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Abstract 

 

Chemicals policy is designed to protect human and ecological health from the adverse effects 

that can result from exposure to manufactured chemical substances. It entails a complex 

process of regulatory chemical risk assessment and risk-management decision-making, 

drawing expertise from a diverse range of fields including toxicology and environmental 

health. However, these decision-making processes have come under increased scrutiny in 

recent years – criticized for bias, lack of transparency, rigor and a failure to identify 

unacceptable risks before widespread exposure occurs. This has resulted in calls for a more 

“evidence-based” approach, in which all relevant, available evidence is analyzed in a robust, 

transparent and reproducible manner. There is thus a growing need to incorporate 

methodological frameworks capable of facilitating evidence-based approaches to chemical 

risk assessment and regulatory decision-making.  

Such frameworks have been successfully developed in the field of medicine, which underwent 

a similar paradigm shift to that currently shaping chemical risk assessment, in the early 1990s. 

The gold-standard for evidence-based decision-making championed by the evidence-based 

medicine movement takes the form of systematic review. Systematic review describes a 

prescriptive and transparent method for collating, appraising and analyzing all available, 

relevant evidence in answer to a specific research question. By pooling the results of individual 

(independent) studies, systematic reviews synthesize conclusions which are not only more 

precise but are representative of an entire evidence-base. Now well established within clinical 

decision-making, the application of systematic review to chemical risk assessment is beginning 

to gain prominence.  
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However, several challenges and barriers threaten to slow the uptake and quality of 

systematic review for chemical risk assessment. These include the prohibitively narrow focus 

of systematic reviews, which are at odds with the information requirements of regulatory 

decisions, and a mismatch in the resource availability within chemical risk assessment 

compared to the resource demands associated with systematic review.  

This thesis explores the challenges associated with implementing evidence-based approaches 

such as systematic review for chemical risk assessment, and identifies key methodological 

solutions: 

Chapter 1 examines the risk of bias assessment process – one of the most important but also 

most challenging aspects of systematic review methodology to adapt for environmental 

health. It examines the rationale for eschewing seemingly objective, quantitative approaches 

to assessing risk of bias in favour of seemingly more subjective, qualitative approaches. 

Through illustrative models, this thesis uncovers the mismatch between the mechanics of 

quantitative risk of bias assessment methods and the fundamental mechanics of risk of bias 

itself. Promoting understanding of this issue is increasingly important as systematic review 

gains prominence within chemical risk assessment – a field traditionally reliant on quantitative 

scoring methods for assessing the quality of included evidence.  

Chapter 2 considers the wider challenges to uptake of systematic review in environmental 

health, and proposes “systematic evidence mapping” as a methodological solution. A 

systematic evidence map is a queryable database of systematically gathered evidence which 

facilitates the broader identification of trends across the evidence-base. In this thesis, the 

potential utility of systematic mapping for existing and future chemical risk assessment 

workflows is characterized and critically assessed. A hypothetical but representative example 

(in which legacy flame retardants are prioritized for further regulatory assessment) is used to 

demonstrate the trend-spotting capacity of the methodology. 
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Chapter 3 further explores the methodological adaptions required for effective 

implementation of systematic evidence mapping in chemical risk assessment and wider 

environmental health. By surveying current evidence mapping practice in environmental-

management (a field where the methodology is more mature), and qualitatively appraising 

this practice against the concepts of “data storage technology”, “data integrity”, “data 

accessibility”, and “transparency”, this thesis reveals the ill-suited nature of conventional 

tabular data structures for housing complex and highly connected environmental 

health/toxicology data.  It identifies graph-based storage technologies as the most flexible and 

optimally suited data structures for the varied needs of chemical risk assessment workflows, 

and makes recommendations for their uptake in systematic evidence mapping. 

Chapter 4 of this thesis explores the practical implementation of graph-based solutions to 

evidence mapping in environmental health by conducting a proof-of-concept evidence 

mapping exercise, in which trends in the study of exposure-outcome associations for National 

Health and Nutrition Examination Survey (NHANES) datasets in the academic literature are 

explored. By contrasting this graph-based evidence mapping exercise to an equivalent tabular 

scoping review, this chapter demonstrates how significant gains in resolution and complexity 

can be achieved by adopting the graph data model – leading to greater insights than can be 

offered by traditional evidence-surveillance methods. The transparency, accessibility, 

interoperability and potential to expand graph-based evidence maps is also highlighted in this 

chapter by providing data models and methods which can be further adapted e.g. for the 

development of a suitable controlled vocabulary ontology.   

Finally, this thesis concludes by discussing the future direction of evidence-based chemical risk 

assessment and the role of graph-based evidence mapping within it, highlighting the need for 

further advances in automation and the uptake of data standards.  
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Introduction 

 

Background 

 

Chemicals regulation, risk assessment and risk-management   

Manufactured chemicals are ubiquitous to all aspects of modern life. Designed to perform a 

range of functions, they are integral to the consumer goods and industrial processes on which 

society relies. The chemicals industry is beneficial for improving standards of living and life 

expectancy, as well as promoting economic growth. However, many of its products can 

additionally have unintended and/or unforeseen negative impacts on human and 

environmental health (Egeghy et al., 2012; Koch & Ashford, 2006; Schwarzman & Wilson, 

2009). It is therefore vital to implement a system able to identify, weigh and control the risk 

of such adverse outcomes. This function is served by the chemicals regulation system, which 

promotes maximum benefit of manufactured chemicals by minimising the harmful 

consequences of their use, driving industry towards safer alternatives.  

Chemicals regulation achieves these aims by setting limits that control a population’s exposure 

to a chemical through restricting its manufacture, distribution and disposal or controlling its 

approved uses. In the European Union (EU), the European Chemicals Agency (ECHA) 

implements such legislation through the REACH regulation (Registration, Evaluation, 

Authorisation and Restriction of Chemicals).  

The severity of regulatory action taken against a chemical substance is determined by 

assessing the risk associated with exposure to that substance. 
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Chemical risk assessment is a complex process comprised of four key stages (Beronius & 

Vandenberg, 2015; National Academy of Sciences, 1983):  

 

• hazard identification - assessing the hazardous properties intrinsic to a chemical; 

• hazard characterisation – charactering the relationship between chemical dose and 

biological response, i.e. investigating the mode and level of exposure required for 

the substance’s hazardous properties to affect an adverse outcome; 

• exposure assessment - investigating and/or estimating the potential sources and 

severity of a population’s exposure to a chemical; 

• Risk characterisation – combining hazard and exposure data to determine the 

magnitude of the risk posed by a chemical substance. 

A variety of heterogeneous data sources are relevant to each of these stages, encompassing 

physio-chemical, in-vitro, in-vivo, in-silico and human epidemiological studies, as well as 

environmental- or bio-monitoring and exposure studies. Chemical risk assessment, and the 

subsequent risk-management process, draw together these varied scientific disciplines when 

reaching overall conclusions on the safety of a chemical substance. It is the challenges 

associated with drawing together, managing and synthesising data from disparate sources, 

and the consequences of failing to meet those challenges, which motivate the research 

discussed in this thesis.  

Regulatory failings, data availability and regulatory reform  

Chemicals regulation is designed to protect human and environmental health (Abelkop & 

Graham, 2014). However, regulatory decisions have not always been successful in meeting 

this aim. Chemical policy’s brief history is marred by case studies of regulatory failure, where 

substances allowed to market are later confirmed to be of significant harm to public and/or 
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environmental health (Commission of the European Communities, 2001; European 

Environment Agency, 2013). The adverse effects which result from such widespread exposures 

can be severe, irreversible but also long-lasting – as persistent and/or bio-accumulative 

substances continue to cause harm many years after reactive regulatory action reduces or 

eliminates sources of exposure. This is well illustrated by case studies concerning exposures 

to infamous legacy chemicals such as dichlorodiphenyltrichloroethane (DDT) (Commission of 

the European Communities, 2001) and polychlorinated biphenyls (PCBs) (Silbergeld et al., 

2015).  

Consequently, regulatory frameworks and the chemical risk assessment process have come 

under increased scrutiny in recent times (Whaley et al., 2016). Lack of sufficient toxicological 

data, and failure to adopt a precautionary approach in light of such data gaps, have been cited 

as key flaws of regulatory frameworks (Applegate, 2008; Eckley & Selin, 2004). In a 1998 report 

by the US EPA, it was estimated that a full set of basic toxicity data was only available for 7% 

of the high production volume chemicals (produced or imported at or above 1 million pounds 

per year) produced in the US – with 43% of those chemicals lacking any human or 

environmental toxicity data at all (EPA’s Office of Pollution Prevention and Toxics, 1998). 

Similarly, in a white paper published by the European Commission, it was indicated that some 

80,000 legacy chemicals (released to market prior to 1981) in use across Europe had 

undergone no formal risk assessment (Brown, 2003; Commission of the European 

Communities, 1998, 2001).  

These issues are being addressed by initiatives to reform reactive chemicals regulation 

systems  toward more proactive systems, where the risks associated with exposure to 

chemical substances can be assessed and managed prior to their release (Abelkop & Graham, 

2014; Commission of the European Communities, 2001; United States Environmental 

Protection Agency, 2016).  
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The largest, most ambitious and complex of these reforms is that of the European Union’s 

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulation 

(Commission of the European Communities, 2001; European Comission, 2016).  In contrast to 

the frameworks which it replaces, REACH operates under a “no data, no market” ethos 

(European Comission, 2016). It shifts the burden of demonstrating safety away from regulators 

and onto manufacturers. Entered into force in June 2007, REACH has seen data gaps for tens 

of thousands of chemicals filled within its 10 year registration period (ECHA, 2019a). While not 

as extensive as REACH, the recent reform of the US Toxic Substances Control Act (TSCA) has 

similarly introduced measures designed to fill data gaps (Schmidt, 2016; United States 

Environmental Protection Agency, 2016). 

However, with so many legacy chemicals in commerce (Abelkop & Graham, 2014), and with 

new chemicals continually approaching market, filling data gaps represents a considerably 

resource intensive task. A key feature of REACH designed to avoid redundant repeat toxicity 

testing is the requirement that applicants registering a chemical substance share toxicity data 

with other manufacturers of that substance. This data is made available in the International 

Uniform Chemical Information Database (IUCLID), which has been described as the “world’s 

largest database on the properties of chemical substances” (Buxton, 2017; European 

Comission, 2016).  

To further improve resource efficiency and the minimisation of expensive and/or unethical in-

vivo toxicity testing, REACH and other reformed chemicals policy workflows emphasise the 

need to identify, and make best use of, pre-existing data. For example, pre-existing data can 

be used within REACH in read-across applications, where predictions regarding the 

toxicological behaviour of data-poor substances can be made by evaluating structurally similar 

data-rich substances (Schaafsma et al., 2009; Vink et al. 2010); or in  weight-of-evidence 

assessments (WoE) – where, although data for a specific toxicological endpoint may be 
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insufficient, the data gap can be addressed by combining related data from several 

independent pre-existing sources (ECHA, 2019b; Schoeters, 2010). 

Continued discrepancies in chemical risk assessment 

In tackling the toxicity data gap, reformed regulatory processes such as REACH serve to 

demonstrate how lack of data is a solvable and diminishing challenge for chemicals policy. 

Despite this, concerns over the generation, identification and/or synthesis of toxicologically 

relevant data continue to be raised (Hartung, 2009; Hoffmann & Hartung, 2006). 

Consequently, the chemical risk assessment process has been criticised for issues concerning 

conflicts of interest, poor transparency (Ingre-Khans et al., 2016), poor reproducibility and a 

continuing tendency to miss “early-warnings” (European Environment Agency, 2013;  

Hoffmann & Hartung, 2006). These concerns are in-part founded by the fact that while more 

data is available for chemical risk assessment (i.e. endpoints for a larger suite of toxicological, 

chemical and exposure testing) the frameworks for collecting, managing and appraising this 

data remain unsystematic and opaque. This is a key criticism of the current REACH registration 

and assessment frameworks (Ingre-Khans et al., 2016), whereby the methods used to collate 

and select the evidence presented in registration dossiers and chemical risk assessments are 

inaccessible.   

This makes it difficult to determine whether the data selected for chemical risk assessment is 

in fact representative of all available evidence, or whether this data has been cherry picked; 

potentially by an industry with vested interests in a substance’s regulatory approval (a threat 

of particular relevance to REACH (Ingre-Khans et al., 2016)). Appraising the assessment 

process itself, in which selected data are analysed and evaluated to reach conclusions on a 

chemical’s safety, is similarly difficult. This process has traditionally relied upon expert 

elicitation (Ingre-Khans et al., 2016; Morgan, 2014) – where a panel of specialists with varied 

expertise interpret primary toxicity and exposure data for the wider human or environmental 
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context. However, without an objective, consistent and robust framework to guide expert 

assessment, the conclusions of this process may be biased by the variation in methodological 

choices made by assessors, and by the variation in individual knowledge, experiences and 

opinions which exist from one expert to the next (Rudén, 2001b; Whaley et al., 2016).  

Several case studies demonstrate the discrepancies which can arise from an unsystematic and 

opaque chemical risk assessment process, where different assessors reach conflicting 

conclusions regarding a chemical’s safety despite access to the same evidence base (Hoffmann 

& Hartung, 2006; Whaley et al., 2016). Examples range from inconsistent and/or contradictory 

conclusions between two risk assessments (e.g. PCBs (Golden et al., 2003)) to multiple risk 

assessments (e.g. trichloroethylene, for which 29 assessments reached varied conclusions 

(Rudén, 2001b, 2001a)). Similarly, discrepant risk assessments lead to contradictory and 

conflicting regulatory action from one authority to the next (e.g. between European Food 

Safety Authority (EFSA) and the French Agency for Food (ANSES) regarding the regulation of 

Bisphenol-A (BPA) (Whaley et al., 2016)).  

Such discrepancy causes uncertainty, confusion and a lack of trust in the ability of chemicals 

policy to protect human and environmental health. Thus, robust, transparent and systematic 

methodological frameworks are required to ensure that chemical risk assessments avoid bias 

and discrepancy. At the very least, increased methodological rigour and transparency would 

allow sources of discrepancy to be identified and assessed by all stakeholders. Such 

methodological frameworks are offered by evidence-based approaches such as systematic 

review (SR) and systematic evidence mapping.  
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Evidence-Based Approaches 

 

Systematic review 

Systematic review is a method of systematically gathering, appraising and synthesising all 

relevant and available evidence such that a single, representative answer to a specific research 

question can be derived from the pooled results of individual, independent studies.  

The steps of the methodology are organised within a consistent and prescriptive framework 

(summarised briefly in Figure 1 and elaborated further in Table 2 of Chapter 2). Each step 

advocates transparency, and is designed to ensure the rigour of the review and/or the 

representativeness of its pooled finding/s. Briefly, systematic review builds on the methods of 

traditional narrative reviews in several key ways (see Chapters 1 and 2 for further detailed 

discussion of systematic review methods):  

• All methodological decisions are planned ahead of commencing the review and are 

specified in a pre-published protocol. This holds reviewers accountable to their 

methods and prevents the kind of ad-hoc analyses which introduce bias and 

discrepancy. Pre-published protocols also increase transparency and reproducibility, 

allowing others to critically appraise the methods via which a review conclusion has 

been reached and to update the review in the future. Pre-publication of systematic 

review protocols also offers an opportunity for peer-review of planned methods, 

allowing any potential issues or sources of bias to be amended prior to conducting the 

review itself.  

• Systematic searches form the basis of the evidence gathering step of systematic 

reviews. A systematic search consists of a series of search strings formatted for specific 

bibliographic databases. These search strings are designed to cover all key concepts 

relevant to the review question and ensure that the search returns as much relevant 



8 
 

information as is available. Reporting the search strategy (i.e. the combination of 

search strings and bibliographic databases searched) in the review’s protocol ensures 

the search can be updated in the future.  

• In contrast to narrative reviews, which rely on ad-hoc processes of literature searching 

and selection, often shaped by the reviewer’s own expertise and interests – systematic 

reviews ensure that the all search results returned via a systematic search are 

considered for inclusion in the review (against a set of pre-defined inclusion criteria). 

Giving equal consideration to all returned results ensures that no potentially relevant 

information is omitted from the review.   

• Assessing the risk that studies included in a systematic review are biased is a key 

feature of systematic review methodology (see Chapter 1) – which aims to consider 

the potential impacts that this bias might have on the results of the review.  

• In contrast to narrative reviews – which may have a broader focus or may not be 

driven by a narrowly focused research question e.g. instead describing the “state of 

the science” within a field– systematic reviews address specific, closed-framed 

research questions. They employ narrative or statistical methods (as appropriate) for 

deriving an overall answer to this research-question.  

• Many of the steps of the systematic review process are conducted in duplicate by at 

least two independent reviewers, including the literature screening, data extraction 

and risk of bias assessment processes. This ensures the rigour of the review process 

and helps to protect the review against human error.  
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Figure 1: Brief outline of the methodological stages involved in conducting a systematic 

review. All proposed methods are clearly defined in a pre-published protocol, holding 

reviewers accountable to their methods and creating an opportunity for peer-review and 

stake-holder input. Several stages of the review process are conducted in duplicate by two 

independent reviewers – minimizing the influence of human error and ensuring consistent 

understanding of the research methods and objectives.  
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The origins of systematic review methodology lie in the field of medicine, where it was 

introduced as a tool for clinical decision-making. It arose out of the evidence-based medicine 

(EBM) movement in the early 1990s (Chalmers et al., 2002; Hooker, 1997), which sought to 

shift the paradigm of clinical-decision making away from its reliance on expert opinion, 

experience and intuition, and toward the more holistic consideration of best current available 

evidence (Guyatt et al., 1992). As well as increasing the robustness and precision of clinical 

decisions, the introduction of systematic review sought to increase transparency and 

accountability within a field plagued by discrepancy and bias (Goldacre, 2013). It has since 

become firmly established in the field, with organisations such as the Cochrane Collaboration 

(The Cochrane Collaboration, 2019) leading the production of accessible high-quality 

systematic reviews, methodological guidance and standards (Lefebvre, 1994).  

The similarity between the issues faced in clinical decision-making and chemicals policy 

settings, and the demonstrable success of systematic review in overcoming these issues in the 

field of medicine have led to increasing interest in the application of systematic review to 

chemicals policy contexts such as chemical risk assessment (Whaley et al., 2016). Calls for a 

move toward evidence-based toxicology (EBT) (Hoffmann & Hartung, 2006) have seen 

systematic reviews on environmental health topics begin to emerge (Whaley & Halsall, 2016) 

along with networks and collaborative workgroups (e.g. (Johns Hopkins Bloomberg School of 

Public Health, 2019; NTP-OHAT, 2019; The Endocrine Disruption Exchange, 2019b; UCSF 

Program on Reproductive Health and the Environment, 2019)) dedicated to establishing the 

methodology within the field. While regulatory agencies such as ECHA are yet to incorporate 

systematic review in their assessment frameworks, the US EPA have recently taken up the 

methodology for TSCA risk evaluations (EPA, 2018).  

Although increasing interest in systematic review is indicative of progress within the EBT 

movement, evidence-based methods are still relatively novel to the field and several barriers 
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to their effective adaptation and widespread uptake remain. In clinical settings, evidence 

synthesised in a systematic review is typically derived from studies of similar design (i.e. 

randomised controlled trials) in answer to a well-defined research question (e.g. Is x an 

effective treatment for y in population z?). However, evidence from a heterogenous range of 

study designs must be integrated when addressing research questions regarding chemical risk 

assessment. The focus of those questions is also more complex to define for chemical risk 

assessment where no measure of a single, consistent outcome is necessarily indicative or 

sufficiently informative of toxicity in the same way as the prevalence of a single, consistent 

outcome might be indicative of an effective clinical treatment. 

Despite methodological guidance for addressing these and other challenges specific to 

environmental health systematic reviews (Hoffmann et al., 2017; NTP, 2015; Woodruff & 

Sutton, 2014), examples of questionable methodological conduct continue to emerge (Whaley 

& Halsall, 2016).  Similarly, despite the growing presence and application of systematic review 

in chemical risk assessment contexts, ECHA have yet to follow the US EPA in adopting the 

methodology. This indicates a need for further research into the successful implementation of 

evidence-based methodologies in environmental health, as well as the need to disseminate 

such research to stakeholders working within a chemical risk assessment capacity – including 

regulatory bodies such as ECHA and the US EPA. It is this need which motivates the research 

discussed in this thesis.  

 

Aims and structure of this thesis  

This thesis aims to explore the adaptation and application of evidence-based methods for 

chemical risk assessment and risk management decision-making within chemicals policy and 

wider environmental health. This overarching aim is met through four key objectives. These 

objectives, and the chapters in which they are addressed, are briefly summarised below. 
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Finally, this thesis concludes by outlining the future work required to successfully implement 

evidence-based approaches to chemical risk assessment at scale.  

Objective 1: Understand the challenges associated with implementing systematic 

review in chemical risk assessment and wider environmental health. 

Chapter 1 of this thesis focuses on a significant challenge for systematic review: the use of 

quantitative systems for assessing risk of bias in included studies. Assessing the risk that 

studies included in a systematic review are biased is a key step of the systematic review 

process (Fig. 1) and determines the degree to which the conclusions of a systematic review 

can be trusted. The Cochrane Collaboration advises against the use of quantitative, scoring-

based systems for assessing risk of bias in included studies, and offers an alternative, 

qualitative “domain-based” approach (Higgins, 2011). Despite this advice, quantitative 

scoring-systems have become a prevalent issue in the field of medicine.  

 

As with the Cochrane Collaboration, there is an understanding of these issues among the 

workgroups dedicated to establishing systematic review in environmental health. Guidance 

published by The National Toxicology Program’s Office for Health Assessment and Translation 

(NTP-OHAT) (OHAT, 2015) and the Navigation Guide (Woodruff & Sutton, 2014) both advise 

against the use of quantitative scoring systems and instead offer guidance for making 

qualitative, domain-based risk of bias assessments. However, as in the field of medicine, the 

allure of quantitative scoring systems for assessing risk of bias threaten the robustness and 

transparency of systematic review practice in environmental health – especially while the 

methodology and its associated best-practice are still relatively novel to the field. This can be 

evidenced by the fact that, despite methodological guidance advocating otherwise, the 

systematic review methodology adopted by the US EPA for TSCA risk evaluations uses a 

numeric scoring system for risk of bias assessment (EPA, 2018). Similarly, the critical appraisal 

process associated with chemical risk assessments conducted under REACH adopt the Klimisch 
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criteria (Klimisch et al., 1997) – a quality scale in which studies are rated using numeric 

judgements. Chapter 1 addresses the issue of quantitatively assessing risk of bias of included 

studies. It aims to improve understanding of systematic review methodology (and its 

motivating rationale) within environmental health – learning from the challenges encountered 

in the field of medicine and warning against their introduction to chemical risk assessment.  

 

However, there are several additional challenges associated with the implementation of 

systematic review which are more specific to chemical risk assessment. These challenges stem 

from the higher degree of heterogeneity present in studies relevant to chemical risk 

assessment, as well as the breadth of research questions which must be assessed in chemical 

risk assessment. Additionally, in striving for robustness, systematic review makes significant 

demands on time and resources. Such demands are at odds with the increasingly strained 

availability of resources in chemicals policy (Pool & Rusch, 2014). These challenges are 

discussed further in Chapter 2, before the proposition of a methodological solution.  

 

Objective 2: Seek methodological solutions which facilitate the uptake of systematic 

review and other evidence-based approaches in chemical risk assessment. 

Chapter 2 identifies systematic evidence mapping as a promising methodological solution for 

overcoming many of the barriers associated with pursing evidence-based approaches to 

chemical risk assessment. A systematic evidence map (SEM) is a queryable database of 

references, data and meta-data which provides a use with computational access to the wider 

evidence-base. SEMs share much of their methodology with systematic review (see Table 2 of 

Chapter 2), but do not synthesise an overall conclusion and are not motivated by a single 

specific research question (Clapton et al., 2009; James et al., 2016). Instead, the purpose of a 

SEM is to characterise the evidence base more broadly – such that trends in the type, 

availability and outcomes of research can be investigated by end-users. This facilitates the 
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rapid identification of issues of emerging concern and allows resources to be more efficiently 

targeted (e.g. by focusing primary research efforts on evidence-gaps and secondary research 

efforts on evidence-clusters). Additionally, the breadth of SEMs allows a single mapping 

exercise to meet the needs of several, varied end-users – maximising the return on resource 

investment for these evidence-products.  

 

To some degree, the IUCLID database which houses chemical risk assessment data for REACH 

already emulates the output of a systematic evidence map – although the data it houses 

remain unsystematically curated, and inaccessible for broader query by varied stakeholders.  

Introducing systematic evidence mapping methodology offers a potential resolution of these 

issues.  

 

Objective 3: Characterise methodological solutions in the context of environmental 

health and toxicology, identifying specific adaptations required for chemical risk 

assessment. 

Systematic evidence mapping conceptualises the barriers associated with implementing 

evidence-based methods as a problem of data management and access, approaching the issue 

with the transparency and robustness associated with systematic review. Although novel to 

chemical risk assessment, the methodology has been successfully applied in the social and 

wider environmental sciences (Clapton et al., 2009; James et al., 2016). Chapter 3 studies this 

successful application for lessons applicable to adapting the methodology for environmental 

health.  

 

By conceptualising current evidence mapping practice through the lens of environmental 

health, Chapter 3 identifies key methodological considerations of relevance to chemical risk 

assessment applications. Most notably, this chapter demonstrates how the rigid, tabular data 
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structures favoured in current evidence mapping practice are ill-suited to housing 

environmental health data. This is owed to the complexity of environmental health data – 

which is not only highly heterogeneous, but also highly connected. Looking beyond 

traditionally employed databasing solutions, Chapter 3 identifies knowledge graphs as the 

future of evidence-mapping in environmental health. The flexibility of the graph data model, 

and its ability to preserve complex connections increases transparency and access to the 

evidence-base and is readily compatible with increasing research efforts in machine-learning 

and automation within the field.  

Objective 4: Explore the practical application of these methodological solutions to 

environmental health research problems, identifying remaining challenges and 

clarifying the direction of future work. 

Interest in systematic evidence mapping is beginning to accelerate in the field of 

environmental health (e.g. (Beverly, 2019; NTP-OHAT, 2019; The Endocrine Disruption 

Exchange, 2019a)), with the first protocol for an environmental health SEM recently published 

in the Environment International journal ((Pelch et al., 2019), Appendix). However, the 

demand for computational expertise in databasing and data modelling threaten accessibility 

of the methodology for the wider research community, and perpetuate the production of 

manually produced, low-resolution evidence maps. Thus, to sustain interest in developing the 

methodology to its full potential, Chapter 4 illustrates a proof-of-concept case study using the 

graph data model for mapping environmental health data.  

 

In this chapter, a scoping review on the use of National Health and Nutrition Examination 

Survey (NHANES) datasets is expanded using an evidence-mapping approach and graph-based 

data model. This chapter aims to illustrate the greater return of the graph data model for 

evidence mapping by comparing this methodology to that of the corresponding scoping 
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review. It serves to raise the profile of graph-based data modelling in environmental health, 

and seeks to clarify a direction for future work in this field.  

The flexibility of the graph data model, and its ability to maintain the complex relationships 

connecting datasets, could offer much to evidence mapping at scales akin to the REACH IUCLID 

database – facilitating high resolution queries and more pro-active/predictive chemical risk 

assessment.  
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*In response to reviewers’ comments this chapter is being revised to better contextualise the 

role of systematic review within chemical risk assessment and toxicology – improving access 

for readers unfamiliar with the methodology. 

 

Conducting systematic reviews in environmental health and toxicology requires that the 

methodological quality of primary studies included in reviews is assessed in a consistent, 

robust and transparent manner. However, the considerable variation in design and conduct 

among primary studies from a diverse range of fields, all of which may be eligible for inclusion 

in a single environmental health systematic review (Rooney et al., 2016), makes this a 

significant challenge. Studies of different design are prone to different specific systematic 

errors (biases) (Rooney et al., 2016). While many of these biases are well described – the 

specific impacts that these biases have on the overall results of a study (i.e. the direction and 

relative magnitude of the systematic errors they introduce) are understudied in environmental 

health and toxicology – and further complicated by study designs in which isolating the effects 

of a single source of systematic error is difficult (e.g. epidemiological studies) and/or by the 

empirically inaccessible nature of the “true” result of an effect under investigation in a study. 

However, within the field of medicine, meta-epidemiological studies have assessed the 

relative impacts that certain biases have on the results of a study. Several of these biases may 

be directly applicable to toxicology studies (Rooney et al., 2014). For example, failure to 

randomly assign study participants to intervention or control arms of a clinical trial can be 

likened to failure to randomise animals to exposure or control groups of an in-vivo toxicology 

study. Similarly, environmental epidemiology studies note the opposing directions that certain 

biases can operate e.g. differential misclassification bias can skew results away from null, 

whereas the healthy worker effect can skew results towards null (McMichael, 1976; Rothman 

& Greenland, 1998). More explicit mention of these toxicological and epidemiologically 

relevant sources of bias are being incorporated into the revision of this manuscript – such that 
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relatable examples improve the accessibility of the manuscript for environmental health 

practitioners. 

 

As systematic review is still relatively novel in toxicology and environmental health, there are 

relatively few examples of tools developed for assessing the risk of bias of primary studies 

included in environmental health systematic reviews. Those that are available (such as the 

Navigation Guide (Woodruff et al., 2011; Woodruff & Sutton, 2014) and OHAT’s Risk of Bias 

Rating Tool for Human and Animal Studies (OHAT, 2015) discussed in the current version of 

the manuscript) will not cover bias domains and signalling questions applicable or suitable to 

all study designs within environmental health. Therefore, conducting systematic reviews on 

environmental health topics may necessitate the development of new appraisal tools which 

guide reviewers through the assessment of biases specific to certain fields or study designs 

e.g. the RoB-SPEO tool (Pega et al., 2020) – which was very recently developed for the 

assessment of biases specific to studies estimating the prevalence of exposure to occupational 

risk factors. 

 

Qualitative, domain-based approaches to assessing risk of bias provide a best practice 

framework with sufficient flexibility for adaptation to specific fields or novel study designs. 

Ensuring that qualitative, domain-based approaches are adopted in such scenarios – and that 

quantitative scoring approaches to risk of bias assessment are avoided, is a key aim of this 

manuscript. As well as highlighting existing tools that adopt the best-practice of qualitatively 

assessing risk of bias in a domain-based fashion, the revision of this manuscript further draws 

on examples of numerical appraisal tools which have traditionally been employed, or are 

currently being employed, in other areas of toxicology and chemical risk assessment e.g. the 

Klimisch Criteria (a numerical judgement system for assessing reliability, relevance, and 

adequancy of data to be included in a chemical hazard or risk assessment (Klimisch et al., 
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1997)), the Newcastle-Ottawa Scale (a numerical scoring system for assessing the quality of 

primary nonrandomised studies included in a systematic review, originally developed for 

medicine but popular in environmental epidemiology (Wells et al., 2014)) and the recently 

developed numerical assessment tool developed by the EPA for application of systematic 

review to TSCA risk assessments (EPA, 2018). This is to better evidence the persistent threat 

of scoring-based practice in the field.  

 

Finally, the illustrative scoring models in the current version of the manuscript (designed to 

illustrate the fundamental flaws of quantitative approaches to risk of bias assessment) are 

being further developed in the revision. Additional models which account for scenarios in 

which numerical scoring systems attempt to weight assessment criteria, and/or account for 

the direction of bias, are being incorporated into the revision and contrasted against the use 

of qualitative judgements in terms of the subjectivity required for assignment and 

interpretation. 
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Abstract 

Systematic review is gaining popularity in environmental health as a robust and objective 

means of pursuing more evidence-based approaches to decision-making. A key part of the 

systematic review workflow is the critical appraisal step, in which the risk that evidence 

collated from primary studies is biased, is assessed by members of the review team. There is 

a wide range of tools available to help reviewers conduct this quality appraisal step, with 

quantitative scales (which produce an overall summary score) being particularly popular. 

However, published methodological guidance for conducting critical appraisal in 

environmental health systematic reviews advocate for a qualitative, structured and domain-

based approach, eschewing the use of quantitative scales. In this commentary, we explore 

why this is the case – presenting a theoretical, visual exploration of how quantitative scales 

and summary scores fail to appropriately represent magnitude of bias.  

Introduction 

Environmental health (EH) encompasses a diverse range of disciplines producing a significant 

volume of heterogeneous but highly interwoven data, spanning evidence from human 

epidemiology studies to in vitro experiments. Considering data from all such avenues provides 

a fuller understanding of the effects that environmental exposures can have on human health. 

This is vital for evaluating and informing risk-management and regulatory decision-making. 

However, the growing volume and scope of environmental health data presents a challenge 

for its translation into regulatory outcomes. This has led to a growing interest in the 

application of evidence-based approaches to environmental health (e.g. (EPA, 2018; The 

National Academies of Sciences, 2017; World Health Organization, 2019).  
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Evidence-based approaches advocate for the identification and use of all relevant, pre-existing 

evidence for evaluating environmental health risks and mitigation strategies. They seek to 

increase the precision of risk-management decisions and to reduce the bias associated with 

analysing cherry-picked and non-representative subsets of an evidence base.  

Among evidence-based approaches to evaluating environmental health risks, systematic 

review (SR) offers an objective, robust and transparent methodological framework for 

pursuing evidence-based approaches to decision-making, describing an extensive and 

comprehensive process for synthesising or integrating evidence in answer to a specific 

research question. Originally developed in the clinical and social sciences (Chalmers et al., 

2002; Lau et al., 2013), SR methodology is now being adapted for the context of environmental 

health (Hoffmann et al., 2017; Whaley et al., 2016). Several examples of detailed 

methodological guidance for conducting environmental health SRs have been published, 

including the Navigation Guide (Woodruff & Sutton, 2014), the National Toxicology Program’s 

Office of Health Assessment and Translation (NTP-OHAT) (NTP, 2015), the Texas Commission 

on Environmental Quality (Schaefer & Myers, 2017), and the SYRINA framework (Vandenberg 

et al., 2016), among others.  

The above SR frameworks detail the formulation of well-focused research questions and the 

process of devising, documenting and conducting the steps required to answer such questions 

using existing evidence. Each step can be broadly categorized as belonging to one of three 

phases of the systematic review process: identifying evidence of potential relevance to 

addressing the research question; appraising this evidence; and synthesising or integrating 

evidence using quantitative and/or narrative techniques (Fig. 1).  
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Figure 1: Key phases of the systematic review process. 

Fundamental to the SR workflow is the critical appraisal step, in which the strengths and 

limitations of included studies are characterised. This step is necessary for allowing the final 

results of a SR to be contextualised in terms of the overall quality of the evidence base. In 

conducting a SR, it is not only important to synthesise a pooled result through combining 

multiple studies, but also to determine how trustworthy that pooled result is (Morgan et al., 

2016).  

Although the importance of the critical appraisal step in systematic reviews is well established 

(Juni et al., 2001; Lundh & Gøtzsche, 2008; Moja et al., 2005), there appears to be less 

consensus on how this step should be conducted. This is evidenced by the variety of tools 

designed for this purpose (see reviews by Deeks et al., 2003; Krauth et al., 2013; Samuel et al., 

2016), which range from quantitative approaches that promote assessing primary study 
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quality with summary scores and numerical scales (e.g. Wells et al., 2014) to more qualitative 

approaches that promote assessing primary study quality on a narrative scale.  

The critical appraisal steps of the SR frameworks published by both the Navigation Guide and 

NTP-OHAT target internal validity, which is assessed  via a qualitative, domain-based analysis 

of risk of bias, and eschews quantitative scoring  (NTP, 2015; OHAT, 2015; Woodruff & Sutton, 

2014). This follows the recommended approach of Cochrane (Cochrane Community, 2019; 

Higgins & Green, 2011). In this commentary, we explain why this type of approach should be 

considered sound practice in EH SRs. We highlight the significance to SR of what these 

approaches assess (internal validity via risk of bias), how they assess it (using a qualitative scale 

evaluated on a domain-by-domain basis) and why they assess it in this way (why they do not 

advocate for a quantitative approach).  

Why critical appraisal of studies included in a SR should target 

internal validity 

The concept of “quality” when it comes to research is ambiguous, covering a variety of 

concepts of differing breadth and subjectivity. Characteristics of a study which are regularly 

identified in critical appraisal tools as contributing to being of “high quality” include: relevance 

to solving a research problem (Downs and Black 1998); how comprehensively the methods 

and results of a study have been reported and how easy the report is to understand (reporting 

and transparency) (Jadad et al. 1996); how likely the study is to suffer the impacts of random 

error (precision) (De Vet et al. 1997); how likely it is that the results of a study will be subject 

to systematic error or bias (Higgins et al., 2011); whether a study is sufficiently sensitive to 

detect the effect of interest (Cooper et al., 2016); and whether the study design conforms with 

a recognised international standard (Klimisch et al., 1997), among others.  
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However, in conducting a SR it is propensity for systematic error which should be the target of 

critical appraisal at the level of the individual study (Higgins et al., 2011). Systematic errors are 

reproducible inaccuracies, capable of introducing a consistent bias to the results of a primary 

study, resulting in either an over- or under-estimate of the true value of the effect under 

investigation. As systematic reviews are concerned with synthesising the results of primary 

studies, it is important that these systematic errors are not unwittingly carried forward to the 

synthesis step of the SR, where they would introduce bias to the overall conclusions of the 

review. Since the trustworthiness of this summary result is a direct function of the 

trustworthiness of the results of the individual included studies, it follows that it is the 

propensity of the design and conduct of each included study to introduce systematic error (i.e. 

bias) which must be targeted during critical appraisal. The extent to which the methods 

employed in a study are sufficient to prevent bias is equivalent to the extent to which a study 

is “internally valid”  (Hartling et al., 2009).  

Quality constructs other than internal validity will be relevant in critical appraisal contexts 

outside the systematic review of an environmental health risk. For example, reporting quality 

is a key construct for assessment during peer-review of scientific manuscripts to ensure 

transparent, comprehensive and concise reporting of methods and findings to the prospective 

reader. However, when conducting a systematic review with the objective of elucidating 

relationships between environmental exposures and subsequent health effects, the construct 

which matters is the one which directly affects that determination, i.e. potential for systematic 

error or bias.  
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Why critical appraisal should not use a quantitative scale and/or 

summary score to describe risk of bias  

Having argued that assessing bias should be the primary focus of a systematic review's critical 

appraisal step, we now demonstrate why scoring systems should not be used to conduct this 

task. We do this in three steps: firstly, we show how scores do not reliably correlate with 

magnitude of systematic error, such that a high score can be consistent with a low degree of 

bias and vice versa; secondly, we argue that although calibration of a scoring system would 

address this issue, it is very unlikely to be practically achievable; thirdly, we argue that scales 

and checklists discourage the deeper level of subjective engagement with the quality of 

included evidence which SRs need to properly contextualise their results.  

1. Scores do not reliably correlate with magnitude of systematic error 

In this section, we show how scores do not reliably correlate with magnitude of systematic 

error, such that a high score can be consistent with a low degree of bias and vice versa. To do 

this, we present two models of bias, which we refer to as the “Simple Model” and the “Revised 

Model”. The Simple Model exposes false assumptions made by linear scoring models in 

describing risk of bias. Correcting for these assumptions in the Revised Model then 

demonstrates how summary scores fail to scale with magnitude and direction of systematic 

error. 

The Simple Model: At their simplest, quality scales operate by awarding individual points to a 

study for conforming with each item on a list of n criteria, with 0 out of n being the worst, and 

n out of n being the best possible quality scores. Table 1 depicts a simple model scale based 

on nine criteria, A-I. The specific methodological standards underpinning A-I are arbitrary for 

the purposes of the model, but can be considered to represent study design features which 

would safeguard a study from the introduction of bias. These features might involve e.g. 
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ensuring that comparator or control groups are otherwise treated identically to exposure 

groups, ensuring that outcome assessors are blinded to the exposure status of participants in 

epidemiology studies (or animals in toxicology studies), that all potential confounders in 

epidemiology studies have been identified and appropriately accounted for, etc. (OHAT, 2015; 

Rooney et al., 2014). One point is awarded for every such criterion a study fulfils, giving a 

discrete scoring range of 0 to 9 out of a possible 9. Table 1 illustrates how a study might score 

4 out of 9 by complying with criteria C, F, G and H. There are multiple further possible ways of 

obtaining a score of 4/9, so long as a study complies with any four of the nine criteria.  

Criterion Study complies with criterion? 

A No 

B No 

C Yes 

D No 

E No 

F Yes 

G Yes 

H Yes 

I No 

Total Score 4 

 

Table 1: A simple quality scale comprised of nine quality criteria, (A to I), which each 

represent a different aspect of quality within a study (e.g. use of controls, blinding, etc.). One 

point is awarded for every criterion fulfilled, and points are subsequently summed to 

produce an overall score (e.g. 4 out of 9). 
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Since a score of 4/9 has the same meaning regardless of the specific criteria met in order to 

achieve the score, it follows that each criterion from A to I contributed equal weight to the 

overall quality score. In evaluating the bias of primary studies during a systematic review, 

simple scales such as this are therefore assuming that the magnitude of bias introduced to the 

study count equal for every criterion that is not met. In other words, the simple model assumes 

that each unmet criterion introduces the same degree of systematic error. This is represented 

in Table 2, where failure to comply with any criterion is assumed to introduce 10 units of 

systematic error. Table 2 shows how three different studies with three different sets of 

limitations, and therefore different sets of unmet criteria, are scored. In the Simple Model the 

sum total systematic error is equal for studies with the same score regardless of which unmet 

criteria introduced the error (Studies A and B, Table 2). As score increases the number of 

unmet criteria decreases, resulting in a proportional decrease in total units of systematic error 

(Study C, Table 2). The linear relationship between score and magnitude of error assumed by 

the Simple Model is shown in Figure 2.
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  Study A Study B Study C 

Criterion Magnitude of bias 

introduced for non-

compliance with 

criterion 

Study complies 

with criterion? 

Magnitude of 

bias introduced 

Study complies 

with criterion? 

Magnitude of bias 

introduced 

Study complies 

with criterion? 

Magnitude of bias 

introduced 

A 10 ✘ 10 ✓ 0 ✘ 10 

B 10 ✘ 10 ✓ 0 ✓ 0 

C 10 ✓ 0 ✘ 10 ✓ 0 

D 10 ✘ 10 ✓ 0 ✓ 0 

E 10 ✘ 10 ✓ 0 ✓ 0 

F 10 ✓ 0 ✘ 10 ✓ 0 

G 10 ✓ 0 ✘ 10 ✘ 10 

H 10 ✓ 0 ✘ 10 ✘ 10 

I 10 ✘ 10 ✘ 10 ✓ 0 

Total  - 4 50 4 50 6 30 

 

Table 2:  The assumption that the magnitude of bias introduced by failing to meet a criterion is equal for all criteria allows a summary score to mean the 

same thing in all scenarios (e.g. Study A compared to Study B above), and allows the score to accurately scale studies; those with a higher score suffer a 

smaller magnitude of bias (i.e. Study C compared to Study A or B).
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Figure 2: The Simple Model of scoring study quality assumes a linear, proportional 

relationship between magnitude of error and study score. As study score increases, bias 

decreases. 

The Revised Model: A key problem with the simple model is its underlying assumption that all 

criteria count equal in terms of magnitude of systematic error is false. There is good empirical 

evidence that different limitations in study design and conduct introduce different degrees of 

systematic error in comparable studies, and also that the same limitations will introduce 

different degrees of systematic error in different research contexts (Cochrane Methods Group, 

2017). For example, evidence from preclinical trials of treatments for glioma (brain tumour) 

show that failure to randomise animals to intervention and control arms introduces a larger 

bias than failure to blind study personnel (Macleod et al., 2015). The assumption that an equal 

magnitude of bias is introduced by different study limitations cannot therefore be sustained, 

and the Simple Model must be relinquished. 
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A more realistic picture of how scores actually represent bias can be developed by revising the 

assumption that all criteria count equal in terms of introducing systematic error. To do this, 

each unmet criterion is now assumed to introduce a different magnitude of systematic error 

(Table 3). We also relinquish the assumption that biases act in a single direction. For example, 

in epidemiology it is recognised that while recall bias resulting in differential misclassification 

can bias the apparent effect of an environmental exposure away from null, the healthy worker 

effect can bias the apparent effect towards null (e.g. McMichael, 1976; Rothman & Greenland, 

1998). This variation in direction of bias is represented in Table 3 by some criteria introducing 

positive systematic error, while others introduce negative systematic error.  

Under this more realistic model of bias, it becomes evident that different ways of achieving 

the same score will introduce different degrees of systematic error. This is illustrated in Table 

3, using the same examples of scoring 4/9 as presented in Table 2. Not only does a score of 

4/9 no longer mean the same thing in every context, but the variable and bidirectional nature 

of bias means that a higher score does not necessarily account for a lower overall sum 

magnitude of systematic error. This can be seen in the magnitude of bias for a higher score of 

6/9 (Study C in Table 3) being greater than a lower score 4/9 (Study A in Table 3). It follows 

that if quality criteria do not have equal value, then a higher quality score does not correlate 

with a lower risk of bias – in the Revised Model, a “better” study can be giving a worse result.
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 Study A Study B Study C 

Criterion Magnitude and 

direction of bias 

introduced from non-

compliance with 

quality criterion 

Study 

complies with 

criterion? 

Magnitude of 

bias introduced 

Study 

complies with 

criterion? 

Magnitude of bias 

introduced 

Study complies 

with criterion? 

Magnitude of bias 

introduced 

A +10 ✘ +10 ✓ 0 ✘ +10 

B -5 ✘ -5 ✓ 0 ✓ 0 

C +30 ✓ 0 ✘ +30 ✓ 0 

D +40 ✘ +40 ✓ 0 ✓ 0 

E -25 ✘ -25 ✓ 0 ✓ 0 

F -10 ✓ 0 ✘ -10 ✓ 0 

G +15 ✓ 0 ✘ +15 ✘ +15 

H +10 ✓ 0 ✘ +10 ✘ +10 

I -5 ✘ -5 ✘ -5 ✓ 0 

Total  - 4 +15 4 +40 6 +35 

Table 3:  Removing the assumption that the magnitude of bias introduced by failing to meet a criterion is equal for all criteria breaks the ability of the same 

score to represent the same magnitude of bias (e.g. Study A compared to Study B above). Additionally, removing the assumption that bias is unidirectional 

breaks the ability of a score to scale with quality, as it is no longer true that a higher score necessarily accounts for a lower sum magnitude of bias compared 

to a lower score (e.g. Study C compared to Study A).
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The full range of values for the Revised Model, based on bias values presented in Table 3, is 

shown in Figure 3. This is calculated on the basis of there being one way of scoring 9/9 or 0/9, 

nine ways of scoring 8/9 or 1/9, thirty-six ways of scoring 7/9 or 2/9, and so forth. Since scoring 

follows a probability distribution, there are 512 possible scoring combinations in total. Figure 

2 shows how each score (apart from 0/9 or 9/9) is consistent with multiple different sum total 

introductions of systematic error: a score seemingly indicative of high study quality (e.g. 7/9 

or 8/9) can equate to an equal or larger degree of systematic error than scores indicative of 

lower quality (such as 3/9 or 4/9). The scores are collapsing a wide range of potential for 

systematic error into a single summary figure, therefore obscuring rather than revealing the 

effect of methodological shortcomings on the extent to which a study’s results are likely to be 

biased.  

 

Figure 3: Revising the assumptions underpinning the Simple Model. Expanding on Table 3, 

the total magnitude of bias associated with every possible way of achieving a score on the 
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artificially generated scale is displayed, illustrating the range of meaning a single score might 

serve to mask.  

 

2. Scales cannot readily be calibrated  

In our illustrative evaluation of how summary scores cannot realistically represent bias, we 

have assumed that all the studies used as examples in Tables 2 and 3 are of the same type, 

designed to assess results for a shared research context, and therefore similar in overall study 

design. This is not representative of real-world environmental health systematic reviews, 

which will synthesise or integrate studies of varied design to obtain a summary result. 

Empirical evidence shows that differences in context have a large impact on how limitations 

in study design can bias the effect estimate of a primary study (Balk et al., 2002; Berkman et 

al., 2014), such that magnitude of bias introduced by a particular limitation in design or 

conduct will vary depending on the type and design of the study in which it is found (Cochrane 

Methods Group, 2017). For example, evidence from patient blinding techniques in clinical 

trials has shown that when patients are not blinded to treatment, intervention efficacy is 

exaggerated but the degree of bias varies according to study design (Hróbjartsson et al., 2014); 

and in studies in which investigators are not blinded, whether the outcome is objective (such 

as mortality) or subjective (such as patient reported pain levels) affects the magnitude of bias 

which failure to blind introduces (Wood et al., 2008). 

While scales could in theory weight their scores according to whether e.g. blinding was 

occurring in the context of a subjective or objective outcome, in practice researchers would 

end up in a situation where, in order to accurately represent systematic error, each scale 

would have to be adapted for each individual study design. Even if this did not arguably defeat 

the purpose of a scale, which is to be readily applied by the user as a measure of quality in 
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multiple situations, such calibration would require knowledge of exactly how much bias a 

limitation in design and conduct of a study will introduce to its results.  

Acquiring information for calibration either requires a near-perfect version of a study to have 

been conducted against which the study under appraisal can be compared, or it requires meta-

epidemiological research designed to determine the relative effect a methodological 

limitation has on the findings of a group of otherwise sufficiently comparable studies. Near-

perfect studies, such as sufficiently-similar randomised trials against which an observational 

study can be compared are almost always either unethical, or simply impractical. Even where 

this gold standard is available, where an exceptional observational study might provide a 

reasonable benchmark for comparison, there is little guarantee that any given observed effect 

represents the true effect because the true effect is empirically inaccessible (Groenwold and 

Rovers, 2010); (Jadad and Enkin, 2008). When it comes to meta-epidemiology, there are rarely 

enough studies to power precise analysis of the effect of e.g. failure to blind in various research 

contexts (Giraudeau et al., 2016) - let alone produce enough data to permit a scoring scale to 

be calibrated for each study design likely to be included in a systematic review . 

Scale calibration is therefore beyond the practical reach of most research teams working in 

most systematic review contexts (Balk et al., 2002; Berkman et al., 2014). This makes the 

process of appraising studies for bias in the majority of circumstances a qualitative, subjective 

process. 

3. Scores mask the subjectivity of appraising studies for risk of bias 

Despite theoretical (Greenland & O’Rourke, 2001) and empirical (Jüni et al., 1999) arguments 

against numerical approaches to critical appraisal, and over a decade of official guidance 

arguing against their use (Higgins & Green, 2009), scales and scoring systems continue to be 

popular (Beronius & Hanberg, 2017; EPA, 2018; Wells et al., 2014; Schneider et al., 2009). In 

addition to ease of use, the persistence of scales may in part be due to a perceived need to 
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resist subjectivity when conducting assessments which are supposed to be objective and 

scientifically robust; such are the values of systematic review. Using scales and checklists may 

offer an impression of objectivity by producing a fixed numerical summary which appears to 

involve minimal subjective interpretation.  

However, in attempting to limit the subjectivity of interpretation, simply scoring a list of 

quality constructs does not do enough to elicit further discussion or justification from the 

reviewer. This compromises the transparency that is fundamental to the systematic review 

process. Furthermore, because presenting a summary score in lieu of the explicit reasoning 

behind reviewers’ judgements masks the subjective judgements involved in reaching the 

score, it arguably encourages the sort of inconsistent and subjective interpretation by users of 

the review that quality scales are seeking to avoid (Shamliyan et al., 2010).    

Masking subjectivity in this manner also has the potential to stymie the progression of risk of 

bias assessment and related tools, especially in the fields of environmental health, toxicology 

and chemical risk, where systematic review is gaining prominence. It does not encourage 

understanding and appreciation of factors important for reducing bias in different 

experimental designs. The attempted rigidity of the scales leaves little room for 

accommodating innovative study designs, as studies are only expected to rate favourably in a 

risk of bias assessment if they fulfil the criteria the makers of the scale dictate as valid 

(Groenwold and Rovers, 2010).  

Where scales attempt to simplify and render objective the process of evaluating risk of bias, 

they instead create a system whereby not only are the scales used to assign points to a study 

based on a subjective process, but the overall summary score presented to the reader remains 

open to interpretation (Sanderson et al., 2007). This makes scales a poor choice for thorough, 

robust and transparent systematic reviews. 
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Domain-based assessment of risk of bias as a response to the 

shortcomings of scores and scales  

Since magnitude of bias cannot normally be measured, and scores cannot reliably represent 

magnitude of bias, studies included in a SR have to be appraised for bias on a case-by-case 

basis. This is best conducted by targeting risk of bias, and managing subjectivity through a 

domain-based risk of bias assessment.   

1. Targeting risk of bias 

While the precise extent to which any given study is biased cannot be readily quantified, there 

is good empirical evidence from meta-epidemiological research  (e.g. Bolvig et al., 2018; 

Crossley et al., 2008; Dechartres et al., 2016) that certain methodological features consistently 

introduce systematic error to the results of a study. These include failure to blind study 

personnel to experimental and control arms of a study, not controlling for important 

confounders in observational studies, etc.  

It can be assumed that, if a study has methodological features which have been shown 

elsewhere to introduce bias, then the study is at least at risk of likewise being biased - even if 

that risk may only be characterised qualitatively (Higgins & Green, 2011). Since most meta-

epidemiological evidence for risk of bias comes from healthcare research, it is arguably even 

more important to characterise risk qualitatively, pending more detailed information about 

how study design variables can introduce systematic error into environmental health study 

results. While the precise magnitude of bias cannot be known, it should still be possible to 

come to a meaningful judgement as to whether the probability and likely direction and 

magnitude of bias in the study is important enough that it should reduce confidence that the 

reported results of the study in question are true. 
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2. Manage subjectivity through domain-based assessment of risk of bias 

The process of managing subjectivity can be promoted through the use of  domain based 

approaches to assessing risk of bias, such as those utilised by the Navigation Guide (Woodruff 

& Sutton, 2011, 2014) and by OHAT’s Risk of Bias Rating Tool for Human and Animal Studies 

(OHAT, 2015), both of which are adapted from the Cochrane Collaboration’s Risk of Bias tool 

for non-randomised studies (Higgins & Green, 2009). As opposed to scales, which result in 

opaque, quantitative conclusions, domain-based systems consider each specified bias 

construct individually (O’Connor et al., 2015), eliciting consistent appraisal of key issues via a 

structured questionnaire format to reach a transparent, qualitative conclusion about risk of 

bias. Formatted as a framework for the kinds of bias that are likely to impact the effect 

estimate, reviewers are guided to consider appropriate factors and the relative significance of 

these factors within the context of individual studies. This promotes  distinction between the 

concepts of “quality” and “risk of bias” so as to account for scenarios in which studies may 

have been conducted according to the highest quality standards, but may still suffer a 

significant risk of bias – such as scenarios in which blinding may have been impossible (Armijo-

Olivo et al., 2012) – or may be poorly reported yet still at low risk of bias.  

Unlike scoring systems, domain-based risk of bias tools acknowledge the need for reviewers’ 

experiences and knowledge when considering which types of bias are likely to be significant 

given the context of the review. They account for subjectivity by managing it in a transparent 

manner, prompting reviewers to pre-specify how risk of bias will be handled in their protocol 

and requesting that reviewers provide justification and evidence for their judgements, 

allowing readers to decide whether they agree with the results (Higgins & Green, 2011; 

Rooney et al., 2014; Woodruff & Sutton, 2011) – an approach which provides the necessary 

balance between qualitative, subjective judgements and transparency about the context in 

which those judgements are being made. By not defining a priori the relative weight or 

importance of any one specific source of bias (within a domain) compared to another, 
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approaches following the same principles as the NTP-OHAT and Navigation Guide allow for the 

context-dependent nature of bias. Arriving at qualitative judgements promotes consideration 

of a study’s limitations and its context as a whole, rather than first considering limitations and 

only then assessing whether a study has these limitations, as is promoted in numerical scales.  

The major advantage of these qualitative, domain-based approaches is their potential to yield 

consistent appraisal of potential for systematic error, even when the “true” result of a given 

study is empirically inaccessible: they elicit from experts what they do know about study 

limitations, to a judgement consistent with what can realistically be inferred from those 

limitations given limited access to “true” results. To limit the extent to which expert judgement 

can reduce transparency and be itself a risk of bias in a systematic review, this subjectivity is 

managed by domain-based tools through their structured approach to critical appraisal.  

Conclusion 

Systematic review is still relatively novel in the field of environmental health. However, a 

growing appreciation of the importance of making evidence-based decisions which consider 

all available data continues to see increasing interest in the application of systematic review 

to environmental health contexts (Whaley et al., 2016). It is therefore vital to adopt 

methodology that eschews the use of scales and scoring systems for rating risk of bias at this 

early stage, to avoid repeating the mistakes and learning the same hard lessons experienced 

in the medical field.  

Where scales have tried to simplify and objectify the evaluation of risk of bias, they have 

instead simply masked the subjectivity associated with its assessment. Combining this with 

their inability to represent the true nature of bias makes scales a poor choice for thorough, 

robust and transparent systematic review. Qualitative domain-based approaches, on the 

other hand, offer a process for acknowledging and managing subjectivity.  
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Acknowledging the role of subjectivity, rather than hiding it behind a summary score, is 

currently the most transparent means of tackling the inherent subjectivity associated with 

assessing primary study quality. In an area as complex as risk of bias assessment, there may 

even be significant value in some degree of subjectivity. So far as this is transparently justified, 

the freedom to be subjective may result in a well-considered appraisal of included studies, 

particularly where unique or emerging study types are concerned, leaving room for 

progressive debate, review and future improvement. This is likely to be particularly important 

in chemical risk assessment, a field ever pressured to adopt new and alternative toxicity 

testing procedures, the quality of which cannot be appropriately accounted for by rigid scales. 

However too much freedom in assessing risk of bias may have the opposite effect, providing 

insufficient means of focusing the process or holding reviewers accountable for their 

judgements, creating confusion and inconsistency, and resulting in a backward slide to the 

well-documented challenges with narrative appraisals of quality of evidence (Chalmers et al., 

2002). It would therefore seem that the most suitable means of assessing risk of bias must 

target a middle ground, neither masking subjectivity nor giving it free reign, but rather 

“managing” it. 

Well-managed and open consideration of the limitations, not only of the primary studies, but 

of the methods used to assess them, has the potential to increase the reliability of chemical 

risk assessment conclusions. Assessing risk of bias in a domain-based manner should allow a 

wider variety of resources to inform risk assessment, increasing the precision of safety 

estimates, and reducing the research waste and costs associated with repeat testing.  
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Supplemental Discussion 

 

Working around rigid schema and lowering resolution 

Attempting to balance the rigidity of a schema with the fluidity or heterogeneity of the data it 

organizes might lead environmental health (EH) mappers to compromise the resolution of 

their data extraction and coding. Consider a set of heterogeneous in-vitro studies which meet 

the inclusion criteria of a systematic evidence map (SEM) exercise. Avoiding extracting specific 

study detail in favour of more broadly applicable study features (e.g. type of cell tested) allows 

those studies to occupy the same schema and avoids the need to update the schema, as all 

future encountered studies will likely contain the broad extracted study feature. Coding 

heterogeneous studies with a broad controlled vocabulary term can have a similar effect if this 

code is provided in lieu of raw data– e.g. broadly coding both a study investigating the 

contaminants in drinking water, and another investigating air quality as “environmental 

monitoring”. 

A preference for producing lower resolution maps was noted in the survey of CEE’s current 

mapping practice, where only broad or even censored data were included in systematic map 

databases (e.g. Gumbo et al., 2018). The majority of maps also appeared to provide only the 

broader controlled vocabulary code in lieu of the raw extracted data to which the code was 

applied. 

Beyond allowing heterogeneous or complex data to fit within a rigid structure, several 

additional motivators might contribute to the current preference for producing low resolution 
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systematic maps. Lower resolution maps represent a less severe demand for time and 

resources - making their outputs more achievable given the currently manual nature of 

systematic mapping. Mappers may also wish to prevent end-users from drawing inappropriate 

or premature conclusions based on data which has not been critically appraised by censoring 

specific results or data relationships. Alternatively, a lower resolution map may already be fit-

for-purpose, and thus the most efficient and easily understood form of mapping exercise. 

However, there are several drawbacks associated with the practices that result in low 

resolution maps. Transparency is reduced when end-users cannot access the raw data to 

which a code has been applied, and therefore cannot assess whether they agree with the 

application of that code. Data integrity is compromised when the relationships between broad 

coding categories are unrepresentative of the raw data, or when incorrect relationships are 

inferred between broad data fields. Accessibility of the data for end users wishing to query the 

systematic map is also limited to a narrower range of broad questions, restricting application 

of the map to the use-cases defined by the developer rather than meeting the potentially 

unanticipated needs of the user. Thus, while a SEM which facilitates identification of low-

resolution trends might be an efficient research tool in other fields, the demands of chemicals 

policy for detail and contextual value limit the utility of these exercises for this application. 

Finally, although low resolution maps might represent a smaller upfront cost in terms of time 

and resources – they may represent a less efficient approach in the long-term. Details omitted 

from a map which later become important or relevant for updated chemical risk assessment 

procedures means that data extraction efforts must be repeated. Similarly, although 

extracting and storing high-resolution semantic triples in a knowledge graph may incur higher 

demands on time/resources in the short term, the preservation of referential integrity in the 

graph means that the mapping exercise need not be repeated in order to facilitate a user’s 

access to, and understanding of, the data. 
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1. Abstract 

The National Health and Nutrition Examination Survey (NHANES) is a large, cross-sectional 

human biomonitoring program in the United States (US). Among the variables measured in 

the survey are biomarkers of exposure to hundreds of manufactured chemicals which are of 

interest to chemical risk assessment and chemicals policy applications. The NHANES datasets 

are publicly available and offer a unique opportunity for crowd-sourcing analysis efforts. This 

allows researchers with varied interests to uncover a broad range of toxicologically relevant 

associations between survey variables and ensures maximum return of the resources input 

into the survey. However, these analyses are typically published in the academic literature in 

unstructured formats. This makes it difficult to gain a broad overview of which associations 

have been studied, and whether there are any potential links between such associations which 

might inform future analyses. This is an issue which has traditionally been addressed through 

scoping review. Limitations in the outputs of scoping reviews make them difficult to update 

and compromise their broader utility for characterizing and exploring existing research. In this 

manuscript, we explore the future of such evidence-surveillance exercises by conducting a 

small-scale, graph-based systematic evidence mapping exercise, in which literature reporting 

exposure-outcome associations for the NHANES datasets are mapped. We highlight the 

efficacy of the graph data model for preserving data integrity of increasingly complex and 

highly resolved datasets – contrasting our approach to an equivalent scoping exercise. Finally, 

we outline the research and development required to conduct such graph-based exercises at 

scale. 

 

2. Introduction 
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The National Health and Nutrition Examination Survey (NHANES) is a large, continuous, cross-

sectional biomonitoring program in the United States. Every year, a representative sample of 

the US population are recruited to participate in questionnaires, interviews, physical 

examinations and/or biological sampling (Centers for Disease Control and Prevention, 2019a; 

Sobus et al., 2015). In addition to biomarkers of nutrition, health and communicable disease - 

NHANES measures biomarkers for hundreds of manufactured chemical exposures in samples 

of urine, whole blood, plasma or serum (Centers for Disease Control and Prevention, 2019b). 

These measures, along with questionnaire, interview and examination data, are made publicly 

available through the Centers for Disease Control and Prevention (CDC)’s website 

(https://www.cdc.gov/nchs/nhanes/index.htm).  

 

This accessible resource of human exposure data is of significant value to regulatory decision-

making in chemicals policy contexts, and has been described as a “a gold-mine of data for 

environmental health analyses” by the United States Environmental Protection Agency (US 

EPA) (EPA, 2003), with whom the CDC has a collaborative relationship. Analyses of the NHANES 

datasets are relevant to an array of health (Ahluwalia et al., 2016) and chemicals policy tasks, 

including: setting national reference levels for health-related variables and/or chemical 

exposures (e.g. CDC, 2001); monitoring trends in health-variables (e.g. disease prevalence) 

and/or chemical exposure (EPA, 2003); assessing the efficacy of policy interventions to control 

chemical exposure (e.g. through phase outs of toxic substances (Easthope & Valeriano, 2007)) 

or health-outcomes (e.g. through vaccination programmes (Markowitz et al., 2013); 

identifying disparities in the exposure/health variables associated with specific sub-

populations (e.g. Kobrosly et al., 2012; Nelson et al., 2012; Tyrrell et al., 2013); and assessing 

risk-factors for health-outcomes.  

 

https://www.cdc.gov/nchs/nhanes/index.htm
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The open access model of NHANES presents a unique opportunity for “crowd-sourcing” 

analyses. This means that researchers from across the globe are able to access and analyse 

NHANES data, finding trends and associations of potential interest to federal agencies and the 

wider research community. Thus, the potential returns of the survey are maximised - 

improving resource efficiency. Further, the open accessibility of NHANES promotes 

collaboration and progression within environmental health, where pooled expertise builds a 

more complete understanding of the data and the statistical methods required for its analysis. 

At minimum, the open accessibility of NHANES promotes transparency - whereby analyses can 

be verified through independent replication efforts (e.g. Brown et al., 2019).  

 

However, analyses of NHANES datasets are not always as accessible as the raw data 

themselves - compromising the potential reach, impact and benefits of these crowd-sourced 

efforts. Difficulty accessing analyses may result in inadvertent but redundant duplication, 

which threatens the efficient allocation of resources to investigating associations of novel or 

emerging concern. For chemicals policy, a lack of accessibility further compromises 

consideration of such analyses in the risk assessment process - where associations are 

integrated with data from a range of heterogeneous evidence streams. 

 

A central, searchable resource which catalogues research conducted using NHANES data 

would therefore maximise its value for stakeholders. Such a resource would facilitate the 

meta-research required for identifying trends across analyses, characterising research gaps on 

which to focus crowd-sourcing efforts. Several reviews have addressed this need for 

monitoring and understanding the research space around the analysis of NHANES data (e.g. 

(Bell & Edwards, 2015; Taboureau & Audouze, 2017). One such review of particular relevance 

to chemicals policy is that of Sobus et al. (2015) - which focused on analyses concerning 

chemical exposures. Broad, “scoping” reviews such as Sobus et al. (2015) characterise the 
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research landscape through a process of searching for, screening, extracting and categorizing 

evidence. While providing a valuable overview of research activity, the static and inaccessible 

outputs of such reviews (e.g. in-text data tables and visualisations) continue to limit their 

broader utility. In other words, users are unable to query collated evidence according to their 

specific research interests and must instead re-extract and re-structure data as appropriate to 

their queries. These are the shortcomings which systematic evidence mapping aims to 

overcome (James et al., 2016; Wolffe et al., 2019).  

 

Systematic evidence mapping is an evidence-based methodology of growing interest in 

environmental health and toxicology (e.g. Beverly, 2019; Pelch et al., 2019), with wide 

potential application in regulatory workflows (Wolffe et al., 2019). It builds on the scoping 

review methods traditionally employed in evidence surveillance - with an emphasis on 

transparency, robustness and a broad, comprehensive coverage of the evidence landscape. 

The key output of a systematic evidence mapping exercise i.e. the systematic evidence map 

(SEM) itself, takes the form of a queryable database of references, extracted data and meta-

data. This computationally accessible output can be readily updated without duplication of 

data-extraction effort. 

 

In our previous work (Wolffe et al., 2020), we highlighted the utility of the flexible, schemaless 

graph data model for maintaining transparency and data integrity within SEMs. However, the 

application of graphs for evidence mapping in environmental health is still novel. To resolve a 

path toward graph-based approaches to evidence mapping in environmental health, we 

conduct an exploratory case-study in which we apply a graph-based approach for mapping 

exposure-outcome associations reported for the NHANES dataset - expanding on the outputs 

of Sobus et al.'s (2015) scoping exercise.  
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In addition to our findings regarding exposure-outcome associations - we highlight key 

advantages of the graph data model for evidence surveillance and systematic evidence 

mapping methodology and discuss the challenges and future work required to implement our 

approach at scale. Through this case-study, we aim to increase familiarity of the evidence 

synthesis community with the graph data model. We hope this bridging research will 

accelerate and unify efforts to make best use of existing data by better understanding the 

needs of evidence-surveillance and the computational tools required to meet those needs.  

 

3. Methods 

 

3.1 Aims 

The primary aim of this mapping exercise is to conduct a methodological exploration of the 

graph-data model for systematic evidence mapping in a context relevant to chemicals 

regulation, and to compare this approach with traditional methods of evidence surveillance 

(e.g. scoping reviews). In using NHANES as a case study - the secondary aim of this mapping 

exercise is to explore which of the exposures and outcomes measured as part of NHANES have 

been investigated for association by the wider research community, and to identify the future 

research required to study these associations at scale.  

 

3.2 Dataset 

The complete set of 273 publications included by Sobus et al. (2015) in their scoping review 

on the use of NHANES data for chemical risk assessment were considered for inclusion in this 

mapping exercise. The search strategy and inclusion/exclusion criteria which generated this 

dataset can be found in the Methods and Supplemental Information of Sobus et al (2015). 
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Briefly, search strings covering the concepts of “NHANES”, the “United States”, and 

“biomonitoring” were combined with the “AND” boolean operator and filtered by publication 

dates which fell within the range 1999-2013. Results were screened by a single author (Sobus 

et al., 2015) at the level of title and abstract, and studies which exclusively reported use of 

“endogenous biomarkers (e.g. hormones, antibodies, inflammatory markers), tobacco-specific 

biomarkers (e.g. cotinine), dietary biomarkers (e.g. vitamins/nutrients, essential minerals), or 

biomarkers of phytoestrogens, isoflavonoids, or aflatoxin” excluded.    

 

3.3 Inclusion Criteria  

The full text of each of the 273 publications in the Sobus et al. (2015) dataset were screened 

for inclusion in this evidence mapping exercise by a single reviewer (TW). Only those which 

presented a statistical measure of association between a health outcome (i.e. a biological 

response or markers of biological response) and a chemical exposure were included.  

 

In their scoping review, Sobus et al. (2015) categorised each of the included publications 

according to whether they reported a “health association” or “exposure assessment”. Any 

discrepancies regarding the inclusion status of publications in this mapping exercise compared 

to the category which these publications were assigned by Sobus et al. (2015) were 

documented and justified (see Table S1) i.e. indicating if a publication which was categorised 

as “exposure assessment” has been included, or conversely if a publication which was 

categorised as “health outcome” has been excluded in this mapping exercise.  

 

3.4 Low Resolution Data Extraction  

A simple data extraction workflow was developed to assist with the collation of exposure-

outcome associations from included publications. Briefly, data extracted from included study 
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reports were divided into one of two categories: bibliographic information pertaining to the 

study report; or information pertaining to the studied associations. A relational database 

infrastructure was used to construct data extraction forms - whereby study reports were 

related to associations through a one-to-many relationship. This allowed the recording of 

multiple associations without manually repeating the bibliographic information in long-form, 

minimising extraction errors.  

 

Data recorded in the “bibliographic information” component of the data extraction workflow 

were as follows: 

• Reference ID (as assigned by Sobus et al., to facilitate comparison and validation) 

• Title 

• Authors 

• Publication Year 

  

Associations were defined as occurring between a chemical exposure and a health outcome - 

for which the results of a statistical measure of association were reported. Entities for which 

an association with chemical exposure was measured - but which represent exposures 

(including to other chemicals), non-health outcomes, covariates, adjustment factors or 

stratification variables (e.g. sex, age, smoking status etc.) were excluded. Likewise, 

associations in which neither entity was considered a chemical exposure (e.g. history of 

anaemia and head circumference) were excluded from extraction. Thus, data recorded in the 

“associations” component of the data extraction workflow were as follows: 

• Chemical exposure  

• Individual components of the chemical exposure, if applicable (e.g. ΣPFAS might 

comprise individual components of PFOA, PFOS and PFBS).  

• Biological medium in which the exposure was measured 
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• Associated health outcome 

 

Data were extracted by a single reviewer (TW) from the full-text pdf of each publication. As 

far as possible, data were extracted in a consistent manner by using consistent spellings and 

structures e.g. exposures reported as “PFOA”, or “perfluorooctanoic acid” were both 

extracted in the format “Perfluorooctanoic acid (PFOA)”.  

 

3.5 Data Processing and Graph-based storage 

A large, long-form data table (Table S2) was produced by querying the relational data 

extraction infrastructure. Chemical constituents were delimited as separate “repeating 

columns” (see Wolffe et al. 2020), and biological media concatenated with chemical exposure 

- so as to distinguish between e.g. Blood Cadmium and Urine Cadmium etc. Any exposures for 

which a biological medium was unreported were also extracted and represented as an 

independent exposure i.e. “Cadmium”, “Cadmium, blood” and “Cadmium, urine” were 

considered as different specific exposures. Any inconsistencies identified within each column 

(e.g. typos etc.) were manually amended.   

 

A graph data model was devised for representing the relationships between entities in the 

long-form data table, and is presented in Figure 1. The data within the table was processed for 

storage using an iPython Jupyter Notebook (Project Jupyter, 2019) (see Supplementary File 

S1) according to the graph data model in Figure 1. The py2neo package (Small, 2019) was used 

to connect with a Neo4j graph database instance (Neo4j, 2019) and the graph populated with 

data as described in Supplementary File S1. 
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Figure 1: Graph data model describing the relationships between publications and the 

exposure-outcome associations they report. Neo4j’s labelled property graph model was 

exploited to represent “RefID”, “Title”, “Authors” and “Year” as properties of Publication 

nodes.  

 

3.6 Applying Controlled Vocabulary Code  

10 of the 11 controlled vocabulary terms used to categorise studies by Sobus et al. were 

adopted in this mapping exercise i.e.“BFRs” (brominated flame retardants), “Dioxins, furans, 

PCBs” (polychlorinated biphenyls), “environmental phenols”, “metals/metalloids”, “other”, 

“PAHs” (polycyclic aromatic hydrocarbons), “pesticides”, “PFCs” (perfluorinated compounds), 

“phthalates” and “VOCs” (volatile organic compounds) . As individual chemical exposures were 

extracted in this exercise, the “multi-group” controlled vocabulary term was omitted. Where 

possible - the use of controlled vocabulary by Sobus et al. was mapped directly (see 

Supplementary File S2, Table S3), except for the exposures which would solely have been 

categorised as “multi-group”.  These exposures were manually re-assigned a controlled 

vocabulary label (see Supplementary File S2, Table S4 and Table S5). Code was incorporated 
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into the graph as nodes and connected to single/mixed chemical exposure nodes through a 

“CODED_AS” relationship (see Fig 2A). Similarly, a controlled vocabulary of 18 terms was 

developed iteratively for the categorisation of health outcome nodes. These terms were 

manually assigned to extracted health outcomes and represented in the graph with a 

“CODED_AS” relationship (see Fig. 2B). Where appropriate, more than one controlled 

vocabulary term was assigned to a single health outcome (e.g. “Mortality, cancer” was labelled 

with both the terms “Mortality” and “Cancer”). 

 

Figure 2: (A) Chemical exposure nodes are categorised by a “CODED_AS” relationship to 

nodes housing controlled vocabulary terms.  (B) Similarly, health outcome nodes are 

categorised by a “CODED_AS” relationship to nodes housing controlled vocabulary terms. 

Due to the variation and complexity of health outcomes, multiple controlled vocabulary 

terms may be used to categorise a single outcome.  
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3.7 Exploring Associations 

The evidence map was explored through a series of queries written in cypher (neo4j’s graph 

query language) using the py2neo package (see Supplementary File S3). The results of these 

queries were typically processed as pandas dataframes and visualised using a variety of tools, 

including python data visualization packages (e.g. seaborne, matplotlib etc.) and Tableau. 

 

4. Results 

 

4.1 Included Publications and Number of Associations 

In total, we extracted 1656 investigated associations from 132 included publications. These 

associations encompassed 326 different chemicals and 265 specific health outcomes. The 

number of associations reported within a single publication ranged between 1 and 150, with 

a median value of 4.  

 

4.2 Exposures, Health Outcomes and Associations  

 

4.2.1 Exposures 

We found that the largest number of associations included in our map could be categorised as 

occurring between metals/metalloids and a health effect (see Fig. 3). A total of 86/132 

included publications reported at least one association between a health outcome and a 

chemical exposure within the metals/metalloids group (Supplementary File S3). Blood lead 

and urinary cadmium were the two most frequently associated specific chemical exposures 

within this group (Supplementary File S3 & S4). The metals/metalloids exposure category had 
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over twice as many studied associations as the next most populous chemical group; Dioxins, 

Furans, PCBs -  which were reported in only 9/132 included publications.  

 

 

Figure 3: The number of associations (x axis) which investigated a chemical exposure within 

each of the exposure categories (y axis), across all included publications.  

 

However, “Dioxins, Furans, PCBs” was also the most diverse exposure group, comprised of 110 

distinct chemical exposures (see Supplemental File 3). Thus, this exposure group was 

characterised by a low frequency of associations for many individual chemical constituents. 

The full make-up of each exposure category, and the frequency with which each distinct 

chemical within an exposure category is associated with a health outcome, is visualised in 

Supplementary File S4. “Dioxins, Furans, PCBs” was also the category most frequently assigned 

to associations which investigated mixed chemical exposures, followed closely by phthalates 

(Supplementary File S3). The number of individual chemical constituents comprising a mixed 

chemical exposure for any category ranged from 2 e.g. for “PCB-196 & PCB-203, serum (Cave 
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et al. 2010)” to 28 e.g. for “Non dioxin-like polychlorinated biphenyls (PCBs), serum (Gallagher 

et al. 2013a)” (Supplementary File S3). 

 

4.2.2 Health Outcomes  

The most frequently associated health outcome category was the “Body Weight and 

Metabolism” group (Fig 4.), which incorporated 61 specific health outcomes (Supplementary 

File S3 & S5) and was reported by 34/132 included publications (Supplemental File 3). A full 

break-down of the specific health outcomes associated with each outcome category, and the 

frequency of associations for each specific outcome can be found in Supplementary File S5.  

 

 

Figure 4:  The number of associations (x axis) which investigated a health outcome within 

each of the outcome categories (y axis), across all included publications.  

 

“Body weight and metabolism” was also the most diverse outcome category, with nearly 

twice as many specific health outcomes coded with the term as the next most diverse group; 

“Mortality” (see Supplementary File S3).  
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4.2.3 Associations 

Figure 5A illustrates which exposure and outcome categories were most frequently associated 

with each other, and which were not studied for association at all. Associations between 

“metals/metalloids” and “body weight/metabolism” were the most prevalent, followed 

closely by “dioxins, furans, PCBs” and “body weight/metabolism”. “Metal/metalloids” was the 

only exposure group to have been associated (at least once) with each of the health outcome 

categories. Similarly, “body weight/metabolism” and “liver” were the only health categories 

to have been associated (at least once) with each of the exposure categories. Figure 5B 

illustrates how these associations are distributed across individual publications - indicating 

that associations between “metals/metalloids” and “heart and circulatory” outcomes were 

independently reported in the largest number of publications. The implications for analysing 

trends at the publication vs. association level are further discussed below.  
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Figure 5: (A) Association-level heat map illustrating the frequency with which exposure and 

outcome categories have been associated, across all included publications i.e. a single 

publication reporting associations between “cadmium, blood” and “lipid levels” as well as 

“lead, blood” and “lipid levels” would count as two associations between 

“metals/metalloids” and “body weight/metabolism”. (B) Publication-level heat map 

illustrating the frequency with which independent publications report associations between 
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exposure and outcome categories i.e.  a single publication reporting associations between 

“cadmium, blood” and “lipid levels” as well as “lead, blood” and “lipid levels” would count 

only once as reporting associations between “metals/metalloids” and “body 

weight/metabolism”.  

 

5. Discussion 

This case-study mapping exercise expanded on the scoping review of Sobus et al (2015) by 

increasing resolution through extracting additional detail regarding exposure-outcome pairs 

for each included publication reporting a health outcome. In this exercise we did not present 

the direction, significance or statistical methods used to study associations - nor did we 

appraise the methodological integrity of the included studies. Thus, the presence of an 

association in this map is not indicative of a positive association or causative relationship 

between exposure and outcome - but simply of the fact that a study has investigated a 

relationship between those two variables.  

 

Inclusion of specific detail regarding results of included studies within systematic evidence 

maps is an issue for debate in the field - and has led to the practice of censoring evidence maps 

(e.g. (Gumbo et al., 2018). This censorship is borne out of a responsibility to ensure that data 

collated within an evidence map are not misinterpreted or misused, as validation and appraisal 

of included evidence is often beyond the scope of the evidence surveillance function served 

by SEMs. Such issues raise questions over the validity of exposure-outcome associations for 

NHANES datasets given limitations in the survey design and/or analytical methods employed 

in assessing associations (e.g. Christensen et al., 2014; Stone & Reynolds, 2003). However, the 

goal of evidence mapping is to make best use of all available data by improving computational 

access to an evidence landscape such that data can be critically analysed. It presents a neutral, 
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queryable account of what has been done or investigated within a field, regardless of whether 

and how that field “should” have conducted its investigations. Thus, although it may be 

appropriate in some cases (e.g. the production of user-interfaces for non-specialist audiences) 

censoring should not necessarily present a barrier to the resolution of evidence-maps.  

 

Disregarding censoring, limitations in the resolution of evidence maps are imposed by several 

other factors e.g. the prevalent use of rigid data structures which struggle to uphold referential 

integrity as the complexity of data increases with resolution (Wolffe et al., 2020). We discuss 

our simple and accessible exploration of the graph data model for handling this increase in 

complexity - focusing on the application and potential of graph-based methods for facilitating 

the production of highly resolved evidence maps. We compare our findings to scoping 

methods where appropriate, highlighting the remaining challenges which threaten resolution 

of evidence maps and the future work required to address these challenges through the lens 

of further expanding this NHANES mapping exercise. 

 

5.1 Mapping vs scoping exposure-outcome associations for the NHANES 

datasets  

In finding that “metals/metalloids” was the most prevalent exposure group, our results echo 

that of Sobus et al (2015), even without taking into consideration the publications which did 

not study a health outcome. This raises the question of fitness for purpose of evidence 

surveillance exercises, as the scoping methods employed by Sobus et al. are sufficient to 

broadly determine the most dominant features of the evidence landscape and are suited to 

characterising evidence at the publication level.  
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However, this publication level assessment of the evidence base did illicit some results which 

were ambiguous, e.g. publications which fall into the “multi-group” category. Additionally, our 

results show the potential for considerable differences in trends evaluated at the publication 

versus association level (Figure 5). This is because a single publication can be broadly 

categorised as being about one thing (e.g. metals/metalloids), but actually present multiple 

results (e.g. for five different metals) which are uniquely relevant to the context of chemical 

risk assessment, and the manner in which substances are currently regulated on a single 

chemical-by-chemical basis. Thus, even minimally increasing resolution, as in our evidence 

map, is likely to increase the value of the evidence surveillance exercise for regulatory 

applications (e.g. Wolffe et al, 2019).  

 

Presenting mapped associations as a computationally accessible and queryable output (rather 

than as a static data table within a pdf) also has advantages over traditional scoping methods 

of evidence surveillance. Static data tables or visualizations may be valuable and fit for the 

purpose of identifying trends and specific evidence gaps, but they limit the range of questions 

which can be asked of the collated data - requiring interested users to re-conduct data 

extraction efforts should they wish to explore the presented trends in further detail, or from 

alternate angles. Thus, ensuring that the underlying data is computationally accessible 

expands the utility of evidence surveillance exercises. This, in combination with increased 

resolution meant that we were able to identify evidence gaps in an equivalent manner to 

Sobus et al.’s scoping review (e.g. finding a lack of investigated associations between “PAHs” 

and “cancer”), but were also able to query the data to learn/infer more about the evidence 

landscape. For example, even if completely ignorant to the chemistry of included exposures - 

uncovering the fact that the “Dioxins, Furans, PCBs” group was most frequently studied as a 

mixture of chemicals - and having access to the constituents of those mixtures, allows users 
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to learn something about the potential similarities and/or detection of these chemicals - which 

may be of significance for their regulation.  

 

5.2 Exploring application of a graph-based approach to systematic evidence 

mapping 

Although our mapping exercise only minimally increased the resolution of extracted data, the 

subsequent increase in complexity and connectedness of the underlying data model was 

significant and began to present issues for representation in flat data structures. This can be 

illustrated by comparing the structure of the flat data table which housed the pre-processed 

raw data (Table S2) to the graph data model which stored this data. The flat data table 

contained a combination of expanding rows and columns, where only the authors (as 

producers of the map), are cognizant of the relationships between the attributes and entities 

housed in various rows and columns. Contrastingly, the graph data model (Fig. 1) makes these 

relationships explicit to end-users and maintains referential integrity.  

 

We opted to use Neo4j’s (community edition) graph database implementation for this initial 

exploration of a graph-based approach to evidence-mapping due to its accessibility and the 

availability of resources designed for non-technical audiences to familiarise themselves with 

the graph database (Robinson et al., 2015; Sasaki et al., 2018). Neo4j implements a labelled-

property graph model, whereby nodes can be assigned labels and properties e.g. labels of 

“HealthOutcome”, “SingleChemicalExposure” etc. were applied to nodes in our evidence map, 

and properties of “Title”, “Authors”, “Year” etc. assigned specifically to the publication nodes 

in our evidence map. We found this graph data model amenable to manual evidence mapping 

efforts, utilising labels to facilitate categorising and querying the evidence base. Populating 

and querying the graph was intuitive, but did require some technical knowledge in the form 

of the cypher querying language. This technical knowledge indicates a key barrier to the wider 
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uptake of graph-based approaches for evidence mapping in environmental health. However, 

a growing volume of resources (Robinson et al., 2015; Sasaki et al., 2018), tools designed for 

non-specialists (e.g. Neo4j, 2020) and increasing computational literacy of evidence mappers 

will aide overcoming this barrier.  

 

We found a more severe barrier to the graph-based approach in attempting to balance the 

potential for higher resolution with the limitations set by a manual data extraction process. In 

the initial planning phase of this exercise, we hoped to expand our definition of an 

“association” as “occurring between any two entities for which the results of a statistical 

measure/model of associated were reported” - including assessments between e.g. stratified 

and non-stratified populations, adjusted and non-adjusted models etc. as independent 

associations and extracting detail on the statistical approach, significance and direction of the 

associations. However, this dramatically increased the manual data extraction burden of the 

exercise e.g. Dye et al. (2002) which reports 4 associations in our lower resolution map would 

report 59 associations according to this expanded definition. A lack of sufficient time and 

resources meant that we were unable to pursue such high-resolution mapping manually. This 

challenge is likely reflected by the limited resource availability of chemicals policy workflows. 

This highlights the need for more automated approaches to data screening and especially 

extraction if the full potential of high-resolution graph-based evidence maps are to be 

realised.  

 

Preserving resolution and facilitating automation appears well aligned with the storage of data 

as semantic triples within a knowledge graph, discussed in our previous work (see Wolffe et 

al., 2020). This is because all information expressed with language within a publication can be 

captured as a series of subject-predicate-object triples, where subjects and objects occupy 

nodes of a graph, and predicates form the relationships which connect subjects and objects. 
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The designation of subjects, predicates and objects is dependent on rules and conventions 

inherent to the structure of language - thus mappers need not manually “choose” information 

from a publication for extraction. Instead, all plain text within a publication can be parsed into 

sets of semantic triples using natural language processing (Rusu et al., 2014). Although such 

parsers are available in other fields (e.g. Gangemi et al., 2009) we are unaware of their 

successful application in evidence mapping or environmental health contexts. It can also be 

argued that distilling unstructured text into a series of semantic triples is not a data extraction 

task, but is the data standard to which publications should adhere in the first instance.  

 

However, with higher resolution and automated extraction workflows comes increased 

complexity for graph outputs. Much of this complexity may be noise - i.e. information which 

is irrelevant to the interests of users wishing to query the evidence landscape for a particular 

application. This makes accessing trends within the graph and/or discovering underlying data 

models more challenging than in our lower resolution, manually produced exercise. This is 

where binding data to ontologies is vital for distilling data relevant to a particular domain, and 

for characterising the evidence space around a domain. However, this is still an area of active 

research - and another aspect of the graph-based approach limited by a greater demand for 

technical knowledge.  

 

5.3 Expanding this evidence mapping exercise  

Pending further advances and applications of the automated approaches required to facilitate 

high resolution knowledge graphs, it remains important to continue exploration of graph-

based approaches to evidence mapping as a means of upholding data integrity. To this end, 

there is significant scope to expand and improve the NHANES mapping exercise presented in 

this manuscript. 
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While data extraction workflows are still largely manual, ensuring the process is conducted in 

duplicate by two independent mappers will help to protect against human error and improve 

the accuracy and consistency of extracted information. Additionally, expanding the search 

strategy used to find relevant publications e.g. by removing restrictive terms such as those 

relating to specific biomarkers (“urine”, “blood” etc.), and updating the date-range of the 

search to encompass current literature, will ensure a more comprehensive coverage of the 

evidence-landscape within the map. Extracting even minimal additional detail from each of 

the included studies would also serve to increase the resolution and utility of the map. 

Similarly, extracting exposure-exposure associations from the exposure studies (excluded for 

the purposes of this mapping exercise) will begin to facilitate more complex graph queries, 

e.g. where a path from an exposure source such as personal care products can be traversed 

to a health outcome through related biomarkers - even if the exposure source and the health 

outcome were not reported within the same study. However, screening and extracting a 

larger, updated dataset in duplicate will incur the same challenges regarding manual 

workflows and resource availability as discussed above.  

 

Even without further screening or data extraction, there is scope for expanding the utility of 

the evidence map. Incorporating a relevant ontology will help to further categorise and 

organise data, such that the map can be queried against the topics of interest to a particular 

domain (e.g. cancer biology). This will also ensure that the map is interoperable and will 

facilitate the incorporation of data from sources beyond the publications collated in the 

mapping exercise, adding greater contextual value to the interpretation of trends. For 

example, incorporating evidence from environmental monitoring studies into the map of 

NHANES associations may begin to elucidate potential exposure pathways.  
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There is also scope to better characterise the use (or gaps in the use) of NHANES data by 

developing an ontology derived from the NHANES datasets themselves. A potential workflow 

for the development of such an ontology is briefly outlined in Fig. 6. Incorporating all data 

variables available in the NHANES datasets into an ontology will facilitate the identification of 

specific variables which might be available for analysis but have been under-utilised in studies 

of association. Maintaining relationships between specific variables and the NHANES survey 

cycle in which those variables were studied will facilitate detailed exploration and inferencing 

of how trends have changed over time, e.g. allowing fast identification of whether a sudden 

increase in associations studied for a particular chemical is due to  a corresponding sudden 

availability of data within a new NHANES survey cycle, or whether such trends can be 

attributed to other factors. Ensuring that NHANES variables are related through a hierarchy of 

terms will facilitate further, variably resolved querying of included associations e.g. if 

“Cadmium, blood” and “Cadmium, urine” are categorised as “Cadmium” before 

“metals/metalloids”, trends can be analysed at three levels of resolution. This may be 

particularly useful for chemical substances which are currently grouped in very broad 

categories e.g. “Dioxins, furans, PCBs”.  



107 
 

 

Figure 6: Brief outline of a potential workflow for devising a controlled vocabulary 

ontology which describes the availability of data within the NHANES datasets. Variables 

which are more specific to particular survey cycles (e.g. dates) might also be incorporated 

into the organisational structure of the ontology.  
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Incorporating health related variables from the NHANES datasets would prove similarly 

beneficial for the resolution of queries and interpretation of identified trends. We noticed that 

the health outcomes reported in many included studies were not explicitly reported as 

NHANES variables, but were defined by authors based on several more specific NHANES 

variables. For example, Muntner et al. (2005) defined “hypertension” as “...based on the 

average of all available blood pressure measurements, hypertension was defined as systolic 

or diastolic blood pressure of at least 140 mm Hg or 90 mm Hg, respectively, and/or self-

reported current use of blood pressure– lowering medication.” Thus, maintaining a link 

between the individual variables within the NHANES datasets which constitute a defined 

health outcome will improve insights into the use of NHANES data, and will allow the 

appropriateness of these uses to be appraised.  

 

6. Conclusion 

 

In this manuscript, we presented an exploration of the implementation of graph-based 

approaches to evidence mapping using a context of relevance to decision-making in 

environmental health, and a dataset accessible to others wishing to learn from, or further 

expand this work. The graph data model is a flexible and intuitive means of maintaining data 

integrity when extracting, storing and querying increasingly complex, higher resolution 

datasets. It has significant potential application for evidence surveillance within regulatory 

workflows - and when coupled with SEM methodology, offers greater transparency and 

reusability than current scoping approaches.  

 

However, our exploration of the application of graphs to current evidence mapping workflows 

identified two key challenges on which to focus future work;  
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1. Although the graph data model is arguably more intuitive than flat, or relational data 

models - graph-based approaches demand a greater level of technical expertise to 

implement. This may present a barrier for evidence mappers who are unfamiliar with 

the programming and querying languages required for successful implementation.  

2. Graphs are capable of upholding referential integrity for complex and highly 

connected datasets and facilitate highly resolved queries. However, the manual 

nature of data extraction within SEM methodology limits the resolution and 

complexity of the datasets to be stored within a graph- preventing graphs from being 

exploited to their full potential.  

 

Research into the automation of evidence synthesis workflows is ongoing (van Altena et al., 

2019; Connor et al., 2019; Marshall & Wallace, 2019) - and will facilitate the production of 

large and informative graph datasets. In the interim, it is vital to continue increasing familiarity 

with graph-based approaches and their associated data standards. Continued research into 

the application of graphs for evidence surveillance will allow independently conducted, 

manual mapping efforts to be amalgamated. This will facilitate a deeper understanding not 

only of the toxicological evidence landscape, but of the methods required to implement 

evidence mapping at scale.   
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Conclusion 

 

Evidence-based approaches such as systematic review, which have transformed medical and 

social sciences, have much to offer environmental health. Interest in their uptake, especially 

for chemical risk assessment and regulatory purposes, is growing – and is representative of an 

overall push to reform the resource efficiency, representativeness and rigour in developing 

chemicals policy. These sentiments are increasingly important as the chemicals industry 

continues to grow, and as the availability of data relevant to chemical risk assessment 

exponentially increases.    

However, uptake of systematic review for chemical risk assessment is not without its 

challenges. Some of these challenges are more fundamental to the systematic review process 

(e.g. the need to appropriately manage subjectivity when assessing risk of bias of included 

studies, see Chapter One); while others are specific to regulatory decision-making (e.g. limited 

resource availability and a broader set of information requirements than can be addressed by 

a single systematic review, see Chapter Two); or to environmental health data itself (e.g. 

managing the integrity of highly complex and connected data, see Chapter Three). Facilitating 

uptake of evidence-based approaches to chemical risk assessment requires that these 

challenges are understood and addressed. 

Continuing to develop and communicate best practice for environmental health systematic 

reviews serves to address the challenges associated with accessing the methodology itself. 

This is a key focus for several working groups dedicated to the EBT movement (Johns Hopkins 

Bloomberg School of Public Health, 2019; NTP-OHAT, 2019; UCSF Program on Reproductive 

Health and the Environment, 2019 etc.) who produce comprehensive systematic review 

guidance, training, standards and methodological tools tailored for the environmental health 
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context (e.g. Hoffmann et al., 2017; NTP, 2015; OHAT, 2015; Schaefer & Myers, 2017; 

Woodruff & Sutton, 2014 etc.). Open and constructive dialogue regarding best practice for EH 

SRs may help to establish standards and consensus within the field, or at the least – equip 

stakeholders with the understanding required to critically appraise current evidence synthesis 

practice. Such ongoing communication is an important aspect of the move toward more 

evidence-based approaches to chemical risk assessment, especially as ill-defined systematic 

review practices begin to appear in regulatory frameworks (e.g. Scientific Committee on 

Consumer Safety SCCS, 2019) or as aspects of the methodology adapted for regulatory 

frameworks deviate from best-practice (e.g. the numerical scoring system recommended for 

assessing risk of bias in the EPA’s systematic review methodology for TSCA risk evaluations 

(EPA, 2018)).  

Understanding the needs and limitations of regulatory decision-making is key to devising tools 

and/or workflows which facilitate the uptake of evidence-based approaches. In this thesis, 

systematic evidence mapping is identified as a methodological solution which addresses these 

needs and limitations (see Chapter Two). By providing a much broader overview of the 

evidence-landscape, SEMs facilitate the identification of trends (including issues of emerging 

regulatory concern), on which to focus resources. The computationally accessible and easily 

updated format of SEMs as queryable databases renders them multi-purpose and “re-

useable”, ensuring that any data collated, characterised and stored is available for varied 

present and/or future uses. This creates larger returns on the resources invested when 

developing a SEM. The evidence-surveillance function served by SEMs is an integral 

component of existing regulatory decision-making frameworks – and thus the methodology 

can be more readily incorporated into current chemical risk assessment workflows. Similarly, 

SEMs are able to serve the information retrieval steps of systematic review. Thus, not only do 

SEMs facilitate the formulation of informative (rather than empty) systematic review research 
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questions through identification of research clusters, but they also potentially reduce the 

workload associated with conducting systematic reviews.   

As interest in, and application of, systematic evidence mapping beings to emerge – it is 

important to understand what underpins the utility of the methodology for chemical risk 

assessment and regulatory decision-making. On a fundamental level, systematic evidence 

mapping transforms unstructured, textual data which is heterogeneous and distributed over 

disparate sources – into a single, organised and machine-readable resource. It is this 

accessibility of data which allows trends across vast quantities of evidence to be 

programmatically explored, quickly and efficiently. Thus, ensuring that the data management 

practices of systematic evidence maps do not compromise this accessibility is vital for the 

successful application of the methodology. In this thesis, the familiar, tabular-based data 

management practices of evidence mapping in other fields were found to be poorly suited to 

the complex and highly connected nature of toxicology and environmental health data. The 

rigidity of these data structures was found to compromise data integrity and consequently 

reduced the utility of evidence maps for varied application. The graph data model was 

identified as a flexible alternative, capable of directly storing the relationships between highly 

connected toxicology data (see Chapter Three).  

Modelling toxicology data as a graph, and storing relationships as queryable entities, has 

significant implications for trend-spotting – facilitating complex and highly resolved graph 

queries which traverse patterns of information. These complex queries have the potential to 

move systematic evidence mapping beyond the identification of broad trends such as research 

gaps and research clusters, and toward more highly resolved applications such as the 

identification of adverse outcome pathways (Villeneuve et al., 2018). This may serve to 

facilitate a more predictive (rather than simply proactive) approach to chemical risk 

assessment. However, graph-based technologies are novel and unfamiliar to stakeholders 
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working within environmental health. There is therefore a need to bridge the gap between 

those with expertise in the implementation of graph-based data management, and those with 

expertise in the potential applications of graph-based data management (i.e. regulatory 

decision-making within toxicology and environmental health). Continued exploration and 

communication of the potential gains in data integrity, transparency and interoperability 

offered by the application of graphs within environmental health will serve to increase 

familiarity within the field and resolve the future research required to implement evidence 

mapping at scale (see Chapter Four) - expediting the uptake of resource-efficient evidence-

based methods within chemicals policy and wider environmental health.   
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Future Work  

 

Successfully implementing evidence-based approaches to chemical risk assessment requires 

that the resource burden associated with these approaches is lessened. Whilst systematic 

evidence mapping offers a more resource-efficient framework for pursuing evidence-based 

decision-making - its manual workflow continues to present barriers to wider uptake. Thus, a 

key focus of future work within the field is the development of automated approaches to 

evidence-mapping. 

 

Automation is a topic of increasing interest for evidence synthesis applications, with several 

ongoing research efforts (van Altena et al., 2019; Connor et al., 2019; Marshall & Wallace, 

2019). These efforts have largely manifested as tools which assist the screening and/or 

literature tagging aspects of evidence synthesis workflows and are beginning to appear as 

standard features of review management software (e.g. Evidence Partners, 2019; Sciome, 

2018). Screening literasture for inclusion in a systematic review represents a typical case for 

application of automated approaches. This is because, in addressing specific research 

questions, the inclusion/exclusion criteria for systematic reviews are more clearly and 

specifically defined. Thus, machine learning classifiers are able to learn from a manually 

screened training set where all of the included studies are likely to have very similar features. 

In the field of medicine, incorporating automation tools into the systematic review workflow 

has been reported to reduce the time and workload required to complete a systematic review 

e.g. by 40% for the Rayyan tool (Ouzzani, 2017), among many others.  

 

However, as discussed in this thesis – resolving a specific research question for chemical risk 

assessment applications is more difficult – and the range of potentially included evidence 
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considerably more heterogeneous. Similarly, the inclusion criteria for systematic evidence 

maps are much broader. As systematic evidence mapping is fundamentally concerned with 

making data accessible for querying, the data extraction phase of the methodology is most 

important and demanding. Thus, focusing automation efforts on the screening stage of the 

methodology is insufficient for reducing the manual workload of SEMs. Developing automated 

approaches to data extraction, which extend beyond the simple identification of key words 

and toward the consideration of context, is therefore a challenge on which to focus future 

research.  

 

However, it can be argued that the issue of data accessibility which systematic evidence 

mapping targets, is not a challenge for machine learning, but is an issue concerning data 

standards. Ensuring that environmental health evidence is published in a machine-readable 

format (rather than as unstructured text) in the first instance will alleviate the need to 

manually process and store data in a machine accessible format. Similar issues can be found 

motivating the Semantic Web movement (Berners-Lee et al., 2001), which fundamentally 

strives to make unstructured data published on the web machine-accessible – allowing for 

greater connectivity and interoperability. A variety of tools have emerged from this 

movement, including: the resource description framework (RDF) data standard (Manola & 

Miller, 2004), in which data are stored as a graph of semantic triples (see Chapter Three); the 

SPARQL Protocol and RDF Query Language (SPARQL) for querying data stored in RDF format 

(The W3C SPARQL Working Group, 2013); and linked open data libraries (e.g. DBpedia, 2020), 

which allow RDF datasets to be linked through semantic triples to other datasets for greater 

contextual value. Exploring and/or exploiting these tools for evidence mapping applications 

and understanding the overlap/applicability of the Semantic Web movement to the EBT 

movement, represents a key area for future work.  
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Once data are machine-readable, evidence mapping approaches can move away from data 

extraction and focus on deriving value from accessible data. Modelling, characterising and 

querying data will become the key focus for automation efforts, resolving the “signal” for a 

particular research application from what will become a considerably “noisy” computationally 

accessible and interconnected evidence landscape. Facilitating automated approaches to 

querying or deriving value from accessible data requires implementing graph-based controlled 

vocabulary ontologies which organise data for applications within a particular domain (see 

Chapter Three). Such ontologies also form a key aspect of the Semantic Web toolkit. More 

established applications of ontologies for querying and inferencing over graphs of data can be 

found in the pharmaceutical industry (Samwald et al., 2011; Wild et al., 2012; Yankulov, 2019), 

and domain-specific ontologies available for biological fields e.g. (Ashburner et al., 2000; 

National Center for Biomedical Ontology, 2019). These use cases represent valuable learning 

opportunities for evidence-based approaches to chemical risk assessment and risk 

management decision-making. Future work within this area will require the development of 

toxicological ontologies which are relevant to regulatory workflows (Hardy et al., 2012). This 

represents a largely manual, consensus-building exercise and reiterates the importance of 

continued communication of evidence-based methods within chemicals policy.  

 

In the interim, the true value of pursuing these avenues of future research can be explored 

and refined by conducting slightly more narrowly focused evidence mapping exercises within 

environmental health and toxicology, in which the utility of the methodology can still be 

demonstrated and developed without exceeding resource availability. Producing evidence 

maps which can be incorporated directly into chemical risk assessment workflows will 

promote interest and uptake of the methodology, as well as resolve further issues in need of 

future research e.g. the development of user interfaces for evidence maps which are both fit-

for-purpose and accessible to chemical risk assessors, decision-makers and/or the public. 
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Given that current regulatory workflows operate on a chemical-by-chemical basis, producing 

evidence maps which collate all available and relevant information on a particular chemical 

(or class of chemicals) offers a more immediately achievable means of exploring and adapting 

the methodology – providing much-needed “case studies”. These exemplar evidence-maps 

will provide the foundations from which future research efforts can be successfully developed.  
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1.0. Appendix 1. Search strings for PubMed 

Search # Search String 

# records 
retrieved 
5/13/19 

#1 375-22-4[rn] OR PFBA[tw] OR "Perfluorobutyric acid"[nm] OR Perfluorobutanoic[tw] OR 

Heptafluorobutanoic[tw] OR Heptafluorobutyric[tw] OR heptaflurorbutyric[tw] OR 

Perfluorobutyric[tw] OR "Heptafluoro-1-butanoic"[tw] OR Perfluoropropanecarboxylic[tw] OR 

"heptafluoro-butanoic"[tw] OR "Heptafluoro-n-butyric"[tw] OR Heptafluorobutyricacid[tw] OR (c4 

[tw] AND perfluorinated [tw]) 

841 

#2 2706-90-3[rn] OR PFPeA[tw] OR "Perfluoropentanoic acid"[nm] OR Perfluoropentanoic[tw] OR 

Perfluorovaleric[tw] OR Nonafluoropentanoic[tw] OR Nonafluorovaleric[tw] OR "n-

Perfluoropentanoic"[tw] OR "Perfluoro-n-pentanoic"[tw] OR "Nonafluoro-valeric"[tw] OR (c5 [tw] 

AND perfluorinated [tw]) 

160 

#3 307-24-4[rn] OR PFHxA[tw] OR "Perfluorohexanoic acid"[nm] OR Perfluorohexanoic[tw] OR 

"Perfluoro-hexanoic"[tw] OR "Perfluoro hexanoate"[tw] OR "IPC-PFFA-6"[tw] OR "undecafluoro-

hexanoic"[tw] OR "Undecafluoro-1-hexanoic"[tw] OR Undecafluorohexanoic[tw] OR (c6 [tw] AND 

perfluorinated [tw]) 

313 

#4 375-85-9[rn] OR 20109-59-5[rn] OR 6130-43-4[rn] OR PFHpA[tw] OR "Perfluoroheptanoic acid"[nm] 

OR Perfluoroheptanoic[tw] OR Perfluoroheptanoicacid[tw] OR Perfluoroheptanoate[tw] OR 

Tridecafluoroheptanoic[tw] OR "Perfluoro-n-heptanoic"[tw] OR Perfluoroenanthic[tw] OR 

"tridecafluoro-heptanoic"[tw] OR "Tridecafluoro-1-heptanoic"[tw] OR "n-perfluoroheptanoic"[tw] 

OR Tridecafluoroenanthic[tw] OR (c7 [tw] AND perfluorinated [tw]) 

245 

#5 375-95-1[rn] OR 4149-60-4[rn] OR PFNA[tw] OR "perfluorononanoic acid"[nm] OR 

perfluorononanoic[tw] OR "Perfluoro-n-nonanoic"[tw] OR Perfluornonansaeure[tw] OR 

"Perfluorononan-1-oic"[tw] OR Perfluoropelargonic[tw] OR Heptadecafluorononanoic[tw] OR 

Heptadecafluornonansaeure[tw] OR "heptadecafluoro-nonanoic"[tw] OR 

Heptadecafluoropelargonic[tw] OR "n-Heptadecafluorononanoic"[tw] OR "heptadecafluoro-n-

nonanoic"[tw] OR (c9 [tw] AND perfluorinated [tw]) 

888 

#6 335-76-2[rn] OR PFDA[tw] OR "Perfluorodecanoic Acid"[nm] OR Perfluorodecanoic[tw] OR 

Nonadecafluorodecanoic[tw] OR Ndfda[tw] OR "Perfluoro-N-decanoic"[tw] OR perfluorocaprylic[tw] 

OR "Nonadecafluoro-n-decanoic"[tw] OR Perfluorocapric[tw] OR "n-perfluorodecanoic"[tw] OR (c10 

[tw] AND perfluorinated [tw]) 

543 

#7 2058-94-8[rn] OR PFUnA[tw] OR "Perfluoroundecanoic Acid"[nm] OR Perfluoroundecanoic[tw] OR 

heneicosafluoroundecanoic[tw] OR "Perfluoro-n-undecanoic"[tw] OR "heneicosafluoro-

undecanoic"[tw] OR "C11-PFA"[tw] OR (c11 [tw] AND perfluorinated [tw]) 

222 

#8 307-55-1[rn] OR PFDoA[tw] OR "Perfluorododecanoic Acid"[nm] OR Perfluorododecanoic[tw] OR 

Perfluorolauric[tw] OR Tricosafluorododecanoic[tw] OR Tricosafluorolauric[tw] OR "tricosafluoro-

170 



166 
 

Dodecanoic"[tw] OR "n-perfluorododecanoic"[tw] OR (c12 [tw] AND perfluorinated [tw]) 

#9 72629-94-8[rn] OR PFTrDA[tw] OR "perfluorotridecanoic acid"[nm] OR perfluorotridecanoic[tw] OR 

Pentacosafluorotridecanoic[tw] OR "Pentacosafluoro-tridecanoic"[tw] OR (c13[tw] AND 

perfluorinated [tw]) 

65 

#10 376-06-7[rn] OR PFTeA[tw] OR PFTA[tw] OR "perfluorotetradecanoic acid"[nm] OR 

"perfluoromyristic acid"[nm] OR perfluorotetradecanoic[tw] OR Heptacosafluorotetradecanoic[tw] 

OR perfluoromyristic[tw] OR "heptacosafluoro-tetradecanoic acid"[tw] OR (c14 [tw] AND 

perfluorinated [tw]) 

92 

#11 375-73-5[rn] OR 59933-66-3[rn] OR 29420-49-3[rn] OR 68259-10-9[rn] OR 45187-15-3[rn] OR 

PFBS[tw] OR PFBuS[tw] OR "Eftop FBSA"[tw] OR "nonafluorobutane-1-sulfonic acid"[nm] OR 

"Perfluorobutanesulfonic acid"[nm] OR "1-Butanesulfonic acid, 1,1,2,2,3,3,4,4,4-nonafluoro-"[tw] 

OR "1-Butanesulfonic acid, nonafluoro-"[tw] OR "1-Perfluorobutanesulfonic acid"[tw] OR "1-

Perfluorobutanesulfonic"[tw] OR "1,1,2,2,3,3,4,4,4-Nonafluoro-1-butanesulfonic acid"[tw] OR 

"1,1,2,2,3,3,4,4,4-Nonafluorobutane-1-sulphonic acid"[tw] OR "Nonafluoro-1-butanesulfonic 

acid"[tw] OR "nonafluoro-1-butanesulfonic"[tw] OR "nonafluoro-butanesulfonic acid"[tw] OR 

"nonafluorobutane sulfonic"[tw] OR "nonafluorobutane-1-sulfonic"[tw] OR 

"Nonafluorobutanesulfonic acid"[tw] OR "nonafluorobutane-1-sulphonic"[tw] OR "pentyl 

perfluorobutanoate"[tw] OR "Perfluoro-1-butanesulfonate"[tw] OR "perfluoro-1-

butanesulfonic"[tw] OR "perfluorobutane sulfonate"[tw] OR "Perfluorobutane sulfonic acid"[tw] OR 

"perfluorobutane sulfonic"[tw] OR "Perfluorobutanesulfonate"[tw] OR "Perfluorobutanesulfonic 

acid"[tw] OR "perfluorobutyl sulfonic"[tw] OR "Perfluorobutylsulfonate"[tw] OR "perfluorobutane-1-

sulfonic"[tw] OR FC-98[tw] OR Nonaflate[tw] OR nonafluorobutanesulfonic[tw] OR 

nonafluorobutanesulphonic[tw] OR perfluorobutanesulphonic[tw]  

328 

#12 2706-91-4[rn] OR PFPeS[tw] OR "perfluoropentanesulfonic acid"[nm] OR 

perfluoropentanesulfonic[tw] OR "perfluoropentane-1-sulphonic"[tw] OR "Perfluoropentane-1-

sulfonic"[tw] OR "1-Pentanesulfonic"[tw] OR "perfluoropentane sulfonic"[tw] OR "Undecafluoro-1-

pentanesulfonic"[tw] OR "undecafluoropentane-1-sulfonic"[tw] 

54 

#13 355-46-4[rn] OR 3871-99-6[rn] OR 68259-08-5[rn] OR pfhxs[tw] OR "Perfluorohexanesulfonic 

Acid"[nm] OR "Perfluorohexane sulfonic"[tw] OR "Perfluorohexane-1-sulphonic"[tw] OR 

"tridecafluoro-1-Hexanesulfonic"[tw] OR "Tridecafluorohexane-1-sulfonic"[tw] OR 

Perfluorohexanesulfonic[tw] 

520 

 

#14 375-92-8[rn] OR 60270-55-5[rn] OR PFHpS[tw] OR "Perfluoroheptanesulfonic acid"[nm] OR 

Perfluoroheptanesulfonic[tw] OR "Perfluoroheptane sulfonic"[tw] OR "Pentadecafluoro-1-

heptanesulfonic"[tw] OR "pentadecafluoroheptane-1-sulfonic"[tw] 

26 

#15 68259-12-1[rn] OR 17202-41-4[rn] OR PFNS[tw] OR "Perfluorononanesulfonic acid"[nm] OR 

Perfluorononanesulfonic[tw] OR "Nonadecafluoro-1-nonanesulfonic"[tw] OR "nonadecafluoro-1-

Nonanesulfonic"[tw] 

38 

#16 335-77-3[rn] OR 67906-42-7[rn] OR PFDS[tw] OR "Perfluorodecane sulfonic acid"[nm] OR 

"Perfluorodecane sulfonic"[tw] OR "Perfluorodecane sulphonic"[tw] OR 

henicosafluorodecanesulphonicacid[tw] OR perfluordecansulfonsaure[tw] OR "Perfluorodecane 

sulfonate"[tw] OR "henicosafluorodecane-1-sulfonic"[tw] OR "heneicosafluoro-1-

decanesulfonic"[tw] OR henicosafluorodecanesulphonic[tw] OR "henicosafluorodecane 

sulphonic"[tw] OR "henicosafluorodecane sulfonic"[tw] 

230 

#17 919005-14-4[rn] OR 958445-44-8[rn] OR ADONA[tw] OR "3H-perfluoro-3-[(3-methoxy-

propoxy)propanoic]"[tw] OR "ammonium 4,8-dioxa-3H-perfluorononanoate"[tw] OR "4,8-dioxa-3H-

perfluorononanoic"[tw] OR "2,2,3-trifluoro-3-[1,1,2,2,3,3-hexafluoro-3-

18 
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(trifluoromethoxy)propoxy]"[tw] OR "3H-perfluoro-3-[(3-methoxy-propoxy)propanoate]"[tw] 

#18 13252-13-6[rn] OR 62037-80-3[rn] OR 236-236-8[rn] OR 26099-32-1[rn] OR GenX[tw] OR "2-

(Heptafluoropropoxy)-2,3,3,3-tetrafluoro-propionic"[tw] OR "2-(Heptafluoropropoxy)-2,3,3,3-

tetrafluoropropanoic"[tw] OR "2-(Heptafluoropropoxy)-2,3,3,3-tetrafluoropropionic"[tw] OR "2-

(Heptafluoropropoxy)tetrafluoropropionic acid"[nm] OR "2-

(Heptafluoropropoxy)tetrafluoropropionic"[tw] OR "2-

(Heptafluoropropoxy)tetrafluoropropionicacid"[tw] OR "2,3,3,3-tetrafluoro-2-

(heptafluoropropoxy)propanoic acid"[nm] OR "2,3,3,3- tetrafluoro-2-

(heptafluoropropoxy)propanoic acid"[tw] OR "2,3,3,3-tetrafluoro-2- (1,1,2,2,3,3,3-

heptafluoropropoxy)-Propanoic acid"[tw] OR "2,3,3,3-tetrafluoro-2- (1,1,2,2,3,3,3-

heptafluoropropoxy)propanoic acid"[tw] OR "2,3,3,3-Tetrafluoro-2- (heptafluoropropoxy)propionic 

acid"[tw] OR "2,3,3,3-tetrafluoro-2- (perfluoro propoxy) propanoic"[tw] OR "2,3,3,3-tetrafluoro-2- 

(perfluoro propoxy)propanoic"[tw] OR "2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3- 

heptafluoropropoxy)propanoic acid, ammonium salt"[tw] OR "2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-

heptafluoropropoxy) propanoic"[tw] OR "2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-

heptafluoropropoxy)propanoic"[tw] OR "2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-

heptafluoropropoxy)propionic"[tw] OR "2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic"[tw] 

OR "2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate"[tw] OR "2,3,3,3-tetrafluoro-2-

(heptafluoropropoxy)propanoic"[tw] OR "2,3,3,3-Tetrafluoro-2-(heptafluoropropoxy)propionic"[tw] 

OR "2,3,3,3-tetrafluoro-2-(perfluoropropoxy) propanoic"[tw] OR "2,3,3,3-tetrafluoro-2-

(perfluoropropoxy)propanoic"[tw] OR "Ammonium 2-(perfluoropropoxy)perfluoropropionate"[tw] 

OR "Ammonium 2,3,3,3- tetrafluoro-2-(heptafluoropropoxy)propanoate"[tw] OR "ammonium 

perfluoro(2-methyl-3-oxahexanoate)"[tw] OR "Ammonium perfluoro(2-methyl-3-oxahexanoic) 

acid"[tw] OR "FRD902"[tw] OR "GenX-H3N"[tw] OR "HFPO-DA"[tw] OR "hexafluoropropylene oxide 

dimer"[tw] OR "Perfluorinated aliphatic carboxylic acid, ammonium salt"[tw] OR "Perfluorinated 

aliphatic carboxylic acid"[tw] OR "perfluoro-2-methyl-3- oxahexanoic acid"[tw] OR "perfluoro-2-

propoxypropanoic acid"[tw] OR "perfluoro-2-propoxypropionic acid"[tw] OR "perfluoro-2-

propoxypropionic"[tw] OR "perfluoro-αpropoxypropionic acid"[tw] OR "Perfluoro(2- methyl-3-

oxahexanoic) acid"[tw] OR "Perfluoro(2-methyl-3-oxahexanoate) "[tw] OR "Perfluoro(2-methyl-3-

oxahexanoic)"[tw] OR "perfluoro2-(propyloxy)propionic acid"[tw] OR "propanoic acid, 2,3,3,3-

tetrafluoro-2- (heptafluoropropoxy)-"[tw] OR "Propanoic acid, 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-

heptafluoropropoxy)- "[tw] OR "Propanoic acid, 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-

heptafluoropropoxy)-, ammonium salt"[tw] OR "Propanoic acid, 2,3,3,3-tetrafluoro-2-

(heptafluoropropoxy)-, ammonium salt"[tw] OR "propionic acid, 2,3,3,3-tetrafluoro-2- 

(heptafluoropropoxy)-"[tw] OR "tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)propanoic"[tw] OR 

"tetrafluoro-2-(heptafluoropropoxy)propanoate"[tw] OR "tetrafluoro-2-

(heptafluoropropoxy)propanoic"[tw] OR "Undecafluoro-2-methyl-3-oxahexanoic acid"[tw] OR 

(("2,3,3,3-Tetrafluoro-2- (heptafluoropropoxy)propionic"[tw] OR "2,3,3,3-tetrafluoro-2- 

(1,1,2,2,3,3,3-heptafluoropropoxy)-Propanoic"[tw] OR "Perfluorinated aliphatic carboxylic"[tw] OR 

"Perfluoro(2-methyl-3- oxahexanoic)"[tw] OR "2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3- 

heptafluoropropoxy)propanoic"[tw] OR "2,3,3,3-tetrafluoro-2- (heptafluoropropoxy)propanoic"[tw] 

OR "perfluoro-2- (propyloxy)propionic"[tw] OR "perfluoro-2-methyl-3- oxahexanoic"[tw] OR 

"perfluoro-2-propoxypropanoic"[tw] OR "perfluoro-2-propoxypropionic"[tw] OR "perfluoro-

αpropoxypropionic"[tw]) AND (acid[tw] OR acids[tw])) OR (("Undecafluoro-2- methyl-3-

oxahexanoic"[tw] OR "Ammonium perfluoro(2-methyl-3- oxahexanoic)"[tw] OR "2,3,3,3-Tetrafluoro-

2-(1,1,2,2,3,3,3- heptafluoropropoxy)"[tw] OR "Perfluorinated aliphatic carboxylic"[tw]) AND 

(salt[tw] OR salts[tw] OR acid[tw] OR acids[tw])))) OR (((Undecafluoro AND oxahexanoic) OR 

(Ammonium AND perfluoro AND oxahexanoic) OR (Tetrafluoro AND heptafluoropropoxy) OR 

"Perfluorinated aliphatic carboxylic"[tw] OR "Perfluorinated aliphatic carboxylic"[tw]) AND (salt[tw] 

OR salts[tw] OR acid[tw] OR acids[tw])) OR (GenX AND (fluorocarbon*[tw] OR fluorotelomer*[tw] 

OR polyfluoro*[tw] OR perfluoro-*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoroc*[tw] 

OR perfluorod*[tw] OR perfluoroe*[tw] OR perfluoroh*[tw] OR perfluoron*[tw] OR perfluoroo*[tw] 

OR perfluorop*[tw] OR perfluoros*[tw] OR perfluorou*[tw] OR perfluorinated[tw] OR 

42 
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fluorinated[tw])) 

#19 13252-14-7[rn] OR "HFPO-TA"[tw] OR HFPO[tw] OR (Hexafluoropropylene[tw] AND ("oxides"[MeSH 

Terms] OR oxide*[tw])) OR ("hexafluoropropene"[tw] AND ("oxides"[MeSH Terms] OR oxide*[tw])) 

OR "hexafluoropropylene oxide"[tw] OR "HFPO trimer"[tw] 

62 

#20 73606-19-6[rn] OR "6:2 ClPFESA"[tw] OR "6:2 Cl PFESA"[tw] OR "6:2 chlorinated polyfluorinated 

ether sulfonic acid"[nm] OR "chlorinated polyfluorinated ether sulfonic"[tw] OR "2-[(6-Chloro-

1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2-tetrafluoroethanesulfonic"[tw] OR "2-(6-

Chlorododecafluorohexyloxy)-1,1,2,2-tetrafluoroethanesulfonic"[tw] OR "6:2 Cl-PFESA" OR "Cl-

PFESA" OR (Cl[tw] AND (PFESA[tw] OR PFESAs[tw])) OR (((chlorinated[tw] AND polyfluorinated[tw] 

AND ("sulfonic acids"[MeSH Terms] OR ("sulfonic"[tw] AND "acids"[tw]) OR "sulfonic acids"[tw] OR 

("sulfonic"[tw] AND "acid"[tw]) OR "sulfonic acid"[tw])))) OR "2-(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-

dodecafluorohexoxy)-1,1,2,2-tetrafluoroethanesulfonic"[tw] 

33 

#21 83329-89-9[rn] OR "8:2 Cl:PFESA"[tw] OR "8:2 Cl PFESA"[tw] OR "8:2 Cl-PFESA"[tw] OR "Cl:PFESA" 

OR "Cl PFESA" OR "8:2 chlorinated polyfluorinated ether sulfonic acid"[nm] OR "8:2 chlorinated 

polyfluorinated ether sulfonic acid"[tw] OR "2-[oxyl]-1,1,2,2-tetrafluoro-ethanesulfonicacid"[tw] OR 

"2-[oxyl]-1,1,2,2-tetrafluoro-ethanesulfonic"[tw] OR (chlorinated[tw] AND polyfluorinated[tw] AND 

ether[tw] AND (sulphonic acid*[tw] OR sulfonic acid*[tw])) OR "2-(8-chloro-

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluorooctoxy)-1,1,2,2-tetrafluoroethanesulfonate"[tw] OR 

"2-(8-chloro-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluorooctoxy)-1,1,2,2-

tetrafluoroethanesulfonic"[tw] 

28 

#22 27619-97-2[rn] OR 59587-39-2[rn] OR "6:2 FTSA"[tw] OR "6:2 FTSA" OR "6:2 FtS"[tw] OR ("6:2"[tw] 

AND FTSA[tw]) OR ("6:2"[tw] AND FtS[tw]) OR "6:2 fluorotelomer sulfonic"[tw] OR "6:2 

fluorotelomer sulphonic"[tw] OR "fluorotelomer sulfonic"[tw] OR "fluorotelomer sulphonic"[tw] OR 

"3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctane-1-sulfonic"[tw] 

48 

#23 39108-34-4[rn] OR 254-295-8[rn] OR "8:2 FTSA" OR "8:2 fluorotelomer sulfonic"[tw] OR "8:2 

fluorotelomer sulphonic"[tw] OR "2-(Perfluorooctyl)ethane-1-sulphonic"[tw] OR "2-

(Perfluorooctyl)ethane-1-sulfonic"[tw] OR ("8:2"[tw] AND fluorotelomer[tw]) OR ("8:2"[tw] AND 

FTSA[tw]) OR ("8:2"[tw] AND FtS[tw]) OR "Heptadecafluorodecanesulphonic"[tw] OR 

"heptadecafluorodecane-1-sulfonic"[tw] OR "Perfluorodecanesulfonic"[tw] OR 

"Heptadecafluorodecane-1-sulphonic"[tw] OR "heptadecafluoro-1-Decanesulfonic"[tw] OR 

"3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecanesulphonic"[tw] OR 

"3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecane-1-sulfonic"[tw] OR "1H,1H,2H,2H-

Perfluorodecanesulphonic acid"[tw] OR "1-Decanesulfonic acid,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluoro-"[tw] 

1917 

#24 2991-50-6[rn] OR NEtFOSAA[tw] OR "2-(N-ethyl-perfluorooctane sulfanamido) acetic acid"[tw] OR 

"2-(N-ethyl-perfluorooctane sulfonamido) acetic acid"[tw] OR "2-(N-ethyl-

perfluorooctanesulfonamido) acetic acid"[tw] OR "2-(N-Ethylperfluorooctanesulfonamido)acetic 

acid"[tw] OR "2-[ethyl(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctylsulfonyl)amino]acetic 

acid"[tw] OR "N-(ethyl)-N-(perfluorooctylsulfonyl)-aminoacetic acid"[tw] OR "n-(ethyl)n-

(perfluorooctylsulfonyl)-aminoacetic acid"[tw] OR "N-(Heptadecafluorooctylsulfonyl)-N-

ethylglycine"[tw] OR "N-ethyl perfluorooctanesulfonamidoacetic acid"[tw] OR "N-ethyl-N-

((1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl)-"[tw] OR "N-ethyl-N-

((heptadecafluorooctyl)sulfonyl)-"[tw] OR "N-Ethyl-N-((heptadecafluorooctyl)sulphonyl)glycine"[tw] 

OR "N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]-"[tw] OR "N-ethylperfluorooctane 

sulfonamidoacetic acid"[tw] OR "N-ethylperfluorooctane sulfonamidoacetic"[tw] 

2 

#25 2355-31-9[rn] OR NMeFOSAA[tw] OR "2-(N-Methyl-perfluorooctane sulfanamido) acetic acid"[tw] 

OR "2-(N-methyl-perfluorooctane sulfonamido) acetic acid"[tw] OR "2-(N-

Methylperfluorooctanesulfonamido)acetic acid"[tw] OR "N-(Heptadecafluorooctylsulfonyl)-N-

4 
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methylglycine"[tw] OR "N-[(heptadecafluorooctyl)sulfonyl]-N-methyl-"[tw] OR "N-

[(heptadecafluorooctyl)sulfonyl]-N-methylglycine"[tw] OR "N-methyl 

perfluorooctanesulfonamidoacetic acid"[tw] OR "N-methylperfluorooctane sulfonamidoacetic 

acid"[tw] 

#26 749836-20-2[rn] OR Nafion[tw] OR "1,1,2,2-Tetrafluoro-2-{[1,1,1,2,3,3-hexafluoro-3-(1,2,2,2-

tetrafluoroethoxy)propan-2-yl]oxy}ethane-1-sulfonic"[tw] OR "Perfluoro-2-{[perfluoro-3-

(perfluoroethoxy)-2-propanyl]oxy}ethanesulfonic"[tw] 

2,180 

#27 39492-90-5[rn] OR PFO4DA[tw] OR "1,1,1,3,3,5,5,7,7,9,9-Undecafluoro-2,4,6,8-tetraoxadecan-10-oic 

acid"[tw] OR "3,5,7,9-Tetraoxadecanoicacid, 2,2,4,4,6,6,8,8,10,10,10-undecafluoro-"[tw] OR 

"Perfluoro-3,5,7,9-butaoxadecanoic"[tw] OR "Perfluoro-3,5,7,9-tetraoxadecanoic"[tw] 

1 

#28 39492-91-6[rn] OR PFO5DoDA[tw] OR "1,1,1,3,3,5,5,7,7,9,9,11,11-Tridecafluoro-2,4,6,8,10-

pentaoxadodecan-12-oic"[tw] OR "3,5,7,9,11-Pentaoxadodecanoicacid, 

2,2,4,4,6,6,8,8,10,10,12,12,12-tridecafluoro-"[tw] OR "Perfluoro-3,5,7,9,11-

pentaoxadodecanoic"[tw] 

0 

#29 773804-62-9[rn] OR "Hydro-Eve"[tw] OR "Hydro Eve"[tw] OR "HydroEve"[tw] OR "2,2,3,3-

tetrafluoro-3-((1,1,1,2,3,3-hexafluoro-3-(1,2,2,2-tetrafluoroethoxy)propan-2-yl)oxy)propanoic"[tw] 

0 

#30 PFAS*[tiab] OR PFCs[tiab] OR PFAA*[tiab] OR perfluorochemical*[tiab] OR perfluorinated[tiab] OR 

("per-"[tiab] AND polyfluoroalkyl[tiab]) OR "perfluorinated alkyl"[tiab] OR "Perfluorinated 

carboxylic"[tiab] OR "perfluorinated chemicals"[tiab] OR "perfluoroalkyl acid"[tiab] OR 

"perfluoroalkyl acids"[tiab] OR ("perfluoroalkyl sulfonic"[tiab] AND (acid*[tiab] OR acid[tiab] OR 

acids[tiab])) OR ("perfluoroalkyl sulphonic"[tiab] AND (acid*[tiab] OR acid[tiab] OR acids[tiab])) OR 

"perfluoroalkyl sulphonic"[tiab] OR ("poly-"[tiab] AND perfluoroalkyl[tiab]) OR "polyfluorinated 

alkyl"[tiab] OR "polyfluorinated chemicals"[tiab] OR ("polyfluorinated"[tiab] AND substance*[tiab]) 

OR “fluorinated polymer”[tiab] OR “fluorinated polymers”[tiab] OR (fluorinated[tiab] AND 

(polymer[tiab] OR polymers[tiab])) OR (fluorinated[tiab] AND surfactant*[tiab]) OR (fluorinated[tiab] 

AND telomer*[tiab]) OR fluoro-telomer*[tiab] OR (fluorocarbon[tiab] AND (polymer[tiab] OR 

polymers[tiab])) OR Fluoropolymer*[tiab] OR Fluorosurfactant*[tiab] OR fluorotelomer*[tiab] OR 

(Perfluorinated[tiab] AND carboxylic[tiab]) OR (perfluorinated[tiab] AND substance*[tiab]) OR 

perfluoroalkyl[tiab] OR (perfluoroalkyl[tiab] AND acid[tiab]) OR (perfluoroalkyl[tiab] AND acids[tiab]) 

OR (perfluoroalkyl[tiab] AND substance*[tiab]) OR (perfluorocarbon*[tiab] AND (chemical*[tiab] OR 

compound*[tiab])) OR perfluorocarboxylic[tiab] OR perfluorosulfonic[tiab] OR polyfluorinated[tiab] 

OR polyfluoroalkyl[tiab] OR (polyfluoroalkyl[tiab] AND acid[tiab]) OR (polyfluoroalkyl[tiab] AND 

acids[tiab]) OR (polyfluoroalkyl[tiab] AND substance*[tiab]) OR polyflurochemical*[tiab] 

8,948 

#31 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR 

#15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 

OR #28 OR #29 OR #30 

12,490 
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