related decrease of

similar magnitude. The results do not provide evidence of an age-related decrease of wave

I or wave V amplitudes at the high stimulus level. The wave I amplitude ratio between

the high and the low stimulus levels, rather than decreasing, show a credible age-related
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increase. It should be pointed out that this effect is unlikely to be due to age-related OHCs

dysfunction, given that the effects of low-frequency audiometric thresholds were partialed

out. Additionally, this effect cannot be attributed to age-related medial olivocochlear reflex

deficits, given that the reflex onset is of ∼ 25 ms (Backus and Guinan, 2006; Lopez-Poveda,

2018), and the duration of the stimulus, including the HP masking noise, was 20 ms. There

is also no evidence that the wave I/V ratio, which is difficult to interpret for broadband

ABRs, but has been suggested as a useful normalized synaptopathy metric for frequency-

restricted ABRs (Bharadwaj et al., 2019), was affected by age at high stimulus levels in HP

noise (CI: -13 – 4 % change per age decade).

It is notable that while wave amplitudes in quiet increased considerably as a function

of stimulus level, in HP noise there was no apparent increase of wave amplitudes with

increasing stimulus level for the young participants. The estimated % growth from 80 to

105 dB ppeSPL at age 20 (with PTA0.5−2 and log10TCNE set at their mean across the age

range) was 1 (CI: -25 – 33) for wave I, and -8 (CI: -32 – 23) for wave V. While at age 70 it

was 67 (CI: 23 – 117) for wave I, and 125 (CI: 66 – 199) for wave V. Possible implications

of this finding will be discussed later.

The effects of PTA0.5−2, and PTA4−12 on ABR wave amplitudes estimated by the model

are shown in Figs. S2 and S3, while the effects of log10TCNE are shown in Fig. S4. None of

these effects was credibly different from zero, although the CIs suggest caution in interpreting

these as null effects. The effects of sex are shown in Fig. S5. Waves I and V in quiet at the

low stimulus level had a credibly larger amplitude for females compared to males. Trends in

the same direction were also present for wave V in HP noise at the low stimulus level, and

for wave I at the high stimulus level both in quiet and in HP noise.

3.3. ABR wave latencies

Fig. 6 shows the ABR wave latencies measured for each participant in each condition as

a function of age for the HF-ITPR montage. The CIs for the effect of age on wave latencies

are shown in Fig. 7. In quiet there was a trend for wave V latencies to increase at both low,

and high stimulus levels. There were no notable trends for age effects on wave I latencies,
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except for a tendency to shorter latencies at the high level. There was a credible age-related

increase in wave I–V interpeak latency for the high stimulus level.

The model estimates for wave V latencies in HP noise show a trend for age-related latency

increases at the high stimulus level, and for age-related increases of the wave I–V interpeak

latency. There was no evidence of age effects at the low stimulus level for either of the waves

or for the I–V interpeak latency.

The effects of PTA0.5−2, and PTA4−12 on ABR wave latencies estimated by the model

are shown in Figs. S6 and S7. In quiet there was a weak trend for latency increases with

increases in PTA0.5−2 for wave I at the low stimulus level. This was reflected in a trend

for shorter wave I–V interpeak latencies. There was also a trend for latency increases with

increasing PTA4−12 for wave V at the low stimulus level, which was reflected in a trend for

longer wave I–V interpeak latencies. No notable trends were present in HP noise, except for

weak trends towards increasing wave V latencies, and decreasing wave I latencies at the low

stimulus level, which were reflected in a trend for longer wave I–V interpeak latencies.

The effects of log10TCNE are shown in Fig. S8. None of these effects was credibly

different from zero, and no notable trends were observed. The effects of sex are shown in

Fig. S9. For wave I no notable trends were observed. For wave V in quiet females had

credibly shorter latencies than males at both stimulus levels. A trend for shorter wave V

latencies for females in the HP noise condition was also present at the high stimulus level.

3.4. FFR ENV SNR

Fig. 8 shows the across-montage average FFR ENV SNR measured for each participant

in each condition as a function of age. From the figure SNRs appear to decrease with

increasing age for the 0.6-kHz CF, while they appear to change little for the 2-kHz CF.

Fig. 9 shows the CIs for the main effects of age on FFR ENV SNR across montages.

For the 0.6-kHz CF there was a credible decrease in ENV SNR with age for the 70% MD

with a posterior median of -0.6 dB per age decade (CI: -1.2 – -0.1), and a trend in the same

direction for the 100% MD (posterior median -0.5 dB, CI: -1 – 0.1). The difference for the

effect of age between the 70% and 100% MDs had a posterior median of -0.2 dB per age
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decade (CI: -0.5–0.2). Thus there was not much evidence of a greater age effect at the lower

MD, as predicted by the CS hypothesis, although the trend was in that direction.

There was no credible age-related decrease for the 2-kHz CF at either MD, with the

lower and upper bounds of the CIs ranging from ∼ -0.7 to 0.4 dB per age decade.

The effects of PTA1−2 on ENV SNR are shown in Fig. S10. There was a credible decrease

in ENV SNR with increasing PTA1−2 for the 0.6-kHz stimulus at both MDs, with posterior

medians of ∼ 0.2 dB per dB of hearing loss (CIs ∼ -0.3 – -0.03). For the 2-kHz stimulus

instead there was a trend for the SNR to increase with increasing PTA1−2 (posterior medians

∼ 0.1 dB, CIs: ∼ -0.06 – 0.24).

The effects of log10TCNE are shown in Fig. S11. There were no credible changes in ENV

SNR as a function of log10TCNE, with posterior medians for the effects at either CF and

MD close to zero, and CIs compatible with changes of at most ∼ ±1 dB for differences in

lifetime noise exposure of a factor of 10.

The effect of MUS, which was estimated only across CFs and MDs, had a posterior

median of 0.3 dB (CI: -0.3 – 1) per cubic root of years of musical experience.

3.5. FFR TFS SNR

Fig. 10 shows the across-montage average FFR TFS SNR measured for each participant

in each condition as a function of age. From this figure the TFS SNR appears to decrease

with increasing age. The CIs for the effect of age indicate a credible decrease in SNR with

age, with a posterior median of -0.6 dB per age decade (CI: -1.1 – -0.04).

There were no credible effects of PTA1−2 (CI: -0.1–0.1), log10TCNE (CI: -1.6–0.3), or

MUS (CI: -0.3 – 1.02) on TFS SNR.

3.6. FFR ENV latency

Fig. 11 shows the across-montage average FFR ENV latency estimates computed for

each participant in each condition as a function of age. Average latency estimates were

between 13 and 14 ms in different stimulus conditions. Latencies did not appear to change

greatly with age.
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The CIs for the main effect of age on FFR ENV latencies across montages are shown in

Fig. 12. The CIs do not provide evidence of age effects for the 0.6-kHz CF, with posterior

medians changes close to zero, and CIs within ∼ ±0.4 ms. For the 2-kHz CF there were

trends for shorter latencies with increasing age, with posterior medians of ∼ -0.19 ms per

age decade, and CIs with lower and upper limits of ∼ -0.52, and 0.1 ms, respectively.

The effects of PTA1−2 (Fig. S12), log10TCNE (Fig. S13), and MUS (CI: -0.35 – 0.48)

were not credibly different from zero and did not show notable trends.

4. Discussion

4.1. ABR measures

ABR wave I responses in quiet showed an age-related decrease at the high stimulus

levels; this decrease was greater at high than at low stimulus levels, as shown by the age-

related reduction of the wave I 105/80 dB ppeSPL ratio, and was present despite partialing

out potential effects of age-related audiometric threshold shifts in low and high frequency

regions. This result is in line with those obtained by Johannesen et al. (2019), and Grose

et al. (2019), and is consistent with the predicted effects of CS. However, as we have argued in

the Introduction, this result does not provide compelling evidence for CS due to differences in

cochlear frequency regions generating wave I at low and high stimulus levels, and potential

difficulties in distinguishing effects due to CS from potential effects of age-related high-

frequency hearing loss. A shallower growth of wave I amplitude with age, obtained with HP

masking noise so that responses are restricted to a low frequency region where thresholds

are near normal across the age range, would provide more convincing evidence of age-related

CS. However, the results in HP noise did not follow this prediction: we found no evidence

of age-related wave I reductions at high stimulus levels, while such age-related reductions

occurred at low stimulus levels, unexpectedly leading to a steeper, rather than the shallower

wave I amplitude growth with age that is predicted by the CS hypothesis.

Wave I amplitudes in the HP noise condition did not grow with level for young listeners.

This response saturation for wave I was observed by Eggermont and Don (1980) at low-

frequency derived bands, but its origins are unclear. This saturation effect may have limited
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our ability to observe age-related decreases at high stimulus levels. Some neurophysiological

evidence suggests that only H-SR and M-SR fibers contribute to ABR wave I, while L-SR

fibers do not because of the variability of their first-spike latency (Bourien et al., 2014).

Thus, a possible explanation for the fact that wave I responses did not grow with level

for young listeners is that the 80 dB ppeSPL stimulus was sufficiently intense to saturate

H-SR and M-SR fibers generating the response. However, the hypothesis that the same

population of saturated fibers was responding to the low and high level stimuli does not fit

with the observed greater age-related wave I reduction at the low stimulus level. Given that

age-related wave I reductions were greater at the low stimulus level, either the population

of fibers generating the response was different (e.g. fibers with different spontaneous rates,

or fibers responding to different cochlear places), or the response of the same population of

fibers was modulated by level.

The reason for the greater age-related reduction of wave I at low than at high stimulus

levels in HP noise is unclear. A selective age-related deficit of H-SR fibers seems contrary to

the neurophysiological evidence of greater susceptibility of L/M-SR fibers to CS documented

by neurophysiological studies in non-human animals, and thus unlikely, although it cannot

be excluded. Although a selective age-related deficit of H-SR fibers would predict greater

age-related wave I reductions at low than at high stimulus levels, it would predict some

age-related wave I reductions at high stimulus levels. Our results do not provide supporting

evidence for such reductions at high stimulus levels, but they are not inconsistent with them

because the CIs are compatible with the presence of age-related reductions at high stimulus

levels of up to ∼ 10% per age decade.

An alternative explanation for the greater age-related wave I reduction at low than high

stimulus levels is that the responses at the two levels were partly originating from different

cochlear places within the low-frequency band where the response was restricted. Eggermont

and Don (1980), found that the relative contribution that different 1-octave frequency bands

make to the unmasked wave I response is level dependent. At high levels the contributions of

high-frequency bands become larger than those of low-frequency bands. This effect is more

obvious when comparing a 0.5-kHz to a 4-kHz (or higher) band, but smaller level-dependent
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effects are already apparent when comparing an 0.5-kHz to a 2-kHz band. Hence, given that

the click used in the current study spanned a relatively wide region (bandpass cutoffs: 0.35–3

kHz), it is possible that the age effect found at the low level reflects greater sensorineural

deficits at more apical cochlear sites. However, it is not clear why sensorineural deficits

would be greater at more apical sites. Future studies using the subtraction technique of

responses high-pass masked at different cutoffs to isolate responses within more restricted

regions (Don and Eggermont, 1978) could shed light on this issue.

While the results in HP noise seem at odds with the hypothesis that CS affected the low-

frequency region stimulated by the highpass masked click, the results in quiet are consistent

with, although they do not prove, the presence of CS in the frequency region from which the

response in quiet originated. While ABRs in HP noise were restricted to a low-frequency

cochlear region, the responses in quiet at high levels reflect the contribution of a wide

cochlear region. Because of reduced traveling-wave dispersion at high-frequency cochlear

regions, these responses are likely dominated by contributions of high-frequency cochlear

channels. The different pattern of results obtained for the wave I 105/80 dB ppeSPL ratio

in quiet and in HP noise could thus reflect differences in the degree of age-related CS at low

and high frequency regions. Specifically our results are consistent with the presence of age-

related CS in high-frequency cochlear regions, but not in low-frequency cochlear regions.

Although the reason why CS would preferentially affect high-frequency cochlear regions

is not clear, this interpretation of our results would be consistent with some (but not all)

physiological studies. In particular, Schmiedt et al. (1996) found a drastic loss of L-SR fibers

with characteristic frequencies > 6 kHz in quiet-aged gerbils, but did not observe similar

reductions for fibers with characteristic frequencies < 6 kHz. Stamataki et al. (2006) found

that the age-related loss of IHC synapses in C57BL/6J mice occurred mostly at basal sites,

and Jiang et al. (2015) found that IHC ribbon losses in C57BL/6J mice with age started at

basal sites before progressing to apical sites. Sergeyenko et al. (2013), however, found that

IHC ribbon losses with increasing age in CBA/CaJ mice were initially greater at apical sites

before progressing to basal sites. The differential involvement of apical vs basal sites may

reflect differences between species, or between genetic strains within a species. In humans
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the age-related decline of SGN peripheral axons, although present throughout the cochlear

length appears slightly larger towards the base (frequencies > 1 kHz) than towards the apex

(frequencies < 1 kHz; Wu et al., 2019); a similar, although not significant trend of greater

basal loss was observed for the age-related degeneration of SGN bodies (Viana et al., 2015).

Overall, no credible effects of age on wave I or wave V latencies were found. Given

this, the increased wave I–V interpeak latency with age found at the high stimulus level in

quiet, although suggestive of possible central neural conduction delays with age, should be

interpreted cautiously. Previous large scale investigations have yielded mixed results, with

some results supporting increased I–V interpeak latencies with age (Elberling and Parbo,

1987; Mitchell et al., 1989), and some not (Konrad-Martin et al., 2012).

Although the focus of this study is on aging effects we will briefly comment on the

effects of the other covariates. Estimates of the effects of lifetime noise exposure on wave

amplitudes and latencies were generally close to zero and none was credibly different than

zero. Although the results of this single study do not exclude the possibility of small or

moderate effects of noise exposure on ABR measures (e.g. the CIs are compatible with wave

amplitude reductions of ∼ 10% for a tenfold increase in lifetime noise exposure), they add to

the results of the majority of studies on the topic, that have failed to find an effect of lifetime

noise exposure on ABR amplitude and latency measures (see Le Prell, 2019; Bramhall et al.,

2019a, for reviews).

Audiometric threshold shifts in the current study may have been due to a mixture of

OHC and IHC dysfunction (Johannesen et al., 2014). OHC dysfunction in the frequency

region where the stimulus was presented would be expected to decrease wave I amplitudes

especially at low levels, while OHC dysfunction in higher frequency regions should not greatly

affect wave amplitudes. IHC dysfunction, on the other hand, could affect both on- and off-

frequency responses. Although there were some trends for lower wave I amplitudes with

increasing audiometric thresholds, no credible effects of audiometric thresholds on the ABR

measures were found. The absence of sizeable effects of audiometric thresholds on ABR

amplitude in this study may be due to the fact that audiometric thresholds shifts, when

present, were at most mild (except in the extended high-frequency region). Furthermore, the
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strong correlation between high-frequency audiometric thresholds and age makes it difficult

to isolate the effects of these two variables; this is reflected in the width of the CIs for the

effects of high-frequency audiometric thresholds, that while not providing decisive evidence

for such effects, are nonetheless compatible with their presence.

Similar considerations apply to audiometric effects on ABR latencies. For the stimuli in

quiet, sloping high-frequency hearing losses, such as those of the older participants in the

current study, may be expected to lead to delayed latencies at low stimulus levels because

ABR contributions will tend to shift from the impaired basal sites towards the more apical

sites with better preserved low-level sensitivity (Gorga et al., 1985). These effects, however,

may have been too small to be reliably detected for a click with a level of 80 dB ppeSPL,

and the mild high-frequency hearing losses of the older listeners in the current study (see

simulations in Verhulst et al., 2016). For derived-band responses, the effect of OHC dys-

function changes both passive and active cochlear mechanics with opposite consequences on

wave latencies at low stimulus levels: increased latency for the change in passive cochlear

mechanics, and decreased latency for the wider auditory filters caused by the change in

active cochlear mechanics (Don et al., 1998). The latter effect tends to dominate, leading

to shorter ABR wave latencies, but only for hearing losses exceeding 20–30 dB (Don et al.,

1998), which are larger than the hearing losses in the low-frequency region of the participants

of the current study.

The trends for higher ABR wave amplitude in quiet for females compared to males

observed in the current study are consistent with previous reports (Don et al., 1993), and

underline the importance of considering sex effects when designing and analyzing ABR

experiments.

4.2. FFR measures

The FFR SNR showed age-related decreases for both TFS and ENV components of the

0.6-kHz CF stimulus. These results are in agreement with several other studies showing

age-related decreases in subcortical measures of neural phase locking to tones amplitude

modulated at rates ∼ 100 Hz (Leigh-Paffenroth and Fowler, 2006; Grose et al., 2009; Garrett
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and Verhulst, 2019). There was little evidence, however, that the age-related decreases for

the ENV component were greater at shallow compared to deep MDs, as predicted by the

CS hypothesis. A similar result was reported by Garrett and Verhulst (2019), who did not

find differences in the slope of FFR SNR as a function of MD between a group of 22 young

normal hearing listeners and a group of 23 elderly listeners with hearing loss. For an AM

tone with a shallow MD, Encina-Llamas et al. (2019) found shallower FFR growth functions

with level in four older hearing impaired listeners compared to nine young normal hearing

listeners, while growth functions with level were similar for the two groups for an AM tone

with a deeper MD. Although the results of this latter study seem consistent with a CS

profile, considering its small sample size relative to the current study and that of Garrett

and Verhulst (2019), the overall results of these studies do no provide much evidence that

age-related FFR decreases are greater at low MDs. Moreover, the interpretation of the

results of Garrett and Verhulst (2019) and Encina-Llamas et al. (2019) is complicated by

the fact that neither study used HP noise to mask the contribution of high-frequency cochlear

regions, nor estimated age effects while simultaneously controlling for audiometric threshold

shifts. Simulations of auditory nerve activity run by Encina-Llamas et al. (2019) suggest

that, without HP masking noise, off-frequency contributions tend to dominate the FFR, and

detecting the effects of even a complete loss of L/M-SR fibers becomes difficult because of

the large contribution of off-frequency H-SR fibers to the response.

Age effects were greater for the 0.6-kHz than for the 2-kHz CF (median posterior dif-

ference: 0.43 dB, CI: 0.17–0.7). Leigh-Paffenroth and Fowler (2006) similarly observed a

greater reduction in the number of FFRs above the noise floor to a 0.5-kHz CF than to a

2-kHz CF in a group of 12 older participants compared to a group of 16 young participants.

Grose et al. (2009), on the other hand, did not find that the reductions in FFR SNR in

a group of 10 older listeners compared to a group of 10 young listeners, were significantly

different between a 0.5-kHz and a 2-kHz AM tone. The reason for the across-CF differences

found by Leigh-Paffenroth and Fowler (2006) and in the current study remains unclear 2.

Our results do not provide evidence for an effect of lifetime noise exposure on FFR

2The montage-specific results, which are presented in the SM, hint at the possibility that these across-CF
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ENV and TFS SNRs. The results of the current study are not conclusive regarding the

presence/absence of such effects, given that the CIs are compatible with effects of lifetime

noise exposure (in either direction) of up to ∼ 1.5 dB per tenfold difference in noise exposure.

However, they add to the results of other large-scale studies (Prendergast et al., 2017, 2019)

that found that the effect of lifetime noise exposure on FFR SNR was close to zero.

The reduction of basilar membrane compression associated with OHC dysfunction is ex-

pected to lead to increased FFR responses to the envelope of AM tones. Although this effect

was not credibly different from zero, FFR ENV SNR at the 2-kHz CF tended to increase

with increasing PTA1−2, consistent with loss of basilar membrane compression caused by

OHC dysfunction. At the 0.6-kHz CF, however, FFR ENV SNR credibly decreased with

increasing PTA1−2. Although this decrease is opposite to what would be predicted by OHC

dysfunction, it is compatible with IHC dysfunction.

It is likely that the effects of PTA1−2 observed at both CFs reflect a mixture of OHC

and IHC dysfunction. Basilar membrane compression is likely reduced towards apical sites

compared to basal sites (Robles and Ruggero, 2001), and this may explain why FFR ENV

responses do not tend to increase with PTA1−2 at the lower CF. Alternatively, it is possible

that the FFR ENV response to the lower CF was dominated by off-frequency contribu-

tions, which are not shaped by OHC function and have a linear, non-compressive response.

Although we cannot exclude this hypothesis, simulation results from a recent study (Encina-

Llamas et al., 2020) suggest that the presence of a tone with a higher CF, such as the 2-kHz

tone in the current study, dramatically reduces the off-frequency responses to a tone at a

lower CF, such as the 0.6-kHz CF tone. Therefore, a dominance of off-frequency contribu-

differences may interact with electrode montage, because a trend for age-related reductions for the 2-kHz CF

was only present for the HF-LMST montage. Trends for this montage at 2 kHz appear somewhat different

from the other montages also with respect to the effect of PTA1−2, further suggesting that the FFR ENV

at the HF-LMST montage may reflect different generators than the other montages. Unfortunately, our

study, and those of Leigh-Paffenroth and Fowler (2006), and Grose et al. (2009), all used different montages

and/or mode of presentation (monaural vs diotic), so it is difficult to draw general conclusions about the

role of electrode montage on these across-CF differences.
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tions is unlikely to explain the absence of apparent OHC dysfunction effects on the 0.6-kHz

CF results.

FFR ENV latency estimates via group delay in the current study were on average 4–5

ms longer than those estimated in a previous study (King et al., 2016). This may partly

reflect the fact that, due to the use of HP masking noise, responses were restricted to apical

cochlear regions with long traveling wave delays.

No credible effects of age were found on estimated FFR latencies. Although this result

does not provide evidence of age-related increases of FFR ENV latencies, there are three

reasons why it should be interpreted cautiously. One is the residual uncertainty of the

estimates, with CIs compatible with changes of up to ∼ 0.5 ms per age decade. The second

is the fact that the missing data were more prevalent as age increased, and although the

difference between age groups was not large (young: 22%, middle-aged: 29%, elderly: 34%),

it may have biased the estimated effects of age on latencies if the reduced SNR that caused

the data to be missing, is associated with longer or shorter latencies. The third factor

to take into account is that the latency estimate assumes a single FFR source, but the

recorded FFR may reflect multiple sources with different latencies interacting constructively

or destructively (King et al., 2016). This third factor makes the interpretation of the data

more difficult, and may explain the large spread of the latency estimates observed in the

current study.

4.3. Conclusions

Overall, the ABR wave I and FFR ENV SNR results of this study obtained with HP

masking noise do not provide evidence of age-related CS occurring in low-frequency regions

(. 3 kHz) with near-normal audiometric thresholds across the age range. However, the

ABR wave I results in quiet are compatible with CS affecting higher frequency regions.

Although our results do not provide evidence of age-related CS in low-frequency regions,

they do not warrant the stronger conclusion that age-related CS is not occurring in these

frequency regions. As discussed in Section 4.1, the lack of ABR wave I growth with level in

young listeners may have limited our ability to detect CS. For the FFR measure, there is un-
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certainty regarding the MF of AM tones at which effects of CS could be detected. CS effects

in CBA/CaJ mice are largest for MF ∼ 1 kHz (Shaheen et al., 2015), that reflect mostly audi-

tory nerve activity, but some differences are apparent also at MFs ∼ 100 Hz (Parthasarathy

and Kujawa, 2018), that reflect mostly brainstem activity. It has been hypothesized that

smaller CS effects are seen at lower AM rates because of compensatory mechanisms increas-

ing gain at brainstem and cortical levels (Parthasarathy and Kujawa, 2018; Parthasarathy

et al., 2019); however, there is evidence that these compensatory mechanisms may them-

selves decline with age (Möhrle et al., 2016). A recent study using transposed tones with a

4-kHz carrier failed to find age effects at higher modulation rates in the range of 240–285

Hz (Prendergast et al., 2019), suggesting that targeting higher MFs may not better reveal

potential CS effects. FFRs in humans become more difficult to record at higher AM rates

close to 1 kHz, but computational models of the human auditory periphery suggest that

effects of CS on the FFR should be detectable at lower rates close to 100 Hz (Verhulst et al.,

2018).

Although the specific CS profile of age-related reductions of WIH/WIL and FFRS-FFRD

was not observed in the current study, several ABR and FFR measures showed age-related

reductions that could not be accounted for by audiometric hearing losses. These may reflect

sensorineural deficits other than CS (Schmiedt, 2010; Caspary et al., 2008; Ouda et al.,

2015). Alternatively, it is possible that age-related CS in humans does not follow the same

profile as noise-induced CS in rodents, who show a predominant loss of L/M-SR fibers.

Although age-related synaptic loss in humans has been documented (Viana et al., 2015;

Wu et al., 2019), it is not known whether this loss affects primarily L/M-SR fibers. As

noted by Hickox et al. (2017), the association between the spontaneous rates of auditory-

nerve fibers and their thresholds, which has been observed for a number of mammalian

species, was not observed in a study on a non-human primate species (macaque, Joris et al.,

2011). Therefore, it is not clear that the pathophysiological model of age-related CS affecting

mainly fibers with high thresholds applies to humans.

Although the greater involvement of L/M-SR fibers has been shown to occur after noise-

induced CS (in guinea pigs; Furman et al., 2013), there is only limited evidence that this
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occurs also in the case of age-related CS (gerbil data show this only > 6 kHz; Schmiedt

et al., 1996). While phenomenological profiles of ABR wave I responses appear similar for

noise- and age-related CS in mice (Sergeyenko et al., 2013), the picture is more complex for

FFR responses. Relative to controls, FFR growth functions with level appear shallower for

mice with noise-induced synaptopathy (Shaheen et al., 2015), but for mice with age-related

synaptopathy the functions seem to have simply a downward offset at all levels, that does

not change their overall shape (only at equal sensation levels the functions are shallower

than for controls; Parthasarathy and Kujawa, 2018). Moreover, contrary to the predictions

of some models (Bharadwaj et al., 2014), in mice with age-related CS, FFR growth func-

tions with modulation depth had similar shapes across the age range (Parthasarathy and

Kujawa, 2018). Finally, a major hypothesized pathway leading to a preferential L/M-SR

fiber involvement in CS, glutamate excitotoxicity (Liberman and Kujawa, 2017), does not

easily apply to the case of age-related CS.

Overall, given the currently available evidence, it cannot be excluded that age-related

CS may have a different profile than noise-induced CS re the proportion of the affected

types of auditory nerve fibers in rodents or in humans. If this is the case, some of the age-

related electrophysiological changes observed in the current study, such as the ABR wave I

reduction at low stimulus levels with HP noise, and the general FFR ENV SNR reductions

at the low carrier frequency could reflect CS that is not specific to L/M-SR fibers. However,

as mentioned before, they could also reflect sensorineural deficits other than CS: if CS effects

are not level specific, it becomes difficult to distinguish them from other sensorineural deficits

on the basis of the electrophysiological measures employed in the current study.
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Figure 1: Schematic representation of the stimuli used in the study. A. Time domain, and B. frequency

domain representations of the filtered click embedded in the highpass masking noise used for the ABR

experiment. C. Frequency domain representation of the AM tones and HP masking noise used in the FFR

experiment.
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Figure 2: Audiometric thresholds for the study participants. The light blue points plot mean thresholds

± 1 standard error of the mean (s.e.m.) for each age group. The dashed and dotted lines mark respectively

20, and 40 dB HL.
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Figure 3: A. Total cumulative lifetime exposure as a function of age. A unit difference in the base 10

logarithmic y axis of the figure corresponds to a tenfold difference in noise exposure energy. B. Years of

musical experience as a function of age. The y axis is shown on a cube root scale (years are displayed in

their original unit).
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Figure 4: ABR wave I and V amplitudes by age for the HF-ITPR montage. The inverted triangles represent

data points for which the peak-trough amplitude could not be measured. These data points were modeled

as having an amplitude lower than the lowest recorded peak-trough amplitude in the dataset through a

censored analysis. Each panel shows a least squares line fit of wave amplitude by age with 95% confidence

intervals as a visual aid. The slope for the effect of age estimated by the Bayesian multiple regression model

is not the same as that shown in the figure.
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Figure 5: Posterior medians (circles) and 99% credibility intervals for the effects of age on ABR wave I and

V amplitudes estimated by the Bayesian multiple regression models for the HF-ITPR montage. Effects are

plotted as percentage amplitude change for an age increase of 10 years.
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Figure 6: ABR wave I and V latencies by age for the HF-ITPR montage. Each panel shows a least squares

line fit of wave latency by age with 95% confidence intervals as a visual aid. The slope for the effect of age

estimated by the Bayesian multiple regression model is not the same as that shown in the figure.
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Figure 7: Posterior medians (circles) and 99% credibility intervals for the effects of age on ABR wave I and

V latencies estimated by the Bayesian multiple regression model for the HF-ITPR montage. The bottom

row shows the age effect for the wave I–V interpeak latencies. Effects are plotted as latency change for an

age increase of 10 years.
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Figure 8: Across-montage average FFR ENV SNR by age. Each panel shows a least squares line fit of FFR

SNR by age with 95% confidence intervals as a visual aid. The slope for the effect of age estimated by the

Bayesian multiple regression model is not the same as that shown in the figure.
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Figure 9: Posterior medians (circles) and 99% credibility intervals for the main effects (across montages) of

age on FFR ENV SNR estimated by the Bayesian multiple regression model. The top row shows the effect

difference between the 70% and 100% MD. Effects are plotted as an SNR change for an age increase of 10

years.
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Figure 10: Across-montage average FFR TFS SNR by age. The figure shows a least squares line fit of FFR

SNR by age with 95% confidence intervals as a visual aid. The slope for the effect of age estimated by the

Bayesian multiple regression model is not the same as that shown in the figure.
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Figure 11: Across-montage average FFR ENV latency by age. Each panel shows a least squares line fit of

FFR latency by age with 95% confidence intervals as a visual aid. The slope for the effect of age estimated

by the Bayesian multiple regression model is not the same as that shown in the figure.
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Figure 12: Posterior medians (circles) and 99% credibility intervals for the main effects (across montages)

of age on FFR ENV latency estimated by the Bayesian multiple regression model. The top row shows the

effect difference between the 70% and 100% MD. Effects are plotted as a latency change, in ms, for an age

increase of 10 years.
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Figure S1: ABR grand averages with the HF-ITPR montage for each experimen-

tal condition as a function of age group. It should be noted that although the

grand averages are shown as a function of age group for illustration purposes

here, the statistical analyses used age as a continuous rather than nominal

variable.
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Figure S2: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA0.5−2 on ABR wave I and V amplitudes estimated by the Bayesian

multiple regression models.
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Figure S3: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA4−12 on ABR wave I and V amplitudes estimated by the Bayesian

multiple regression model.
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Figure S4: Posterior medians (circles) and 99% credibility intervals for the

effects of log10TCNE on ABR wave I and V amplitudes estimated by the Bayesian

multiple regression models.
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Figure S5: Posterior medians (circles) and 99% credibility intervals for the dif-

ferences in ABR wave I and V amplitudes between females and males estimated

by the Bayesian multiple regression models. The multiple regression models did

not include montage by sex interactions, only the overall effects of sex across

montages were estimated, hence the plot does not show montage specific sex

effects.
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Figure S6: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA0.5−2 on ABR wave I and V latencies estimated by the Bayesian

multiple regression models. The bottom row shows the effects for the wave I–V

interpeak latencies.
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Figure S7: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA4−12 on ABR wave I and V latencies estimated by the Bayesian

multiple regression model. The bottom row shows the effects for the wave I–V

interpeak latencies.
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Figure S8: Posterior medians (circles) and 99% credibility intervals for the

effects of log10TCNE on ABR wave I and V latencies estimated by the Bayesian

multiple regression models. The bottom row shows the effects for the wave I–V

interpeak latencies.
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Figure S9: Posterior medians (circles) and 99% credibility intervals for the

differences in ABR wave I and V latencies between females and males estimated

by the Bayesian multiple regression models. The multiple regression models did

not include montage by sex interactions, only the overall effects of sex across

montages were estimated, hence the plot does not show montage specific sex

effects.
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Figure S10: Posterior medians (circles) and 99% credibility intervals for the

main effects (across montages) of PTA1−2 on FFR ENV SNR estimated by the

Bayesian multiple regression model. The top row shows the effect difference

between the 70% and 100% MD.
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Figure S11: Posterior medians (circles) and 99% credibility intervals for the

main effects (across montages) of log10TCNE on FFR ENV SNR estimated by the

Bayesian multiple regression model. The top row shows the effect difference

between the 70% and 100% MD.
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Figure S12: Posterior medians (circles) and 99% credibility intervals for the

main effects (across montages) of PTA1−2 on FFR ENV latency estimated by the

Bayesian multiple regression model. The top row shows the effect difference

between the 70% and 100% MD.
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Figure S13: Posterior medians (circles) and 99% credibility intervals for the

main effects (across montages) of log10TCNE on FFR ENV latency estimated by

the Bayesian multiple regression model. The top row shows the effect difference

between the 70% and 100% MD.
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2 Supplementary methods✶✾

2.1 Choice of ABR montages✷✵

The data from the HF-IERL, and HF-ITPR montages were retained for the✷✶

statistical analyses, while the IMST referenced data were not analyzed further✷✷

for the following reasons: i) the average root-mean-square (RMS) amplitude✷✸

during the pre-stimulus baseline window, indicative of noise level, was ∼ 1.5✷✹

dB higher for the IMST referenced data than for the other two montages, that✷✺

had similar baseline RMS amplitudes; ii) the ratio of the average ABR wave I✷✻

amplitude to the amplitude of a dummy wave estimated with the same criteria as✷✼

wave I during the pre-stimulus baseline window (Prendergast et al., 2017) was✷✽

> 1 dB lower for the HF-IMST montage compared to the other two montages✷✾

(HF-IERL: 4.42 dB; HF-ITPR: 5.1 dB; HF-IMST: 3.38 dB) iii) the HF-IMST data✸✵

were often contaminated by the postauricular muscle reflex (PAM). Although✸✶

the PAM triggered by the click falls outside the time-window of ABR waves I✸✷

and V, the PAM response to the onset of the noise preceding the click could✸✸

affect responses in this time window. The PAM to the onset of the noise should✸✹

cancel out in the long run through averaging, due to its random start time with✸✺

respect to the averaging window start time. However, given the large size of the✸✻

PAM it is possible that the cancellation was not complete; iv) previous studies✸✼

indicate that tiptrode-referenced ABRs provide larger, and slightly more reliable✸✽

wave I amplitudes compared to mastoid-referenced ABRs (Bauch and Olsen,✸✾

1990; Prendergast et al., 2018).✹✵

The metrics described above suggest that the HF-ITPR montage may provide✹✶

somewhat better measurements of wave I over the HF-IERL montage, but✹✷

the differences between the two montages are likely small. For this reason,✹✸

and because multilevel models generally provide better parameter estimates✹✹

compared to separate analyses for each level of a given factor (Gelman, 2006;✹✺

Gelman and Hill, 2007), the HF-ITPR and HF-IERL ABR data were modeled✹✻

jointly in the statistical analyses.✹✼

2.2 ABR waves peak-picking algorithm✹✽

ABR peaks were first identified on the grand-average waveforms using a semi-✹✾

automatic peak-picking procedure similar to that proposed by Bradley and✺✵

Wilson (2004). The approximate latency for each wave was first identified✺✶

visually on the grand average waveforms separately for each condition. The✺✷
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grand-average peaks for each wave were then defined as the highest local✺✸

maxima within a tolerance window of ±0.63-ms for wave V, and ±0.51-ms for✺✹

wave I of the visually identified peak latencies.✺✺

The wave peaks were then searched in the individual subject waveforms✺✻

within a search window centered at the grand-average peak latencies, and with✺✼

bounds of ±0.51 ms of the grand-average peak latency for wave I, and of ±0.84✺✽

ms for wave V. These bounds correspond respectively to ±3, and ±4 standard✺✾

deviations of the ABR wave latencies reported by Issa and Ross (1995) for wave✻✵

I, and for wave V. Peaks were identified by selecting the highest local maximum✻✶

in the search window. Troughs were identified by selecting the lowest local✻✷

minimum in a search window going from 0.25 to 1.5 ms for wave I, and from✻✸

0.25 to 2 ms for wave V, from the estimated peak latency. Wave amplitudes✻✹

were measured from peak to trough. If no local maxima were present in the✻✺

peak search window the peak amplitude was estimated by the highest absolute✻✻

point in the search window (this point was also used to set the search window✻✼

for the following trough). If no local minima were present in the trough search✻✽

window, the trough amplitude was estimated by the inflection point with the✻✾

shallowest slope in the trough search window, if present. If no inflection points✼✵

were present the trough amplitude was estimated by the lowest absolute point✼✶

in the trough search window.✼✷

It should be noted that because of the constraint that the trough latency✼✸

is at least 0.25 ms after the peak latency there is no guarantee that either the✼✹

local or the absolute minimum found in the trough search window will have a✼✺

lower amplitude than the peak found in the peak search window. Therefore✼✻

the algorithm could fail to find positive peak-trough amplitudes. This usually✼✼

occurred for noisy waveforms. In these cases the peak-trough amplitude was set✼✽

as missing. A censored analysis, described in the section on statistical methods✼✾

was then used to deal with these missing data.✽✵

Latencies for peaks that could not be identified using the largest local✽✶

maximum were set as missing. The rationale for this is that while the largest✽✷

absolute maximum can provide a reasonable estimate of the peak amplitude✽✸

when no local maxima are present, it does not necessarily provide a good✽✹

estimate of the peak latency. Peak latencies for peaks with an amplitude smaller✽✺

than 100 nV were also considered unreliable and set as missing.✽✻

The noise floor was calculated by applying the same algorithm used to find✽✼

wave I to the pre-stimulus baseline, on a time window centered at -2.1 ms.✽✽
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2.3 Noise exposure✽✾

Lifetime noise exposure was estimated via the structured interview developed✾✵

by Lutman et al. (2008). The interview covers both occupational and recre-✾✶

ational noise exposures. For each of these two categories participants were✾✷

asked to recall up to five activities with the greatest amount of noise exposure✾✸

in their lifetime, and with levels exceeding a threshold of 85 dBA. Noise levels✾✹

were estimated mostly using a speech communication difficulty table that listed✾✺

approximate noise levels as a function of vocal effort required for communi-✾✻

cation. For each activity participants were asked to estimate the duration and✾✼

frequency of occurrence, and the cumulative noise exposure for the activity (U)✾✽

was calculated by U = 10(L−A−90)/10 · Y ·W · D · H/2080 where L is estimated✾✾

noise exposure level in dBA, A is hearing protection in dB, Y is years of exposure,✶✵✵

W is weeks of exposure per year, D is days of exposure per week, H is hours of✶✵✶

exposure per day, and 2080 is the number of hours in a working year. One unit✶✵✷

of noise exposure so calculated corresponds to an eight hour daily exposure,✶✵✸

for five days a week, for 52 weeks, for a year, to a noise level of 90 dBA. The✶✵✹

cumulative noise exposure was summed across all activities to estimate the✶✵✺

total cumulative noise exposure (TCNE). For the analyses the TCNE was log-✶✵✻

transformed using base 10, so that a unit difference in the log10-transformed✶✵✼

TCNE corresponds to a tenfold difference in noise exposure energy.✶✵✽

2.4 Audiometric thresholds✶✵✾

The tones had a duration of 200 ms, including 10-ms raised-cosine onset and✶✶✵

offset ramps. Thresholds were measured with a two-interval two-alternative✶✶✶

forced-choice task. The presentation level of each tone was varied adaptively✶✶✷

using a two-down one-up transformed up-down procedure tracking the 70.7%✶✶✸

correct point on the psychometric function (Levitt, 1971) to determine its✶✶✹

detection threshold. On each trial the tone was randomly presented during one✶✶✺

of two observation intervals marked by flashing lights on the computer screen,✶✶✻

and separated by a 500-ms silent interval. Participants were asked to indicate✶✶✼

the interval in which the sound occurred by pressing the corresponding button✶✶✽

on a numeric keypad. Feedback was provided at the end of each trial by means✶✶✾

of a colored light on the computer screen.✶✷✵

A single block of trials was run for each combination of ear and frequency (in✶✷✶

random order). Each block was terminated after 16 turnpoints of the adaptive✶✷✷

track. The level was varied in 4-dB steps for the first four turnpoints, and by 2✶✷✸
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dB for the remaining turnpoints. Threshold was estimated as the average of✶✷✹

the last 12 turnpoints.✶✷✺

The pure tones were synthesized in Python (Python Software Foundation,✶✷✻

Delaware, United States) with a sampling rate of 48 kHz, and 32-bit depth,✶✷✼

were played through a E-MU 0204 USB sound card (E-MU Systems, Scotts✶✷✽

Valley, U.S.A.), and presented via Sennheiser HDA300 headphones (Sennheiser✶✷✾

electronic GmbH & Co. KG, Hanover, Germany). Testing took place in double-✶✸✵

walled IAC (IAC Acoustics, Winchester, UK) soundproof booths.✶✸✶

3 Statistical models and results✶✸✷

All analyses were performed using Bayesian models implemented by Markov✶✸✸

Chain Monte Carlo (MCMC) simulations using JAGS (Plummer, 2003) and✶✸✹

R (R Core Team, 2020). For all MCMC simulations the chains for the main✶✸✺

parameters of interest were monitored for convergence using trace plots, and✶✸✻

where available the Gelman-Rubin statistics. The chains were also monitored✶✸✼

for autocorrelation to ensure an effective sample size of at least ≃ 10,000✶✸✽

samples for the main parameters of interest.✶✸✾

3.1 Bayesian correlation model✶✹✵

The Bayesian model to estimate the correlations among predictor variables was✶✹✶

based on the model of Lee and Wagenmakers (2014, chap. 5) but used vague✶✹✷

uniform priors for estimating the standard deviations of the variables instead✶✹✸

of inverse-square-root-gamma priors.✶✹✹

3.2 Mixed effect multiple regression models✶✹✺

The data were analyzed using robust mixed-effect multiple regression models✶✹✻

which included both categorical and continuous predictors, as well as random✶✹✼

effects of subjects. Robust regression uses a Student’s t distribution instead of a✶✹✽

Normal distribution for describing residuals, minimizing the potential influence✶✹✾

of outliers on the estimated regression coefficients (Kruschke, 2014).✶✺✵

For categorical predictors an unweighted effect coding scheme was used✶✺✶

(Aiken et al., 1991). Continuous variables were standardized using the Friedrich✶✺✷

method (Friedrich, 1982; Aiken et al., 1991) before being entered into the✶✺✸

analyses. Unstandardized coefficients corresponding to those resulting from an✶✺✹
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analysis of the mean-centered variables can be obtained by scaling using the✶✺✺

appropriate standard deviation terms (Aiken et al., 1991). The priors for the✶✺✻

slope coefficients in the models were set differently for coefficients that were of✶✺✼

main interest in the analysis, and coefficients that were expected to affect the✶✺✽

dependent variable, but were not of great analytical interest, such as the effect✶✺✾

of stimulus level on ABR amplitude. For the latter effects, the priors were very✶✻✵

broad on the scale of the data. Shrinkage priors were used for the former: the✶✻✶

standardized coefficients were described by a t distribution centered at zero,✶✻✷

with 1 degree of freedom, and scale parameter set to 0.1. This prior assumes✶✻✸

that the standardized slope coefficients should be generally close to zero, where✶✻✹

the narrow peak of the t distribution is located, reflecting a belief that effect✶✻✺

sizes will be generally small. However, owing to its heavy tails the t prior can✶✻✻

accommodate coefficients much larger than zero if the likelihood provides clear✶✻✼

evidence for this (Kruschke, 2014).✶✻✽

The interpretation of the standardized slope coefficients, and hence of the✶✻✾

priors set on them, differs for continuous and categorical variables. For continu-✶✼✵

ous variables the standardized slope coefficient is the change of the dependent✶✼✶

variable in standard deviation (sd) units, for a 1-sd change of the dependent vari-✶✼✷

able. Categorical variables were not standardized, and the coefficients represent✶✼✸

the shift in the value of the dependent variable (which was still set in sd units in✶✼✹

our models) for the categorical level coded as 1, from the the unweighted grand✶✼✺

mean of the dependent variable of all the levels. The model code is available at✶✼✻

https://osf.io/s3bd9/?view_only=44b7ffd0524240208774e3a8e97963b7.✶✼✼

Tables S1, and S2 indicate the dummy codes used to encode categorical✶✼✽

variables through an unweighted effect coding scheme. Tables S3, S4, S5, S6,✶✼✾

S7, S8, and S9 list all the terms included in each statistical model (excluding✶✽✵

the random effect of participant). The first column indicates the variable to✶✽✶

which each coefficient refers (abbreviated as previously defined in the main✶✽✷

text of the manuscript or as indicated in Tables S1 and S2). The second column✶✽✸

indicates the type of variable (continuous, categorical, or interaction). The third✶✽✹

column indicates (for all the terms except the intercept) the scale parameter✶✽✺

of the 1-degree-of-freedom t distribution used as a prior for the standardized✶✽✻

slope coefficient; for the intercept term this column indicates the standard✶✽✼

deviation of the zero-centered normal distribution used as a prior for the✶✽✽

intercept. The fourth column indicates the same quantity as the third column,✶✽✾

but in unstandardized mean-centered units. The fifth column indicates the✶✾✵

median of the posterior distribution in unstandardized mean-centered units.✶✾✶

The sixth column indicates the 99% CI for the coefficients in unstandardized✶✾✷
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mean-centered units.✶✾✸

Abbreviation Variable Dummy codes

A Age decade

L Level -1=80 dB ppeSPL, 1=105 dB ppeSPL

W Wave -1=I, 1=V

M Montage -1=HF-IERL, 1=HF-ITPR

S Sex -1=Male, 1=Female

Table S1: Abbreviated variable names for the ABR models. The third column

lists the dummy codes used for each categorical variable.

Abbreviation Variable Dummy codes

A Age decade

3
p

Y
Cube root

music years

CF
Carrier

frequency
-1=0.6 kHz, 1=2 kHz

MD
Modulation

depth
-1=70%, 1=100%

M1 Montage 1
-1=HF-LTPR, 1=HF-C7

0=HF-LERL or HF-LMST

M2 Montage 2
-1=HF-LTPR, 1=HF-LERL

0=HF-C7 or HF-LMST

M3 Montage 3
-1=HF-LTPR, 1=HF-LMST

0=HF-C7 or HF-LERL

Table S2: Abbreviated variable names for the FFR models. M1, M2 and M3 are

the coefficients for the three dummy variables needed to encode the four levels

of the montage factor. The third column lists the dummy codes used for each

categorical variable.

To give a sense of the prior distribution Fig. S14 plots t distributions with✶✾✹

the same mean and degrees of freedom as the priors used in the current study✶✾✺

for several values of the scale parameter. In each case the prior probability is✶✾✻

highest for values around zero; while it is sharply centered around zero for✶✾✼

small scale values, it becomes more diffuse as the scale value increases. Even✶✾✽

when the scale value is relatively small, due to its heavy tails the t distributions✶✾✾
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can accommodate coefficients much larger than zero if the likelihood provides✷✵✵

clear evidence for this. For a more in depth overview of t priors see Kruschke✷✵✶

(2014).

-5.0 -2.5 0.0 2.5 5.0

Figure S14: Density functions of t distributions with 1 degree of freedom

centered at zero, and with scale parameter set to 0.25 (black), 0.5 (light blue),

or 1 (red).

✷✵✷

The models for the ABR wave amplitude (Table S4) and latency (Table S6)✷✵✸

in quiet had two predictors (and relative interaction terms) for audiometric✷✵✹

thresholds instead of a single one: One predictor for low-frequency audiomet-✷✵✺

ric thresholds (PTA0.5−2), and one for high-frequency audiometric thresholds✷✵✻

(PTA4−12). The choice of these two predictors was motivated by several factors:✷✵✼

i) age-related audiometric losses typically are not flat across the frequency range,✷✵✽

but more pronounced at frequencies ¦ 2 kHz ii) with broadband stimulation✷✵✾

the contribution of lower and higher cochlear frequency regions to ABR wave✷✶✵

amplitudes is level dependent (Don and Eggermont, 1978; Eggermont and Don,✷✶✶

1980), with a breakpoint occurring roughly around 2 kHz, hence an interaction✷✶✷

term between frequency region and stimulus level is needed to capture the✷✶✸

effects of audiometric loss on ABR wave amplitudes at different levels.✷✶✹

Residuals plus component plots (Ezekiel, 1924; Chatterjee and Hadi, 2006;✷✶✺

Fox, 2016) were used to check that relations between the dependent variable✷✶✻

and each predictor (with the effects of other predictors partialed out) were✷✶✼

approximately linear.✷✶✽
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Table S3: Model terms and coefficients for the ABR ampli-

tude in HP noise model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 1.286 4.673 4.588–4.756

A Cont. 0.100 0.036 -0.057 -0.104– -0.011

PTA0.5−2 Cont. 0.100 0.011 0.003 -0.014–0.021

log10TCNE Cont. 0.100 0.077 0.017 -0.067–0.106

L Cat. 10.000 6.430 0.138 0.085–0.189

W Cat. 10.000 6.430 0.195 0.144–0.247

M Cat. 10.000 6.430 0.015 -0.023–0.054

S Cat. 10.000 6.430 0.062 -0.048–0.167

LxW Int. 0.100 0.064 0.050 -0.002–0.102

LxM Int. 0.100 0.064 0.029 -0.009–0.066

LxWxM Int. 0.100 0.064 -0.022 -0.06–0.015

LxS Int. 0.100 0.064 -0.006 -0.058–0.046

LxWxS Int. 0.100 0.064 -0.030 -0.084–0.02

LxA Int. 0.100 0.036 0.060 0.036–0.085

LxPTA0.5−2 Int. 0.100 0.011 0.002 -0.006–0.009

Lxlog10TCNE Int. 0.100 0.077 0.010 -0.037–0.056

LxWxA Int. 0.100 0.036 0.017 -0.005–0.04

LxWxPTA0.5−2 Int. 0.100 0.011 -0.005 -0.013–0.003

LxWxlog10TCNE Int. 0.100 0.077 0.024 -0.022–0.072

WxM Int. 0.100 0.064 -0.051 -0.091– -0.013

WxS Int. 0.100 0.064 -0.003 -0.055–0.047

WxA Int. 0.100 0.036 -0.004 -0.026–0.019

WxPTA0.5−2 Int. 0.100 0.011 0.003 -0.004–0.011

Wxlog10TCNE Int. 0.100 0.077 -0.018 -0.065–0.029

MxA Int. 0.100 0.036 -0.014 -0.035–0.01

MxPTA0.5−2 Int. 0.100 0.011 0.001 -0.007–0.008

Mxlog10TCNE Int. 0.100 0.077 -0.005 -0.05–0.04

LxMxA Int. 0.100 0.036 0.010 -0.012–0.032

LxMxPTA0.5−2 Int. 0.100 0.011 0.001 -0.006–0.009

LxMxlog10TCNE Int. 0.100 0.077 -0.013 -0.057–0.032

WxMxA Int. 0.100 0.036 0.008 -0.014–0.031

WxMxPTA0.5−2 Int. 0.100 0.011 -0.001 -0.009–0.006

WxMxlog10TCNE Int. 0.100 0.077 0.013 -0.032–0.058
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LxWxMxA Int. 0.100 0.036 0.002 -0.02–0.024

LxWxMxPTA0.5−2 Int. 0.100 0.011 -0.003 -0.011–0.004

LxWxMxlog10TCNE Int. 0.100 0.077 -0.008 -0.053–0.037

SxPTA0.5−2 Int. 0.100 0.011 0.001 -0.015–0.018

Table S4: Model terms and coefficients for the ABR ampli-

tude in quiet model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 1.451 5.013 4.924–5.097

A Cont. 0.100 0.041 -0.037 -0.109–0.029

PTA0.5−2 Cont. 0.100 0.013 0.004 -0.013–0.024

PTA4−12 Cont. 0.100 0.004 -0.006 -0.014–0.002

log10TCNE Cont. 0.100 0.087 0.020 -0.063–0.104

L Cat. 10.000 7.255 0.377 0.334–0.422

W Cat. 10.000 7.255 0.179 0.136–0.225

M Cat. 10.000 7.255 0.021 -0.013–0.054

S Cat. 10.000 7.255 0.130 0.023–0.24

LxW Int. 0.100 0.073 -0.094 -0.14– -0.047

LxM Int. 0.100 0.073 0.008 -0.024–0.041

LxWxM Int. 0.100 0.073 -0.027 -0.061–0.005

LxS Int. 0.100 0.073 -0.061 -0.108– -0.014

LxWxS Int. 0.100 0.073 -0.040 -0.09–0.006

LxA Int. 0.100 0.041 -0.044 -0.079– -0.011

LxPTA0.5−2 Int. 0.100 0.013 -0.003 -0.01–0.005

LxPTA4−12 Int. 0.100 0.004 0.000 -0.004–0.004

Lxlog10TCNE Int. 0.100 0.087 -0.021 -0.061–0.021

LxWxA Int. 0.100 0.041 0.031 -0.002–0.065

LxWxPTA0.5−2 Int. 0.100 0.013 -0.002 -0.009–0.006

LxWxPTA4−12 Int. 0.100 0.004 -0.000 -0.004–0.003

LxWxlog10TCNE Int. 0.100 0.087 0.001 -0.04–0.042

WxM Int. 0.100 0.073 -0.049 -0.083– -0.017

WxS Int. 0.100 0.073 -0.004 -0.049–0.042

WxA Int. 0.100 0.041 0.042 0.008–0.077

WxPTA0.5−2 Int. 0.100 0.013 0.004 -0.003–0.011

WxPTA4−12 Int. 0.100 0.004 -0.000 -0.004–0.003
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Wxlog10TCNE Int. 0.100 0.087 -0.029 -0.069–0.012

MxA Int. 0.100 0.041 -0.021 -0.054–0.01

MxPTA0.5−2 Int. 0.100 0.013 -0.003 -0.01–0.003

MxPTA4−12 Int. 0.100 0.004 0.001 -0.002–0.005

Mxlog10TCNE Int. 0.100 0.087 0.001 -0.037–0.04

LxMxA Int. 0.100 0.041 0.009 -0.023–0.041

LxMxPTA0.5−2 Int. 0.100 0.013 0.001 -0.006–0.008

LxMxPTA4−12 Int. 0.100 0.004 -0.001 -0.005–0.003

LxMxlog10TCNE Int. 0.100 0.087 0.003 -0.037–0.041

WxMxA Int. 0.100 0.041 0.015 -0.017–0.047

WxMxPTA0.5−2 Int. 0.100 0.013 0.001 -0.006–0.007

WxMxPTA4−12 Int. 0.100 0.004 -0.001 -0.005–0.002

WxMxlog10TCNE Int. 0.100 0.087 0.001 -0.038–0.04

LxWxMxA Int. 0.100 0.041 0.004 -0.027–0.036

LxWxMxPTA0.5−2 Int. 0.100 0.013 0.002 -0.004–0.009

LxWxMxPTA4−12 Int. 0.100 0.004 -0.001 -0.005–0.002

LxWxMxlog10TCNE Int. 0.100 0.087 0.005 -0.035–0.043

SxPTA0.5−2 Int. 0.100 0.013 0.002 -0.015–0.021

SxPTA4−12 Int. 0.100 0.004 -0.001 -0.007–0.004

Table S5: Model terms and coefficients for the ABR latency

in HP noise model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 4.024 5.718 5.666–5.77

A Cont. 0.100 0.114 0.008 -0.017–0.035

PTA0.5−2 Cont. 0.100 0.036 -0.001 -0.012–0.011

log10TCNE Cont. 0.100 0.240 0.009 -0.045–0.062

L Cat. 10.000 20.118 -0.528 -0.563– -0.494

W Cat. 10.000 20.118 1.924 1.889–1.958

M Cat. 10.000 20.118 0.025 -0.003–0.052

S Cat. 10.000 20.118 -0.008 -0.072–0.052

LxW Int. 0.100 0.201 -0.032 -0.066–0.001

LxM Int. 0.100 0.201 0.011 -0.017–0.037

LxWxM Int. 0.100 0.201 -0.005 -0.031–0.022

LxS Int. 0.100 0.201 -0.009 -0.046–0.026

LxWxS Int. 0.100 0.201 -0.027 -0.064–0.008
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LxA Int. 0.100 0.114 -0.002 -0.018–0.015

LxPTA0.5−2 Int. 0.100 0.036 0.001 -0.005–0.006

Lxlog10TCNE Int. 0.100 0.240 -0.023 -0.058–0.01

LxWxA Int. 0.100 0.114 0.009 -0.008–0.025

LxWxPTA0.5−2 Int. 0.100 0.036 -0.004 -0.009–0.002

LxWxlog10TCNE Int. 0.100 0.240 -0.007 -0.04–0.027

WxM Int. 0.100 0.201 -0.013 -0.04–0.014

WxS Int. 0.100 0.201 -0.015 -0.051–0.02

WxA Int. 0.100 0.114 0.018 0.001–0.034

WxPTA0.5−2 Int. 0.100 0.036 0.001 -0.004–0.007

Wxlog10TCNE Int. 0.100 0.240 0.015 -0.019–0.047

MxA Int. 0.100 0.114 0.003 -0.014–0.019

MxPTA0.5−2 Int. 0.100 0.036 0.001 -0.004–0.006

Mxlog10TCNE Int. 0.100 0.240 -0.000 -0.032–0.033

LxMxA Int. 0.100 0.114 0.005 -0.012–0.021

LxMxPTA0.5−2 Int. 0.100 0.036 -0.001 -0.006–0.004

LxMxlog10TCNE Int. 0.100 0.240 0.002 -0.03–0.035

WxMxA Int. 0.100 0.114 -0.003 -0.02–0.013

WxMxPTA0.5−2 Int. 0.100 0.036 0.003 -0.002–0.008

WxMxlog10TCNE Int. 0.100 0.240 0.013 -0.02–0.045

LxWxMxA Int. 0.100 0.114 0.002 -0.014–0.019

LxWxMxPTA0.5−2 Int. 0.100 0.036 -0.001 -0.006–0.005

LxWxMxlog10TCNE Int. 0.100 0.240 0.005 -0.027–0.038

SxPTA0.5−2 Int. 0.100 0.036 0.000 -0.011–0.011

Table S6: Model terms and coefficients for the ABR latency

in quiet model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 4.213 4.670 4.611–4.73

A Cont. 0.100 0.119 0.024 -0.021–0.069

PTA0.5−2 Cont. 0.100 0.037 0.001 -0.013–0.016

PTA4−12 Cont. 0.100 0.012 0.000 -0.005–0.006

log10TCNE Cont. 0.100 0.251 -0.005 -0.058–0.05

L Cat. 10.000 21.066 -0.446 -0.475– -0.416

W Cat. 10.000 21.066 2.070 2.041–2.098
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M Cat. 10.000 21.066 0.016 -0.005–0.038

S Cat. 10.000 21.066 -0.058 -0.13–0.012

LxW Int. 0.100 0.211 -0.016 -0.046–0.013

LxM Int. 0.100 0.211 -0.009 -0.03–0.013

LxWxM Int. 0.100 0.211 -0.006 -0.027–0.016

LxS Int. 0.100 0.211 -0.004 -0.033–0.028

LxWxS Int. 0.100 0.211 -0.006 -0.036–0.024

LxA Int. 0.100 0.119 -0.004 -0.026–0.019

LxPTA0.5−2 Int. 0.100 0.037 0.000 -0.004–0.005

LxPTA4−12 Int. 0.100 0.012 -0.001 -0.004–0.001

Lxlog10TCNE Int. 0.100 0.251 -0.006 -0.033–0.02

LxWxA Int. 0.100 0.119 0.016 -0.006–0.04

LxWxPTA0.5−2 Int. 0.100 0.037 0.003 -0.002–0.007

LxWxPTA4−12 Int. 0.100 0.012 -0.002 -0.005–0

LxWxlog10TCNE Int. 0.100 0.251 0.000 -0.028–0.026

WxM Int. 0.100 0.211 -0.023 -0.044–0

WxS Int. 0.100 0.211 -0.059 -0.088– -0.028

WxA Int. 0.100 0.119 0.027 0.005–0.051

WxPTA0.5−2 Int. 0.100 0.037 -0.003 -0.007–0.002

WxPTA4−12 Int. 0.100 0.012 0.002 -0.001–0.004

Wxlog10TCNE Int. 0.100 0.251 -0.014 -0.041–0.013

MxA Int. 0.100 0.119 0.003 -0.02–0.025

MxPTA0.5−2 Int. 0.100 0.037 0.001 -0.004–0.006

MxPTA4−12 Int. 0.100 0.012 -0.000 -0.003–0.002

Mxlog10TCNE Int. 0.100 0.251 -0.001 -0.027–0.025

LxMxA Int. 0.100 0.119 -0.004 -0.027–0.018

LxMxPTA0.5−2 Int. 0.100 0.037 -0.002 -0.006–0.003

LxMxPTA4−12 Int. 0.100 0.012 0.000 -0.002–0.003

LxMxlog10TCNE Int. 0.100 0.251 0.003 -0.024–0.029

WxMxA Int. 0.100 0.119 0.007 -0.016–0.029

WxMxPTA0.5−2 Int. 0.100 0.037 -0.000 -0.005–0.004

WxMxPTA4−12 Int. 0.100 0.012 -0.001 -0.003–0.002

WxMxlog10TCNE Int. 0.100 0.251 0.001 -0.024–0.028

LxWxMxA Int. 0.100 0.119 0.007 -0.015–0.03

LxWxMxPTA0.5−2 Int. 0.100 0.037 0.000 -0.004–0.005

LxWxMxPTA4−12 Int. 0.100 0.012 -0.001 -0.004–0.001

LxWxMxlog10TCNE Int. 0.100 0.251 0.001 -0.025–0.028

SxPTA0.5−2 Int. 0.100 0.037 -0.001 -0.015–0.013
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SxPTA4−12 Int. 0.100 0.012 0.003 -0.001–0.007

Table S7: Model terms and coefficients for the FFR ENV

SNR model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 10.516 13.135 12.895–13.366

A Cont. 0.100 0.298 -0.329 -0.837–0.133

PTA1−2 Cont. 0.100 0.087 -0.036 -0.177–0.09

log10TCNE Cont. 0.100 0.627 -0.041 -0.945–0.789
3
p

Y Cont. 0.100 0.463 0.343 -0.286–1.077

CF Cat. 10.000 52.581 -0.703 -0.929– -0.484

MD Cat. 10.000 52.581 0.835 0.622–1.063

M1 Cat. 10.000 52.581 0.082 -0.288–0.455

M2 Cat. 10.000 52.581 0.066 -0.305–0.448

M3 Cat. 10.000 52.581 0.180 -0.218–0.613

CFxMD Int. 0.100 0.526 -0.006 -0.215–0.212

CFxM1 Int. 0.100 0.526 -0.382 -0.743– -0.014

CFxM2 Int. 0.100 0.526 -0.452 -0.831– -0.088

CFxM3 Int. 0.100 0.526 1.302 0.878–1.714

CFxA Int. 0.100 0.298 0.217 0.087–0.348

CFxPTA1−2 Int. 0.100 0.087 0.133 0.093–0.174

CFxlog10TCNE Int. 0.100 0.627 0.239 -0.014–0.499

MDxM1 Int. 0.100 0.526 -0.023 -0.36–0.321

MDxM2 Int. 0.100 0.526 0.028 -0.333–0.363

MDxM3 Int. 0.100 0.526 -0.083 -0.456–0.294

MDxA Int. 0.100 0.298 0.054 -0.071–0.184

MDxPTA1−2 Int. 0.100 0.087 -0.003 -0.04–0.037

MDxlog10TCNE Int. 0.100 0.627 0.106 -0.154–0.352

M1xA Int. 0.100 0.298 -0.020 -0.228–0.19

M1xPTA1−2 Int. 0.100 0.087 -0.015 -0.078–0.046

M1xlog10TCNE Int. 0.100 0.627 -0.180 -0.591–0.236

M2xA Int. 0.100 0.298 0.123 -0.082–0.334

M2xPTA1−2 Int. 0.100 0.087 0.032 -0.03–0.096

M2xlog10TCNE Int. 0.100 0.627 -0.127 -0.539–0.283

M3xA Int. 0.100 0.298 -0.215 -0.449–0.013
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M3xPTA1−2 Int. 0.100 0.087 -0.076 -0.149– -0.005

M3xlog10TCNE Int. 0.100 0.627 0.181 -0.267–0.629

CFxM1xA Int. 0.100 0.298 0.064 -0.144–0.275

CFxM2xA Int. 0.100 0.298 0.067 -0.136–0.283

CFxM3xA Int. 0.100 0.298 -0.240 -0.47– -0.009

CFxM1xPTA1−2 Int. 0.100 0.087 -0.002 -0.064–0.06

CFxM2xPTA1−2 Int. 0.100 0.087 0.019 -0.042–0.084

CFxM3xPTA1−2 Int. 0.100 0.087 -0.030 -0.102–0.037

CFxM1xlog10TCNE Int. 0.100 0.627 -0.138 -0.551–0.277

CFxM2xlog10TCNE Int. 0.100 0.627 -0.108 -0.523–0.302

CFxM3xlog10TCNE Int. 0.100 0.627 0.315 -0.13–0.785

MDxM1xA Int. 0.100 0.298 -0.028 -0.236–0.173

MDxM2xA Int. 0.100 0.298 0.031 -0.173–0.241

MDxM3xA Int. 0.100 0.298 -0.023 -0.238–0.196

MDxM1xPTA1−2 Int. 0.100 0.087 0.001 -0.057–0.064

MDxM2xPTA1−2 Int. 0.100 0.087 -0.005 -0.066–0.056

MDxM3xPTA1−2 Int. 0.100 0.087 -0.001 -0.067–0.067

MDxM1xlog10TCNE Int. 0.100 0.627 0.039 -0.37–0.455

MDxM2xlog10TCNE Int. 0.100 0.627 -0.010 -0.413–0.406

MDxM3xlog10TCNE Int. 0.100 0.627 -0.071 -0.505–0.379

CFxMDxA Int. 0.100 0.298 -0.035 -0.16–0.093

CFxMDxPTA1−2 Int. 0.100 0.087 0.003 -0.036–0.041

CFxMDxlog10TCNE Int. 0.100 0.627 0.086 -0.173–0.334

CFxMDxM1xA Int. 0.100 0.298 -0.017 -0.225–0.187

CFxMDxM1xPTA1−2 Int. 0.100 0.087 0.002 -0.06–0.064

CFxMDxM1xlog10TCNE Int. 0.100 0.627 0.007 -0.396–0.419

CFxMDxM2xA Int. 0.100 0.298 0.010 -0.196–0.214

CFxMDxM2xPTA1−2 Int. 0.100 0.087 -0.000 -0.063–0.061

CFxMDxM2xlog10TCNE Int. 0.100 0.627 0.026 -0.38–0.434

CFxMDxM3xA Int. 0.100 0.298 0.000 -0.22–0.213

CFxMDxM3xPTA1−2 Int. 0.100 0.087 0.002 -0.066–0.069

CFxMDxM3xlog10TCNE Int. 0.100 0.627 -0.040 -0.478–0.389

Table S8: Model terms and coefficients for the FFR TFS

SNR model.
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Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 7.632 5.300 5.133–5.464

A Cont. 0.100 0.216 -0.588 -1.123– -0.041

PTA1−2 Cont. 0.100 0.063 0.002 -0.122–0.13

log10TCNE Cont. 0.100 0.455 -0.508 -1.562–0.356
3
p

Y Cont. 0.100 0.336 0.283 -0.338–1.027

M1 Cat. 10.000 38.159 -0.392 -0.692– -0.106

M2 Cat. 10.000 38.159 0.257 -0.01–0.524

M3 Cat. 10.000 38.159 -0.498 -0.79– -0.213

M1xA Int. 0.100 0.216 0.178 0.013–0.351

M1xPTA1−2 Int. 0.100 0.063 0.039 -0.008–0.088

M1xlog10TCNE Int. 0.100 0.455 0.129 -0.176–0.447

M2xA Int. 0.100 0.216 -0.038 -0.188–0.116

M2xPTA1−2 Int. 0.100 0.063 -0.019 -0.063–0.026

M2xlog10TCNE Int. 0.100 0.455 -0.035 -0.331–0.256

M3xA Int. 0.100 0.216 0.020 -0.143–0.183

M3xPTA1−2 Int. 0.100 0.063 0.007 -0.041–0.056

M3xlog10TCNE Int. 0.100 0.455 0.013 -0.315–0.331

Table S9: Model terms and coefficients for the FFR ENV

latency model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 5.581 13.951 13.803–14.101

A Cont. 0.100 0.158 -0.077 -0.39–0.189

PTA1−2 Cont. 0.100 0.046 0.017 -0.059–0.106

log10TCNE Cont. 0.100 0.333 0.099 -0.456–0.684
3
p

Y Cont. 0.100 0.246 0.050 -0.349–0.477

CF Cat. 10.000 27.907 -0.318 -0.455– -0.185

MD Cat. 10.000 27.907 -0.089 -0.209–0.032

M1 Cat. 10.000 27.907 -0.727 -0.92– -0.529

M2 Cat. 10.000 27.907 0.136 -0.063–0.338

M3 Cat. 10.000 27.907 0.041 -0.183–0.258

CFxMD Int. 0.100 0.279 -0.098 -0.211–0.019
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CFxM1 Int. 0.100 0.279 -0.100 -0.282–0.089

CFxM2 Int. 0.100 0.279 0.062 -0.121–0.255

CFxM3 Int. 0.100 0.279 0.083 -0.12–0.288

CFxA Int. 0.100 0.158 -0.109 -0.187– -0.033

CFxPTA1−2 Int. 0.100 0.046 -0.003 -0.028–0.021

CFxlog10TCNE Int. 0.100 0.333 0.065 -0.089–0.22

MDxM1 Int. 0.100 0.279 -0.009 -0.186–0.177

MDxM2 Int. 0.100 0.279 0.013 -0.168–0.203

MDxM3 Int. 0.100 0.279 0.022 -0.173–0.222

MDxA Int. 0.100 0.158 0.025 -0.045–0.093

MDxPTA1−2 Int. 0.100 0.046 0.011 -0.01–0.033

MDxlog10TCNE Int. 0.100 0.333 -0.125 -0.267–0.01

M1xA Int. 0.100 0.158 -0.041 -0.149–0.064

M1xPTA1−2 Int. 0.100 0.046 -0.014 -0.048–0.02

M1xlog10TCNE Int. 0.100 0.333 0.060 -0.157–0.282

M2xA Int. 0.100 0.158 0.006 -0.099–0.118

M2xPTA1−2 Int. 0.100 0.046 0.014 -0.019–0.05

M2xlog10TCNE Int. 0.100 0.333 -0.006 -0.231–0.216

M3xA Int. 0.100 0.158 -0.015 -0.133–0.099

M3xPTA1−2 Int. 0.100 0.046 -0.016 -0.055–0.021

M3xlog10TCNE Int. 0.100 0.333 -0.145 -0.387–0.091

CFxM1xA Int. 0.100 0.158 0.010 -0.095–0.116

CFxM2xA Int. 0.100 0.158 0.021 -0.084–0.132

CFxM3xA Int. 0.100 0.158 -0.037 -0.152–0.08

CFxM1xPTA1−2 Int. 0.100 0.046 -0.005 -0.039–0.028

CFxM2xPTA1−2 Int. 0.100 0.046 0.002 -0.032–0.037

CFxM3xPTA1−2 Int. 0.100 0.046 -0.003 -0.04–0.035

CFxM1xlog10TCNE Int. 0.100 0.333 0.020 -0.197–0.236

CFxM2xlog10TCNE Int. 0.100 0.333 0.058 -0.161–0.283

CFxM3xlog10TCNE Int. 0.100 0.333 -0.135 -0.383–0.095

MDxM1xA Int. 0.100 0.158 0.027 -0.076–0.132

MDxM2xA Int. 0.100 0.158 -0.019 -0.124–0.09

MDxM3xA Int. 0.100 0.158 -0.004 -0.118–0.107

MDxM1xPTA1−2 Int. 0.100 0.046 -0.012 -0.045–0.02

MDxM2xPTA1−2 Int. 0.100 0.046 0.006 -0.027–0.04

MDxM3xPTA1−2 Int. 0.100 0.046 -0.002 -0.039–0.034

MDxM1xlog10TCNE Int. 0.100 0.333 0.049 -0.163–0.263

MDxM2xlog10TCNE Int. 0.100 0.333 -0.001 -0.215–0.216
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MDxM3xlog10TCNE Int. 0.100 0.333 0.005 -0.232–0.236

CFxMDxA Int. 0.100 0.158 -0.019 -0.087–0.048

CFxMDxPTA1−2 Int. 0.100 0.046 0.003 -0.018–0.025

CFxMDxlog10TCNE Int. 0.100 0.333 -0.028 -0.169–0.107

CFxMDxM1xA Int. 0.100 0.158 -0.039 -0.144–0.067

CFxMDxM1xPTA1−2 Int. 0.100 0.046 0.006 -0.027–0.039

CFxMDxM1xlog10TCNE Int. 0.100 0.333 0.040 -0.173–0.254

CFxMDxM2xA Int. 0.100 0.158 -0.031 -0.136–0.082

CFxMDxM2xPTA1−2 Int. 0.100 0.046 0.007 -0.026–0.042

CFxMDxM2xlog10TCNE Int. 0.100 0.333 0.002 -0.218–0.219

CFxMDxM3xA Int. 0.100 0.158 0.054 -0.061–0.168

CFxMDxM3xPTA1−2 Int. 0.100 0.046 -0.005 -0.042–0.03

CFxMDxM3xlog10TCNE Int. 0.100 0.333 -0.071 -0.299–0.168
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4 Supplementary results✷✶✾

4.1 ABR wave amplitudes for the HF-IERL montage✷✷✵

ABR grand averages with the HF-IERL montage are shown in Fig. S15 separately✷✷✶

for each age group. Fig. S16 shows the ABR wave I and V amplitudes measured✷✷✷

for each participant in each condition as a function of age with the HF-IERL✷✷✸

montage. Overall, the pattern of results as a function of age was very similar to✷✷✹

that observed for the HF-ITPR montage.
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Figure S15: ABR grand averages with the HF-IERL montage for each experi-

mental condition as a function of age group. It should be noted that although

the grand averages are shown as a function of age group for illustration pur-

poses here, the statistical analyses used age as a continuous rather than nominal

variable.

✷✷✺

The effects of age (Fig. S17), PTA0.5−2 (Fig. S18), PTA4−12 (Fig. S19), and✷✷✻

log10TCNE (Fig. S20) estimated by the Bayesian multiple regression models for✷✷✼
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the HF-IERL montage were qualitatively similar to those described in the main✷✷✽

manuscript for the HF-ITPR montage.✷✷✾
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Figure S16: ABR wave I and V amplitudes by age for the HF-IERL montage. The

inverted triangles represent data points for which the peak-trough amplitude

could not be measured. These data points were modeled as having an amplitude

lower than the lowest recorded peak-trough amplitude in the dataset through

a censored analysis. The two downward arrows in the panel for wave V in

HP noise represent the data points of a 47 years old participant with a peak-

trough amplitude of 0.38 nV, and a 61 years old participant with a peak-trough

amplitude of 3.35 nV. These two datapoints are not plotted at their actual

coordinate simply for aesthetic reasons to avoid excessively enlarging the panel.

Each panel shows a least squares line fit of wave amplitude by age with 95%

confidence intervals as a visual aid. The slope for the effect of age estimated by

the Bayesian multiple regression model is not the same as that shown in the

figure.
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Figure S17: Posterior medians (circles) and 99% credibility intervals for the

effects of age on ABR wave I and V amplitudes estimated by the Bayesian

multiple regression models for the HF-IERL montage. Effects are plotted as

percentage amplitude change for an age increase of 10 years.
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Figure S18: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA0.5−2 on ABR wave I and V amplitudes estimated by the Bayesian

multiple regression models for the HF-IERL montage.
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Figure S19: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA4−12 on ABR wave I and V amplitudes estimated by the Bayesian

multiple regression model for the HF-IERL montage.
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Figure S20: Posterior medians (circles) and 99% credibility intervals for the

effects of log10TCNE on ABR wave I and V amplitudes estimated by the Bayesian

multiple regression models for the HF-IERL montage.
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4.2 ABR wave latencies for the HF-IERL montage✷✸✵

Fig. S21 shows the ABR wave latencies measured for each participant in each✷✸✶

condition as a function of age for the HF-IERL montage. Qualitatively, the
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Figure S21: ABR wave I and V latencies by age for the HF-IERL montage. Each

panel shows a least squares line fit of wave latency by age with 95% confidence

intervals as a visual aid. The slope for the effect of age estimated by the Bayesian

multiple regression model is not the same as that shown in the figure.

✷✸✷

effects of age (Fig. S22), PTA0.5−2 (Fig. S23), PTA4−12 (Fig. S24), and log10TCNE✷✸✸

(Fig. S25) estimated by the Bayesian multiple regression models for the HF-IERL✷✸✹

montage were largely similar to those described in the main manuscript for the✷✸✺

HF-ITPR montage.✷✸✻
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Figure S22: Posterior medians (circles) and 99% credibility intervals for the

effects of age on ABR wave I and V latencies estimated by the Bayesian multiple

regression models for the HF-IERL montage. The bottom row shows the effects

for the wave I–V interpeak latencies. Effects are plotted as latency change for

an age increase of 10 years.
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Figure S23: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA0.5−2 on ABR wave I and V latencies estimated by the Bayesian

multiple regression models for the HF-IERL montage. The bottom row shows

the effects for the wave I–V interpeak latencies.
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Figure S24: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA4−12 on ABR wave I and V latencies estimated by the Bayesian

multiple regression model for the HF-IERL montage. The bottom row shows

the effects for the wave I–V interpeak latencies.
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Figure S25: Posterior medians (circles) and 99% credibility intervals for the

effects of log10TCNE on ABR wave I and V latencies estimated by the Bayesian

multiple regression models for the HF-IERL montage. The bottom row shows

the effects for the wave I–V interpeak latencies.
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4.3 FFR ENV SNR results for each montage✷✸✼

Figs. S26, S27, S28, and S29 show the FFR ENV SNR measured for each✷✸✽

participant in each condition as a function of age. Each of these figures shows✷✸✾

the results for a different montage. The results for the HF-C7, HF-LERL, and✷✹✵

HF-LTPR montages showed the same pattern described for the across-montage✷✹✶

average in the main manuscript, while for the HF-LMST montage, SNRs tended✷✹✷

to decrease with age not only for the 0.6-kHz CF, but also for the 2-kHz CF.✷✹✸
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Figure S26: FFR ENV SNR by age for the HF-C7 montage. Each panel shows

a least squares line fit of FFR SNR by age with 95% confidence intervals as a

visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.

We chose SNR over raw signal level as a measure of FFR amplitude because✷✹✹

the former measure is normalized, and easily interpretable in absolute terms.✷✹✺

Nevertheless, i) scatterplots of raw signal levels by age showed essentially the✷✹✻

same trends as the scatterplots of FFR SNR by age shown in Figs. S26, S27,✷✹✼

S28, and S29, and ii) correlations between SNRs and raw signal levels were✷✹✽

high (ρ ranging from 0.68 to 0.88 for different montages); this suggests that✷✹✾
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Figure S27: FFR ENV SNR by age for the HF-LERL montage. Each panel shows

a least squares line fit of FFR SNR by age with 95% confidence intervals as a

visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.

the effects of age on SNR were largely driven by age-related changes in signal✷✺✵

levels rather than by age-related changes in noise levels.✷✺✶

Fig. S30 shows the CIs for the effects of age on FFR ENV SNR for each✷✺✷

montage, as well as for the main effects across montages. The montage-specific✷✺✸

effects were qualitatively similar to the main across-montage effects at the✷✺✹

0.6 kHz CF. At the 2-kHz CF, the effects for the HF-C7, HF-LERL, and HF-LTPR✷✺✺

montages were also similar to the main across-montage effects, while for the✷✺✻

HF-LMST montage there were trends for age-related decreases at both MDs✷✺✼

(posterior median ∼ 0.6 dB per age decade).✷✺✽

Fig. S31 shows the CIs for the effects of PTA1−2 on FFR ENV SNR for each✷✺✾

montage, as well as for the main effects across montages. The montage-specific✷✻✵

effects were qualitatively similar to the main across-montage effects at the✷✻✶

0.6 kHz CF. At the 2-kHz CF, the effects for the HF-C7, HF-LERL, and HF-LTPR✷✻✷

montages were also similar to the main across-montage effects, with trends for✷✻✸
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Figure S28: FFR ENV SNR by age for the HF-LMST montage. Each panel shows

a least squares line fit of FFR SNR by age with 95% confidence intervals as a

visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.

SNR increases with increasing PTA1−2, while for the HF-LMST montage there✷✻✹

were no trends for SNR increases with increasing PTA1−2.✷✻✺

The effects of log10TCNE for each montage are shown in Fig. S32, and✷✻✻

overall, are qualitatively similar to the main effects across montages described✷✻✼

in the main manuscript.✷✻✽
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Figure S29: FFR ENV SNR by age for the HF-LTPR montage. Each panel shows

a least squares line fit of FFR SNR by age with 95% confidence intervals as a

visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.
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Figure S30: Posterior medians (circles) and 99% credibility intervals for the

effects of age on FFR ENV SNR estimated by the Bayesian multiple regression

model. The black “Acr. Mnt.” segments plot the main effects across all montages.

The top row shows the effect difference between the 70% and 100% MD. Effects

are plotted as an SNR change for an age increase of ten years.
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Figure S31: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA1−2 on FFR ENV SNR estimated by the Bayesian multiple regression

model. The black “Acr. Mnt.” segments plot the main effects across all montages.

The top row shows the effect difference between the 70% and 100% MD.
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Figure S32: Posterior medians (circles) and 99% credibility intervals for the

effects of log10TCNE on FFR ENV SNR estimated by the Bayesian multiple

regression model. The black “Acr. Mnt.” segments plot the main effects across

all montages. The top row shows the effect difference between the 70% and

100% MD.
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4.4 FFR TFS SNR results for each montage✷✻✾

Fig. S33 shows, for each montage, the FFR TFS SNR measured for each par-✷✼✵

ticipant in each condition as a function of age. Overall, the montage-specific✷✼✶

effects of age (Fig. S34), PTA1−2 (Fig. S35), and log10TCNE (Fig. S36) were✷✼✷

qualitatively similar to the main across-montage effects of these predictors✷✼✸

described in the main manuscript.✷✼✹
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Figure S33: FFR TFS SNR by age for each electrode montage. For each panel

the figure shows a least squares line fit of FFR SNR by age with 95% confidence

intervals as a visual aid. The slope for the effect of age estimated by the Bayesian

multiple regression model is not the same as that shown in the figure.
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Figure S34: Posterior medians (circles) and 99% credibility intervals for the

effects of age on FFR TFS SNR estimated by the Bayesian multiple regression

model. The black “Acr. Mnt.” segment plots the main effect across all montages.

Effects are plotted as an SNR change for an age increase of ten years.
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Figure S35: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA1−2 on FFR TFS SNR estimated by the Bayesian multiple regression

model. The black “Acr. Mnt.” segment plots the main effect across all montages.

46



Acr. Mnt.

HF-C7

HF-LERL

HF-LMST

HF-LTPR

-1.5 -1.0 -0.5 0.0 0.5

SNR Ch. (dB) X Noise [log10(Energy)]

Figure S36: Posterior medians (circles) and 99% credibility intervals for the

effects of log10TCNE on FFR TFS SNR estimated by the Bayesian multiple

regression model. The black “Acr. Mnt.” segment plots the main effect across

all montages.
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4.5 FFR ENV latency results for each montage✷✼✺

Figs. S37, S38, S39, and S40 show the FFR ENV latency measured for each✷✼✻

participant in each condition as a function of age. Each of these figures shows✷✼✼

the results for a different montage. The results of the Bayesian model indicate✷✼✽

the presence of systematic latency differences across montages, with shorter✷✼✾

than average latencies for the HF-C7 montage, longer latencies for the HF-ITPR✷✽✵

montage, and a trend for slightly longer latencies for the HF-LERL montage✷✽✶

[posterior median differences from the across-montage average, in ms: HF-C7✷✽✷

= -0.73 (CI: -0.92– -0.53); HF-LERL = 0.14 (CI:-0.06 – 0.34); HF-LMST = 0.04✷✽✸

(CI: -0.18 – 0.26); HF-LTPR = 0.55 (CI: 0.34 – 0.76)]. Overall, the montage-✷✽✹

specific effects of age (Fig. S41), PTA1−2 (Fig. S42), and log10TCNE (Fig. S43)✷✽✺

were qualitatively similar to the main across-montage effects of these predictors✷✽✻

described in the main manuscript.✷✽✼
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Figure S37: FFR ENV latency by age for the HF-C7 montage. Each panel shows

a least squares line fit of FFR latency by age with 95% confidence intervals as a

visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.
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Figure S38: FFR ENV latency by age for the HF-LERL montage. Each panel

shows a least squares line fit of FFR latency by age with 95% confidence intervals

as a visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.
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Figure S39: FFR ENV latency by age for the HF-LMST montage. Each panel

shows a least squares line fit of FFR latency by age with 95% confidence intervals

as a visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.
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Figure S40: FFR ENV latency by age for the HF-LTPR montage. Each panel

shows a least squares line fit of FFR latency by age with 95% confidence intervals

as a visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.
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Figure S41: Posterior medians (circles) and 99% credibility intervals for the

effects of age on FFR ENV latency estimated by the Bayesian multiple regression

model. The black “Acr. Mnt.” segments plot the main effects across all montages.

The top row shows the effect difference between the 70% and 100% MD. Effects

are plotted as a latency change, in ms, for an age increase of ten years.
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Figure S42: Posterior medians (circles) and 99% credibility intervals for the

effects of PTA1−2 on FFR ENV latency estimated by the Bayesian multiple re-

gression model. The black “Acr. Mnt.” segments plot the main effects across

all montages. The top row shows the effect difference between the 70% and

100% MD.
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Figure S43: Posterior medians (circles) and 99% credibility intervals for the

effects of log10TCNE on FFR ENV latency estimated by the Bayesian multiple

regression model. The black “Acr. Mnt.” segments plot the main effects across

all montages. The top row shows the effect difference between the 70% and

100% MD.

54



References✷✽✽

G. Prendergast, H. Guest, K. J. Munro, K. Kluk, A. Leger, D. A. Hall, M. G.✷✽✾

Heinz, and C. J. Plack. Effects of noise exposure on young adults with✷✾✵

normal audiograms I: Electrophysiology. Hear. Res., 344:68–81, 2017. doi:✷✾✶

10.1016/j.heares.2016.10.028.✷✾✷

C D Bauch and W O Olsen. Comparison of ABR amplitudes with TIPtrode✷✾✸

and mastoid electrodes. Ear Hear., 11(6):463—-467, 1990. doi: 10.1097/✷✾✹

00003446-199012000-00010.✷✾✺

G. Prendergast, W. Tu, H. Guest, R. E. Millman, K. Kluk, S. Couth, K. J. Munro,✷✾✻

and C. J. Plack. Supra-threshold auditory brainstem response amplitudes in✷✾✼

humans: Test-retest reliability, electrode montage and noise exposure. Hear.✷✾✽

Res., 364:38–47, 2018. doi: 10.1016/j.heares.2018.04.002.✷✾✾

Andrew Gelman. Multilevel (hierarchical) modeling: What it can and cannot do.✸✵✵

Technometrics, 48(3):432–435, 2006. doi: 10.1198/004017005000000661.✸✵✶

Andrew Gelman and Jennifer Hill. Data analysis using regression and multi-✸✵✷

level/hierarchical models. Cambridge University Press, Cambridge, 2007.✸✵✸

ISBN 978-0-521-68689-1.✸✵✹

A. P. Bradley and W. J. Wilson. Automated analysis of the auditory brainstem✸✵✺

response. In Proceedings of the 2004 Intelligent Sensors, Sensor Networks✸✵✻

and Information Processing Conference, 2004., pages 541–545, 2004. doi:✸✵✼

10.1109/ISSNIP.2004.1417519.✸✵✽

A. Issa and H. F. Ross. An improved procedure for assessing ABR latency in young✸✵✾

subjects based on a new normative data set. Int. J. Pediatr. Otorhinolaryngol.,✸✶✵

32(1):35–47, 1995. doi: 10.1016/0165-5876(94)01110-J.✸✶✶

M. E. Lutman, A. C. Davis, and M. A. Ferguson. Epidemiological evidence for the✸✶✷

effectiveness of the noise at work regulations. Research report RR669. Health✸✶✸

and Safety Executive, 2008.✸✶✹

H. Levitt. Transformed up-down methods in psychoacoustics. J. Acoust. Soc.✸✶✺

Am., 49(2):467–477, 1971. doi: 10.1121/1.1912375.✸✶✻

Martyn Plummer. JAGS: A program for analysis of Bayesian graphical models✸✶✼

using Gibbs sampling. In Kurt Hornik, Friedrich Leisch, and Achim Zeileis,✸✶✽

55



editors, Proceedings of the 3rd International Workshop on Distributed Statistical✸✶✾

Computing, Vienna, Austria, 2003.✸✷✵

R Core Team. R: A Language and Environment for Statistical Computing. R✸✷✶

Foundation for Statistical Computing, Vienna, Austria, 2020. URL ❤tt♣s✿✸✷✷

✴✴✇✇✇✳❘✲♣r♦❥❡❝t✳♦r❣✴.✸✷✸

Michael D. Lee and Eric-Jan Wagenmakers. Bayesian cognitive modeling:✸✷✹

A practical course. Cambridge University Press, 2014. doi: 10.1017/✸✷✺

CBO9781139087759.✸✷✻

John K. Kruschke. Doing Bayesian data analysis, a tutorial with R, JAGS, and✸✷✼

Stan. Elsevier, London, 2nd edition, 2014. ISBN 978-0-12-405916-0.✸✷✽

L. S. Aiken, S. G. West, and R. R. Reno. Multiple regression: Testing and✸✷✾

interpreting interactions. SAGE Publications, London, UK, 1991. ISBN✸✸✵

9780761907121.✸✸✶

Robert J. Friedrich. In defense of multiplicative terms in multiple regression✸✸✷

equations. Am. J. Pol. Sci., 26(4):797, 1982. doi: 10.2307/2110973.✸✸✸

M. Don and J. J. Eggermont. Analysis of the click-evoked brainstem potentials in✸✸✹

man unsing high-pass noise masking. J. Acoust. Soc. Am., 63(4):1084–1092,✸✸✺

1978. doi: 10.1121/1.381816.✸✸✻

J. J. Eggermont and M. Don. Analysis of the click-evoked brainstem potentials in✸✸✼

humans using high-pass noise masking. II. Effect of click intensity. J. Acoust.✸✸✽

Soc. Am., 68(6):1671–1675, 1980. doi: 10.1121/1.385199.✸✸✾

Mordecai Ezekiel. A method of handling curvilinear correlation for any number✸✹✵

of variables. J. Am. Stat. Assoc., 19(148):431–453, 1924. doi: 10.1080/✸✹✶

01621459.1924.10502899.✸✹✷

Samprit Chatterjee and Ali S. Hadi. Regression analysis by example. John Wiley✸✹✸

& Sons, Inc., Hoboken, New Jersey, 4th edition, 2006. doi: 10.1198/tech.✸✹✹

2007.s498.✸✹✺

John Fox. Applied regression analysis and generalized linear models. SAGE✸✹✻

Publications, Thousand Oaks, CA, third edition edition, 2016. ISBN 978-1-✸✹✼

4833-2131-8.✸✹✽

56

https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/

	Introduction
	Methods
	Participants
	Recording procedures
	ABR stimuli
	ABR processing
	FFR stimuli
	FFR processing
	FFR group delay estimation
	Noise exposure
	Audiometric thresholds
	Statistical analyses
	ABR wave amplitudes model
	ABR wave latencies model
	Amplitude and latency FFR ENV models
	FFR TFS model


	Results
	Predictor variables
	ABR wave amplitudes
	ABR wave latencies
	FFR ENV SNR
	FFR TFS SNR
	FFR ENV latency

	Discussion
	ABR measures
	FFR measures
	Conclusions

	Supplementary figures referenced in the main manuscript
	Supplementary methods
	Choice of ABR montages
	ABR waves peak-picking algorithm
	Noise exposure
	Audiometric thresholds

	Statistical models and results
	Bayesian correlation model
	Mixed effect multiple regression models

	Supplementary results
	ABR wave amplitudes for the HF-IERL montage
	ABR wave latencies for the HF-IERL montage
	FFR ENV SNR results for each montage
	FFR TFS SNR results for each montage
	FFR ENV latency results for each montage


