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Abstract

Fluctuations are fundamental for living organisms. They arguably result from inter-
actions with the complex, and unpredictable environment, and can often be mani-
fested as temporal variability. Let us consider the smallest representative of living
organisms, the cell. It must continually resist the external perturbations, such as
variations in the electrochemical gradient induced by changes in the extracellular
ionic concentrations. To avoid the rise in osmotic pressure, that drives the water
into the cell and could result in the cell bursting, the cell carefully adjusts the con-
centration of permeable ions. Those continuous adjustments can be achieved only
through a highly specialised network of membrane transporters, both passive, ion
channels, and active, ion pumps. The collective activity of the membrane trans-
porters is manifested in the dynamics of the membrane potential – very often viewed
as fluctuations, seemingly without a preference for any particular frequency band.
The aim of the work presented here is to provide understanding and insight into
the dynamics of the free-running membrane potential in non-excitable cells, based
on experimental data from Jurkat and smooth muscle cells. In order to achieve this,
first the quantitative comparisons of the average values of the membrane potential
and their standard deviations recorded in various extracellular solutions are made.
The analysis is further extended through the use of the wavelet transform to investi-
gate the time and frequency components of the signal. This work is the first to report
an intermittent oscillation in smooth muscle cell, around 0.008 Hz in the membrane
potential recorded with the free-running voltage perforated whole-cell patch clamp
method. Additional activities around frequencies of 0.03, 0.05 or 0.09 Hz can be also
observed. These appear as intermittent behaviour. To further understand this dy-
namics from univariate time series, two methods were applied: wavelet-bispectrum
and time-reversibility. The wavelet-bispectral density was developed. An appropri-
ate normalisation for the wavelet bispectrum, that allows for a formal quantitative,
not merely qualitative interpretation of the results of wavelet-bispectral analysis,
was proposed. The practical aspects of the bispectral analysis were discussed using
numerical examples. Finally, the newly developed auto-wavelet-bispectral analysis
was applied to the recordings of the membrane potential. These indicated possible
nonlinear couplings between different oscillatory modes in the cellular membrane
potential.
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Chapter 1

Introduction

Interactions are essential in life. Fluctuations may reflect the living organisms’ abil-
ity to interact because they often result from interactions with the complex and un-
predictable environment. Systems, whose behaviour is inherently deterministic, ar-
guably have a much smaller capacity to cope with new conditions. Fluctuations are
often a key to understand the living organisms [20], because they are frequently an
essential ingredient in providing order to the living system [211], e.g. oscillations.
Oscillations are an inseparable element of living organisms [202, 201, 86, 25, 41, 88].
For example the organisation of the sequential reactions of Krebs cycle has puzzled
the scientists for many years. Finally, turning the sequential processes into a loop
had lead to the solution of the problem [157, 20]. Oscillatory processes have an abil-
ity to interact, e.g. synchronise [84], co-depend on each other [156]. Collective, syn-
chronous activity of many units can result in oscillations, measurable at macroscopic
level, e.g. [38].

Life emerges from events happening in the right time and place. Matter can
be organised in many ways and have various physical and chemical properties, yet
only specific properties of matter, e.g. reaction rates, make life possible. According to
the second law of thermodynamics, matter should tend to a state of bigger disorder,
however the living systems seem to stay in ordered states. This apparent paradox
has puzzled the great minds, including Schrödinger’s [216]. In his monograph, What
is life?, he proposed a solution involving the openness of the system: the living matter
takes the negative entropy from the environment, in the form of organised complex
molecules and in return decomposes it to simpler ones, at the same time dissipat-
ing heat. By increasing the entropy of their surroundings, living organisms avoid a
quick decay to equilibrium. Relentless processes are pushing an organism back to-
wards thermodynamic equilibrium with its environment. Therefore, every organism
needs to be endogenously active by regularly performing the activities that keep it in
the appropriate non-equilibrium relation with its environment [20]. This is one way
to see the inherent fluctuations in a living organisms. Another possibility is to ver-
ify if the fluctuations act as a trade-off between the robustness and efficiency [233,
43]. In any case, a special framework when dealing with living system is needed.
The pioneering contribution to the field of open systems far from thermodynamic
equilibrium was made by Haken [96] and Prigogine [76]. Despite progress in this
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field many problems remain open and unsolved [118]. In modern science, probably
the best way to take thermodynamic openness into account, is to explicitly consider
spatial and temporal dynamical variability. Living organisms are unique in terms of
their robustness and also the ability to adapt to their environment [21, 62]. Needless
to say, turning this beautiful ideology into well-defined workflow is an incredible
challenge. Here, some of my steps undertaken to understand the dynamics of the
membrane potentials of the cell are described.

1.1 Outline of the thesis

Chapter 2 defines the membrane potential, explains its origin and reviews the most
important contributions to the field. A membrane potential cannot exist in isolation,
therefore, the most important cellular rhythms, such as metabolism, cell cycle, pH,
Ca2+ oscillations are also reviewed and their links to the membrane potential dis-
cussed. Particular attention is paid to metabolism, as to the best of my knowledge
it has not been explicitly considered in the dynamics of the membrane potential. In
addition the patch clamp method is described as it is the approach used to collect
the data which are analysed later in the thesis.

Chapter 3 introduces and reviews the time-series analysis methods, used in the
thesis. The chapter is organised as follows: first the motivation behind time-series
analysis is introduced; then a description of the Fourier transform and its analysis
is provided; then the extension to wavelet analysis is introduced; and finally the
concept of using surrogates as a statistical method is introduced.

Chapter 4 introduces the wavelet bispectral density. Previous definitions of wavelet
bispectrum allow for merely qualitative interpretation of computational results. A
suitable normalisation is provided, allowing for treatment of the bispectrum for-
mally as a bispectral density over time-frequency-frequency space. This wavelet
bispectral density allows for a quantitative interpretation of the results of wavelet
bispectrum analysis over time-frequency-frequency space. Therefore, it becomes
well-suited to the investigation of nonlinear time-varying dynamics. The definition
and justification are followed by numerical examples testing the approach. The later
section introduces more of the practical issues and surrogates application.

Chapter 5 presents the results and analysis of the membrane potential recorded
using the free-running voltage patch clamp technique. The recordings taken of the
smooth muscle dataset using the perforated whole-cell patch clamp technique were
collected as part of my industrial internship under the supervision of V. Matchkov
in Aarhus. However, the recordings taken on the Jurkat cell line (JC) were collected
erlier [192]. The JC results include investigating the effect of extracellular ion con-
centration and addition of intracellular Ca2+ or/and ATP. The results include the
analysis of average values, standard deviations and wavelet analysis. Finally, a de-
sign for future experiments is suggested.
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Chapter 6 presents the analysis of the cellular membrane potential using time re-
versibility and wavelet-bispectral density analysis outlined and developed in Chap-
ter 4. This analysis is combined with surrogates testing, and it indicates significant
bispectral peaks possibly due to self-coupling in the recordings of membrane poten-
tial. The temporal dynamics of the coupling is investigated with biamplitudes and
biphases. The membrane potential recordings indicate significant time-irrevesibility
on the fast timescales.

Finally, Chapter 7 gives a summary of the previous chapters and original contri-
bution of the thesis.
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Chapter 2

Membrane potential and various
cellular rhythms

2.1 Introduction

All living organisms function according to their own internal clocks, which can
themselves be influenced by various external factors, e.g. the environment. Well-
defined rates and time delays of biochemical reactions make life possible. The rhyth-
mic behaviours in humans are present in various time scales, nevertheless their ori-
gins probably lie in cellular oscillators and their interactions. Some of the human
organism rhythms are presented in Fig. 2.1.

The membrane potential is an important element of the cellular rhythms. Yet,
the membrane potential cannot exist in isolation. This chapter introduces various
cellular rhythms that affect and are affected by the membrane potential. Moreover
the chapter reviews the membrane transport options for the Jurkat cell (this cell type
is used later in Chapter 5 as a model of a non-excitable cell). In Sec. 2.2 a glimpse of
the transport across the membrane is given and the origin of the membrane potential
is explained, in Sec. 2.3 a glance at the cellular metabolism is presented, in Sec. 2.4
the cell cycle and its interaction with the membrane potential is discussed, in Sec. 2.5
cellular pH is described and in Sec. 2.6 Ca2+ oscillations are introduced. Sec. 2.7
describes the methods that were used to collect the data (which is further discussed
and analysed in Chapter 5) and eventually Sec. 2.8 describes the membrane transport
in Jurkat cells. In summary all the most important cellular rhythms are combined
together. Further insight into cellular oscillations can be found in [25, 252, 201].

2.2 The membrane potential

The membrane potential (Vm) is the difference in electric potential between the in-
terior and the exterior of a cell. The membrane serves as both an insulator and a
diffusion barrier to the movement of ions, letting selected ion types to pass across.
This is reflected in the fluctuations in the membrane potential. Fluctuations in the
membrane potential play an important role in neuroscience, e.g. information pro-
cessing of the visual [140, 7] and rat barrel cortex [174], a memory formation [205],
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Figure 2.1: Some of the rhythms of human organism and their approximated timescales. The
oscillations interact with each other, the collective dynamics of many oscillators contribute
to the rhythm measured microscopically, e.g. synchronous activity of many neurons could
be measured in EEG. Cellular oscillators are arguably at the base of all the other human
rhythms. Modified with permission from [176].

neostriatal spiny cells [264] or corticostriatal and striatal neurons [234], and other
fields [122]. There is no clear distinction between fluctuations and oscillations in the
membrane potential. Oscillations may result from synchronous activity of various
membrane transporters or from resonance effect of the cellular transporters with the
input delivered to the cell. Tab. 2.1 presents examples of oscillations in the mem-
brane potential recorded with electrophysiology techniques.

2.2.1 Transport across the membrane

The living cell maintains a certain electrolyte state, which on the one hand secures
the particular conditions for all enzymatic reactions, and on the other accumulates
potential energy in the form of electrochemical gradients. This requires a highly spe-
cialised, enzymatically controlled system of membrane transporters. The membrane
transporters can be classified according to the role of energy:
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freq. (Hz)
experimental

technique cell type ref. note

0.0038
±0.0011 patch-clamp β-cells [167]

simultaneous recordings of MP and

metabolism; Ca2+ entry into β-cells
influences metabolism

0.017– 0.15
0.067 electrophysiology L cells

[183]
[184]

spontaneous osc. of the MP
between -15 and -40 mV, strongly

sensitive to temperature

0.08–0.17 electrophysiology
cultured epithelial

intestine cells [268]
three patterns of osc.: transient, burst

and continuous for more than 1h

0.16–0.25 electrophysiology mamm. intestinal
[121]
[55]

Na+/K+ pumps are considered as
generator of this osc.

0.5–2
two-microelectrode

method
cardiac Purkinje

fibers [124]

possibly arises from oscillatory

variations in intracellular free Ca2+

3–7 patch-clamp LTS interneuron [226]
osc. depend

on voltage-gated calcium channels

20–100 sharp micropipettes ganglia neurons [155]
subthreshold oscillations frequency
was dependent on the average MP

30–60
in vivo whole-cell

patch-clamp cat visual cortex [112]
synchronization most likely due

to rhythmic synaptic inputs

Table 2.1: Examples of membrane potential (MP) oscillations (osc.) from the literature ob-
served in experiments using electrophysiology methods.

• Passive (diffusion) – ions move according to their electrochemical gradient,
this class includes both pores and channels. Water pores are always open while
ion channels have the vitally physiologically important ability to close.

• Passive (co-transport) – this is known also as secondary active transport and
relies on the correlation between ions. A transporter protein couples the move-
ment of an ion down its electrochemical gradient to the uphill movement of an-
other molecule or ion against an electrochemical gradient. In this way, energy
stored in the electrochemical gradient of an ion is used to drive the transport
of another solute against an electrochemical gradient.

• Active – pumps transport ions or small molecules against their electrochemical
gradients, using metabolic energy, most commonly in the form of ATP.

Tab. 2.2 summarises and provides some example of the classification detailed above.
Ionic pumps play an important role in various cellular processes:

• They control and regulate intracellular environment, creating and maintaining
the steep ionic gradients across the membrane.

• They control the osmotic pressure within the cell (by taking part in regulatory
volume decrease, see Secs. 2.2.4 and 2.2.5), which is probably the primordial
function of the pumps [232].

• They provide very efficient signalling systems by maintaining the intracellular
concentrations several order of magnitude smaller than the extracellular one,
e.g. calcium signalling.

• In addition some of pumps directly contribute to the membrane potential.
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type passive active
diffusion co-transport transport ATPase

pore channel symport antiport one ion two ions
no charge H20 Na+/Cl– Na+/H+ K+/H+

charge K+, Na+ K+, Na+ gluc.-Na+ 3Na+/Ca2+ H+-ATPase, 2 K+/3Na+

PMCA

Table 2.2: Classification of the membrane transport with examples, modified from [83].

2.2.2 Equilibrium and Nernst potential

One of the most important equations in electrophysiology is the Nernst equation.
This relates differences in ionic concentration on either side of the membrane to the
potential difference across the membrane. Suppose there are two reservoirs contain-
ing the same salt AB (where Az+, Bz – , z valence of the ion), but at different con-
centrations. The reservoirs are separated by a semipermeable membrane, which is
permeable to Az+ but not Bz – . The initial solutions in both reservoirs are assumed to
be electrically neutral, and thus each ion Az+ is balanced by another Bz – ion. If the
membrane is permeable to Az+ but not Bz – , then the concentration difference across
the membrane results in a net flow of Az+, down its concentration gradient. How-
ever, because Bz – cannot diffuse through the membrane, the diffusion of Az+ causes
a buildup of charge across the membrane. This charge imbalance, sets up an electric
field that opposes the further net movement of Az+ through the membrane. Equi-
librium is reached when the electric field exactly balances the diffusion of Az+. One
may immediately notice that there are more Az+ ions than Bz – ions on one side and
fewer Az+ ions than Bz – ions on the other. Hence neither side of the membrane is ex-
actly electrically neutral. However, because the force from the charge accumulation
is very strong only a small number of Az+ ions move across the membrane. Conse-
quently the concentrations of ions are usually assumed unchanged. An estimation
of ionic concentration change as a function of change in the membrane potential for
an example cell is presented in appendix A.1. The electrochemical potential of Az+

on the inside of the membrane is

µA,x = µ0A + RT log([A]x) + zFVx,

where x denotes in or out, which correspond to two reservoirs, µ0A is the chemical
potential of the pure substance, R the ideal gas constant, T the temperature (K), z
the valence of the ion, F Faraday constant, [A] the concentration of the ion, log the
natural logarithm. At equilibrium there is no electrochemical potential difference,
∆µA, between the two sides of the membrane, thus

∆µA = µA,in − µA,out = 0.
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This is only true when the membrane potential equals

Veq =
RT
zF

log
(
[A]out

[A]in

)
, (2.1)

called the Nernst potential for an ion A. This equilibrium potential describes a single-
ion system only. In case of a multiple-ion system, each ion type has an individual
Nernst potential. Reaching the Nernst (or in other words equilibrium) potential for
multiple ions at the same time is not possible. Therefore, the cellular membrane
potential constantly fluctuates, being limited by the equilibrium potentials of the
dominant ions, K+, Cl– , Na+.

2.2.3 Electrodiffusion: the Nernst–Planck equation

The flow of ions through the membrane is driven by both the concentration gradient
and electric field gradient. If the flow of ions and the electric field are transverse to
the membrane, the flow of ions J can be obtain from

J = −D
(

dc
dx

+
zF
RT

c
dφ

dx

)
, (2.2)

which is the one dimensional Nernst–Planck equation. Here: D is a diffusion constant,
φ is an electrical potential, and dφ

dx the corresponding electric potential gradient.

Steady-state: the Goldman–Hodgkin–Katz equation

If there are several types of ions, e.g. K+, Na+, Cl– each with different concentrations
on either side of the membrane, then the flow of each of these is governed separately
by its own current–voltage relationship. In general, there is no potential at which
these currents are all individually zero. However, the potential at which the net
electrical current is zero is called the Goldman–Hodgkin–Katz (GHK) potential [89]

VGHK =
RT
F

log
(

pK[K+]o + pNa[Na+]o + pCl[Cl−]i
pK[K+]i + pNa[Na+]i + pCl[Cl−]o

)
. (2.3)

Here, pX is the membrane permeability for ion X, and [X]i/o the concentration of ion
X inside and outside the cell respectively. VGHK can be derived from the Nernst–
Planck equation under the assumption of constant electric field and no net electrical
current [89].

2.2.4 Osmosis and reasons why the membrane potential is created

The cell has only a thin lipid bilayer and hence lacks a rigid structure. Therefore, it
is capable of resisting only very small hydrostatic pressure differences. Yet, a cer-
tain number of intracellular proteins and ions are required inside the cell for cell
staying alive. However if their concentrations become too large, osmosis causes the



10 Chapter 2. Membrane potential and various cellular rhythms

entry of water into the cell, causing it to swell and burst. Thus, in order to sur-
vive the cell must regulate its intracellular ionic composition [164, 126]. If a cell
was not full of proteins or intracellular organelles, mostly negatively charged, the
excessive osmotic pressures could be avoided simply by allowing ions to cross the
plasma membrane freely. The more negatively charged organelles and proteins in-
side, the more negative the membrane potential that is generated. For example, the
membrane potential of the red blood cell, which does not posses either nucleus or
mitochondria is much less negative at around -10 mV compared to other cells [83,
26]. Therefore, the red blood cells do not need metabolic systems as efficient as other
cells, and obtain their entire ATP by glycolysis. In other mammalian cells glycolysis
produces only around 7% of the total ATP, which is further discussed in Sec. 2.3. The
impermeant molecules make a substantial contribution to the osmotic concentration
within a cell, representing about one third of the total osmotic concentration [125].
Various models incorporating the membrane potential and osmotic pressure were
proposed [126, 113, 10, 270] in which the important role of Na+/K+ pumps in os-
motic regulation, and the membrane potential maintenance is emphasised. One of
the conclusions from these models [126, p. 88–97] is that there is no benefit from
increasing the pumping reaction rate because the cell naturally optimises it by min-
imising the energy expenditure to form the right osmotic pressure. This optimum
also corresponds to the most negative membrane potential.

2.2.5 Volume regulation

The osmotic pressure is proportional to the molar concentration of the solutes, [83,
eq. 3.99], [126, eq. 2.138] and cell volume primarily represents the amount of wa-
ter in a cell [210]. The cell adjusts the concentrations of various ions and organic
molecules. Water tends to move across a membrane from a solution of low solute
concentration to one of high. Therefore, as a result, the generated osmotic concen-
tration gradient drives the water by diffusion across the lipid bilayer or through
aquaporins. The cell adjusts the volume by adjusting the ionic concentrations via
two mechanisms: regulatory volume increase (RVI) and regulatory volume decrease
(RVD). The schematic picture with the ion channels involved is presented in Fig. 2.2.

Volume regulation plays a crucial role in apoptosis, typically paralleled with cell
shrinkage [271], and necrosis, typically co-occurring with the cell swelling [186]. In a
living cell, both the osmotic pressure and the cell volume are continuously regulated.
This process results in a dynamical variation of the membrane potential, i.e. of the
potential difference between the interior and the exterior of the cell.

2.2.6 Membrane potential dynamics, Hodgkin & Huxley model

Probably the most popular model of the temporal dynamics of the membrane po-
tential was introduced by Hodgkin & Huxley (HH) [100]. The model was originally
used to represent the neural action potential of a squid axon. The general aim of their
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Figure 2.2: Plasma membrane channels and transporters involved in cell volume regula-
tion. The cell adjusts its volume by regulating the concentrations of various ions, e.g. K+,
Na+. The generated osmotic gradient drives water across the membrane. (left) Shrunken
cells returns back to the normal volume via regulatory volume increase (RVI). The pro-
cess differs from one cell to another, nonetheless mainly involves simultaneous activation
of Na+/H+ exchangers (NHEs; mainly NHE1) and Cl– /HCO –

3 anion exchangers (AEs;
mainly AE2), or the stimulation of Na+/K+/2Cl– cotransporters (NKCCs; mainly NKCC1).
Both processes increase cytoplasmic Na+ and Cl– concentrations. In some cells, the activa-
tion of hypertonicity-activated, non-selective cation channels (HICCs) can also be involved
and mainly leads to Na+ influx. In cases mentioned earlier, the Na+/K+-ATPase will sys-
tematically replace intracellular Na+ with K+. Na+-coupled uptake of taurine by taurine
transporter TAUT (also known as SLC6A6) rather takes part in long-term RVI. Swollen cells
recover their volume through regulatory volume decrease (RVD; right). One of the possible
mechanisms is extruding K+, Cl– and organic osmolytes, e.g. taurine. The cell may lose
either through K+/Cl– cotransporters (KCCs; mainly KCC1, 3 or 4) or through parallel Cl–

and K+ channels. Pivotal role in RVD is being played by volume-regulated anion channels
(VRACs), conducting not only Cl– , but also organic osmolytes. Inset presents typical extra-
and intracellular concentrations of ions involved in mammalian volume regulation. The di-
rection of passive ion transport depends not only on the concentration difference, but also
on the voltage across the plasma membrane (the electrochemical gradient). The intracellular
Cl– concentration shows substantial variation between cell types. In most cells, except neu-
rons, the Cl– exit (e.g. through VRACs) will be favoured. Figure reprinted with permission
from [119].

series of papers ([104, 101, 102, 103, 100], summarised in [100]) was to determine the
laws which govern movements of ions during the generation of the action poten-
tial. They measured current-voltage relationship and proposed a model, which was
also shown with its electrical circuit equivalent, as presented in Fig. 2.3. The energy
stored in the electrochemical gradients of the ions can be represented by the batter-
ies, the ion channels by variable conductances. HH noticed that a significant role in
the membrane potential and its dynamics is played by K+ and Na+ ion channels. In
the initial model, the pumps were not explicitly included but they would work as
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a chargers, turning the energy stored in ATP into energy stored in the electrochem-
ical gradients. Mathematically, the model can be expressed via the following set of
equations. The current flowing through the lipid bilayer can be written as

Ic = Cm
dVm

dt
, (2.4)

here, Cm is the membrane capacitance. The current of each ion type is given by

Ii = gi(Vm −Vi), (2.5)

gi is the conductance for each ion, Vi equilibrium (Nernst) potential for each ion.
Thus, for the cell where a crucial role is played by K+ and Na+ currents, the total
current is given by

I = Cm
dVm

dt
+ gK(Vm −VK) + gNa(Vm −VNa) + gl(Vm −Vl). (2.6)

Here, gl represents the leak conductance. Importantly, they conducted the series of
experiments and proposed the form of gK and gNa conductances. Based on measured
sodium and potassium currents they proposed

gK = ḡKn4,

gNa = ḡNam3h,
(2.7)

where ḡ describes the maximal conductance for each channel type and n4, m3h a
fraction of the ion channels in the open state for K+ and Na+ respectively. They
described the dynamics of x = n, m, h with equations of the form

dx
dt

= αx(Vm)(1− x)− βx(Vm)x, (2.8)

that provided the best fit to the experimental results. Here, αx(Vm) and βx(Vm) are
voltage-dependent reaction rates of ion channels getting open and getting closed
respectively. The work was awarded the Nobel Prize in 1963 and is probably the
most used model of the action potential [42].

2.3 Cell metabolism

2.3.1 Link to the membrane potential

As already mentioned in Secs. 2.2.4 and 2.2.6, Na+/K+ pumps play a crucial role
in maintaining the ionic gradients, and thus maintaining the correct osmotic pres-
sure. Nevertheless the pumps need a source of energy to function, which is where
metabolism plays a role. The direct role of the membrane potential in cellular metabolism
is only well known for β-cells. β-cells have ATP-sensitive K+ channels that are
the natural sensors of the ATP/ADP ratio. The channels are spontaneously active
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Figure 2.3: Schematic picture of the electric circuit representing a cell. The electrochemical
gradients of the ions K+ and Na+ are represented by the battery (En) the varying conduc-
tance (gn(t, V)) represents the collective activity of K+ and Na+ channels, lipid bilayer by
membrane capacitance (Cm) and ion channels by variable conductances. For the mathemat-
ical description see the main text. Figure taken from [51].

(open), and when the ratio of ATP/ADP rises, they close. As a result the mem-
brane depolarises, activating the voltage-gated calcium channel. Ca2+ promotes the
release of insulin, which controls the energy conservation and utilization. Consecu-
tively, the insulin decreases the level of glucose, which is a main molecule required
for metabolism.

2.3.2 Catabolism

Metabolism is arguably one of the most important processes in living organism, be-
cause it produces energy from glucose molecules. Metabolism can be divided into
two separate parts; catabolism – the breakdown of compounds, e.g. the breaking
down of glucose to pyruvate by cellular respiration; or anabolism – the build-up
(synthesis) of compounds, such as proteins, carbohydrates, lipids, and nucleic acids.
The main attention will be now focused around the first part. The catabolic part of
cellular metabolism comprises many biochemical reactions, ultimately resulting in
the production of adenosine triphosphate (ATP).

Living systems obtain energy in a relatively complex, yet tightly controlled way.
If a supply molecule, such as glucose is oxidised in a single step, as it happens in
nonliving systems, then the amount of released energy would be many times larger
than any carrier molecule could capture [4]. Cellular respiration consists of four
essential parts: glycolysis, pyruvate oxidation, the citric acid cycle and oxidative
phosphorylation. This section summarises only the essential events. An important
review providing insight into the oscillatory nature of the metabolism and its asso-
ciated phase relations can be found in [30]. A simplified schematic model of cellular
metabolism can be found in Fig. 2.4. Effectively, ATP is produced in glycolysis (2
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molecules) and oxidative phosphorylation (26 or 28 molecules): the later part re-
quires the availability of O2. Tab. 2.3 summarises the effective product in the form
of NADH/ATP of each part of catabolism, a place where the process takes place and
the amount of energy stored in the form of electrons. The table also presents the
turnover times for selected metabolites. The turnover time corresponds to the mean
time over which the pool of a given metabolite will be replaced due to the rates of
production and utilization. The turnover time for ATP and ADP is much shorter
than for the citric acid cycle. About 93-95% of the total ATP is produced in mito-
chondria and requires the availability of oxygen. It was observed that in the absence
of pathology, glucose metabolism is predominantly governed by oxygen concentra-
tions. Thus, high-efficiency oxidative phosphorylation (even up to 36 ATP/glucose)
is a default source of ATP under normal concentrations of oxygen, whereas in the fer-
mentative pathway (without the need of oxygen), glycolysis (glucose metabolised to
lactate yielding 2 ATP/glucose), is an emergency ATP source only if oxygen is defi-
cient [260]. Normal differentiated cells rely primarily on oxidative phosphorylation,
as opposed to cancer or proliferative cells that use glycolysis [255]. Glycolysis was
shown to be an emergency source of ATP responding to fluctuating energy demand,
for example a sudden rise in Na+/K+ pumps activity, or a rise in osmotic pressure in
both normal and cancer cells [65, 193].

Glycolysis

Glycolysis is a metabolic pathway that converts glucose (C6H12O6) into pyruvate
CH3COCOO– + H+. One cycle effectively produces 2 molecules of ATP and con-
verts 2 molecules of NAD+ into NADH (by redox reaction). This NADH will be
converted later to ATP. This process takes place in the cytosol.

While glycolysis is a necessary step for any cell to obtain energy, in a number of
experiments mainly in yeast and muscle cells, the concentration of metabolites was
reported to repeatedly fluctuate [43, 81, 64]. This phenomenon is called glycolytic
oscillations. The occurrence of the oscillations was explained as a trade-off between
efficiency and robustness using control system theory [43]. In this simple model,
oscillations are neither directly profitable, nor have an evolutionary character but
are a necessary consequence of autocatalysis and hard trade-offs between stability
(the need to stabilise the coupled system) and efficiency (the need to maintain high
energy charge). The energy charge is an index used to measure the energy status of
biological cells. It is defined as (ATP + 0.5 ADP)/(AMP + ADP + ATP), and it was
proposed as a fundamental metabolic control parameter [13]. Drop in the energy
charge is associated with more rapid loss of cellular viability.

Pyruvate oxidation

The next step requires the pyruvate to enter mitochondria. Then pyruvate is turned
into acetyl-CoA, producting CO2 and NADH.
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part
effective (net)

products where? electrons

glycolysis 2 ATP, 2 NADH cytozol
2 electrons
bounded

pyruvate
oxidation 2 NADH

mitochondrial
matrix

2 electrons
bounded

citric acid cycle
6 NADH, 2 ATP,

2FADH2

mitochondrial
matrix

6 (NADH) + 4 (2FADH2)
electrons bounded

oxidative
phosphorylation 26 (or 28) ATP

mitochondrial
membrane

uses all electrons bounded earlier
(in NADH and FADH2) to produce ATP

(a) The energetic gain, O2 demand, electron pathway for converting one molecule of glucose.

metabolite turnover time (s)
S. cerevisiae E. coli

ADP 0.3 0.8
ATP 1.4 2

pyruvate 1.7 1.5
TCA cycle 4–30 0.7–9

(b) The turnover time for selected metabolites for S. cerevisiae and E. coli cells taken from [171,
p. 276].

Table 2.3: Summary of cellular respiration for converting one molecule of glucose and
turnover time for selected metabolites.

Citric acid cycle

The citric acid (TCA) cycle, also known as the Krebs cycle, is a metabolic pathway
that connects carbohydrate, fat, and protein metabolism. The produced acetyl-CoA
combines with a four-carbon molecule and goes through a cycle of reactions. The
ultimate products are ATP, NADH and FADH2. Morover CO2 is released. Both
pyruvate oxidation and the citric acid cycle take place in a mitochondrial matrix.

Oxidative phosphorylation

Oxidative phosphorylation, also known as the electron transport chain, takes place
within the mitochondrial inner membrane. It is powered by the movement of elec-
trons through a series of proteins embedded in the inner membrane of the mitochon-
dria. The NADH and FADH2 deposit their electrons and convert them into NAD+

and FAD, respectively. As the electrons pass through the electron transport chain,
the protons are pumped out of the mitochondrial matrix into the mitochondria intra
membrane space, forming a gradient. As they passively move back to the mito-
chondrial matrix, their energy is used to create ATP. This hypothesis, proposed by
Mitchell (chemiosmotic theory) [173], initially not well accepted, was later awarded
the Nobel Prize in 1978.

Isolated mitochondria display a range of oscillatory activity [30, 87, 29]. Yet,
mitochondrial activity is sensitive to both internal and external input. Therefore it
is not clear, whether they are driven by oscillatory input of pyruvate, resulting from
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Figure 2.4: Schematic picture representing the cell metabolism as a system of self-sustained
coupled oscillators. Glycolysis, as the only part of cellular metabolism that proceeds with-
out mitochondria was represented as a single oscillator, while remained parts: pyruvate ox-
idation, the citric acid cycle, and oxidative phosphorylation that take place in mitochondria
were combined together and represented as a another oscillator, OXPHOS. Schema indicates
the ion pumps utilising the ATP produced in the process. Figure reprinted under a Creative
Commons Attribution 4.0 International License from [142].

glycolytic oscillations, or there is an intrinsic mechanism to generate oscillations, or
both. The observed ATP/NADH oscillations frequencies are spanning from around
1.67× 10−4 Hz [190] to 0.026 Hz [188].

2.4 The cell cycle

In this section, the cell cycle is introduced and the links with cellular metabolism and
the membrane potential are made. The cell cycle is a sequence of actions that the cell
needs to perform in order to duplicate its DNA, split the organelles, and divide into
two daughter cells. The process is regulated and controlled by several checkpoints.
Four distinct phases make up the eukaryotic cell cycle:

• G1 phase: increase in size.

• S phase (synthesis): replication of the DNA.

• G2 phase (or interphase): cell growth continuation.

• M phase: division into two daughter cells, nucleus division (mitosis) and cy-
toplasm division (cytokinesis).

For a human cell line the whole process takes about 20 h. The fraction of time ded-
icated to each phase is shown in Fig. 2.5. Cells that have temporarily or reversibly
stopped dividing are said to have entered a state of quiescence known as the G0

phase.



2.5. pH 17

Figure 2.5: The fraction of time dedicated to each phase
of the cell cycle for human cell line. The full cycle takes
around 20 h. Modified from [171, p. 329].

2.4.1 Link to metabolism

The mechanism of interaction between the cell cycle and metabolism was investi-
gated by Papagiannakis et. al [190]. They concluded that the cell cycle is a higher-
order function, which emerges from the collective synchrony between a metabolic
oscillator, and a biomass segregation oscillator. They summarised that metabolic cy-
cles are an intrinsic and independent from the growth conditions. Moreover, they
are characteristic for single cells, rather than the collective behaviour of many cells.

2.4.2 Link to the membrane potential

The link between the cell cycle and the membrane potential was suggested in the late
1950s [26]. However pioneering work was done by Cone Jr. who was first to observe
that the membrane potential varied through the cell cycle and directly related it to
progression through G1/S and G2/M transitions in proliferating cells [53]. Later
showed that DNA synthesis and mitosis were evoked in fully differentiated neurons,
by exposing the cell to sustained elevated level of intracellular Na+ and decreased
intracellular K+ [52].

Ionic regulation of cellular behaviour has been found to play a critical role in
proliferation [238]. Yet it it is known that the relationship between the membrane
potential (Vm) and proliferation is not simple, as Vm illustrates the collective activity
of various ion channels, transporters or pumps. Fig. 2.6 illustrates the membrane
potential changes during the cell cycle. The membrane potential has been examined
as a key regulator of proliferation in a number of cell types, suggesting that modu-
lation of the membrane potential is required for both the G1/S phase and the G2/M
phase transitions [27]. Progression from G1 to S coincides with membrane hyperpo-
larisation, while during the G2/M transition membrane depolarisation is typically
observed.

2.5 pH

One of the important parameters controlled by the cell is the concentration of hy-
drogen ions. Physiologically normal intracellular pH is most commonly between
7.0 and 7.4, however, there is variability between tissues, e.g. mammalian skeletal
muscle tends to have a pH of 6.8-7.1. There is also pH variation across different
organelles, which can span from around 4.5 to 8.0.
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Figure 2.6: Bioelectric signals influence the cell cycle via Vm changes. Figure illustrating the
membrane potential changes due to the ion channel dynamics during the cell cycle. During
G1/S transition, Vm becomes hyperpolarised due to potassium efflux from the cell, sodium
channels also become activated. While the G2/S progression the membrane is depolarised,
potassium channels activity decreases. During G2/M transition chloride channels become
activated, chloride flows out of the cell. All K+, Na+ and Cl– ions are involved during the
cell cycle. Modified from [27].

2.5.1 Link to the membrane potential (volume)

The Na+/H+ exchanger (NHE), which is present in most animal cells, merits par-
ticular attention when considering pH and the membrane potential. Despite be-
ing electroneutral, NHE affects the intracellular concentrations of the ions. Under
physiological conditions and at neutral pH, it is inactive. However, it becomes ac-
tivated by acidic intracellular pH. It plays an important role in regulatory volume
increase. There are examples of potassium ion channels with a pH-dependent con-
ductivity [175, 245]. In particular, intracellular acidification blocks the K+ conduc-
tance and depolarises the membrane. While considering intracellular pH, just as
important is exchanger Cl– /HCO –

3 , activated by alkaline pH. Similarly to NHE, it
also plays a role in volume regulation. Cl– /HCO –

3 transports extracellular Na+ and
HCO –

3 into cells in exchange for intracellular Cl– and H+, thus raising the intracel-
lular pH [259]. The transport is electroneutral. In some of the cellular membranes
the presence of H+ translocating ATPases was reported. They utilise energy stored
in ATP to build up a proton gradient across a biological membrane. Proton pumps
are electrogenic, but are coupled to other channels to counterbalance the membrane
potential drop: either to an anion channel (symport) or K+ channels (antiport) [166].
Even if the proton pumps are not located at the plasma membrane they can actively
remove H+ ions from the cytosol.
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2.5.2 Link to metabolism and the cell cycle

Small variations in pH strongly influence phosphofructokinase, the enzyme playing
an important role in glycolysis [158, 71, 253]. DNA, RNA but also protein synthesis
are affected by pH. The synthesis of DNA and RNA increase with increasing intra-
cellular pH within the physiological range (as discussed in [158]).

pH is also well known to play a role in cell proliferation. Proliferation of mam-
malian cells is dependent on a permissive pH in the slightly alkaline range (7.0-7.2),
as reviewed in [73].

2.6 Ca2+ oscillations

Ca+ is known as a universal signalling molecule, playing a critical role in diverse
processes such as fertilization, proliferation, development, learning and memory,
contraction and secretion [24, 48]. Having an excess of Ca2+ is highly toxic and
dangerous. Exceeding its normal spatial and temporal boundaries can result in cell
death through either necrosis or apoptosis. Ca-ATPase together with various Ca2+

channels and sarcoplasmatic reticulum (SR) Ca2+ storage establishes an effective sig-
nalling system. The Ca-ATP pump creates an extremely low calcium level in the
cytoplasm which is of the order of 104 times lower than the concentration in the
extracellular fluid. In this way an important membrane transport and signal trans-
duction pathway is established, which can be triggered even by a minimal increase
in the Ca-permeability of the membrane or a release of Ca2+ from SR.

2.7 Experimental method – patch-clamp technique

This section introduces the patch-clamp method – an experimental technique that
was used to collect the data that are analysed in Chapter 5. Patch clamp is a tech-
nique employed in electrophysiology [258]. Patch clamping can be performed using
the voltage clamp technique (or current clamp), together with micropipettes. The
technique was developed by E. Neher and B. Sakmann in the late 1970s/early 1980s,
and was awarded the Nobel Price in Physiology or Medicine in 1991. The patch-
clamp technique allowed for the recording of single ion channel current for the first
time. Importantly the pipette, which has a relatively large tip diameter, is sealed onto
the surface of the cell membrane, rather than inserted through it. There are several
modes of patch-clamp recordings, presented in Fig. 2.7. Firstly, one should achieve
so-called a giga-seal, or in other words electrical isolation between the membrane
and the pipette, known as cell attached. The most common type of patch-clamp is
whole-cell, where the membrane needs to be ruptured and thus an access to the inte-
rior of the cell is achieved. Alternative to rupturing the cell is to apply small amounts
of an antifungal or antibiotic agent, such as amphothericin-B and after achieving the
cell attached mode, and then wait until the pores will be formed. This is known as
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perforated patch. Other modes appropriate to measure single channel(s) activity in
isolation from the cell are outside-out and inside-out.

Figure 2.7: Different modes of the patch-clamp technique. First part common for all the
modes is achieving so-called giga-seal, or in other words electrical isolation between the
membrane and the pipette, known as cell-attached, on cell (a). Most common mode of patch-
clamp is whole-cell patch-clamp (d), where the membrane needs to be ruptured and thus an
access to the interior of the cell is achieved. From there, it is possible to measure single
channel(s) activity in isolation from the cell, where the outside of the channel faces the extra-
cellular solution, also known as outside-out (c). Alternatively, from the cell attached mode,
the patch of the membrane can be detached, by pulling the pipette. This may lead to the
possibility of measuring single ion channel activity, separated from the cell, where the inte-
rior of the channel faces extracellular solution, also called inside-out (b). Another option is
to apply small amounts of an antifungal or antibiotic agent, such as amphothericin-B and
after achieving the cell-attached mode, and then wait until the pores will be formed. This is
known as perforated patch (e). Picture reprinted with permission from [11].

2.7.1 Perforated patch-clamp technique

The whole-cell patch-clamp technique allows for measuring the collective electric ac-
tivity of all the membrane transporters. This represents the collective current cross-
ing the membrane or the collective membrane potential change. Nevertheless be-
cause of the need to rupture the membrane, there is no guarantee that the cell will
stay functional. This means that small organelles, like mitochondria, may diffuse to
the pipette rather than stay inside the cell. One possible solution is to avoid breaking
the membrane by instead forming small pores that allow only small ions to freely
diffuse between pipette and the cell. This is possible by applying tiny amount of
an antifungal or antibiotic agent, such as amphothericin-B, nystatin, or gramicidin
into the pipette solution. After achieving the gigaohm seal, the agent will slowly
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form the pores, providing electrical access to the interior of the cell. Many studies
on amphotericin-B have confirmed the existence of monovalent cation over anion
selectivity [98].

2.8 Membrane transport in Jurkat cells

Many ion channels, transporters and pumps interplay resulting in rich dynamics of
the membrane potential. Here, the selected membrane transporters that may con-
tribute to the membrane potential in Jurkat cells are reviewed. Jurkat cells are the
immortalised line of human T lymphocyte cells.

2.8.1 Potassium transport

Kv1.3 and voltage-gated K+ current

The voltage-dependent K+ current is activated when the cell membrane is depo-
larised, and K+ ions passively move outwards from the cell along its electrochemical
gradient. If the membrane remains depolarised channels are slowly closing (inac-
tivating). Efflux of K+ ions causes the membrane potential to decrease. Typically
human peripheral blood T cells have approximately 300-500 functional Kv1.3 chan-
nels [40, 39]. Only a small fraction of those channels (1-2 channels [44]) is involved
in maintaining the resting potential which is around -50 mV in physiological con-
ditions. However, when the membrane becomes depolarised, the Kv1.3 channels’
conductance increases more than 10 times. This prohibits additional depolarisation
even after an influx of Ca2+ ions [39]. However Ca2+ was also reported to block the
voltage-gated K+ channels in the whole-cell configuration, (when [Ca2+]i was ele-
vated from 10 nM to 1µM) [33]. Interestingly, voltage-gated K+ channels in squid
giant axons have been directly shown to be permeable to Ca2+ in experiments us-
ing high Ca2+ concentrations, passing about 1% as much Ca2+ as K+ current [44].
Intracellular ATP (up to 1 mM) was reported to have no influence on activity of
voltage-sensitive K+ channels [33].

KCa3.1 and Ca2+-activated K+ current

The properties of Ca2+-activated channels found in T-cells are well distinguishable
from those of voltage-gated K+ channels. The KCa3.1 channel is naturally closed
and opens rapidly when cytosolic Ca2+ rises effectively up to 300 nM. The channel
is voltage independent and activated by Ca2+ binding to calmodulin, which is con-
nected to the C terminus of the channel [66]. The channel opening allows for K+

efflux preventing membrane depolarisation, and thus maintaining the favourable
(more negative) potential for sustained Ca2+ entry ([39] and ref. therein). Grinstein
et al. [91] summarised evidence of their presence in T lymphocytes. Nevertheless
another group using fluorescence measurements indicated that they are unlikely to
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contribute to the averaged membrane potential [265]. Channels were well charac-
terised later, using the patch-clamp technique [94]. The resting T lymphocytes re-
vealed around 20 conducting channels, noting that this number increases even up to
500 in activated T cells.

2.8.2 Calcium transport

Calcium is a universal second messenger involved in the regulation of many cellu-
lar processes, including ion transport, proliferation, motility and secretion. Second
messengers are intracellular signalling molecules released by the cell in response
to exposure to extracellular signalling molecules–the first messengers. Intracellular
free Ca2+ is being maintained at a very low level (about 104 times lower than in the
extracellular space), so that any small changes in concentration bring drastic and
rapid consequences. This allows for a very efficient communication.

STIM1 and Orai1, CRAC current

Calcium currents in T-lymphocytes were explored using different techniques but
successful recordings were only made after combining the perforated patch-clamp
technique together with careful monitoring of intracellular Ca2+ [149]. The tiny in-
ward Ca2+ current was connected to the T cell receptor (TCR) stimulation. The per-
forated patch-clamp technique, based on permeabilising the membrane with pore-
forming antibiotics, allows for preserving the signal transduction pathways. Studies
reveal inwardly rectifying Ca2+-selective current. In normal conditions the concen-
tration of cytosolic free Ca2+ is very low, therefore a few picoampere current already
causes a substantial rise in Ca2+. This current is activated by depletion of ER lumi-
nal Ca2+. When the ER Ca2+ store is depleted, STIM proteins transduce the signal
from ER to the plasma to activate the CRAC channels formed by Orai1 proteins [69].
STIM triggers CRAC channels to open [272, 191].

Voltage-gated Ca2+ channels (VGCC)

CaV channels are highly selective to Ca2+. Their role in Ca2+ influx is well investi-
gated in neurons, cariomyocytes, and other excitable cells. The role of CaV channels
in TCR-induced Ca2+ influx was confirmed in experiment with genetically modified
mice, lacking the typical expression of CaV [185, 16, 120]. All experiments resulted in
reducing the Ca2+ influx. However there is a major gap in understanding how CaV1
channels are activated in immune cells [70]. In excitable cells, typically a channel’s
voltage sensor is sensitive to depolarisation of the plasma membrane. At physiologic
or resting membrane potential, VGCCs are normally closed. They are activated (i.e.,
opened) at depolarised membrane potentials and this is the source of the "voltage-
gated" epithet. Meanwhile most of the studies on T cells indicated the opposite
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effect: TCR-induced Ca2+ influx is reduced, rather than increased, under the mem-
brane depolarisation because of the reduced electrical driving force for Ca2+ influx
through CRAC channels.

Great attention has been paid to mechanism of Ca2+ entry to the cell. However
the mechanism of removing the Ca2+ from the plasma membrane is nevertheless
important.

Ca2+-ATPase

Plasma membrane Ca2+-ATPases (PMCA) provide the dominant mechanism for Ca2+

clearance in human T cells and Jurkat cells [148]. In comparison to the Na+/Ca2+

exchanger, which is believed to be an another important mechanism of Ca2+ exclu-
sion [60, 17, 61], PMCA has a high affinity for intracellular Ca2+ and low transport
capacity [91]. The reported transport rates of Ca2+ (in vesicular systems) were very
different spanning from 0.08 [15] to 2.4 pmol ·µg protein-1 ·min-1 [152]. This trans-
port was reported to be Mg2+-dependent and insensitive to ouabain or changes in
K+ or Na+ concentrations [152]. Ca2+-ATPase activity was enhanced by ATP con-
centrations up to 1 mM, (nevertheless further increase in Ca2+ uptake was observed
with increase in ATP concentration up to 4mM [152]).

A second, nonetheless important, mechanism for removal of Ca2+ from the in-
tracellular space, is the SERCA pump clearing the Ca2+ from the cytosol into the
endoplasmic reticulum (ER). Its contribution in human T cells to the rate of clear-
ance of cytosolic Ca2+ is small [148]. However, SERCA plays an important role in
the Ca2+ signaling network in T cells by accumulating Ca2+ in the ER and control-
ling store-operated Ca2+ entry [59].

A large number of Ca2+ sources and sinks interact with each other, creating a
variety of complex Ca2+ responses, e.g. isolated transients, sustained oscillations or
elevated intracellular Ca2+ concentrations [148, 24, 48].

2.8.3 Chloride transport

There are large discrepancies in the values of total chloride concentration in lympho-
cytes reported by different groups spanning from 82-87 mM [273] to significantly
lower concentrations estimated later [92]. The conductive permeability of the lym-
phocyte membrane to Cl– is considered as very low. Moreover, cells rendered per-
meable to cations by means of the conductive ionophore gramicidin fail to swell
osmotically, indicating that anion Cl– conductance is negligible. Finally, the rate of
36Cl– transport was found to be unaffected by changing the membrane potential, as
would be expected for a conductive pathway [92].
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Swelling-activated Cl– current: volume regulation

At least three different of osmotically activated Cl– channels were reported in the
1990s in human T lymphocytes [39, 150, 209]. Although Cl– conductance is negligi-
ble in lymphocytes suspended in isotonic media, a marked change has been reported
when the cells are subjected to hypotonic stress therefore they were named volume-
regulated anion channels (VRAC) or swelling-activated Cl– channels (Clswell) [150,
209]. Alternatively, addition of ATP to the pipette makes the solution hypertonic,
which implies the influx of water and the cell swelling [39]. Consequently outwardly
rectifying Cl– channels are activated. The Cl– current is induced about 1 min af-
ter the cell starts swelling. For many years the molectular identity of VRAC had
been unidentified. Relatively recently two studies identified a four transmembrane
domain proteins (LRRs) called LRRC8A or SWELL1 as a presumed pore-forming
subunit of VRAC channel [257, 198]. In the whole-cell patch-clamp recordings the
capability to induce the Cl– current decreased a few minutes after achieving the
whole-cell configuration, unless intracellular ATP was added or the experiment was
performed in perforated patch mode, when current can be observed for at least 30
min [150]. ATP may be required for phosphorylation or allosteric activation, or as
an energy source for ion pumping or reorganization of cytoskeletal filaments. This
channel did not indicate any voltage-dependence. Based on current variance analy-
sis [223] during the osmotic activation of Cl– current, it was estimated that each cell
contains on the order of 104 activatable Cl– channels, making it the most abundant
ion channel in lymphocytes yet described [150]. This number very much differs for
different cells, dependent on their function.

Clswell and Kv1.3 channels interplay in regulatory volume decrease (RVD). Cl–

channels are activated by volume increase, efflux of Cl– ions depolarises the mem-
brane, which directly activates voltage-activated K+ channels. The membrane poten-
tial stays between the equilibrium potentials for Cl– and K+ but the concentrations
of Cl– and K+ decrease. Volume regulation was found to be generally associated
with a loss of cellular K+, with little change in Na+ content [37, 92, 207]. As a re-
sult, water molecules leave the cell, and after few minutes the cell shrinks back to its
original size. Consequently, Cl– channels close.

In physiological conditions (pig) lymphocytes were reported to lack active Cl–

transport mechanisms. However, studies using fluorescence, have indicated their
existence in an extremal environment [68].

2.8.4 Sodium transport

In the pioneering studies on Jurkat cells a very small fraction of human T cells exhib-
ited voltage-gated Na+ activity [40], yet later studies confirmed their absence from
T cells [256]. However, other research reported NaV currents in 10% of Jurkat T
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cells [75, 105], indicating their role in the invasive capacity of T cells [44]. In T lym-
phocytes sodium reaches equilibrium very quickly [93, 153]. This suggests the pres-
ence of effective transport mechanisms [91]. Despite the isotopically measured large
permeability to Na+, the Na+ conductance is comparatively low [93]. This can be
explained by the existence of robust electroneutral transport pathways [91].

The essential contribution to Na+ transport in lymphocytes is done by Na+/K+

ATPase. Three independent studies, using ouabain, drew similar conclusions, find-
ing 32,400–44,000 ouabain binding sites per cell (but the cells from chronic lym-
phocutic leukemia patients indicated significantly fewer pumps [263], as reviewed
in [91]). In the other studies, using radioactive probes, Na+/K+ pumps were shown
to modify the membrane potential by 7 mV, with the average membrane potential
-56 mV [68]. The membrane potential of lymphocytes measured with an electro-
physiology method was reported to be significantly higher. Nonetheless an im-
portant contribution to Na+ transport, found in the plasma membrane of various
types of lymphocytes, is done by the Na+/H+ exchanger (NHE). This transporter is
known to be a major carrier involved in regulating both cytosolic pH and the cell
volume [93, 91]. The stimulation of NHE leads to alkalisation of plasma membrane
and/or the cell swelling, and its inhibition leads to acidification and contributes to
apoptosis [143]. Moreover, the decline of ATP is known to inhibit Na+/H+ exchang-
ers.

Some studies reported the presence of Na+−K+−2 Cl– cotransporters in the lym-
phocyte plasma membrane [14, 93] but later studies did not manage to confirm
it [93]. It was concluded that Na+−K+−2 Cl– cotransporters, if present, contribute
very little to membrane transport in T cells. Similarly, the role of Na+/Ca2+ exchang-
ers can be omitted in T cells [61].

TRPM4, TRPM7 and MIC current

TRPM4 has been described as a calcium-activated nonselective (CAN) cation chan-
nel that mediates membrane depolarisation. It belongs to the family of transient
receptor potential (TRP) channels. TRPM4 indicates higher permeability to Na+

than to Ca2+ [70, 144, 145] and can be activated by Ca2+ influx following antigen
receptor stimulation, resulting in Na+ influx and membrane depolarisation. Conse-
quently, the driving force for Ca2+ is reduced. TRPM4b may interplay with K+ and
Cl– channels to control intracellular Ca2+ oscillations through oscillatory changes
in the membrane potential [145]. TRPM4 was reported to regulate Ca2+ oscilla-
tions after T cell activation [144]. Another outward rectified channel transporting
monovalent and divalent cations non-specifically should be mentioned, known as
Mg2+-inhibited Ca2+-permeable (MIC) current exhibits the time course similar to the
CRAC channel and higher conductance [39].

With the use of atomic absorption spectrophotometry, the estimated value of to-
tal cellular magnesium in porcine mesenteric lymphocytes was 12 mM [204]. The



26 Chapter 2. Membrane potential and various cellular rhythms

MIC-TRPM7 channel is also permeable to Mg2+ ions, and therefore can play a role
in Mg2+ homoeostasis.

2.9 Summary

This chapter describes the various cellular processes and quantities that may influ-
ence and also be influenced by the membrane potential. A summary of these is
presented in Fig. 2.8. Arguably the central point of cellular oscillators is metabolism.
This is influenced by pH or glucose availability but may also be influenced by the
ionic composition of the cell [126, eq. (2.169)] (either directly or by the cascade of
processes like in β-cells), or the instantaneous demand for ATP and energy charge
of the cell [12]. ATP is mostly utilised to maintain the ionic concentration gradients
and consequently the negative membrane potential. The progression of the cell cy-
cle is influenced by the ionic composition (the membrane potential is a function of
the charge distribution) and metabolism. The cell volume is directly proportional
to the amount of water in the cell, while the flux of water through the membrane is
proportional to the osmotic pressure difference. The osmotic pressure is determined
by the number of particles per unit volume of fluid. Therefore, the cellular volume is
another function of ionic composition. Ca2+ oscillations, not included in the figure,
establish a very efficient information transmission system because they can evoke
cascades of other process. Ca2+ oscillations can be considered as a special class of
oscillations in the ionic composition. When designing experiments the interactions
within the cell should be carefully taken into account. “Fixing” or even perturbing
one of the parameters may unnaturally affect the others. Unfortunately this takes
place to some extent, in every experiment. However, the importance of cellular in-
teractions is to be considered. The final section introduces the membrane transport
specific to Jurkat cells used in experiments that data are analysed in Chapter 5.



2.9. Summary 27
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Vm = f (x)vol = f (x)

Figure 2.8: The summary of some of the interactions between cellular oscillators. In the
central part should be metabolism, bidirectionally coupled to ionic composition and pH. The
cellular volume and the membrane potential are directly dependent on ionic composition.
Cell cycle is influenced by metabolism and ionic composition. More details how they interact?
are written in the main text.
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Chapter 3

Tackling the complex dynamics
with time-frequency analysis

3.1 Introduction

Remarkable complexity can be found in the recordings originating from living sys-
tems. Therefore they require very careful and subtle treatment. Assumptions such as
stationarity, linearity or time-invariance are invalid in numerous cases. This chapter
reviews and discusses selected methods that have been applied to the analysis of the
complex dynamics in general. In addition, it provides a more detailed insight into
the methods that have been used to analyse the recordings of membrane potential
in Chapters 5 and 6. Sec. 3.2 introduces dynamical systems in general. Sec. 3.3 in-
troduces methods operating directly in the time domain, while Sec. 3.4 is focused on
the frequency domain. In Sec. 3.5 methods combining both the time and frequency
domains are presented. Sec. 3.6 provides an outlook into the methods appropriate
for investigating the coupling between interacting oscillatory systems. Finally, in
Sec. 3.7 selected statical techniques for dynamical testing of hypotheses using surro-
gate data are presented.

3.2 Dynamical systems

Dynamical systems theory describes the evolution over time and phase space of the
system under consideration. Let x be a d-dimensional vector, describing the state of
the system. Considering continuous time, the evolution of the system is described by
differential equations. An important example of such equations are ordinary differential
equations (ODE), which concern the time evolution of the system. Therefore, the time
evolution of x is described by

ẋ = f(x). (3.1)

Here the overdot denotes differentiation with respect to time, t. Thus ẋ ≡ dx
dt . The

state of the system (3.1) depends only on the evolution function f (x) and its current
state but not on time. This class is called autonomous dynamical systems.
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3.2.1 Nonlinearity

One of the properties characterising complex systems is nonlinearity. Nonlinearity
is a relationship which cannot be explained as a linear combination of its variable in-
puts. The term nonlinear dynamics refers to a system described by the set of nonlinear
differential equations. Typical nonlinear terms are products, powers, and functions
of the xi, such as xixj, (xi)

3, cos(xj), where i denotes i-th coordinate of x [235, p. 6].
Nonlinear systems attract a lot of interest, despite the fact that the majority of them
are impossible to solve analytically. The essential difference is that linear systems, as
opposed to nonlinear, can be broken down into parts. Subsequently, each part can
be solved separately and finally recombined to solve the problem. In many cases
this simplification does not work in real-life systems. Whenever parts of a system
interfere, cooperate, or compete, nonlinear interactions must be involved [235, p. 9].

3.2.2 Non-autonomous systems

There is a class of systems whose evolution law explicitly depends on time, called
non-autonomous systems, which can be generally defined as

ẋ = f(x, t). (3.2)

The state of the system depends on the evolution function f (x, t) and time but also
on the initial conditions of both x and time.

3.2.3 Phase oscillator

Particularly interesting, when thinking about the systems in nature are self-sustained
oscillatory systems [194]. Those oscillators are characterised by the following: they
maintain their oscillations even if isolated; the form of the cycle, and hence the form
of oscillation is entirely determined by the internal parameters of the system; and
eventually the oscillations are stable against (small) perturbations. Such systems
can be formally described as limit-cycle oscillators, where the limit-cycle is the curve
in state space associated with the oscillation. It is convenient to represent a self-
sustained oscillator as a single variable, namely the phase. This type of oscillator is
called a phase oscillator, formally denoted as

φ̇ = ω. (3.3)

Here, more useful will be to introduce non-autonomous phase oscillator, defined as

φ̇ = ω(t). (3.4)

In the following sections, various systems such as frequency modulated or ampli-
tude modulated are used to visualise the performance of the introduced methods.
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Meanwhile, the following oscillator with a varying frequency is given as an example

φ̇ = ω0(1 + k sin(ωmt)),

r = 1.
(3.5)

Here, ω0 = 2π f0 is the main frequency, ωm = 2π fm is a frequency of slow variation,
and k is the amplitude of variability [0, 1]. The signal s = r sin φ was simulated for
time T with the sampling frequency Fs = 1/dt.

3.3 Time domain

Living systems are rarely isolated from their surroundings; instead they interact and
adapt to the dynamically changing environment. This adaptation is pronounced in
time-variability. Therefore, when one tries to understand the dynamics of an open
system, the importance of time must be stressed and explicitly considered. In this
section time domain methods that could aid in the understanding of the membrane
potential dynamics are introduced.

3.3.1 Time-reversibility

Living systems are rarely linear. A very powerful indicator of nonlinearity in a time
series is the change of statistical properties introduced by a reversal of the time di-
rection [242, 213, 58, 215]. For discretely sampled time series, ~S = {s1, ...sN}, the
quantity

αrev =
1
N

N−1

∑
n=1

(sn+1 − sn)
3 , (3.6)

is a one of the simplest measure of the asymmetry of a series under time reversal.
Linear stochastic processes do not contain any information about the direction of
time. Therefore the time-irreversibility implies the nonlinearity, but the nonlinearity
does not imply time-irreversibility. An example of this is the fact that the measure,
from Eq. (3.6) is not able to distinguish nonlinearity in the Lorenz system [213].

3.3.2 Moving average

One of the preprocessing routines in signal analysis is filtering out the “background
noise”. However deciding which part of the signal should be considered as mean-
ingless noise is one of the greatest challenges. The moving average is a smoothing
filter that uses the idea of averaging within the segments (windows) of the signal
and replacing the middle point of each segment with the average value. The win-
dow is shifted along the time series. There are a few variations: simple, cumulative,
or the weighted forms but the simple version is commonest. Mathematically, the
i-th element of the discrete time series ~S = {s1, ...sN}, smoothed with the function



32 Chapter 3. Tackling the complex dynamics with time-frequency analysis

fn, where n is the length of the smoothing window, can be defined as

s′~S, fn
(i) = fn({si−n/2, ...si+n/2}), (3.7)

where the most commonly f denotes the average. The moving average removes
short-term fluctuations (i.e. the high frequency component) and highlights longer-
term trends or cycles. A common use of the moving average, as in the following
chapters, is to downsample a time series [50]. Finally it is also important to note that
the moving average enables to smooth-out the high frequencies from the time series
in order to avoid aliasing.

3.4 Frequency domain

Analysis exclusively in the time domain is quite limited and usually ends up not to
be very informative. A typical way in time series analysis is to use the frequency do-
main to demonstrate how the signal energy is distributed over the frequency range.

3.4.1 Fourier transform

The Fourier transform decomposes the function in time, f (x) into its constituent
frequencies. Mathematically it can be written

f̂ (ξ) =
∫ ∞

−∞
f (u)e−2πiuξdu, (3.8)

where ξ is a real number. If we restrict the consideration to periodic functions with
period T, fulfilling Dirichlet conditions, then each function can be represented as a
Fourier series

f (x) =
∞

∑
n=−∞

cne−i 2πt
T n,

cn =
1
T

∫ T

0
f (t)e

2πint
T dt.

(3.9)

In practice signals are never continuous or infinite. Therefore the discrete Fourier
transform (DFT) is used,

X f =
N−1

∑
n=0

xne−
2πi
N kn. (3.10)

The gap between analytic continuous formulas and their actual numerical imple-
mentations is typically not discussed, but the exact derivation of the DFT from
the FT can be found in [79]. The frequency interval for the DFT is restricted to
1/T = Fs/N (low) and Fs/2 (high frequency), where T (in sec) and N (in points)
is the length of time series and Fs sampling frequency. The frequency resolution of
DFT is equal to Fs/N.

Now, the DFT will be tested on the signal with time-variability introduced in
Eq. (3.5). The results of the DFT can be seen in Fig. 3.1. The amplitude spectrum
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consists of discrete harmonics like peaks, also from beyond the range of variability
of the main frequency (0.4–1.6 Hz). The highest peaks are around the frequencies
that are the extremes of the range of variability. To investigate whether this effect
is entirely numerical or has an analytic origin, the analytic formula was expanded
in Appendix B.1. From this form it is clear that discrete peaks are to be expected,
and are neither the numerical effect of under-sampling or finite length of the time
series, nor the effect coming from the DFT instead of (continuous) Fourier transform.
Importantly, this representation, perfectly correct and real, does not bring much of
an insight into the nature of oscillations. For oscillations with sinusoidally-varying
frequency, it was possible to find another analytic form; nevertheless real life signals
often have more complicated forms.
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Figure 3.1: Amplitude spectrum of DFT of the signal with time-varying frequency, Eq. (3.5).
The spectrum consists of discrete peaks. This representation, although perfectly in agree-
ment with the theoretical predictions (see the main text for the details), does not provide
much information about the original dynamics. The simulation parameters were: k = 0.6,
T = 20 sec, Fs = 20 Hz, f0 = 1 Hz, fm = 0.1 Hz.



34 Chapter 3. Tackling the complex dynamics with time-frequency analysis

3.5 Time-frequency domain

It was shown above that signals exclusively in the time domain or exclusively in
the frequency domain are not very informative when it comes to oscillations with
complex forms. Time-frequency representations allow for simultaneous insight into
both the time and frequency dynamics. Thus, combining the two domains can give
great advantages.

3.5.1 Short-time window Fourier transform

The very first method to include both the time and frequency domains was named
the short-time window Fourier (WFT). It uses the Fourier transform applied to the
short-time-window of the time series, defined as

f̃ (ω, t) =
∫ ∞

−∞
e−2πiωug(u− t) f (u)du. (3.11)

Here, g is a function of a window in time, while g its complex conjugate. The func-
tion g can be arbitrary with finite energy [108]. Nevertheless well justified and com-
mon choice is the Gaussian window

g(u) =
1√

2π f0
e−(u/σ)2/2. (3.12)

Its Fourier transform is then given by

ĝ(ξ) = e−2(πσξ)2
. (3.13)

The Gaussian window provides the optimal joint time-localisation and frequency
resolution [159, 123, 168]. The width of the window is determined by the resolution
parameter σ. Shorter time windows provide a better localisation in time, but un-
fortunately a worse resolution in frequency. Correspondingly longer time windows
provide a better resolution in frequency, but a worse localisation in time. This prop-
erty is defined by the Heisenberg-Gabor uncertainty principle, which states that sharp
localizations in time and in frequency are mutually exclusive [123].

3.5.2 Wavelet transform

One way to minimise the impact of the above uncertainty principle, rather than
sticking to the fixed window length for all the frequencies (as in WFT), is to fix the
number of cycles for each frequency. Principally, this means that the window length
must be adaptive and must depend on the frequency. This idea is implemented in
the continuous wavelet transform (WT), defined as

W [p]
ψ,x( f , t) =

(
f
κ

)p ∫
R

x(τ)ψ
(
(τ − t) f

κ

)
dτ. (3.14)
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Here, is the Wψ,x wavelet transform of signal x, given the wavelet function ψ, ψ de-
notes its complex conjugate, p is the normalisation constant, f is a frequency and t
time. The alternative choice of p is discussed in Chapter 4, meanwhile p = 1 will
be assumed unless otherwise stated. κ is where the Fourier transform of the wavelet
function ψ̂ is maximised. For the lognormal wavelet, defined in Sec. 3.5.2, κ is equal
to 1. It is always possible to rescale ψ such that κ becomes 1 without any loss of gen-
erality. However, in practice, the conventional formulations of some wavelets (such
as Morlet wavelets) do not have their Fourier transform ψ maximised at or near 1.
Because of this fact, the presence of κ is retain in the definitions.

In real-life time series analysis it is reasonable to assume only non-negative fre-
quencies. Therefore, only the analytic wavelet functions with non-negative-valued
Fourier transform are used here. A detailed discussion regarding this point and why
negative valued FTs should be used can be found in [108, supplementary]. Typically
wavelet analysis is defined in terms of scales s; however, in practice it is more in-
tuitive to work directly with frequencies f ( f = κ

s ). Therefore, all functions and
variables are transformed with respect to the frequencies. In general, a simple re-
ciprocal relationship between scale and frequency is not always guaranteed to be
appropriate. However, the wavelet of the unimodal Fourier transform is a natural
choice [177, 170].

Practical remark Practically, in numerical analysis the wavelet transform takes a
different form to Eq. 3.14, due to its computational cost. Typically the convolution
theorem is applied and the form

W [p]
ψ,x( f , t) =

(
f
κ

)p−1 ∫
e2πiξt x̂(ξ)ψ̂

(
κξ

f

)
dξ (3.15)

is implemented instead. x̂(ξ) stands for the Fourier transform of x. This substan-
tially speeds up the computations [3].

Wavelet energy density

To allow for quantitative wavelet analysis over time-frequency space, a suitable mea-
sure must be introduced. This measure is known as wavelet energy density (WED,
ρI

ψ,x,x), and it can be defined as (transformed from [123, p.69])

ρI
ψ,x,x( f , t) = (Cψκ)−1 f 1−2p|W [p]

ψ,x( f , t)|2. (3.16)

Here, Cψ is called the admissibility constant and it can be defined as

Cψ =
∫ ∞

0

ψ̂(r)2

r
dr. (3.17)
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The wavelet energy over region of interest A, in time-frequency space is then defined
as

pI
ψ,x,x(A) =

∫
A

ρI
ψ,x,x( f , t)d( f , t). (3.18)

Defining the wavelet function

A wavelet function must fulfil the admissibility condition
∫ ∞

0
ψ̂(r)

r dr < ∞, which im-
plies having a vanishing expected value in the time domain. Particular attention is
paid to the lognormal wavelet, also known as the log Gabor wavelet [132, 72, 154,
108]

ψ̂σ = e−2(πσ log r)2
=

1√
2πσ

f1/(2πσ)(log r) = f̂σ(log r), (3.19)

for r > 0. Here, fσ is the probability density function of a normal distribution of
mean zero and variance σ2. σ is a parameter that corresponds to frequency resolu-
tion discussed later in this section. The justification of the choice of the wavelet func-
tion can be found in Appendix B.2. Intuitively, the lognormal wavelet is represented
by the Gaussian window in both the time and log-frequency domains, which accord-
ing to the uncertainty principle, ensures the optimal time localisation and frequency
resolution. All the further calculations and analyses are done using this wavelet.

Finite signal length effect, cone of influence

Theoretically, one integrates over an infinite time, but in practice the signal has a
finite time duration. Therefore a problem appears near the signal’s time borders,
because of the convolution operation, where the dot product of the time-shifted
wavelet function and the signal is calculated and assigned to the value of time-shift.
If the time-shift is too small (or too big) a substantial part of the wavelet function
goes beyond the signal end points, see Eq. (3.14). There are several ways to tackle
this issue: one can use padding. This fills the signal with chosen values at both ends,
and then the subset of values that corresponds to the original length of the time series
in the WT can be selected. The most common padding scheme are: filling with ze-
ros, symmetric/periodic and predictive padding [249, 108]. However, regardless of
the scheme, padding may introduce discontinuities and distortions into the WT. For
better accuracy it is advisable to rely on the time-frequency region where boundary
distortions are negligible. This is known as the cone-of-influence (COI). The reliable
region in time-frequency space is given by

[
0 + ∆

f , L− ∆
f

]
where

∫ ∞

∆
|ψ (r) |dr '

∫ ∞

∆
fσ(r)dr = 0.025

∫ ∞

−∞
|ψ (r) |dr. (3.20)

The number 0.025 is estimated using the properties of the Gabor window and setting
the “cut-off” at 2 standard deviations.
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There are exceptional circumstances, e.g. extracting the oscillatory modes from
the time frequency representation [109], where removing the cone of influence is not
advisable [108].

Selection of frequency resolution

Dependent on the underlying dynamics One of the most important, and non-
trivial parameters to select in wavelet analysis is the frequency resolution (σ). The
optimal choice of σ depends on the properties of the dynamics that generate the time
series and the information that one is trying to obtain. The following signals are con-
sidered as examples: two-cosine signal presented in Fig. 3.5, frequency modulated
signal presented in Fig. 3.6, and amplitude modulated one shown in Fig. 3.7. Four
types of behaviour of their time-frequency representation can be indicated [108],
namely:

I. All tones are fully resolved – the signal is represented as a sum of sinusoidal
components, the amplitudes are constant over time and there is no time vari-
ability.

II. Tones are partially resolved and interfere with each other, nevertheless on
time-averaged WT several distinct peaks can be indicated.

III. Tones strongly interfere with each other, some of them merge on a time-averaged
WT.

IV. Signal is represented as one mode with time-varying frequency, and one dis-
tinct peak on time-averaged WT can be indicated.

The behaviour depends on the timescales of the dynamics and the selected frequency
resolution, for example for signal from Eq. (3.5), this would be two variables, σ fm/ f0

and k. The idea and the signals with their parameters are adapted from [108] and
the idea is illustated in Figs. 3.5– 3.7.

Independent of the underlying dynamics The reasonable σ range discussed in
this paragraph is entirely methodological and independent of the underlying dy-
namics of the analysed system. For σ larger than 0.7, the lognormal wavelet can
be approximated by the Gabor function, φσ(r) ' fσ(r)e2πir. Fig. 3.2 shows the nu-
merically generated lognormal wavelets in the time domain and the corresponding
Gabor functions. For a given σ, the number of oscillatory cycles within one wavelet
window is fixed and independent of the frequency, as explained earlier.

• Low limit of σ

From the properties of a Gaussian window it is known that so-called “2 stan-
dard deviations”, corresponds to' 95% of the wavelet integral. Consequently
4× σ cycles of oscillations can be fitted independently of the frequency. There-
fore in practice, the lowest σ used is 0.5, allowing for fitting 4× 0.5 = 2 cycles of
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the oscillations. This property is presented in Fig. 3.3. Computing the WT with
a value of σ lower than 0.5 produces meaningless results. On the other hand,
in the frequency domain, 95% of wavelet integral centred around fx would be
limited by fx exp(∓ 1

2πσ ). This implies that given a time series of length L in s
and sampling frequency Fs in Hz, the reliable frequency interval is limited by[

1
L exp

( 1
2πσ

)
, Fs

2 exp
(
− 1

2πσ

)]
.

• High limit of σ

When the σ is large, a longer time window, and thus bigger region of time
frequency at the end of time series is unreliable. This is due to finite time of
the time series.

If one wishes to preserve m cycles of oscillations after removing the unreliable
region (Eq. 3.20), then the lowest frequency ( fmin) that one can use is given by
fmin = 4σ+m

L , where L is the length of the original time series.

Summarising the discussion above, given the reasonable choice of σ (> 0.5), one
obtains

fmin =
4σ + m

L
,

fmax =
Fs

2
exp

(
− 1

2πσ

)
.

(3.21)

Frequency discretisation

Another parameter that one needs to select when computing the wavelet transform
is the frequency discretisation. On a logarithmic frequency scale, the frequency dis-
cretisation ∆Flog(freqs) can be formulated as

∆Flog(freqs) =
1

nv.
(3.22)

Here, nv is the parameter telling how many frequency bins are between two neigh-
bouring powers of e, namely ek and ek+1. Here, the convention to use base e because
it simplifies integration over the log-scale, as discussed in Chapter 4. However, in
some cases base 2 may be more suitable. Frequency discretisation should depend on
the real frequency resolution determined by the span of the wavelet function in the
frequency domain, Eq. (3.19). Insufficient frequency discretisation could result in a
misleading representation of the two independent frequency modes. However, too
high frequency discretisation will unnecessarily increase the computation burden.
The lognormal wavelet is represented by the Gaussian window in the frequency do-
main Eq. (3.19), with standard deviation σ̃log(freqs) = 1

2πσ . Therefore, the window
should be represented by a certain number of points, Np > 1. From the properties of
Gaussian window it is known that so-called “1 standard deviation” corresponds to
' 68% of the wavelet integral. Therefore, 68% of the wavelet integral, represented
by Np points would correspond to ∆Flog(freqs) = 2σ̃

Np
. The corresponding nv can be
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found using
nv = πσNp. (3.23)

Np = 1 is an absolute theoretical minimum: typically greater values, e.g. 8-10 are
considered as sufficient.
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Figure 3.2: Lognormal wavelet function ψσ for (a, b) σ = 0.7, (c, d) σ = 1, (e, f) σ = 2. In (a,
c, e) the modulus |ψσ(r)| is shown in colour, against which fσ(r) is shown in black. In (b,d,f)
the argument of ψσ(r) is shown in colour, against which the wrapped angle 2πr is shown in
black. It can be seen that |ψσ(r)| is approximately equal to fσ(r), and that, where fσ(r) is not
very small (compared to its maximum value 1√

2πσ
), the argument of ψσ(r) is approximately

equal to 2πr modulo 2π.

3.5.3 Extraction of the oscillations

After observing oscillations of non-trivial form in the time-frequency representation,
one aims to extract them from their background. Here, extraction refers to knowing
the exact time-dependent phase and amplitude. Typically, dynamical signals are a
mixture of complex oscillations, rather than simple sines. Nonlinear mode decom-
position is a method that combines time-frequency analysis and surrogate testing to
decompose a signal that consists of oscillations of arbitrary form [110]. The method
uses the ridge extraction [109] from the time-frequency representation and therefore
the results of the reconstruction are dependent on the results of the earlier analysis.
Similar ideas were later developed in different groups [197, 165], however, nonlinear
mode decomposition provides the full algorithm, including time-shifted surrogate
testing [8, 199] and detection of harmonics [219].
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Figure 3.3: Properties of lognormal wavelet in time. Gabor functions fσ(r) for (a) σ = 0.7,
(b) σ = 1. In (a, b) the modulus | fσ(r)| is shown in black, while the real part of fσ(r)e2πir is
shown in blue. In (b), additionally, the properties of a Gaussian window are presented; the
integral indicated by the green and yellow areas together corresponds to about 95% of the
wavelet integral, and captures 4× σ cycles of oscillations, which for σ = 1 equals to 4, as
discussed in the main text. (c) presents the cos(2πt) function in time.
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Figure 3.4: The discretisation in the frequency domain of the wavelet function necessary for
computations. Figure presents graphically what is discussed in the main text. In blue ψ̂σ

as defined in Eq. (3.19). The green area spans between exp(∓ 1
2πσ ) along the frequency axis.

From the properties of a Gaussian window it corresponds to 68.2% of the wavelet integral.
The orange dots correspond to estimated computations points, for Np = 6 and σ = 1. fk+1
dot is in the position fk × exp(1/nv).

3.6 Coupling

An inherent element of life is an ability to interact. Because most of these interac-
tions have a non-trivial form, they require careful treatment. Ideally, applied meth-
ods should address not only the questions of whether the coupling exists, or what
is its directionality, but also what is the form of coupling. A lot of attention was
paid to this topic in recent decades [266, 97, 194, 236], many methods for investi-
gation specific forms of coupling were developed [229]. The reconstruction within
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Figure 3.5: Possible behaviour of the wavelet transform for two-cosines signal for different
values of σ. (a) Two-cosine signal s(t) = cos(2π2t) + 0.5 cos(2π2.25t), simulated for 500 sec
at sampling frequency Fs = 20 Hz. (b-e) Amplitudes of the wavelet transform for different
values of σ. The explanation for the types of behaviour I-IV in the main text.
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Figure 3.6: Possible behaviour of the wavelet transform for frequency modulated signal
for different values of σ. (a) Frequency modulated signal s(t) = cos(2πt + sin(2πt/4)),
simulated for 500 sec at sampling frequency Fs = 20 Hz. (b-e) Amplitudes of the wavelet
transform for different values of σ. The explanation for the types of behaviour I-IV in the
main text.

these methods is based on a variety of inference techniques, e.g. least-squares and
kernel smoothing fits [208, 134], dynamical Bayesian inference [228], maximum like-
lihood (multiple-shooting) methods [247], stochastic modeling [217], and the phase
resetting [78, 246, 147].
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Figure 3.7: Possible behaviour of the wavelet transform for amplitude modulated signal for
different values of σ. (a) Amplitude modulated signal s(t) = (1+ 0.5 cos(2π0.25t)) cos(4πt),
simulated for 500 sec at sampling frequency Fs = 20 Hz. (b-e) Amplitudes of the wavelet
transform for different values of σ. The explanation for the types of behaviour I-IV in the
main text.

3.6.1 In the time-frequnecy domain

In this subsection selected methods based on the time-frequency analysis will be
introduced. These allow for further insight into concurrent phases and amplitudes
without the need for explicit extraction. This gives a great advantage, when it comes
to analysing oscillations with non-trivial forms, which are masked by background
noise.

Wavelet coherence

We say that two wave sources are perfectly coherent if they have a constant phase
difference, the same frequency, and the same waveform. To investigate the tem-
poral evolution of coherence the wavelet cross-energy spectrum can be used. The
wavelet phase coherence measures were shown to be equivalent to the Hilbert trans-
form [146]. Mathematically wavelet and Fourier coherence approaches are also equiv-
alent [36]. There are two possible quantities that can be referred to as coherence, or
more precisely “phase coherence”. The first is known as wavelet coherence. This is de-
fined in Eq. (3.24) and was introduced in [250]. It is defined with respect to the angle
between the time frequency smoothed versions of the wavelet transforms between
the two signals,

c(1)ψ,xy( f , t) =

∣∣∣∣∫R2 S f (ζ, τ − t)ζ1−2pW [p]
ψ,x(ζ, τ)W [p]

ψ,y(ζ, τ) d(ζ, τ)

∣∣∣∣2∫
R2 S f (ζ, τ − t)ζ1−2p|W [p]

ψ,x(ζ, τ)|2 d(ζ, τ)
∫

R2 S f (ζ, τ − t)ζ1−2p|W [p]
ψ,y(ζ, τ)|2 d(ζ, τ)

.

(3.24)

S f (ζ, t) is a smoothing window. The second is known as wavelet phase coherence
and will be discussed below.
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Wavelet phase coherence

Another possible form of coherence can be found by reversing the order of the
“smoothing” and the “angle extracting” operations. Here, the wavelet amplitudes
do not play any role. In the previous approach, the measure of coherence between
phases is weighted over time in proportion with the instantaneous wavelet ampli-
tudes. The amplitude-invariant (currently described) approach was originally intro-
duced in [139], and also independently developed in [18]. The later applications can
be found in [219, 220]. Originally, temporal smoothing with rectangular windows
was applied. However, more generally, one can smooth using smoothing window
S f in time-frequency space:

c(2)ψ,xy( f , t) =

∣∣∣∫R2 S f (ζ, τ − t)〈Wψ,x(ζ, τ)Wψ,y(ζ, τ) 〉 d(ζ, τ)
∣∣∣∫

R2 S f (ζ, τ) d(ζ, τ)
, (3.25)

where 〈v〉 := v/|v|. The most reasonable dependence of S f on f should be as given
by ∫

R2
S f (ζ, τ) d(ζ, τ) =

1
f

∫
R2

S(ζ, τ) d(ζ, τ).

Nevertheless, the other selections could be also justified.

Wavelet bispectrum

Bispectral analysis belongs to a group of techniques based on higher-order statis-
tics [178, 179, 239]. One can apply it to detect Gaussianity [133], but more impor-
tantly bispectrum may be used to study couplings between interacting oscillatory
processes, or to investigate phase relations [106].

First introduced by Hasselmann [99] to study ocean waves, bispectral analy-
sis was originally applied in oceanography [269], but it also gained popularity in
biomedical sciences, (e.g. in EEG analysis [19, 63, 180, 222, 261, 212], cardio-respiratory
interactions [114], abnormalities in respiration [241]), geophysics [227], turbulence
analysis [267, 170, 80], astrophysics [133], plasma physics [200], machine engineer-
ing [46], economics [85] and seismology [162].

In this section, the well-known methodology is discussed and a new approach is
introduced in Chapter 4.

The bispectrum can be derived from the Fourier spectrum as the third-order mo-
ment M( f1, f2) [179], namely

M( f1, f2) = F( f1)F( f2)F( f3), (3.26)

where F corresponds to the Fourier transform of the time series, F its complex con-
jugate, f1, f2 pair of frequency of interest and f3 = f1 + f2. However, there are some
examples in the literature of modifying f3 according to the research hypothesis, e.g.
f3 = 2 f1 − f2 [116]. In order not to overlook time-dependent effects, the signal can
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be partitioned into K consecutive time-windows. Then, the average bispectrum over
these windows is defined as

B̃( f1, f2) =
1
K

K

∑
k=1

Mk( f1, f2). (3.27)

Alternatively, the time-frequency representations can also be applied. Typically the
short-time Fourier or wavelet transform can be used but also, less commonly, the
Wigner-Ville transforms may also be used [74, 28]. The wavelet bispectrum can be
calculated as follows

B(s1, s2) =
∫ T

0
Wφ,x(s1, t)Wφ,y(s2, t)Wφ,z(s3, t) dt, (3.28)

where T is the time length of the signal, si are wavelet scales with 1
s3
= 1

s1
+ 1

s2
and W

denotes a complex conjugate of W. Importantly, the original definition of bispetrum
was expressed in terms of scales.

The bispectrum lacks appropriate normalisation and is directly dependent on
the amplitude of the component in the time series. To overcome this problem and
at the same time give a measure of the relative strength of coupling, one can use the
normalised version of the bispectrum–bicoherence:

b( f1, f2) =
|M( f1, f2)|√

|F( f1)F( f2)|2|F( f3)|2
, (3.29)

and the corresponding wavelet bicoherence:

bxyz(s1, s2) =
|Bxyz(s1, s2)|√∫ T

0 |Wx(s1, t)Wy(s2, t)|2dt
∫ T

0 |Wz(s3, t)|2dt
. (3.30)

The bispectrum allows for identification of either cross-coupling between different
signals (x, y, z), but more importantly self-coupling (x, x, x), between different oscil-
latory modes within one time series. The method is capable of detecting any type
of coupling between f1 and f2 that would result in occurrence of the frequency
f1 + f1, e.g. some types of nonlinear coupling, quadratic, phase-amplitude cou-
pling but not phase locking. Some particular examples are given in Chapter 4. The
quadratic phase coupling (QPC) and quadratic frequency coupling (QFC) are dis-
cussed in [218]. QPC and QFC both result in occurrence of the third mode with the
frequency f3(QPC/QFC) = f1 + f1. Importantly, in QPC the phase of the third mode is
equal to the sum of the coupled modes φ3(QPC) = φ1 + φ2, as opposed to QFC where
this is not the case φ3(QFC) 6= φ1 + φ2.
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3.6.2 Information theory approach

Another approach to detect coupling is based on using the statistics of information
theory, e.g Granger causality, transfer entropy, etc. This approach does not require
prior extraction of the phase and amplitude but is applied directly to the time series.
In short, it addresses the question of how much information in a single time series
can be predicted by the past information of another one. This approach does not
allow for the investigation of the dynamical properties of the coupling, yet combin-
ing it with methods searching for dynamical properties of the coupling may give
promising results, e.g. [117].

3.7 Statistical testing

In this section statistical methods are described. The first part presented in Sec. 3.7.1
is focused on the surrogates testing – the method suitable for testing the hypothesis
involving the complex dynamics. The second part presented in Sec. 3.7.2 introduces
the Wilcoxon method for individual comparisons.

3.7.1 Surrogates testing

Motivation

Surrogate data testing is an essential part of the data analysis process. It allows for
the statistical evaluation and verification of obtained results to a selected level of
confidence. Hence observed results can be sorted into either coincidental or true
characteristic of the underlying dynamics in the system. Many processes in nature
appear very unlikely a priori to be linear, yet the possible nonlinearity might not be
obvious because it can be hidden in particular aspects of the dynamics. The meth-
ods of surrogate data testing, gained popularity in the early 1990s after the work of
Theiler et al., who presented it as a test for nonlinearity [242]. As the new methods
were developed, additional issues have arisen together with the need for an addi-
tional review of the field [215]. Together with the growing interest in time varying
dynamics, and the development of various methods appropriate for nonlinear dy-
namics, the approaches used inevitably evolve. The concept of surrogate data testing
has been expanded up to date to test, not only for nonlinearity, including chaos, but
also for oscillations in noisy data, for nonlinear coupling between two systems or
synchronisation between two or many systems and several more applications [141].

Parameters of the test

There are two important parameters which characterize the performance of a sta-
tistical test. The first one is the level of significance α, which is the probability that
the null hypothesis is rejected, although it is in fact true. It is known as a false pos-
itive or type I error. The α corresponds to the confidence level (1− α) × 100%. A
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test is called one-sided if the null hypothesis is rejected only if the data deviate from
the surrogates in a specified direction. In this case and at a given α, one creates
K = m/α− 1 surrogate datasets, where m is the chosen natural number and also the
second parameter. Choosing m = 1 does not put unnecessary computational bur-
den, nevertheless may be insufficient in some cases [141]. Then the test is computed
on the original data set and on each of the surrogates. If the total of 1/α sets are
available, the probability for each of them to have the smallest (or biggest) value of
the calculated statistic by chance is just α, as desired. For two-sided tests, one gener-
ates K = 2m/α− 1 surrogates. For m = 1, the probability for any of the 2/α sets to
have either the smallest or largest value of the statistic is then again α.

Surrogates types

The aim of surrogates is to preserve all the properties of the original data, except the
one that is being tested. There are two approaches to generate the surrogates. In the
first one a pre-existing model is used to generate the surrogates, e.g. the autoregres-
sive (AR) model [5]. This approach assumes a priori the properties of the system
and the model must be known beforehand. This approach is called typical [243]. An-
other group of methods uses the inverse approach to extract the information from
the data. This approach is known as constrained. Within this class the choice of the
method would strongly depend on the null hypothesis. Some examples of this class
will now be introduced.

Random permutation surrogates The random permutation (RP) of the time series
in the time domain is taken. The shuffling in the time domain destroys any time de-
pendency or temporal correlations. The null hypothesis of the observed data being
fully described by independent and identically distributed (IID) random variables
is tested when applying those surrogates.

Fourier transform surrogates The Fourier transform (FT) surrogates test the null
hypothesis that the data were generated by some linear stochastic process with Gaus-
sian increments. In other words, all structures in a time series could be modelled by
computing first and second order quantities, namely the mean, the variance and
the auto-covariance function, or equivalently, the data do not contain any nonlin-
ear structure. The surrogates satisfy the null hypothesis if they have the same power
spectrum as the original data. To create the realisation of the surrogates, typically the
amplitude Fourier spectrum of the original data is used, while the Fourier phases are
randomised. FT surrogates do not preserve the amplitude distribution of the origi-
nal dataset.

Amplitude adjusted Fourier transform surrogates The amplitude adjusted Fourier
transform (AAFT) surrogates test the null hypothesis that the observed time series
is a monotonic, nonlinear transformation of a linear Gaussian process. The origin of
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the nonlinearity is not dynamical but static, i.e. introduced into the system during
the measurement [242]. To create the realisation of the AAFT surrogates the follow-
ing steps are taken. A realisation of Gaussian noise is generated and reordered to
match the rank of the original time series; this means if in the original time series
s(i) is the n-th smallest element, then in the reordered Gaussian noise g(i) is the n-th
smallest too. Consequently, the FT surrogates of the reordered Gaussian signal are
generated, called Gs. Eventually, the original time series is reordered to match the
rank of the Gs; this means if in the Gs(i) is the n-th smallest element, then in the
reordered time series s′(i) is the n-th smallest too. In this way the amplitude distri-
butions of the original data and the surrogates are identical. The main issue with this
type of surrogates is that spurious flatness is introduced into the Fourier spectrum.

Iterative adjusted Fourier transform surrogates The issue with the bias in the
Fourier spectrum of AAFT surrogates can be bypassed using iterative steps. The
iterative adjusted Fourier transform surrogates (IAAFT) surrogates were introduced
by Schreiber & Schmitz [214]. The iterative steps lead towards maintaining one
property, either power spectrum or amplitude distribution, and keeping the close
match with the other one. The null hypothesis is the same as in the case of AAFT
surrogates, but theoretically the transformation function does not need to be mono-
tonic [135], namely the observed time series is a nonlinear transformation of a linear
Gaussian process. Due to preservation of very specific constraints, the variance in
the IAAFT surrogates is relatively small, which means that the number of realisa-
tions needed will be smaller than in case of the other surrogate types [141]. This
comes at the expense of affecting the outcome of the test. IAAFT surrogates may
fail to reject the null hypothesis when it is false, but the number of false rejections
of the null hypothesis is smaller than for AAFT [214, 135]. Rath et. al [203] inves-
tigated the phase correlations in FT, AAFT and IAAFT surrogates, concluding that
the presence of phase correlations is a generic property of AAFT and IAAFT sur-
rogates. Therefore those surrogates may fail to reject the null hypothesis in case of
weak nonlinearity. They concluded that surrogate algorithms aiming at testing both
static and dynamic nonlinearities cannot reproduce both the power spectrum and
the amplitude distribution while preserving the randomness of the Fourier phases.

Wavelet surrogates Fourier surrogates are the most commonly used type of sur-
rogates when testing for nonlinearity. However, one may wish to address more
specific questions such as: correlations between particular frequency modes in the
oscillations or between the individual cycles, i.e. whether there is any long term de-
terminism. In this case one of the possible choices could be wavelet surrogates in
which typically the discrete wavelet transform is used. Breakspear et al. [32] intro-
duced a method based on the resampling of wavelet coefficients. The data within
each scale could be resampled in the following ways:

• shuffling of wavelet coefficients within each scale,
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• cyclic rotation of coefficients within each scale (time-shifting),

• block resampling of wavelet coefficients within each scale, in which blocks of
coefficients are shuffled in time.

Keylock [128] proposed the IAAFT algorithm as a resampling method for the coef-
ficients within each scale; thus the power spectrum and amplitude distributions are
better preserved within each scale. This method is called wavelet iterative amplitude
adjusted Fourier transform (WIAAFT). In wavelet surrogates there is no stationarity
requirement.

Time-shifted surrogates Surrogate testing in addition to allowing for the investi-
gation of underlying dynamics in a single time series can also be an essential part
of the investigation of interactions between systems, when given two or more time
series. One of the possibilities for interdependence testing is the application of time-
shifted surrogates. First proposed in [199], time-shifted surrogates were further de-
veloped in [8]. The idea is to use the original time-shifted signals, and thus preserve
all the properties of the original data. They test the null hypothesis of two processes
with arbitrary linear or nonlinear structure but without nonlinear interdependence
or significant linear cross-correlation. In many cases, the circular shift is used.

Other There are many other and typically more specific surrogate types. Some
that are worth naming are intersubject surrogates/mismatched [248, 107, 219], the
method-specific analytically derived confidence intervals, e.g. [220], method-specific
randomisations, e.g. [131, 151]. The analytically derived confidence intervals are
especially useful when it comes to computational cost.

Nonstationarity

Nonstationarity has been excluded by many surrogate types, e.g. FT, AAFT, IAAFT
by the requirement of a null hypothesis that is constant in time. The important con-
sequence of this is the possibility of rejection of the null hypothesis due to the fact
that it is false indeed, or alternatively due to the occurrence of nonstationarity. For-
tunately, some surrogate types explicitly address this issue [215, 141].

3.7.2 Wilcoxon test

The Wilcoxon test is a nonparametric test of the null hypothesis that two populations
have the same probability distribution [262]. There are two variations of the test:
signed-rank test and rank-sum test.

Signed-rank test

The Wilcoxon signed-rank test can be applied to the comparison of two groups of
two related, matched samples. This means that there are two nominal variables
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and one measurement variable [163]. In the case of the cellular data analysis from
Chapter 5 this means, that each cell was exposed to two different conditions, such
as “standard bath” and “non-standard bath”. The null hypothesis is that the median
difference between pairs of observations is zero.

Rank-sum test

The Wilcoxon rank-sum test (also called the Mann–Whitney U test or the Wilcoxon–
Mann–Whitney test) can be applied to test, whether a randomly selected value from
one sample will be less than or greater than a randomly selected value from a second
sample. This test can be used to determine whether two independent samples were
selected from populations having the same distribution. In the case of cellular data
analysis from Chapter 5 this means that different cells were exposed to two different
conditions, such as “standard pipette” and “Ca2+ pipette”.

3.8 Summary

The growing availability and abundance of data coming from various sources has
led to an increased demand for methods that reveal certain dynamical properties
of the underlying system that generated the data. This chapter has introduced and
discussed some of the key methods, and the majority of them have been applied to
the recordings of the membrane potential in Chapter 5. The methods can be cat-
egorised in various ways, e.g. as in this chapter, with respect to the domain they
operate on, e.g. time, frequency or time-frequency. The complex dynamics is de-
fined as a temporal evolution; therefore only methods that explicitly take time into
account allow one to gain insight into the underlying dynamics. Time-frequency
methods may give some advantages in understanding the complex, oscillatory dy-
namics, nevertheless they are not the exclusive approach. Methods based on the
phase space or complexity analysis should not be overlooked. While working with
the data, a crucial part of the process is verifying which parts of the data correspond
to meaningful values. Here, the key role in determining this is statistical testing and
the use of surrogates. The surrogate method has evolved significantly from its initial
introduction, and this chapter has reviewed selected contribution to the field.
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Chapter 4

Wavelet bispectral density, wavelet
bispectrum

4.1 Introduction

The wavelet bispectrum, which was already introduced in Chapter 3 (in Sec. 3.6.1),
is an effective tool to study nonlinear coupling, or some forms of nonlinearities in
the time series. Nevertheless, in its current form it does not allow for quantitative
but merely qualitative evaluation over the frequency-frequency or rather scale-scale
space. This chapter introduces work done jointly with Julian Newman and Aneta
Stefanovska, which was submitted in the manuscript [177]. The key result of this
work was identifying a suitable normalisation to allow for the treatment of the bis-
pectrum formally as a bispectral density, over the time-frequency-frequency space.
Wavelet bispectral density allows for a quantitative interpretation of the results of
wavelet bispectrum analysis over time-frequency-frequency space, ipso facto becom-
ing a well-suited method to investigate nonlinear time-varying dynamics.

4.1.1 Background

Wavelet bispectral or rather wavelet bicoherence analysis was first proposed by
van Milligen et al. [170, 254]. The formulas persisted for many years since their
pioneering work in 1995. However, several important questions remained unad-
dressed until recently. Namely because of the Gabor-Heisenberg uncertainty prin-
ciple (Sec. 3.5.1), the quantification of the bispectral content of any given region
in frequency-frequency space was not possible in time-localised manner. In addi-
tion the choice of wavelet normalisation (refers to p as in Sec. 3.5.2) is crucial and this
point was identified in [170, 115, 141], but remained unsolved. However, the choice
of wavelet normalisation issue was usually overcome by using bicoherence, as in
Eq. (3.30).
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4.1.2 Current definition and its limitations

Needless to say, the inability to quantify the bispectral content of a region in scale-
scale space also implies the inability to describe quantitatively how bispectral con-
tent is distributed across different regions in scale-scale space. The problem is il-
lustrated in Fig. 4.1, where the instantaneous wavelet bispectrum, bτ

xyz(s1, s2), is
presented. The instantaneous wavelet bispectrum, i.e. the product of the wavelet
transform terms at a fixed time τ, is defined as

bτ
xyz(s1, s2) := Wx(s1, τ)Wy(s2, τ)Wz(s3, τ), (4.1)

where 1
s3
= 1

s1
+ 1

s2
, using the conventional wavelet normalisation, p = 1/2, as used

in [170, 254], for signals of the form
x(t) = cos(2πν1t)
y(t) = cos(2πν2t) + cos(2πν3t)
z(t) = cos(2π(ν1 + ν2)t) + cos(2π(ν1 + ν3)t− θ).

(4.2)

For this particular choice of signals and parameters, the dependence on the fixed
time τ is negligible, so the results are essentially identical to averaging over a time-
interval.
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Figure 4.1: Wavelet bispectrum according to the current standard definition, Eq. (4.1). Plots
show magnitude |bτ

xyz(s1, s2)| of the instantaneous wavelet bispectrum Eq. (4.1) in units of
sec3/2 for the signals x, y, z in Eq. (4.2) with ν1 = 2.8 Hz, ν2 = 1.3 Hz, ν3 = 12 Hz and θ = π

3 ,
using conventional p = 1

2 definition of the wavelet transform, with a lognormal mother
wavelet (Sec. 3.5.2) with frequency resolution parameter (a) σ = 1 and (b) σ = 4. Scale s
and frequency f are here related by f = 1

s . The signals are simulated over a time-interval
[0 s, 60 s] and the time-instant τ is taken at τ = 30 s.

In Fig. 4.1 (both (a) and (b)), a bispectral contribution from the frequency pair
(ν1, ν2) and (ν1, ν3) can clearly be seen, both appearing as blurs. Yet, it is not straight-
forward to compare, or even quantify the two bispectral contributions. The two



4.2. Appropriate wavelet normalisation, p 53

peaks do not appear to be equal, but they represent the equal coupling indeed. In
both cases the three contributing components have amplitudes equal to 1.

4.1.3 Approach to solving the wavelet bispectrum normalisation problem

The fundamental part of finding a suitable wavelet analogue to the Fourier bispec-
trum is to identify that: by the analogy of second-order spectra describing a dis-
tribution of energy over the frequency axis, the bispectra represent a density of a
distribution over the frequency-frequency space. However, this requires including
a suitable pre-factor, such that the results are really the density of a bispectral distri-
bution over time-frequency-frequency or time-scale-scale space. Consequently, the
quantitative measure of coupling can be obtained by integration. Here, for the first
time the wavelet bispectral density is proposed. This allows one to obtain a correct
wavelet bispectrum formula by integrating the wavelet bispectral density.

4.2 Appropriate wavelet normalisation, p

The most common convention for wavelet normalisation is p = 1
2 . This can be jus-

tified by preservation of the L2 norm independently from the wavelet scale s, and
consequently the fact that the square of the wavelet transform provides a suitable
definition of wavelet power [123, 108]. However, choosing p = 1 has significant
advantages, e.g.

• for a sinusoidal signal the maximal amplitude in wavelet transform corre-
sponds exactly to the frequency of input,

• two sinusoidal modes with the same amplitude are represented by peaks of
the same height, and also have equal spread when viewed with a logarithmic-
scale frequency axis, as shown in Fig. 4.2,

• when integrating with respect to a logarithmic scale and p = 1, (not p = 1
2 ),

the total signal energy is preserved,

• when considering the third-order spectral density, as further shown, p = 1
remains the most appropriate choice when integrating with respect to a loga-
rithmic frequency scale.

Therefore, the normalisation p = 1 is selected as the most appropriate and used
for the further analysis, unless stated otherwise. Other choices such as p = 1

2 are
also possible; however, in the case of bispectral density, modification of the formula
would be required. The wavelet transform, initially defined in Eq. (3.14), can now
be defined using the normalisation p = 1,

Wψ,x( f , t) =
f
κ

∫
R

x(τ)ψ
(
(τ − t) f

κ

)
dτ. (4.3)
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Here, Wψ,x is the wavelet transform of signal x given the wavelet function ψ, ψ de-
notes its complex conjugate, p is the normalisation constant, f is a frequency and t
time. κ is where the Fourier transform of the wavelet function ψ̂ is maximised, typ-
ically equals to 1. In Fig. 4.2 the wavelet transforms of signals x, y, z, with σ = 1 are
presented. It should be noted that the wavelet transform provides a mean of time-
localised frequency analysis. From Eq. (3.15), in the case that x(t) = A cos(2πνt + φ)

with ν > 0, it can be immediately seen that

Wψ,x( f , t) = 1
2 ψ̂
(

κν
f

)
Aei(2πνt+φ) (4.4)

for all f > 0 and t ∈ R.
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Figure 4.2: Wavelet transforms for fixed-frequency oscillatory components. Plots show
wavelet amplitudes |Wψ,x( f , t)|, |Wψ,y( f , t)| and |Wψ,z( f , t)|, respectively in (a), (b) and (c),
for the signals x, y, z defined in Eq. (4.2) with ν1 = 2.8 Hz, ν2 = 1.3 Hz, ν3 = 12 Hz and
θ = π

3 , using a lognormal mother wavelet with σ = 1.

4.3 Wavelet energy spectral density

In Chapter 3 the wavelet energy spectral density was introduced within the frame-
work of the most common convention of linear frequency approach, see Eq. (3.16).
In this chapter an alternative, logarithmic frequency approach is presented, which
is more natural and suitable for wavelet analysis using its current definition. The
wavelet spectral energy density with respect to the logarithmic frequency scale is
defined as

ρψ,xx( f , t) := C−1
ψ |Wψ,x( f , t)|2 (4.5)

where Cψ is first defined in Eq. (3.17) except that now the logarithmic frequency
scale definition is also provided

Cψ =
∫ ∞

0

ψ̂(r)2

r
dr =

∫ ∞

−∞
ψ̂(er)2 dr. (4.6)
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Here, ψ̂ corresponds to the Fourier transform of the wavelet function. Consequently,
the wavelet energy spectrum of x is given by

pψ,xx(A) =
∫

R2
1A(eζ , t)pψ,xx(eζ , t) d(ζ, t), (4.7)

where A indicates the region of interest in time-frequency space and 1A(eζ , t) is
equal to 1, where eζ and t are included in A. pψ,xx(eζ , t) as defined in Eq. (4.5). Note,
that the logarithmic frequency scale implies a logarithm of base e; however transfor-
mation to a different base is straightforward.

4.4 Wavelet bispectral density

4.4.1 Normalisation

The aim of this section is to propose a third-order normalisation, analogous to Cψ.
The combination of the logarithmic-frequency nature of the wavelet transform with
the linear-frequency sum involved in bispectral analysis creates difficulty in defining
the wavelet bispectrum in analogy to wavelet energy spectral density. The details are
shown in Appendix B.3. Therefore, instead of being a single value, like Cψ, the bis-
pectral normalisation depends on the frequencies or rather their ratio, λ = f1

f1+ f2
. The

following normalisation, given a wavelet function ψ, for each λ ∈ [0, 1], is proposed

Dψ(λ) :=
∫ ∞

0

∫ ∞

0

ψ̂
( f1

ξ1

)
ψ̂
( f2

ξ2

)
ψ̂
( f1+ f2

ξ1+ξ2

)
ξ1ξ2

dξ1dξ2. (4.8)

=
∫ ∞

0

∫ ∞

0

ψ̊(r1)ψ̊(r2)ψ̊(λr1 + (1− λ)r2)

r1r2
dr1dr2 (4.9)

=
∫ ∞

−∞

∫ ∞

−∞
ψ̊(er1)ψ̊(er2)ψ̊(λer1 + (1− λ)er2) dr1dr2, (4.10)

where ψ̊(x) := ψ̂( 1
x ). Note that Dψ(λ) = Dψ(1− λ). Dψ is not a “perfect” third-

order analogue of Eq. (4.6) because it depends on the ratio of the frequencies as
represented by λ. Yet, Dψ serves as a reasonable third-order analogue of Cψ. Given
a wavelet ψ and signals

x(t) = A1 cos(2πλνt + φ1)

y(t) = A2 cos(2π(1− λ)νt + φ2)

z(t) = A3 cos(2πνt + φ1 + φ2 − θ)

with ν > 0, it is true that

1
8 A1 A2A3eiθ =

1
Dψ(λ)

∫
R2

Wψ,x(eζ1 , t)Wψ,y(eζ2 , t)Wψ,z(eζ1 + eζ2 , t) d(ζ1, ζ2) (4.11)
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for any t ∈ R. This fact is immediate from Eq. (4.4). It is also shown in [177] that, in
the limit as σ→ ∞,

σ2Dψσ(λ) →
1

π
√

8(1− λ + λ2)
,

for which the range is between (
√

8π)−1 ≈ 0.1125 and (
√

6π)−1 ≈ 0.1299. Fig. 4.3
illustrates the dependence of Dψσ(λ) on λ for the lognormal wavelet function ψσ

defined by ψ̂σ(r) = e−2(πσ log r)2
on r > 0, where the parameter σ is taken over the

range [0.5, 3]. From Fig. 4.3 it is also clear that the suggested approximation holds
fairly well also for smaller σ.
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Figure 4.3: Depedence of Dψσ (λ) on λ for the lognormal wavelet function ψσ, across varying
σ. The plot specifically shows σ2Dψσ (λ) as a function of σ and λ. For each σ, Dψσ (λ) ranges
from about 0.11σ−2 to about 0.13σ−2.

4.4.2 Definition

Given a wavelet ψ and functions x, y, z, the logarithmic-frequency wavelet bispectral
density (BD) bψ,xyz is defined by

bψ,xyz( f1, f2, t) = Dψ

(
f1

f1+ f2

)−1
Wψ,x( f1, t)Wψ,y( f2, t)Wψ,z( f1 + f2, t). (4.12)

In particular, bψ,xxx is referred as the logarithmic-frequency wavelet autoBD of x, while
BD bψ,uvw for which it is not the case that u = v = w is referred to as a cross-BD.

4.5 Examples

In this section selected numerical examples are presented. The proposed normal-
isation gives good results for fixed-frequency components and for phase-coupled
oscillators, as illustrated below.
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4.5.1 Sinusoidal components

To begin with, the sinusoidal components are investigated. In this section, the “in-
stantaneous wavelet bispectral content” of a set A, indicating the subset in frequency-
frequency space at a time t is defined by

binst
ψ,xyz(A, t) :=

∫
R2
1A(eζ1 , eζ2)bψ,xyz(eζ1 , eζ2 , t) d(ζ1, ζ2). (4.13)

Here, 1A(a, b) = 1, where a, b ∈ A or 0 otherwise, bψ,xyz is a logarithmic-frequency
wavelet bispectral density, as defined in Eq. (4.12). All the signals in this section are
simulated over a time interval [0 s, 60 s], and instantaneous wavelet bispectral re-
sults are considered at τ = 30 s to avoid any effect of the cone of influence, discussed
in Sec. 3.5.2.

To begin with, exactly the same signals as in Eq. (4.2) are considered. The pa-
rameters are ν1 = 2.8 Hz, ν2 = 1.3 Hz, ν3 = 12 Hz and θ = π

3 (as in the caption of
Fig. 4.1). The wavelet bispectral density bψσ ,xyz( f1, f2, τ) is shown in Fig. 4.4, using
σ = 1 and σ = 4 just as in Fig. 4.1.
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Figure 4.4: Wavelet bispectral density according to the definition in Eq. (4.13), for the signals
considered in the Eq. (4.2). Plots show magnitude of the logarithmic-frequency wavelet
bispectral density bψσ ,xyz( f1, f2, τ) for the signals x, y, z in the Eq. (4.2) with ν1 = 2.8 Hz,
ν2 = 1.3 Hz, ν3 = 12 Hz and θ = π

3 , with (a) σ = 1 and (b) σ = 4. In (a), the white circle
marks the boundary of S1 and the black circle the boundary of S2. In (b), the white circle
marks the boundary of S3 and the black circle the boundary of S4.

A blurry peak around (ν1, ν2) and (ν1, ν3) for both σ = 1 and σ = 4 can be seen.
For σ = 1, a region S1 containing the visible blur around (ν1, ν2) is marked and a
region S2 containing the visible blur around (ν1, ν3), both indicated in Fig. 4.4. A
numerical computation yields

binst
ψ,xyz(S1, τ) ≈ 0.1251 and binst

ψ,xyz(S2, τ) ≈ 0.1249e0.3333πi.

Likewise, for σ = 4, a region S3 containing the visible blur around (ν1, ν2) is marked



58 Chapter 4. Wavelet bispectral density, wavelet bispectrum

and a region S4 containing the visible blur around (ν1, ν3), again both indicated in
Fig. 4.4. A numerical computation yields

binst
ψ,xyz(S3, τ) ≈ 0.1250 and binst

ψ,xyz(S4, τ) ≈ 0.1250e0.3333πi.

So all four of these regions have instantaneous bispectral content equal in magni-
tude to approximately 1

8 , which is to be expected immediately from Eq. (4.11). In
particular, for both frequency resolutions it is possible to show that the two bispec-
tral contributions are of essentially the same magnitude, which could not be seen
from the current standard definition of wavelet bispectra as described in Sec. 4.1.

Even considering the lower frequency resolution, the novel wavelet bispectrum
definition gives good results. Fig. 4.5(a) shows bψσ ,xxy( f1, f2, τ) with σ = 0.5 for the
pair of signals {

x(t) = cos(2πνt)
y(t) = cos(4πνt)

(4.14)

with ν = 2.8 Hz. The instantaneous wavelet bispectral content of the white-circled
region in Fig. 4.5(a) is approximately 0.1255, again remarkably close to the ideal
value of 1

8 . Likewise Fig. 4.5(b–c) shows bψσ ,xxy( f1, f2, τ) with σ = 0.5 for signals
x, y, z of the form presented in Eq. (4.2), with θ = 0. The instantaneous wavelet bis-
pectral content of the white-circled region and the black-circled region in Fig. 4.5(b)
are approximately 0.1260 + 0.0002i and 0.1254− 0.0002i respectively. The instanta-
neous wavelet bispectral content of the white-circled region and the black-circled
region in Fig. 4.5(c) are approximately 0.1253 + 0.0001i and 0.1250− 0.0001i respec-
tively. These values are very close to 1

8 , as desired. It can also be seen in the remain-
ing plots of Fig. 4.5 how the size of the blurs in frequency-frequency space decreases
with increasing σ.

Autobispectra

Now, autobispectra for example sine signals are illustrated. Tested signals have the
form

x(t) = 2 cos(2πνt) + cos(4πνt) (4.15a)

x(t) = cos(2πνt) + cos(3πνt) + cos(4πνt) (4.15b)

x(t) = cos(2πνt) + cos(4πνt) + cos(6πνt). (4.15c)

The wavelet autobispectra are diagonally symetrical. Fig. 4.6 shows bψσ ,xxx( f1, f2, τ)

with σ = 3 for each of the three signals x(t) in Eq. (4.15). For Eq. (4.15a), the instanta-
neous wavelet bispectral content of the circled region in Fig. 4.6(a) is approximately
0.5001. For Eq. (4.15b), the instantaneous wavelet bispectral content of the circled re-
gion in Fig. 4.6(b) is approximately 0.1250. For Eq. (4.15c), the instantaneous wavelet
bispectral content of each of the circled regions in Fig. 4.6(c) is approximately 0.1250.
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Figure 4.5: Wavelet bispectra for fixed-frequency oscillatory components. In (a),
|bψσ ,xxy( f1, f2, τ)| is shown for x, y as in Eq. (4.14) with ν = 2.8 Hz, with σ = 0.5. In (d,g) is
shown, respectively with σ = 1 and σ = 2, |bψσ ,xyz( f1, f2, τ)| for x, y, z as in Eq. (4.2) with
ν1 = ν2 = 2.8 Hz, ν3 = 12 Hz and θ = 0. In (b,e,h) is shown, respectively with σ equal to 0.5,
1 and 2, |bψσ ,xyz( f1, f2, τ)| for x, y, z as in Eq. (4.2) with ν1 = 2.8 Hz, ν2 = 1.3 Hz, ν3 = 12 Hz
and θ = 0. In (c,f,i) is shown, respectively with σ equal to 0.5, 1 and 2, |bψσ ,xyz( f1, f2, τ)| for
x, y, z as in Eq. (4.2) with ν1 = 2.8 Hz, ν2 = 0.9 Hz, ν3 = 12 Hz and θ = 0. All nine plots use
the same frequency axes. The instantaneous wavelet bispectral content of the circled regions
(numerical integration values) in (a–c) are given in the text.

4.5.2 Coupled phase oscillators

In this section the “time-marginalised bispectral density” is discussed, which can be
defined as

bI
ψ,xyz( f1, f2) :=

∫
I

bψ,xyz( f1, f2, t) dt.

Here, I ⊂ R indicates the time interval. Except where stated otherwise, the signals
in this section are simulated over a time interval [0 s, 500 s], and bispectral results
are considered over the central time-subinterval

I0 := [233 1
3 s, 266 2

3 s]

of duration 33 1
3 s. This corresponds to one time period of the frequency modulation

that will be introduced below.
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Figure 4.6: Wavelet autobispectra for signals with fixed-frequency oscillatory components.
In (a), (b) and (c) are shown |bψσ ,xxx( f1, f2, τ)| for x(t) as in Eqs. (4.15a), (4.15b) and (4.15c)
respectively, with ν = 2.4 Hz, with σ = 3. Shown in dashed white is the diagonal. The in-
stantaneous wavelet bispectral content of the circled regions (numerical integration values)
are given in the text.

One form of interaction between oscillators that bispectral analysis is likely to
detect is dynamical coupling in the form of added coupling terms in the differential
equations of motion [170, 116]. Here, Kuramoto-type symmetric coupling between
two phase oscillators is considered. The simplest scenario would be to introduce
the coupling between two linear phase oscillators, as in the usual Kuramoto model;
however, as explained later in Sec. 4.5.3, bispectral analysis is probably unable to
detect such coupling between two linear phase oscillators. Therefore, the Kuramoto
coupling between two highly nonlinear phase oscillators is considered instead.
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Figure 4.7: Wavelet and wavelet-bispectral representation of a linear superposition of two
non-interacting nonlinear oscillators. In (a) and (b) are shown respectively |Wψσ ,x( f , t)| and
|bI0

ψσ ,xxx( f1, f2)| (the latter in units of seconds), for the fixed-frequency uncoupled oscillators
as in Eq. (4.16), with σ = 3.

Two phase oscillators θ1(t) and θ2(t) and the signal

x(t) = cos(θ1(t)) + cos(θ2(t))

on which autobispectral analysis will be carried out are considered. In the first
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instance, uncoupled phase oscillators with a fixed basic frequency are considered;
specifically, they follow the system of differential equations{

θ̇1(t) = 2πν1(1 + 0.6 cos(θ1))

θ̇2(t) = 2πν2(1 + 0.6 cos(θ2))
(4.16)

with ν1 = 0.9 Hz and ν2 = 1.4 Hz. The oscillator θ1 is strictly periodic with fre-
quency ν̃1 := 0.8ν1 = 0.72 Hz, and the oscillator θ2 is strictly periodic with fre-
quency ν̃2 := 0.8ν2 = 1.12 Hz. For this case, Fig. 4.7(a) shows the wavelet transform
of x and Fig. 4.7(b) shows bI0

ψσ ,xxx( f1, f2), both with σ = 3. The six most prominent
bispectral contributions can be seen in Fig. 4.7(b). Those are: the diagonal contribu-
tion around (ν̃1, ν̃1), and the off-diagonal around (2ν̃1, ν̃1) and its mirror-reflection
around (ν̃1, 2ν̃1); and likewise, the diagonal contribution around (ν̃2, ν̃2), and the off-
diagonal around (2ν̃2, ν̃2) and its mirror-reflection around (ν̃2, 2ν̃2). These bispectral
contributions are simply due to the nonlinearity of the two individual oscillators.
Hence, they do not signify any kind of interaction between the oscillators.

However, introducing coupling results in new peaks that indicate interaction.
Now the coupled system{

θ̇1(t) = 2πν1(1 + 0.6 cos(θ1)) + K sin(θ2 − θ1)

θ̇2(t) = 2πν2(1 + 0.6 cos(θ2)) + K sin(θ1 − θ2)
(4.17)

is considered with ν1 and ν2 as defined before, and K = 0.2 rad/s. This coupling
is not very strong, but it has a significant effect. Once again, Fig. 4.8(a) shows the
wavelet transform of x and Fig. 4.8(b) shows bI0

ψσ ,xxx( f1, f2), both with σ = 3. In
Fig. 4.8(b) prominent bispectral contributions can be seen around roughly the same
points as in Fig. 4.7(b), plus some new peaks, the most prominent being a bispectral
contribution roughly around (ν̃2, ν̃1) as well as its mirror-reflection roughly around
(ν̃1, ν̃2).
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Figure 4.8: Wavelet and wavelet-bispectral representation of a linear superposition of two
interacting nonlinear oscillators. In (a) and (b) are shown respectively |Wψσ ,x( f , t)| and
|bI0

ψσ ,xxx( f1, f2)| (the latter in units of seconds), for the coupled fixed-frequency oscillators
as in Eq. (4.17), with σ = 3.
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Figure 4.9: Wavelet and wavelet-bispectral representation of a linear superposition of two
interacting nonlinear oscillators, with one having slowly time-varying inherent frequency.
In (a) and (b) are shown respectively |Wψσ ,x( f , t)| and |bI0

ψσ ,xxx( f1, f2)| (the latter in units of
seconds), for the coupled oscillators as in Eq. (4.18), with σ = 3. The bispectral content
associated to the three marked frequency-frequency regions over the time interval I0 are
given in the text. Peak around (ν̃1, ν̃1) is now bimodal as opposed to unimodal. This is
because the sinusoidal temporal variation of ν1(t) spends more time near its extreme values
0.81 Hz and 0.99 Hz than it does around each value in between.

It is clear that the bispectrum can detect the interaction between oscillators. But
this detection is not new and could have been achieved using the more traditional
non-time-evolving Fourier bispectral analysis. A major improvement of bispectrum
can be seen when slow frequency modulation is introduced. For simplicity, the mod-
ulation is sinusoidal in shape, but any shape of slow frequency modulation can be
used. The used system was{

θ̇1(t) = 2πν1(t)(1 + 0.6 cos(θ1)) + K sin(θ2 − θ1)

θ̇2(t) = 2πν2(1 + 0.6 cos(θ2)) + K sin(θ1 − θ2)
(4.18)

with ν2 and K as previously defined, and

ν1(t) = 0.9 Hz × (1 + 0.1 sin(2π fmt)),

where fm = 0.03 Hz. The parameter θ1 has now a slowly varying inherent frequency,
approximately of the sinusoidal shape 0.8ν1(t), and the time interval I0 corresponds
exactly to one time period of ν1(t). Fig. 4.9(a) shows the wavelet transform of x over
I0 and Fig. 4.9(b) shows bI0

ψσ ,xxx( f1, f2), both with σ = 3. Some bispectral contribution
ensures that around (ν̃1, ν̃1) is now bimodal as opposed to unimodal. This is because
the sinusoidal temporal variation of ν1(t) spends more time near its extreme values
0.81 Hz and 0.99 Hz than it does around each value in between.

In the example shown in Figs. 4.7–4.9 it is clear that the new definition of wavelet
bispectrum allows for the quantification and comparison of bispectral contributions
over given time intervals or across different parts of frequency-frequency space. This
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was not previously possible.
In Fig. 4.9(b) regions Rpurple, Rgrey and Rblack are marked respectively around the

blurry peaks containing frequency pairs (ν̃1, ν̃1), (2ν̃2, ν̃2) and (ν̃2, ν̃1) respectively.
Once again, the first two regions contain contributions due to the nonlinearity of
the individual oscillators, while the third represents the interaction that has been
introduced between the oscillators. The bispectral content associated with each of
the three indicated contributions is:

bψ,xxx(Rpurple × I0) ≈ 0.976e0.08πi s
bψ,xxx(Rgrey × I0) ≈ 0.097e0.03πi s
bψ,xxx(Rblack × I0) ≈ 0.086e−0.45πi s.

Moreover, one can actually track over time the motion of the peaks and associ-
ated bispectral content. Each of the time intervals I1, I2, I3 ⊂ I0 is a 5-second interval
centred on 7.25 f−1

m , 7.5 f−1
m and 7.75 f−1

m respectively. The intervals are marked in
Fig. 4.10. In Fig. 4.11 are shown bI1

ψσ ,xxx( f1, f2), bI2
ψσ ,xxx( f1, f2) and bI3

ψσ ,xxx( f1, f2); and

on these plots are marked respectively the regions R(1)
black, R(2)

black and R(3)
black which

help to trace over time the bispectral contribution to the green-marked region in
Fig. 4.9(b). Again, the new definition of the wavelet bispectrum enables quantifica-
tion of the time-evolving bispectral contributions:

bψ,xxx(R(1)
black × I1) ≈ 0.008e−0.52πi s

bψ,xxx(R(2)
black × I2) ≈ 0.017e−0.47πi s

bψ,xxx(R(3)
black × I3) ≈ 0.011e−0.45πi s.

Here, three time-subintervals are sampled. A more continuous-time tracking of bis-
pectral content can be achieved by following the frequency variation of oscillatory
components of interest directly from the wavelet transforms themselves via “ridge-
extraction” methods, as described in Sec. 3.5.3.
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Figure 4.10: Graph of ν1(t) over I0, on which are marked the time intervals I1 (blue), I2
(orange) and I3 (yellow).
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Figure 4.11: Tracing a bispectral contribution over time. In (a), (b) and (c) are shown re-
spectively |bI1

ψσ ,xxx( f1, f2)|, |bI2
ψσ ,xxx( f1, f2)| and |bI3

ψσ ,xxx( f1, f2)| (all in units of seconds), for
the coupled oscillators as in Eq. (4.18), with σ = 3. The bispectral content associated to the
marked regions of frequency-frequency over the respective time-intervals are given in the
text.

4.5.3 The bispectrum and the coupling for linear phase oscillators

The phase oscillator model selected earlier is very specific and describes a narrow
class of oscillators. In this section the signal x(t) = cos(θ1(t)) + cos(θ2(t)) and the
Kuramoto model {

θ̇1(t) = 2πν1 + K sin(θ2 − θ1)

θ̇2(t) = 2πν2 + K sin(θ1 − θ2)
(4.19)

are considered with ν1 = 0.9 Hz, ν2 = 1.4 Hz and K = 0.2 rad/s. The signal x(t) was
simulated over the time interval [0 s, 104 s]. Fig. 4.12 shows the magnitude of X(·)
defined as the result of taking the Fourier transform of x restricted to the interval
[200 s, 104 s] and dividing by the time-duration 9800 s. (The first 200 seconds were
removed to avoid any possible transient dynamical behaviour of the system from
Eq. (4.19).)

1 2 3 4
 f  (Hz)

10 -5

10 0

|X
(f

)|

Figure 4.12: The Fourier components of x(t). Here, |X( f )| as plotted on the vertical axis
is the Fourier amplitude associated with f , normalised by the duration of the signal. The
frequency-values |0.406 + 0.496n| Hz are marked with the respective vertical grey dashed
lines for integers n ranging from −2 to 6. The value 0.4959 corresponds to a beat frequency
that can be found using Eq. (7.34) from [194].

It can be seen in Fig. 4.12 that the Fourier components of x(t) have frequencies
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that all lie within a set of the form {|ξ1 + nξ2| : n ∈ Z}. If ξ1 and ξ2 are rationally
independent, then no two frequencies in this set can have a sum that also lies in this
set. Thus, bispectral analysis would not be able to detect the coupling. Instead, at
least some kind of trispectral (i.e. fourth-order spectral) analysis would be needed:
perhaps the simplest and most direct approach, as proposed in [116], would be to
investigate the presence of frequency triplets with equal spacing between the two
consecutive pairs of frequencies, using a time-evolving version of the “modified”
Fourier bispectrum

Txxx( f1, f2) =
x̂( f1)

2 x̂( f2)x̂(2 f1 − f2)

|x̂( f1)|

on Γ1− := {0 < f2 < f1} or equivalently on {0 < f1 < f2 < 2 f1}.

4.6 Uncertainty principle again

The new tool, bispectral density, allows for a quantitative evaluation of the bispec-
tral content over time-frequency-frequency space, which establishes a milestone in
higher-order analysis. Hence, it is truly suitable for application to complex dynam-
ics. However, it is still not clear what can be concluded about the underlying dynam-
ics based on this approach. In this section some warnings related to the selection of
appropriate σ are presented. The whole point of the correct bispectral normalisation
is that for fixed frequency components the value of the integral under the patch that
corresponds to the “real” effect does not depend on σ. This is presented in Fig. 4.5
where the value of the integral is not affected by σ.

4.6.1 Fixed frequency components

The ability of the wavelet transform to resolve two sinusoidal components depends
only on the ratio between the two frequencies f1 and f2, (let f2 ≥ f1). Multiplying the
frequencies by the same factor c would shift the entire diagram along the frequency
axes by an amount proportional to log(c). Nevertheless, it is not well defined what
“resolvability” means; more detailed discussion can be found in [108]. Now, the
signal of the two uncoupled fixed-frequency components of the form

x = sin(2πν1t) + sin(2πν2t) (4.20)

is considered, where ν2 6= nν1, n ∈ N. It is immediately obvious that the coupling
should not be indicated. Fig. 4.13 shows the wavelet transforms and wavelet auto-
bispectra integrated over the time interval [20, 40] s for different values of σ. The
values of |Wψσ ,x( f , t)| and |bI0

ψσ ,xxx| are shown in upper and lower row respectively.
I0 indicates integration over the interval [20, 40] s. The signal was simulated for
T = 60 s with sampling frequency Fs = 50 Hz. For low σ values, σ < 2, and fixed
frequency components, ν1 = 0.9, ν2 = 1.4, a spurious peak is generated centred
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around (0.84, 0.84) and was found empirically. The value could be found explicitly
from Eq. (4.4), by adding the wavelet transforms, applying the bispectrum formula,
Eq. (4.4.2), and finding the pair for frequencies for which the absolute value of bis-
pectrum is maximised. The values of the integrals over I0 = [20, 40] s are marked by
white circles in frequency-frequency space and are respectively

bψσ=0.5,xxx(R(b) × I0) ≈ 0.0060e−0.5154πi s
bψσ=0.7,xxx(R(d) × I0) ≈ 0.0034e−0.5123πi s
bψσ=1,xxx(R(f) × I0) ≈ 0.0016e−0.5093πi s
bψσ=2,xxx(R(h) × I0) ≈ 0.0001e−0.5080πi s
bψσ=3,xxx(R(j) × I0) ≈ 0.0000e−0.5080πi s.

The values of the integrals are relatively small when compared with the values of
the integrals from Fig. 4.5; however in Fig. 4.13(b, d, f ) the integral gives a non-zero
contribution.

Minimal frequency resolution

Now, the general recipe of “safe” σ selection in case of fixed frequency components
will be formulated. It is straightforward from Eq. (3.19) that the lognormal wavelet
can be represented by a Gaussian window in the frequency domain, with standard

deviation
1

2πσ
. For simplicity it is now assumed that two modes are resolvable if

they are separated by m standard deviations. Minimal frequency resolution, σmin,
needed to resolve two fixed frequency components is given by

σ−1
min =

2π

m
min

{
log
(

f2

f1

)
, log

(
f1 + f2

f2

)}
. (4.21)

From this equation, one can easily check that if f2 � f1, and f1+ f2
f2
→ 1 then σ → ∞.

This is one of the reasons why investigating the interactions between modes whose
frequencies are too far apart, does not give meaningful results when applying bis-
pectral analysis. It will be advisable after identifying the coupled modes, to go back
to the wavelet transform and check whether this effect could be due to the insuffi-
cient frequency resolution.

4.6.2 Time-varying basic frequency

So far, fixed frequency components were discussed in the context of selecting the
most appropriate σ. Of course, in this particular case, the higher the frequency res-
olution the better the coupling will be resolved because there is no time variabil-
ity. In case of fixed frequency components the Fourier bispectrum is sufficient. The
next step is to investigate dynamics that can change over time. Hence, the easiest
way to approach the time variability is by introducing strictly periodically-varying
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Figure 4.13: Wavelet transforms and wavelet autobispectral representation integrated over
the interval I0 for different σ values for the sum of two sinusoidal components from
Eq. (4.20). The values of |Wψσ ,x( f , t)| and |bI0

ψσ ,xxx| are shown in upper and lower row re-
spectively. I0 indicates integration over the interval [20, 40] s. In the lower row the colorbar
has the units of s. The parameters are ν1 = 0.9, ν2 = 1.4. The white circle is centred around
(0.84, 0.84) and its radius is chosen empirically such that it covers most of the blur. In prin-
ciples, no peak should appear, nevertheless too low σ values lead to occurrence of spurious
peaks. The values of the integrals, which can be found in the main text, are very low, when
compared with those from Fig. 4.5; nevertheless they are non-zeros.

frequency. The signal from Eq. (3.5) is investigated. Ideally, knowing the dynam-
ics a priori, one would like to represent it as a infinitely thin, sharp-localised “line”
in time and frequency. Nevertheless, due to Heisenberg-Gabor uncertainty prin-
ciple, it is not possible. Therefore for finite-time signal, the autobispectrum will
probably always indicate non-zero values – the modulated sine will interfere with
itself. As discussed in Sec. 3.5.2, four regimes can be identified. The structure of
the wavelet autobispectrum depends, similarly to the regime, on two parameters,
σ fm/ f0 and k. Here, the effect of non-zero coupling indicated by the autobispec-
tra of the sinusoidal component with varying frequency is measured quantitatively.
Fig. 4.14 shows the wavelet transforms |Wψσ ,x( f , t)| and Fig. 4.15 the respective au-
tobispectra |bI

ψσ ,xxx| of the signal from Eq. (3.5), with f0 = 0.13 Hz, fm = 0.008 Hz.
The parameters σ and k are varied. The simulation time was T = 1200 s, and
the sampling frequency Fs = 20 Hz. The nv was selected using Eq. (3.23), with
Np = 6. The autobispectra presented in Fig. 4.15 were averaged over the period
[T/2− 1/ fm, T/2 + 1/ fm] s. Here averaging, as opposed to integration over time
as in time-varying signal from Fig. 4.11, was applied – this enables the comparison
of the values with the “instantaneous” bispectrum. Various structures from a single
blur to harmonically located peaks are present in the autobispectra. Those peaks
do not reflect the “real” coupling but are simply the effect of Heisenberg-Gabor un-
certainty principle. Fig. 4.16 illustrates the effect quantitatively, by showing the bis-
pectra from Fig. 4.15 integrated over frequency-frequency space as a function of σ

and k. Expectedly, the bigger the amplitude variability k and the better the locali-
sation in time, the smaller the obtained coupling. The self-coupling, as measured
by autobispectrum, within a signal without the time variability, is not affected by
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the change of σ. Initially it is not clear how to compare the structures present in the
autobispectrum for low σ (first column in Fig. 4.15) and high σ; however the quan-
titative comparison of both indicated the smaller values for low σ. The values of the
integrals are shown in Fig. 4.16.
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Figure 4.14: Wavelet transforms |Wψσ ,x( f , t)| of the signal from Eq. (3.5), with f0 = 0.13 Hz,
fm = 0.008. The parameters σ and k are varied. Four regimes described in Sec. 3.5.2 can be
observed. Fig. 4.15 presents corresponding autobispectra.

4.6.3 Spurious coupling due insufficient frequency resolution

This section illustrates the uncertainty principle in practice: insufficient frequency
resolution σ for fixed frequency components and the opposite, insufficient time lo-
calisation for the time-varying signals, may result in finding coupling that is spu-
rious in nature. The bispectral density allows one to measure this effect quantita-
tively, and thus may enhance intuition and help identifying whether the measured
coupling actually reflects the real properties of the underlying dynamics.



4.7. Surrogates 69

 = 0.7

0.1

0.5
1

 k
 =

 0

0.5 1 1.5 2

10 -4

 = 1

5 10 15

10 -6

 = 3

2 4 6

10 -7

 = 6

2 4

10 -10

0.1

0.5
1

 k
 =

 0
.3

1 2

10 -4
2 4 6 8 10

10 -5
0.01 0.02 0.04 0.1

0.1

0.5
1

 f
2
 (

H
z)

 k
 =

 0
.6

1 2 3 4 5

10 -3
5 10 15

10 -3
0.02 0.06 0.1 0.14 0.1 0.3 0.5

10 -1 10 0

0.1

0.5
1

 k
 =

 0
.8

5 10 15

10 -3

10 -1 10 0

0.01 0.02

10 -1 10 0

 f
1
 (Hz)

0.05 0.1 0.15

10 -1 10 0

0.1 0.3 0.5

Figure 4.15: Autobispectra |bI
ψσ ,xxx( f1, f2)| of the signal from Eq. (3.5), with f0 = 0.13 Hz,

fm = 0.008 averaged over the period [T/2− 1/ fm, T/2 + 1/ fm] s. The parameters σ and
k are varied. Corresponding wavelet transforms are presented in Fig. 4.14. Various struc-
tures from a single blur to harmonically located peaks are present in the autobispectra. The
quantitative effect is presented in Fig. 4.16.

4.7 Surrogates

In this section an application of surrogates in bispectral analysis is discussed. The
peaks observed in real data require robust testing. The use of surrogates combined
with bicoherence analysis was proposed in [131] and further developed by [151, 218].
The proposed method was applied exclusively to bicoherence to detect quadratic
phase coupling (QPC). Another approach was presented in [95], where a threshold
obtained from surrogates was applied to bicoherence. The first application of surro-
gates to bispectrum were presented in [141].

In this section selected types of surrogates, namely Fourier (FT), time-shifted
(tshift) and wavelet (WIAAFT), described in Sec. 3.7, are applied in the analysis of
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Figure 4.16: Global coupling, measured as autobispectra from Fig. 4.15 integrated over
frequency-frequency space as a function of σ. Each colour corresponds to different value
of k indicated by the legend. Coupling obtained for small σ is smaller than for bigger σ - this
effect is particularly visible for larger values of k. Signals with larger time variability require
better time localisation.

the bispectrum of phase-coupled oscillators introduced in Sec. 4.5.2. Fig. 4.17 il-
lustrates the application of the surrogates to wavelet-bispectral representation of a
linear superposition of two Kuramoto nonlinear oscillators. In (a-c) the autobispec-
tra averaged over time intervals I0 = [233.33, 266.67] sec, 1

TI0
|bI0

ψσ ,xxx( f1, f2)|, of the
signals of uncoupled, Eq. (4.16), phase-coupled, Eq. (4.17) and phase-coupled with
time-varying basic frequency, Eq. (4.18) are presented respectively. In each case, the
first column shows the original bispectrum. The subsequent columns show bispec-
tra after values obtained from surrogates are subtracted. In each case the subtracted
value is 95th percentile obtained from 50 surrogates.

The lower part of the figure, (d-f) shows respective autobispectra, of the signals
similar to (a-c) but with added measurement noise. The noise is the realisation of
so-called pink noise, for T = 500 s and sampling frequency Fs = 50 Hz. The noise
was generated using Gaussian noise MATLAB generator, randn(), then the ampli-
tude spectrum in the Fourier domain was multiplied by

√
f , where f corresponds to

the frequency. The standard deviation was set to κ = 1. Regardless of the noise level
the results are qualitatively the same. Bispectral peaks are not significant in case of
FT in uncoupled and phase coupled oscillators, (Fig. 4.17(a,b,d,e), second column),
where the null hypothesis that the data were generated by a linear stochastic process
with Gaussian increments cannot be rejected. Similarly, the null hypothesis is not re-
jected in case of tshift surrogates, (Fig. 4.17(a,b,d,e), third column). Here, the null
hypothesis of two processes with arbitrary linear or nonlinear structure but with-
out nonlinear interdependence or significant linear cross-correlation is tested. Only
WIAAFT indicates some of the peaks in the correct positions, (Fig. 4.17(a,b,d,e), forth
column). Nevertheless the peak (ν̃2, ν̃2) was not significant in any case. The asym-
metry in different “treatment” of (ν̃1, ν̃1) and (ν̃2, ν̃2) does not depend on the number
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of surrogates (what is shown later in Fig. 4.18). The effect is probably due to the pa-
rameters choice and the fact that on wavelet transform the window of the frequency
centred around 2ν̃2 has a bigger spread than centred around 2ν̃1 on the linear axis.
Therefore, the frequency 2ν̃2 is more likely to coincide with the other higher har-
monics. This is another issue, that one needs to take into account when combining
the linear nature of bispectral analysis with logarithmic nature of wavelet transform
used to generate the surrogates. In case of coupled oscillators when one of them is
time-varying, (Fig. 4.17(c,f)), all the surrogates perform similarly, indicating as sig-
nificant the time-varying peak.

Fig. 4.18 illustrates the bispectrum of linear superposition of uncoupled nonlin-
ear phase oscillators and different number of WIAAFT surrogates. 95th percentile of
the n surrogates was subtracted from the original bispectrum. Increasing the number
of surrogates does not change the result. In the case where the number of surrogates
where not fulfilling the formula K = m/α − 1 the percentile was calculated as a
linear interpolation of the vector of surrogate data.

4.8 Summary

This chapter introduces the bispectral density which was the first tool to provide
a quantitative interpretation of results obtained using the wavelet bispectrum over
time-frequency-frequency space. The bispectral density allows for investigation of
the time-varying dynamics. Sec. 4.5 provides numerical examples and discusses
some of the limitations of the applicability. In Sec. 4.6 the practicalities of uncertainty
principles are discussed and finally Sec. 4.7 displays the most appropriate surrogate
techniques. Even the most appropriate surrogates tested were not able to detect
all the peaks. The most reasonable approach is probably the quantitative bispectral
analysis before applying any surrogates.
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Figure 4.17: Wavelet-bispectral representation of a linear superposition of two Kuramoto
nonlinear oscillators without and with measurement noise and use of surrogates. The au-
tobispectra 1

TI0
|bI0

ψσ ,xxx( f1, f2)| averaged over time intervals I0 = [233.33, 266.67] sec of (a,d)

the uncoupled, Eq. (4.16), (b,e) coupled, Eq. (4.17), and (c,f) coupled oscillators, where one
of them has a time-varying frequency are presented. In the first column, the original rep-
resentation is shown while in the consecutive columns the part remained after subtracting
the 95th percentile level of the 50 surrogates. In the upper figure (a,b,c) the original signals
are used, while in the lower (d,e,f) the measurement noise is added, with standard deviation
κ = 1. For further details see the text. The colorbar is unitless, σ = 3.
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Figure 4.18: Wavelet-bispectral representation of a linear superposition of two Kuramoto
nonlinear oscillators and the different number of WIAAFT surrogates. Left figure presents
the wavelet-bispectral representation, as in Fig. 4.17(a), the consecutive figures wavelet-
bispectral representation after subtracting 95th percentile of n WIAAFT surrogates, except
the case where n = 10, where the power of the test is α = 0.09. Increasing the number of
surrogates, up to 150 do not improve the results compared to 10. Even though WIAAFT
surrogates seem the most appropriate among tested earlier, Fig. 4.17, the surrogates were
not able to detect all the peaks.
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Chapter 5

Membrane potential – Wavelet and
quantitative analysis

5.1 Introduction

In biophysical analysis fluctuations are often ignored or neglected because they are
deemed too complicated for analysis. In particular, in the experiments using the
patch-clamp technique, the membrane potential is usually clamped and hence the
voltage is artificially made constant. However, because of the involvement of pumps
and various ion channels, such as those for K+, Cl– and Na+, fluctuations in the
membrane potential result from the physiological condition of the cell. In this chap-
ter, the free-running voltage patch-clamp recordings of the resting membrane po-
tential of Jurkat and smooth muscle cells are analysed. The membrane potential
was recorded in different extracellular concentrations, namely standard bath (SB),
high K+, low Cl– , low Na+; or after adding intrapipette Ca+, or ATP, or both Ca+

and ATP. Comparisons of the average values of the membrane potential and their
standard deviations were made. The change in the average value of the membrane
potential caused by alteration of the extracellular concentration can be explained by
Goldman-Hodgkin-Katz equation and the change in fluctuations by Nernst equa-
tions. Later, the recordings were analysed by wavelet analysis, such as the wavelet
transform to yield the time-dependent wavelet amplitude, the time-averaged wavelet
power and total wavelet power. Several distinctive frequency intervals can be ob-
served, e.g. around 0.01 and 0.3 Hz. To the best of my knowledge, this is the first
study reporting the intermittent oscillations in a membrane around 8 mHz, recorded
using a free-running membrane potential patch-clamp technique. Finally, possible
scenarios of oscillations/fluctuations generators are suggested together with ideas
for further experiments.

5.2 Previous studies

The membrane potential influences and is influenced by various cellular processes.
The framework was probably initiated in a comprehensive review of cellular oscil-
lators from the late 1970s the division of the cellular oscillators into two categories
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was proposed [25]: 1) cytoplasmic and 2) membrane oscillators. The interactions be-
tween the cellular oscillators are reviewed in Chapter 2 and summarised in Fig. 2.8.

The characteristic frequencies of cardiovascular oscillations in humans span be-
tween 0.005 and 2 Hz [231, 230]. Oscillations in the membrane potential of smooth
muscle cell in the context of vasomotion have been reported earlier, reviewed in [2,
1]. Reported oscillations in membrane potential had frequency 0.09± 0.01 Hz [182].
Authors concluded that their origins lie in rhythmically gating voltage-dependent
calcium channels, that is responsible for the oscillation of intracellular calcium and
thus vasomotion. It was concluded that Na+/K+ ATPase was not implicated in the
generation of the membrane potential oscillations.

The first to investigate the spatio-temporal electrical communication in bacterial
communities triggered by metabolism, were Prindle et al. [196]. Most recently, the
interplay between metabolism and electrophysiology in bacterial biofilms, was ad-
dressed by introducing a spatially extended mathematical model that combines the
metabolic and electrical components of the phenomenon in a discretised reaction–
diffusion scheme [161].

More specifically for this work, the recordings of the membrane potential oscil-
lations using electrophysiology techniques were previously summarised in Tab. 2.1.
The most relevant findings are summarised below. Probably the first to investigate
the connection between intestine electrical slow waves and Na+/K+ pumps was Job
in 1969 [121], however it was also investigated extensively later by Connor et al. [56,
54]. They proposed an experiment to simultaneously measure mammalian intestine
electrical slow waves and NADH fluorescence [55]. They found that the slow wave
oscillations in the membrane potential were phase locked with the NAD/NADH ra-
tio. The maximum ATP utilization and NADH oxidation occurs during the repolar-
ising phase of the slow wave when sodium ions are being extruded. Their estimated
change in intracellular ATP concentration which occurs during the hyperpolarisng
phase of the membrane potential was 10%.

The frequency of slow wave potential fluctuations observed experimentally var-
ied between 0.16 − 0.25 Hz [121, 54, 56]. The main generator of the slow waves
was considered to be the Na+/K+ pump [121, 56]. Meanwhile the glycolytic os-
cillator was suggested to mediate the activity of various physiological behaviours,
e.g. the slow wave potential in smooth muscles [54], bursting electrical activity in
Aplysia neurons [45], and insulin release from the islet cells of the pancreas [57],
or excitation-contraction coupling in heart cells [187]. Metabolic oscillations in vivo
reported more recently can be divided into three distinctive metabolic sub-bands:
metabolic oscillator-1 (5− 9 mHz), metabolic oscillator-2 (2.5− 5 mHz) and metabolic
oscillator-3 (1.5− 2.5 mHz) [225]. The NADH/ATP oscillations reported earlier have
a frequency around 0.1 mHz [190].

In part of the experiment analysed here, additional ATP was added into the
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pipette. An effect of the intracellular ATP concentration manipulation on the mem-
brane potential and vice versa reported in the literature can be summarised as fol-
lowing. The application of ATP to locus Coeruleus neurons was reported to cause
a depolarising response in membrane potential associated with an increase in the
firing rate of spontaneous action potential [138]. Mimura et al. investigated the
dependence of the membrane potential on the intracellular ATP concentration of
Nitellopsis obtusa plant cells [172]. They observed that when cells had less negative
potential at lower intracellular ATP, the membrane potential could reach the thresh-
old for excitation. At zero intracellular ATP, the membrane was not excitable. This
agrees with the earlier finding of Shimmen and Tazawa [221], who concluded that
although ATP is essential for the membrane excitation, the excitability can be main-
tained at very low ATP levels (10-50 µM). Stimulation of the electrogenic pumps by
respiration and photosynthesis may result from an increase in the intracellular con-
centrations of ATP [172], however, several authors have reported that changes in the
activity of the electrogenic pumps do not parallel the changes in the intracellular
ATP [129, 127]. Ataullakhanov and Vitvitsky defended a point that the cell stabi-
lizes its energy charge by adjusting the rate of ATP synthesis to the state of energy
demand [12]. Metabolic needs can fluctuate on the order of seconds or persist for
prolonged periods; therefore adaptation is needed [169]. For example, in the heart,
ATP is rapidly metabolized and the ATP pool can turnover more than 6 times per
minute [111]; at such rates if consumption remains constant, a 10% decrease in ATP
production would halve ATP levels in less than one minute. Therefore cells must
have the ability to immediately sense and respond to perturbations in the energy
state [169].

The majority of the analysis presented here is focused on the membrane poten-
tial of Jurkat cells. The detailed description of the membrane transport that may
contribute in this experiment is presented in Sec. 2.8. The explicit Ca2+ and ATP
influence on membrane transport in Jurkat cell is discussed.

Here, the free-running voltage patch-clamp recordings of the resting membrane
potential of Jurkat cells and smooth muscle cell in vitro are analysed using wavelet
analysis, means and standard deviations. The similar analyses of the same record-
ings from Jurkat cells was done independently in [192, 67]. Each Jurkat cell was
classified into one of three groups, based on their dominant permeability, prior to
the recordings. Subtle oscillations in membrane potential around 0.01 and 0.3 Hz
are observed in the time-averaged wavelet transform. A few other individual cell-
dependent bands can be indicated. The smooth muscle cell membrane potential,
recorded with perforated patch-clamp technique revealed a characteristic 0.008 Hz
oscillatory pattern that coincided with membrane potential hyperpolarisation, be-
low -120 mV. Consecutively, the role of alteration of extracellular K+, Na+ and Cl–
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ions or addition of intracellular Ca2+ and ATP or on the averaged membrane po-
tential and its fluctuations is investigated. The effect of changing the extra/intra-
cellular content on the fluctuations depends on the dominant permeability. The av-
erage membrane potential and its fluctuations can be modified in two ways. First,
by alteration of the extracellular concentrations of the ions K+, Na+ and Cl– : thus
bringing the Nernst potentials of three dominant ions closer (decrease) or further
(increase in fluctuations). Secondly, by addition of the intracellular content: in this
experiment Ca2+ depolarises the membrane potential, meanwhile Ca2+ and ATP to-
gether hyperpolarise it, compared to the standard intrapipette solution; the effect of
fluctuations depends on the dominant ion channel types (and the Nernst potential
of the dominant ion).
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5.3 Materials and Methods

5.3.1 Experiments

Two experiments were conducted: 1) the recordings of the membrane potential of
Jurkat cells with the free-running membrane potential whole-cell patch-clamp tech-
nique done by S. Patel, as a part of his PhD research [192] and 2) the recording of
a membrane potential of a smooth muscle cell with the free-running membrane po-
tential perforated whole-cell patch-clamp technique done by me, as a part of my
industrial training in Unversity of Aarhus, under the supervision of Assoc. Prof.
V. Matchkov.

Jurkat cells

All necessary experimental information included here is taken directly from the
PhD thesis [192]. More technical details about cell handling and preparation can
be found there. Jurkat E6.1 cells, a widely used human T-lymphocyte cell line, pur-
chased from the American Type Culture Collection (ATCC) were used as a model of
T-lymphocytes.

Solutions The standard bath solution contained (in mM): 6 KCl, 150 NaCl, 1 MgCl2,
2 CaCl2, 10 Hepes, 10 glucose. In high K+ additionally 54 potassium gluconate,
in low Na+ 150 sodium gluconate while in low Cl– 140 chloride choline. The in-
trapipette solution contained (in mM): 120 KCl, 20 NaCl, 10 Hepes, 11 EGTA, in
elevated Ca2+ additionally 1 µM CaCl2 was added. The calculated ionic concentra-
tions are presented in Tab. 5.3a. The solutions were made by adding each of the con-
stituents from stock solutions prepared in advance. The bath solutions were made
up to 450ml with dH2O. The pH of the solutions was adjusted to 7.4 with NaOH
and then dH2O was added to make the total volume of 500 ml. The intracellular
solution was made to a final volume of 100 ml but the pH was adjusted to 7.2 with
KOH. The concentration of CaCl2 in elevated Ca2+ solution is the free concentration
of Ca2+. The intracellular solution was frozen in aliquots of 1 ml and kept until used
in the experiment.

Cell handling and measurement On the day of experimentation, 200 µl of cells
were removed from the culture flask and kept at room temperature. 50 µl of the
cell suspension was then placed on 35 mm culture dishes for patching. The cells
were left for 5 minutes to settle and loosely attach to the bottom of the culture dish,
before the perfusion system was switched on. The cells were kept on the culture
dish for a maximum of 60 minutes. The standard procedure was applied to achieve
whole-cell patch-clamp. The cytosolic solution and the intracellular pipette solution
were allowed to equilibrate for 10 minutes before measurement. The membrane
voltage recordings were made in current clamp mode (I = 0), using standard setup
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Axopatch 200B. The osmolarity of the solutions was between 280 and 310 mOsm
(measured using a Vapro osmometer). The experiment consisted of two parts:

• alteration of extracellular bath, increasing the concentration of K+, decreasing
Na+, or decreasing Cl– , (Tab. 5.3a) with respect to physiological conditions.
Each recording consists of at least 7.5 min in each experimental conditions:
standard bath (SB) or non standard bath (non-SB). The same cells were used
in SB and non-SB, here 58 cells were analysed in two different experimental
conditions. 116 recordings were analysed.

• addition of intracellular substances, namely adding Ca2+, ATP or both, (Tab. 5.3b).
The cells measured in standard and in non-standard intrapipette conditions
were different. 129 recordings were analysed.

Initially the cells were divided into three cohorts, based on the dominant ion
permeability for K+, Cl– , Na+ ions, measured as a maximum membrane potential
shift in a response to alteration of the extracellular concentration of K+, Cl– , Na+

ions respectively. Another criterium was the averaged membrane potential value,
which depends on the permeability to particular ions given the Goldman-Hodgkin-
Katz equation.

Smooth muscle cell

This dataset was recorded using the perforated patch-clamp technique. The record-
ings of the membrane potential of six cells were initially collected, however five
experiments failed before 10 min, probably due to loosing the gigaseal, namely the
averaged values of the membrane potential suggested the leak of the extracellular
solution into the pipette. The cultured smooth muscle cell was used in the exper-
iment. The extracellular solution used during the experiment contained (in mM):
135 NaCl, 6 KCl, 10 Hepes (Na+), 1 MgCl2, 0.1 CaCl2. The intrapipette solution con-
tained (in mM): 10 Hepes (K+), 10 BAPTA, 102 KCl, 10 NaCl, 1 CaCl2, 1.44 MgCl2.
The solutions were made by adding each of the constituents from the stock solu-
tions prepared in advance. The bath solutions were made up to 450ml with dH2O.
The pH of the solutions was adjusted to 7.4 with NaOH and then dH2O was added
to make the total volume of 500 ml. The intracellular solution was made to a final
volume of 200 ml and the pH was adjusted to 7.4 with KOH.

An amphotericin B stock solution was prepared earlier and kept frozen in the
darkness at a concentration of 60 mg/mL in dimethyl sulfoxide (DMSO) until the
day of the experiment. The final concentration of amphotericin B was prepared
by ultrasonicating the 10 µL stock amphotericin B in 1 mL interpipette solution.
Pipettes were tip-dipped in amphotericin-free solution for several seconds and back-
filled with freshly mixed amphotericin intracellular solution. This procedure was
applied to simplify achieving the gigaseal. Standard procedure was then applied to
achieve the cell attached mode, perforated cell was obtained several minutes later
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when amphotericin B formed the pores in the cellular membrane. The recording
was carried on for about 70 minutes in one cell.

Figure 5.1: Experimental setup for patch-clamp experiment used during the internship in
Aarhus to collect the recordings of the membrane potential.

5.3.2 Preprocessing

The original time series were recorded with sampling frequency 20 kHz. All datasets
used in analysis were downsampled to 20 Hz, using the moving average filter de-
scribed in Sec. 3.3.2, and de-trended, using the build-in MATLAB, detrend function,
that removes the best straight-line fit from the data.

5.3.3 Statistical analysis

The exact numbers of cells analysed are shown in Tab. 5.1. A total of 116 of suc-
cessful Jurkat cells recordings in the experiment with alteration of the extracellular
content and 129 in the experiment where Ca2+ or/and ATP was added to the pipette
were analysed. No statistical comparisons were possible in the experiment with the
smooth muscle cell. All the comparisons between the membrane potentials (MP)
and the fluctuations, measured as standard deviations (σ) were made with the two-
sided Wilcoxon rank sum test (unpaired, where the cells were different, like in com-
parison of different intracellular solutions) or the Wilcoxon signed-rank test (paired,
where the cells were the same, as when altering the extracellular solution). Probabil-
ity p ≤ 0.05 was considered significant and led to a rejection of the null hypothesis
that the two groups come from the same distribution. Note that here σ corresponds
to the standard deviations, not wavelet frequency resolution. For clarification, the
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units of mV beside σ imply the standard deviation as opposed to wavelet frequency
resolution, also abbreviated as σ, that is dimensionless.

5.3.4 Equilibrium potential

To estimate the equilibrium potential for each K+, Cl– , Na+ ion the Nernst potential
was used introduced earlier in Eq. (2.1). The temperature was considered to be T =

293 K.

5.3.5 Wavelet analysis

Wavelet analysis is introduced and defined in Sec. 3.5.2. Here, additionally, the time-
averaged wavelet power (TAWP) is defined as

TAWP( f ) =
1

t2 − t1

∫ t2

t1

ρI
ψ,x,x( f , τ)dτ, (5.1)

where t1 and t2 indicate the time interval of interest, and ρI
ψ,x,x wavelet energy den-

sity as defined in Eq. (3.16). Moreover the averaged wavelet power (AWP) is used,
defined as

AWP( f1, f2) =
∫ f2

f1

TAWP( f )d f , (5.2)

where f1 and f2 indicate the frequency interval of interest. In all analysis the log-
normal wavelet is used, defined in Sec. 3.5.2.

Parameter choice Frequency resolution σ, as discussed earlier in Sec. 3.5.2, is a
compromise between the optimal localisation in time and the resolution in frequency.
Because the low frequency activity is of particular interest, (low from perspective of
the length of available recordings), the wish is to preserve as much of the data as
possible after removing the cone of influence (discussed in Sec. 3.5.2). Therefore,
according to criterium given by Eq. (3.21), one should select σ as low as possible.
The σ = 0.5 was selected. As explained earlier, for the log-normal wavelet, approx-
imately 0.95 of the wavelet integral captures 4× σ = 2 cycles of oscillations. This σ

is on the border of obtaining meaningful results, however it allows preservation of
as much of the low frequency range as possible. The lowest frequency f1 selected
in AWP analysis (Eq. (5.2)) is given by the Eq. (3.21), with m = 3. 3 cycles of the
oscillations are considered here as a minimal and sufficient to draw any conclusions
about the oscillations. For 10 min-long time series this translates to the minimum
frequency f1 = 8.3mHz. The highest frequency under consideration in AWP was
f2 = 3 Hz.

5.4 Results

The results are organised in the following manner:



5.4. Results 83

intra K+ Cl– Na+

i 5 3 8
Ca2+ 6 5 0
ATP 7 6 3
Ca2+ATP 6 5 4

(a) First part, 58× 2 datasets

intra SB (high K+) SB (low Cl– ) SB (low Na+)
i 7(7) 3(4) 6(6)
Ca2+ 7(7) 7(8) 0(0)
ATP 7(7) 6(7) 3(3)
Ca2+ATP 6(8) 6(6) 4(4)

(b) Second part, 129 datasets

Table 5.1: Number of cells in each part of experiment (each cohort). In the first part (a),
the same cells were measured in two extracellular solutions, while in the second part (b)
different cells were measured in different intracellular solutions.

ion SB (mV) non-SB (mV)
K+ -75.64 -17.50
Cl– -3.69 79.53
Na+ 50.87 -17.50

(a) Jurkat

ion (mV)
K+ -73.89
Cl– -5.07
Na+ 63.77

(b) Smooth muscle

Table 5.2: Nernst potentials in the whole-cell (Jurkat cells) and the perforated whole-cell
(smooth muscle cell) patch-clamp experiments.

ion SB low Cl– low Na+ high K+

K+ 6 6 6 60
Cl– 162 6 162 162
Ca2+ 2 2 2 2
Na+ 150 150 10 150
Mg2+ 1 1 1 1

(a) External bath (mM)

ion i Ca2+ ATP Ca2+ + ATP
K+ 120 120 120 120
Cl– 140 140 140 140
Ca2+ 10−5 10−3 10−5 10−3

Na+ 20 20 20 20
ATP 0 0 4 4

(b) Intrapipette (mM)

Table 5.3: Ions concentrations in the solutions in the experiment using the whole-cell patch-
clamp.

ion out in
K+ 6 112
Cl– 143 117
Na+ 125 10

Table 5.4: Extracellular
and intracellular ionic con-
centrations (mM) in the
smooth muscle cell experi-
ment

• First, in Sec. 5.4.1, the effect of changing the extracellular concentrations are
presented. This includes the analysis of the same cells in both standard and
non-standard extracellular conditions and standard intrapipette solutions. Al-
teration of the extracellular concentrations significantly changed the membrane
potential (where at least 4 datasets were available). The effect of the change of
extracellular concentration on the fluctuations depends whether the 3 Nernst
potentials were brought closer or further apart. If further – an increase was
observed, if closer – a decrease.

• Secondly, in Sec 5.4.2, the effect of different extracellular concentrations is shown
after adding Ca2+, or ATP, or both to the intrapipette solution. The aim of this
section is to illustrate if and how intrapipette Ca2+ and/or ATP change the
effects observed in the standard pipette.
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• Sec. 5.4.2 illustrates the effect of adding Ca2+ and/or ATP in the pipette. Adding
intrapipette Ca2+ depolarises the membrane, while adding both Ca2+ and ATP
hyperpolarises it compared to standard intrapipette solution. Additional ATP
does not bring any systematic changes.

• Sec. 5.4.3 presents the time-averaged wavelet power from all the datasets. This
analysis aims at characterising the frequency bands of the spectral peaks. Given
the intracellular pipette solution, each cell was analysed in both standard and
non-standard extracellular solutions to separate the inter-cell variability from
the actual external effect caused by the change in concentration. Oscillations
could be grouped into two bands centred around 0.01 and 0.3 Hz but their
presence depends more on a particular cell rather than on the extracellular or
intracellular solutions.

• Sec. 5.4.4 shows the analysis of the membrane potential of a smooth muscle
cell of the length 70 minutes recorded with perforated patch-clamp technique.
The time series very clearly reveals the oscillatory component around 8 mHz,
occurring in several time localised events, accompanied by strong membrane
potential hyperpolarisation: there the membrane potential dropped below -
120mV. Spectral peaks in several other bands, e.g. 2 mHz can be observed.

5.4.1 Alteration of the extracellular concentrations in standard pipette

Figs. 5.2 and 5.3 summarise the idea of the first part of the experiment: namely moti-
vation to investigate fluctuations, and separation into cohorts based on the dominant
ion permeability. Fig. 5.2 presents the 0.5 min recordings of fluctuating membrane
potential. Recordings under the same ionic concentrations lasted between 8 and
12 min in total. For each cohort the membrane potentials were recorded in two dif-
ferent extracellular concentrations. Different cells manifested different sensitivity to
different ionic concentrations. The division into cohorts was rather heuristic. Each
cell was assigned to one group. For a few cells the membrane potential was recorded
under multiple conditions. Fig. 5.3 presents the membrane potential (MP) recorded
in low Na+, standard bath (SB) and high K+, together with the respective amplitudes
of wavelet transform |W( f , t)| and time-averaged wavelet power (TAWP). The fig-
ure illustrates that the averaged value of the membrane potential and its fluctuations
depend on the extracellular concentrations of K+ and Na+. Deviating the concentra-
tions from the standard bath (in the specific direction discussed later) decreases the
fluctuations, at the same time makes some of the frequency bands more prominent,
e.g. low Na+ decreased the spectral peak around 0.01 Hz and 0.07 Hz relative to the
other frequencies, while high K+ made the peak around 0.05 Hz more pronounced.
Fig. 5.4 shows the membrane potential recordings (MP) of the example cell from
the Cl– cohort, amplitudes of their wavelet transforms |W( f , t)| and time-averaged
wavelet powers (TAWP) under standard bath and low Cl– conditions. Low Cl– did
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not substantially change the fluctuations in the membrane potential but reduced the
spectral power between 0.007–0.05 Hz, thus making the power spectrum flatter.

Fig. 5.5 illustrates how the alteration of the extracellular content influences the
averaged membrane potentials and their fluctuations under standard intrapipette
conditions. The averaged membrane potential (MP) and standard deviation (σ) val-
ues for K+, Cl– and Na+ cohorts are shown in the consecutive rows. Modifying the
extracellular concentrations shifts the Nernst potentials, as indicated. Alteration of
the extracellular concentrations changes the average membrane potentials and stan-
dard deviations significantly in the majority of cases. However, no concussion can
be drawn for Cl– , as only 3 datasets were available. The changes in fluctuations are
in the direction indicated by the changes from the distance from Nernst potentials.
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Figure 5.2: The membrane potential is not
clamped but naturally fluctuates around its
average value. Recordings of the membrane
potential of the Jurkat cells measured with
the free-running voltage whole-cell patch-
clamp technique. The cells were divided
into three cohorts K+, Cl– , Na+, based on the
dominant permeability. In the left column:
standard extracellular bath (SB), in the right:
altered the dominant ion concentration, as
written in bold. In each row the same colour
represents the same individual cell. For each
concentration recordings were made for at
least 8 min; 0.5 min is shown.

5.4.2 Alteration of the extracellular concentrations given the intracellular
Ca2+ and ATP

In the second part of the experiment intracellular Ca+ or ATP, or both Ca+ and ATP
were added to the pipette. Here, the focus of the analysis is to investigate how
alteration of the extracellular ions influences the dynamics of the membrane poten-
tial, given the non-standard intrapipette solution, either with Ca+ or ATP or both.
Figs. 5.6-5.8 illustrate the representative membrane potential (MP) of the cell from
each cohort (K+, Cl– , Na+) with intracellular Ca+, or ATP, or both Ca+ and ATP, in
the consecutive figures respectively. In each come the corresponding wavelet trans-
forms, W( f , t), and time-averaged wavelet power, TAWP are also shown.

Fig. 5.9 shows the quantitative effect of an alteration in the extracellular solu-
tions on the averaged wavelet power (AWP) and the membrane potential (MP) for
each cell individually, with successful recordings in both SB and non-SB. Increasing
the extracellular K+ made the membrane potential less negative and decreased the
AWP. Moreover high K+ decreased the variance in the MP, which seems not to be the
case for Cl– and Na+. Decreasing the extracellular Cl– increased the membrane po-
tential (by making it either less negative or even positive) for all concentrations and
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Figure 5.3: Alteration of extracellular concentrations influences the dynamics of the mem-
brane potential. The membrane potential, MP (upper), amplitude of the wavelet transform,
|W( f , t)| (middle) and the time-averaged wavelet power TAWP, (lower row) are shown. The
cellular membrane potential of the same cell recorded under three conditions: low Na+, SB
and high K+. Both low Na+ and high K+ extracellular concentrations reduce the fluctua-
tions, low Na+ is making the membrane potential more negative while high K+ makes it
less negative. The amplitude of the wavelet transform, |W( f , t)| is given in units of mV.
The shaded areas on TAWP correspond to the 5th and 95th percentiles. TAWP indicates that
most of the wavelet power is cumulated in low frequencies (≤ 0.04 Hz). The wavelet power
below 0.02 Hz, relative to the higher frequencies, is strongly pronounced in SB. Note the
different y-axis scales that emphasise the difference in fluctuation intensities under differ-
ent experimental conditions, in particular the decrease in fluctuations when increasing the
extracellular K+, compared to standard bath conditions.

SB low Cl- Figure 5.4: The membrane
potential MP of the exam-
ple cell from the Cl– cohort,
amplitudes of their wavelet
transform, |W( f , t)| and the
time-averaged wavelet power
(TAWP) in standard bath and
low Cl– conditions and stan-
dard intracellular solution.
Low Cl– did not substantially
change the fluctuations in
the membrane potential but
reduced the power around
0.007–0.05 Hz, thus making the
power spectrum flatter.

increased the AWP (17 out of 19 datasets). Decreasing the extracellular Na+ made
the membrane potentials less positive or more negative, or in other words decreased
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Figure 5.5: The change in the extracellular concentra-
tions influences the averaged membrane potential and
its fluctuations. The averaged membrane potential, MP
on the vertical axis and standard deviation, σ on hori-
zontal axis for the K+, Cl– and Na+ cohorts in the con-
secutive rows. Circles correspond to the standard ex-
tracellular bath while stars to the non-standard condi-
tions. Each semi-transparent marker corresponds to a
different cell and opaque one to the median for each
group. The vertical lines indicate the Nernst poten-
tials for standard conditions (dashed), and the non-
standard bath (dash-dotted), for K+ in blue, Cl– in or-
ange and Na+ in green. Alteration of the extracellular
concentrations changes the average membrane poten-
tials and standard deviations significantly in the major-
ity of cases. For Cl– where only 3 datasets are available,
therefore reliable conclusions cannot be drawn. The
changes in fluctuations are proportional to the distance
from the Nernst potentials.

them (13 out of 15 datasets) and decreased the AWP (11 out of 15).
Now the observations made based on Figs. 5.6-5.8 are presented. The focus is

on the distribution of the time-averaged wavelet power across different frequencies,
rather than quantitative wavelet power comparison that was done earlier.

In the Ca2+ pipette, Fig. 5.6

• Low extracellular Cl– enhances the oscillations around 0.3 Hz (Fig. 5.6, bottom-
right, especially visible in TAWP). This observation was made in 3 out of 5
datasets (Fig. 5.13(b), second row).

• High extracellular K+ does not substantially change the distribution of the
wavelet power across the frequencies. Any changes in the shape of the spec-
trum were very subtle and incoherent across the cells.

In the ATP pipette, Fig. 5.7

• No robust and consistent changes are observed in the wavelet power distri-
bution across the frequencies caused by increasing the concentration of the K+

nor by deceasing Cl– .

• The variance of TAWP in all 3 datasets in low Na+ is smaller than in SB.

In the combined Ca2+ and ATP pipette, Fig. 5.8 No robust and consistent changes
are observed in the wavelet power distribution across the frequencies caused by
increasing the concentration of the K+ nor by decreasing the concentration of the
Na+ or Cl– .
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Figure 5.6: The membrane po-
tential dynamics of the selected
representatives from the K+ and
Cl– cohorts with intracellular
Ca2+ in two different extracellu-
lar conditions. Each panel illus-
trates the time series, the ampli-
tude of the wavelet transform,
and the time-averaged wavelet
power (TAWP) under SB and
non-standard conditions. In
each panel recordings for SB
and non-SB come from the same
cell. The shaded areas corre-
spond to the 5th and 95th per-
centiles of TAWP. The upper
panel shows results from rep-
resentative cell from the K+ co-
hort, while the lower refers to
the Cl– cohort. The recordings
with intracellular Ca2+ in the
Na+ cohort were not successful.
In the Cl– cohort the oscillatory
component around 0.2 Hz can
be observed, note the scale in
the low Cl– solution. In the
SB in both cohorts the oscilla-
tory component between 0.01−
0.02 Hz can be identified. In
high K+ the whole spectrum not
only drops by an order of mag-
nitude but the 0.01 Hz compo-
nent becomes less distinctive.
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Figure 5.7: The membrane po-
tential dynamics of the selected
representatives from the K+, Cl–

and Na+ cohorts with intracel-
lular ATP in two different extra-
cellular conditions. Each panel
illustrates the time series, the
amplitude of the wavelet trans-
form, and the time-averaged
wavelet power (TAWP) under
SB and non-standard condi-
tions. In each panel recordings
for SB and non-SB come from
the same cell. The shaded areas
correspond to the 5th and 95th
percentiles of TAWP. The panels
show results from the represen-
tative cell from the K+ (the up-
per), Cl– (the middle), and the
Na+ cohort (the lower). In the
SB, in the K+ cohort, the spec-
trum is relatively flattened. The
whole power spectrum is one
order of magnitude smaller un-
der high K+ concentration com-
pared to SB; and small bumps
around the frequencies of 0.01
and 0.05 Hz are visible. For
the other cells from this exper-
iment the pronounced frequen-
cies are cell dependent. Un-
der low Cl– concentration the
general intensity of fluctuations
increases, but the peaks visible
in SB become less distinctive.
In the representative cell from
the Na+ cohort the fluctuations
are slightly smaller in low Na+

solution, thus TAWP is slightly
lower.



90 Chapter 5. Membrane potential – Wavelet and quantitative analysis

Figure 5.8: The membrane po-
tential dynamics of the repre-
sentatives from the K+, Cl–

and Na+ cohorts with added
intracellular Ca2+ and ATP in
two different extracellular con-
ditions. Each panel illustrates
the time series, the amplitude of
the wavelet transform, and the
time-averaged wavelet power
(TAWP) under SB and non-
standard conditions. In each
panel recordings for SB and
non-SB come from the same cell.
The shaded areas correspond to
the 5th and 95th percentiles of
TAWP. The upper panel shows
results from the representative
cell from the K+ cohort, mid-
dle Cl– , while the lower refers
to the Na+ cohort. Considering
the reliable frequencies range
(> 8.3 mHz, the wavelet power
spectra in the representative cell
from the K+ and Na+ are rela-
tively flattened. In the Cl– co-
hort, low Cl– solution, the peak
around 0.04 Hz is visible, nev-
ertheless this peak is not pro-
nounced in most of the other
cases for the same concentra-
tions.
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Figure 5.9: The change in the extracellular concentrations influences the averaged membrane
potential and its fluctuations, measured as the averaged wavelet power for individual cells.
The membrane potential (MP, blue background, left axis) and the averaged wavelet power
(AWP, orange background, right axis) for the datasets with successful recordings in both SB
and non-SB. In each subplot (left and right sides) a particular colour represents the same cell.
Increasing the extracellular K+ made the membrane potentials less negative and decreased
the AWP in all the datasets. Decreasing the extracellular Cl– made the membrane either
less negative or even positive, or in other words increased it in all datasets and increased the
AWP (17 out of 19 datasets). Decreasing the extracellular Na+ made the membrane potentials
less positive or more negative, or in other words decreased it (13 out of 15 datasets) and
decreased the AWP (11 out of 15).

The effect of different intrapipette solutions with Ca2+ or ATP or both

In this part, the effect of adding Ca+, or ATP, or both Ca+ and ATP, with respect to
standard intrapipette solution is illustrated. Figs. 5.10, 5.11 and 5.12 show the re-
sults of comparisons of the time-averaged wavelet power in different intracellular
solutions and the p-values of the comparisons for the K+, Cl– and Na+ cohorts re-
spectively. In K+, Fig. 5.10, and Cl– Fig. 5.11, different intrapipette solutions had no
significant effect on the TAWP. In the Na+ cohort, Fig. 5.12, TAWP is significantly
bigger in the ATP pipette, compared to the standard ((a), SB, left); however there
were only 3 cells in the ATP group. Wavelet power for a frequency of 0.02 Hz was
bigger for the standard pipette compared with Ca2+ ATP; and the opposite effect
was observed in the low Na+ bath ((b), low Na+, right) for a frequency of 0.03 Hz,
namely there is greater power in the Ca2+ ATP pipette compared to a standard so-
lution. However, the significant frequency ranges are very narrow compared to the
frequency resolution (width of the window in frequency domain). This makes the
robust conclusions impossible.

Fig. 5.13 presents the averaged wavelet power, AWP, integrated over 8.3 mHz−
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3 Hz for the K+, Cl– and Na+ cohorts, SB and non-SB for different intrapipette so-
lutions marked with colours: standard–i, Ca2+, ATP, Ca2+ and ATP. The number of
cells in each group spans from 3 to 8. In the SB and Cl– cohort the AWP is signifi-
cantly lower in the Ca2+ pipette than in the combined Ca2+ ATP. In the SB Na+ the
AWP is significantly lower with ATP inside, compared to the standard intrapipette
solution. Note, however, that the results were obtained with only 3 datasets in ATP
group.

Fig. 5.14 shows the effect of different intrapipette solutions on the membrane po-
tential and fluctuations measured as a) averaged wavelet power and b) standard de-
viations. The averaged wavelet power (AWP) was integrated over 8.3 mHz− 3 Hz.
Standard deviation (σ) is shown as a function of the membrane potential for the
K+, Cl– and Na+ cohorts and SB and non-SB for different intrapipette solutions:
standard–i, Ca2+, ATP, Ca2+ and ATP. The integrated AWP captures the activity be-
tween 8.3 mHz and 3 Hz, while the standard deviations capture the activity between
1/T ' 1.7 mHz up to 10 Hz. 7 significant changes summarised below can be identi-
fied.

Intracellular Ca2+

• Increased intracellular Ca2+ did not result in any significant change in fluctua-
tions measured either as AWP or σ compared to standard pipette.

• For high intracellular K+ concentration the membrane potential is significantly
more negative when both Ca+ and ATP were added, compared to the case
when only ATP was added in the pipette.

Intracellular ATP

• In the SB in the Na+ cohort, the AWP was significantly lower in the ATP pipette
than in standard one (comparison made with only 3 datasets).

• In the SB in the Cl– cohort, the AWP and σ in the combined Ca2+ and ATP
pipette was significantly lower than in the pipette with increased Ca2+.

• In the combined Ca2+ and ATP pipette the standard deviation was significantly
smaller than in the pipette with elevated Ca2+ in SB, in the K+ cohort but the
opposite effect was observed in SB, in the Cl– cohort.

• In high K+ and in Cl– the membrane potential was significantly depolarised in
the pipette with elevated Ca2+ in comparison to the combined Ca2+ and ATP
pipette.

Intracellular Ca2+ and ATP

• In low extracellular Na+ in the combined Ca2+ ATP pipette σ was significantly
bigger than in standard intrapipette solution.



5.4. Results 93

0
0.5

1
pv

al SB

0
0.5

1
high K +

10 -2 10 0
0

1

2

T
A

W
P

 (
m

V
)

10 -2 10 0
0

0.2

0.4

0.6
i
iCa

Frequency (Hz)

(a) standard vs Ca2+

0

0.5

1

pv
al SB

0

0.5

1
high K +

10 -2 10 0
0

0.5

1

1.5

T
A

W
P

 (
m

V
)

10 -2 10 0
0

0.2

0.4

0.6
i
iATP

Frequency (Hz)

(b) standard vs ATP

0

0.5

1

pv
al SB

0

0.5

1
high K +

10 -2 10 0
0

0.5

1

1.5

T
A

W
P

 (
m

V
)

10 -2 10 0
0

0.2

0.4

0.6
i
iCaATP

Frequency (Hz)

(c) standard vs Ca2+ATP

Figure 5.10: The effect of different intrapipette solutions on the time-averaged wavelet
power (TAWP) for the K+ cohort. Consecutive rows present the comparison of two dif-
ferent intrapipette solutions marked with different colours, a) standard vs Ca2+, b) standard
vs ATP, c) standard vs combined Ca2+ and ATP. The left column presents the results in the
standard bath (SB), and the right one in the high K+ concentration. In each panel the upper
plot shows the probability value, pval. In most of the cases different intrapipette solutions
had no significant effect on the TAWP.

Summary In this part the results for different intrapipette solutions of Ca2+, ATP
and both Ca2+ and ATP are presented. The consistent change, present for all the
cohorts, was the effect on the average value of the membrane potential. The most
negative (the most hyperpolarised) membrane potentials were observed with the
Ca2+ and ATP pipette (in 5 out of 6 cases) and the least negative or even positive
(the most depolarised) was the membrane potential observed for the Ca2+ pipette.
The differences between the Ca2+ and the Ca2+ and ATP pipettes were significant in
3 out of 6 cases. No significant changes were observed when ATP alone was added.
When it comes to fluctuations, the opposite effect was observed in the SB in the K+

and Cl– cohorts. In the K+ cohort, the fluctuations in the Ca2+ pipette were bigger



94 Chapter 5. Membrane potential – Wavelet and quantitative analysis

0
0.5

1

pv
al SB

0
0.5

1
low Cl -

10 -2 10 0
0

0.5

1
T

A
W

P
 (

m
V

)

10 -2 10 0
0

0.5

1
i
iCa

Frequency (Hz)

(a) standard vs Ca2+

0

0.5

1

pv
al SB

0

0.5

1
low Cl -

10 -2 10 0
0

0.5

1

T
A

W
P

 (
m

V
)

10 -2 10 0
0

1

2
i
iATP

Frequency (Hz)

(b) standard vs ATP

0

0.5

1

pv
al SB

0

0.5

1
low Cl -

10 -2 10 0
0

0.5

1

T
A

W
P

 (
m

V
)

10 -2 10 0
0

0.5

1 i
iCaATP

Frequency (Hz)

(c) standard vs Ca2+ATP

Figure 5.11: The effect of different intrapipette solutions on the time-averaged wavelet
power (TAWP) for Cl– cohort. Consecutive rows present the comparison of two different
intrapipette solutions, marked with different colours, a) standard vs Ca2+, b) standard vs
ATP, c) standard vs combined Ca2+ and ATP. The left column presents the results in stan-
dard (SB), and the right one in low Cl– bath solutions. In each panel the upper plot shows
the probability value, pval. Different intrapipette solutions had no significant effect on the
TAWP.

than in the combined Ca2+ and ATP pipette (significant for the SB, tendency for the
high K+ bath), while in the Cl– cohort quite the opposite was found (significant
in SB, tendency in low Cl– bath). The spread of median values, both membrane
potentials and the AWP, is relatively small in the K+ cohort, compared to the Cl–

cohort.
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Figure 5.12: The effect of different intrapipette solutions on the time-averaged wavelet
power (TAWP) for the Na+ cohort. Consecutive rows present the comparison of two dif-
ferent intrapipette solutions, marked with different colours, a) standard vs Ca2+, b) standard
vs ATP, c) standard vs combined Ca2+ and ATP. The left column presents the results in the
standard (SB), and the right one in the low Na+ bath solutions. In each panel the upper plot
shows the probability value, pval. TAWP is significantly bigger in ATP pipette compared
with the standard one (a), SB, left), however there were only 3 cells in ATP group; and (b),
SB, left) wavelet power for a frequency 0.02 Hz was bigger is standard pipette compared
with Ca2+ ATP; and the opposite effect was observed in low Na+ bath (b), low Na+, right)
for frequency 0.03 Hz, namely greater power in the combined Ca2+ and ATP pipette com-
pared to the standard solution. However, the frequency ranges are very narrow compared
to the frequency resolution. This makes the robust conclusions impossible.
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Figure 5.13: The averaged wavelet power (AWP) integrated over 8.33 mHz− 3 Hz for the
K+, Cl– and Na+ cohorts (in rows) and SB and non-SB in columns for different intrapipette
solutions marked with colours: standard (i), Ca2+, ATP and combined Ca2+ and ATP. Each
semi-transparent dot represents a different cell. The black circles indicate the median values
in each group. The significant values are marked with bars and stars. In the SB and the Cl–

cohort the AWP was significantly lower in the Ca2+ pipette than in the Ca2+ and ATP. In the
SB and the Na+ cohort the AWP is significantly smaller with additional ATP inside, when
compared to standard intrapipette solution. Note, however, that the results are based on
only 3 recordings.
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Figure 5.14: The effect of different
intrapipette solutions on the mem-
brane potential and fluctuations
measured as a) averaged wavelet
power and b) standard deviations.
On the vertical axis (a) averaged
wavelet power (AWP) integrated
over 8.33 mHz− 3 Hz, (b) standard
deviations (σ). On the horizontal
axis the membrane potentials for the
K+, Cl– and Na+ cohorts (in rows)
and SB and non-SB in columns.
Different intrapipette solutions are
marked with colours: standard i,
Ca2+, ATP, Ca2+ and ATP. Each
semi-transparent dot represents
different cell, and the opaque circles
the median values in each group.
(a) The significant comparisons
of AWPs are marked in Fig. 5.13:
the only significant difference that
contained a minimum of 4 datasets
was in the SB, the Cl– cohort: the
AWP was significantly lower in
Ca2+ pipette than in combined Ca2+

and ATP. (b) The significant differ-
ences are marked with continuous
red bars, horizontal in membrane
potentials and vertical in standard
deviations. 7 significant changes can
be observed (see the main text for
the details). The dash-dotted vertical
lines indicate Nernst potentials of
the dominant ions, K+ (blue), Cl–

(orange) and Na+ (green).
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5.4.3 Particular frequency bands

In this part the collective results of the time-averaged wavelet power (TAWP) com-
putations are presented. Only the cells with successful recordings in both SB and
non-SB are shown. Here, particular attention is paid to the distribution of power
across the frequencies, rather than the total power, that is discussed in Sec. 5.4.1, and
in Fig. 5.9. Fig. 5.15 presents the time averaged wavelet power (TAWP) in all three
cohorts: (a) K+, (b) Cl– , (c) Na+. The peaks are clustered around different frequencies
0.01 Hz, 0.03–0.1 Hz and 0.1–0.5 Hz. However, the presence and the exact positions
of the peaks is cell dependent, rather then forced by any particular external factor.
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Figure 5.15: Time averaged wavelet power (TAWP) of all three cohorts: (a) K+, (b) Cl– ,
(c) Na+. In each cohort, given the same intracellular solution, the lines in the same colour
correspond to the same cell, in different intracellular solutions, to the different cells. The
opaque parts of TAWP correspond to the frequencies where a sufficient length of recording
was available, enabling to analyse at least 3 cycles. The transparent ones, presented for an in-
formative purpose, where between 1 and 3 cycles of oscillations were available. Occurrence
and the exact positions of the peaks are cell dependent rather then forced by any particu-
lar external factor. Oscillations could be clustered in three bands around 8.7 mHz–0.02 Hz,
0.03–0.1 Hz and 0.1–0.5 Hz.
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5.4.4 Perforated patch-clamp – smooth muscle cell

In this section the recording of the membrane potential using the free-running volt-
age perforated whole-cell patch-clamp technique is analysed. Fig. 5.16 illustrates the
membrane potential (MP), the amplitude of the wavelet transform |W( f , t)| and the
time-averaged wavelet power (TAWP) of a smooth muscle cell for two different fre-
quency resolutions, σ. The intermittent line indicates -74 mV, the Nernst potential
for K+. The membrane potential exhibits strongly non-stationary behaviour. After
initial 10 min it drops below the Nernst potential for K+, then its average value stays
relatively constant at the very negative value for about 30 min. This is followed by
the slow drift of the membrane potential towards less negative values for about next
20 min. The fluctuations cease with time. The wavelet analysis reveals several com-
ponents of the membrane potential oscillations. Particularly strong is intermittent
activity around 8 mHz, appearing in a time-localised manner around 4, 11, 27 and
38 min lasting between 3-6 min each. The occurrence of the oscillations seems to be
accompanied by a decrease in the membrane potential. Higher frequency oscilla-
tions, e.g. 0.03, 0.05 or 0.09 Hz exhibit a similar time-localised behaviour.
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Figure 5.16: Recordings of the free-running voltage with the perforated whole-cell patch-
clamp technique applied to a smooth muscle cell, the amplitude of its wavelet transform
|W( f , t)| and time-averaged wavelet power (TAWP) with two different wavelet frequency
resolutions, a) σ = 0.5 and b) σ = 2. The intermittent line corresponds to the K+ Nernst
potential (for pipette and extracellular bath solutions). The average MP goes far below the
passive transport limit, which is the Nernst potential for K+ (-74 mV). The grey, shaded area
indicates clear intermittent activity at around 8 mHz, particularly visible in (b). Particularly
well time-localised in (a), peaks appear around 4, 11, 27 and 38 min and last between 3-6
min each. There is a tendency for the frequency to decrease, and eventually the oscillations
disappear at around 45 min. The occurrence of the peaks is always accompanied by a de-
crease in membrane potential and the decline with the slow drift of the membrane potential
towards less negative values. Better frequency localisation and an adjusted frequency scale
allow for better identification of higher frequency components, e.g. 0.03, 0.05 or 0.09 Hz
appearing intermittently.
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5.5 Discussion

The fluctuations and oscillations in the membrane potential of Jurkat cells and a
smooth muscle cell were analysed. The oscillations appear intermittently. Therefore
it is reasonable that temporal dynamics is explicitly considered, as opposed to the
approach used earlier [47]. On the shorter time scales, the free-running membrane
potential of T cells and its responses to various stimuli were also studied in the early
1990s [160]. However, to my knowledge, the free-running membrane potential has
not been studied on the longer time scales, using time-frequency representations.
The discussion is structured in a following way: in Sec. 5.5.1 the effect of alteration
of the extracellular concentrations is discussed, in Sec. 5.5.2 the effect of intracellular
Ca2+ and ATP is considered. Finally, in Sec. 5.5.3 the oscillations in the membrane
potential of smooth muscle cell are discussed.

5.5.1 Alteration of the extracellular concentrations

Alteration of the extracellular concentrations in standard pipette

In the first part of the experiment (results presented in Sec. 5.4.1) the extracellu-
lar concentrations were modified. The membrane potentials of the same cells were
analysed in both standard and non-standard extracellular conditions and standard
intrapipette solutions. Alteration of the extracellular concentrations significantly
changed the membrane potential (where at least 4 datasets were available). The
direction of the change in the average value of the membrane potential caused by
alteration of the extracellular concentration is consistent with the one predicted by
Goldman-Hodgkin-Katz equation. Tab. 5.5 shows the relative values of permeabil-
ities p, calculated using GHK equation and the averaged values of the membrane
potential in two experimental conditions. The analysis shows that pK > pCl > pNa.
Positive values of permeability exist in each case except in the K+ cohort, where the
Na+ permeability was slightly negative ' −0.01, so that 0 was later assumed. The
values of permeabilities were assumed identical for SB and non-SB, which is most
likely not the case in reality. However, importantly, regardless of the cohort, always
pK > pCl > pNa. The Jurkat cells in this experiment can undoubtedly be considered
K+ dominant, as pointed out in [39, 70]; nevertheless the other permeabilities should
not be ignored.

In an earlier study, an increase in the extracellular K+ was reported to increase
the cellular volume and depolarise the membrane [270]. Altering the extracellular
concentration shifts the Nernst potential, as indicated by Fig. 5.5. Increasing the
concentration of K+ or decreasing the concentration of Na+ brings all the Nernst
potentials closer together, and thus decreases the currents and correspondingly the
fluctuations in the membrane potential. Reducing the passive ionic flow, would in-
tuitively be expected to reduce the burden on active transport, that tries to maintain
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the concentrations gradients. Active transport works on timescales longer than pas-
sive transport [77]. The effect of different impact on different timescales can to some
extent be observed in the time-averaged wavelet power, as shown in Fig. 5.3. In
addition to there being a decrease in the amplitude of fluctuations in general, the
power spectrum peak around 0.01 Hz present in the standard conditions, decreases
relative to the others, when decreasing the driving force for passive transport of K+

or Na+.
The experiment with chloride is very interesting. Lowering the extracellular Cl– ,

not only shifts the Nernst potential further apart from the ones of K+ and Na+, as can
be seen in Fig. 5.5, but also changes the direction of the chloride current from Cl– in-
flux into the cell for SB to Cl– efflux out of the cell for low Cl– . The chloride current
is expected to increase and consequently so are the fluctuations. While in case of K+

and Na+ an uptake mechanism is straightforward, e.g. Na+/K+ pumps, in the case
of chloride the situation may be less clear. Chloride transport is mostly involved
in volume regulation, see Fig. 2.2. Lowering the extracellular concentration of Cl–

increases the efflux of Cl– , and thus a decrease in the cellular volume should be ex-
pected [270], together with an increase in the membrane potential. This, in return,
would activate the transporters involved in the volume regulations. On the other
hand, one would expect activation of the mechanism bringing Cl– back. One of
the chloride uptake mechanisms is the Na+/K+/2Cl– co-transporter, NKCC1, trans-
porting Na+, K+ and 2 Cl– into the cell. The transport stays electroneutral. However,
it contributes to the total flux, and thus fluctuations in the membrane potential. In
this experiment a general membrane potential depolarisation and an increase in the
fluctuations can be observed, Fig. 5.9.

cohort pK pCl pNa SB Vm (mV) non-SB Vm (mV)
K+ 1 0.51 0.00 -24.4 -11.0
Cl– 1.03 1 0.84 -2.6 15.7
Na+ 1.72 1.30 1 -6.2 -19.5

Table 5.5: The relative values of permeabilities for K+, Cl– and Na+ calculated using the
Goldman–Hodgkin–Katz equation and the median of the membrane potential averages
from the SB and non-SB experiments. The values of permeabilities were assumed identical
for SB and non-SB, which is most likely not the case in reality. However, the model shows
the possible values of permeabilities to reproduce the averaged values of the membrane po-
tential. Regardless of the cohort, always pK > pCl > pNa. This confirms the dominant K+

permeability.

Alteration of the extracellular concentrations given the intracellular Ca2+ and ATP

The quantitative effect of the alteration of the extracellular solutions on the mem-
brane potential and its fluctuations, measured as the AWP is similar in the cases of
standard and non-standard pipette, summarised in Fig. 5.9. In the Ca2+ pipette, the
oscillations around 0.3 Hz in the dataset presented in Fig. 5.6 are slightly enhanced
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by low Cl– . Low Cl– depolarises the membrane and possibly membrane depolari-
sation could be considered as one potential mechanism to enhance these oscillations
– what will be discussed later, in Sec. 5.5.2 again. In the ATP pipette, the variance
of the TAWP, among all three datasets, in low Na+ is smaller than in SB. Neverthe-
less, robust conclusions require larger number of recordings on different cells in this
group. In 2 out of 3 datasets, the oscillations around 0.3 Hz appear present in the
SB, disappear in low Na+. In the SB the membrane potential has a value above 0 mV
and becomes negative in low Na+: this could be potentially related to the oscillations
cessation. No robust and consistent changes are observed in the wavelet power dis-
tribution across the frequencies caused by increasing the concentration of K+ nor by
decreasing the concentration of Na+ or Cl– .

5.5.2 The effect of different intrapipette solutions with Ca2+ or ATP or
both Ca2+ and ATP

Ca2+ pipette In the Ca2+ pipette, and Cl– cohort the oscillations around 0.3 Hz
can be identified, as presented in Fig. 5.6. This can be to some extent observed
in the other datasets too. The oscillatory frequency of Ca2+ oscillations can vary
from tens of Hz in neurons to tens of mHz in non-excitable cells [31]. Ca2+ is also
known to rather oscillate with a very specific frequency dependent on the function
of these oscillations, spanning from 0.1 mHz to 100 Hz [224], and elongated pe-
riods of its elevated concentration are dangerous [23, 24]. Ca2+ is known to have
an inhibitory effect on the sodium pump [34] and metabolism [237]. The oscilla-
tions were not visible in the K+ cohort. The oscillatory bursts are either the effect
of depolarisation of the membrane potential with elevated intracellular Ca2+ or/and
additional transporters. Cells with dominating Cl– permeability may additionally
posses Ca2+–activated chloride channels [22]. Nevertheless, in all the experiments
intrapipette Ca2+ depolarised the membrane and in the Na+ cohort, where the mem-
brane potential was relatively high compared to the other cohorts, the experiment
failed. Fig. 5.17 summarises the contribution of Ca2+ to the transport in Jurkat cells.
The effect of the membrane potential depolarisation is dominant in the experiment
– one possible explanation is Na+/K+ pumps blocking by intracellular Ca2+ [34, 237,
35]. Blocking of Kv channels by Ca2+ [33], is possibly stronger than activating KCa by
Ca2+ (see Sec. 2.8.1) since otherwise, a decrease in the membrane potential would be
observed. The intrapipette Ca2+ concentration (1000nM) was greater than 300nM re-
ported as the effective saturation threshold for KCa channels [39]. However, figuring
out the exact mechanism of the membrane potential depolarisation and generating
the oscillations in the membrane potential in this experiment will require additional
recordings with blocked KCa channels and Na+/K+ pumps.

ATP pipette Fig. 5.18 presents the effect of ATP in Jurkat cells. No substantial
effect neither on the membrane potential nor on the fluctuations was observed in
ATP pipette compared to the standard one.
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Figure 5.17: Ca2+ transport in Jurkat cells, inde-
pendent of T cell activation. The positive (+) inter-
action are marked with orange, inhibitory (-) with
grey. Interactions are either direct or indirect via
membrane potential, by changing the driving force
for Ca2+ (TRPM4, Kv, KCa). Ca2+ can enter the
cell via CRAC channels, Cav but also by TRP (to
smaller extent). All of those channels cause the de-
polarisation and further reduction in the driving
force for Ca2+ entry. On the one hand depolarisa-
tion enhances the opening of Kv channels and in-
creases the driving force for K+, but on the other
hand Ca2+ was reported to block them [33]. Intra-
cellular Ca2+ was also reported to block Na+/K+

pumps [34, 237, 35]. The effect of blocking Kv
channels and Na+/K+ pumps can be one possible
explanation to depolarisation caused by intracellu-
lar Ca2+. Ca2+ can be removed from the cell at the
expense of ATP molecule via PMCA. For further
details of the membrane transport in Jurkat cell see
Sec. 2.8.

Ca2+ and ATP pipette The averaged membrane potential of the cells with intra-
cellular Ca2+ and ATP was most hyperpolarised compared to any other intrapipette
solution in all the cohorts in 5 out of 6 experiments available. The effect on the fluc-
tuations may depend on the direction of shift from the Nernst potential of the dom-
inant ion – in the K+ cohort the fluctuations decrease, while in Cl– they increase.
The addition of ATP seems to not only overcome the Ca2+ effect of depolarisation,
but also additionally to hyperpolarise the membrane. This can be explained by ex-
pelling Ca2+ at the expense of available ATP and consequently leading to decrease
in the membrane potential. This hypothesis can be further tested in the experiment
with blocking PMCA.
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Figure 5.18: ATP involvement in Jurkat cells. ATP,
by causing a rise in osmotic pressure, facilitates
water entry to the cell [209, 39, 150]. As the wa-
ter enters the cell, the cell’s volume increases, ac-
tivating further the VRAC channels and efflux of
Cl– ions. This leads to membrane potential depo-
larisation. ATP enables functioning of the Na+/K+

and PMCA pumps (both are fuelled by ATP) – both
of them lead to decrease in the membrane poten-
tial, effectively transporting one positive ion out of
the cell; see Tab. 2.2. Activating additional trans-
porters would be expected to increase the total flux
across the membrane and consequently increase
the fluctuations.
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5.5.3 The oscillations in the membrane potential

This work reports intermittent oscillations in the frequency around 0.008 Hz present
in membrane potential recorded with the perforated patch-clamp technique, Fig. 5.16.
Interestingly, oscillations in the free-running membrane potential do not last contin-
uously but rather appear intermittently. Increase in the low frequency activity is
typically accompanied by a decrease in the membrane potential. The membrane
potential reaches very low values below -120 mV – much lower than the Nernst po-
tential for K+, namely -74 mV. Therefore it must be maintained by active transport,
e.g. Na+/K+ pumps that utilise the ATP. There was no glucose in the extracellu-
lar solutions, therefore it would be expected that the intracellular ATP/ADP ratio
dropped within few minutes, see Fig. 5.19. On the other hand, the intracellular con-
centration of ATP was reported to be saturating for Na+/K+ pumps activity [244].
No available glucose means a lack of the natural molecule to initiate metabolic re-
actions for over 1 h of the recordings (and preparation before). The origin of the
very negative membrane potential (below K+ Nernst potential) and the fact it was
maintained for over 40 min without any extracellular glucose, and the origin of the
oscillatory pattern require further investigations and more datasets. Other oscilla-
tions with frequency around 0.3 Hz appear mostly when the membrane is depo-
larised, and/or Ca2+ or ATP pipette. The effect is visible mostly in the Cl– cohort,
see Fig. 5.15. Earlier analysis of the membrane potential of T cells using the Fourier
transform [47] did not report any oscillations around this frequency.

5.5.4 Models of the membrane potential and metabolism interactions

Metabolism and the membrane potential may interact in the various ways described
in Chapter 2 and summarised in Fig. 2.8. The most straightforward way is to con-
sider Na+/K+ pumps as a direct link between metabolism and the membrane poten-
tial. In this experiment the possible scenarios of interactions are:

1. ATP is fully available. The pumps are not limited by the availability of ATP
and function according to their own rhythm which could possibly have some
preferred frequencies. This scenario is present in the experiment with intrapipette
ATP. The comparisons of the time-averaged wavelet power for standard and
ATP intrapipette solutions did not show any statistically significant differences
in any of the frequency bands that were considered. The results are shown in
Figs. 5.10(b), 5.11(b) 5.12(a). There are three possibilities: either the intrapipette
ATP does not change the fluctuations nor TAWP, or intrapipette ATP was not
fully available for the cell in the experiment with an increased concentration of
ATP, or ATP was fully available in standard pipette experiment.

2. Another possibility is that the low availability of ATP limits the Na+/K+ pump-
ing rate. This means that the pumps follow the dynamics of ATP. Intracellu-
lar ATP can be either produced in a periodic way, for example by following
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Figure 5.19: Availability of glucose strongly influences the intracellular ATP/ADP ratio. The
upper plot presents the externally adjusted dynamics of the glucose in time and the lower
plot shows ParcevalHR sensor occupancy that allows one to estimate ATP:ADP ratio. Perce-
valHR is an optimized genetically encoded fluorescent biosensor, that senses the ATP:ADP
ratio [240]. Each colour represents recording from different astrocyte cell. Circles correspond
to measurement points. The data show that drop in the extracellular glucose concentration
may result in drop of ATP/ADP ratio even 100 times only in few minutes. Data adapted
from [240], for the exact details see the paper and Fig. 3. I am sincerely grateful to Prof. Gary
Yellen for sharing the data together with his useful suggestions.

the metabolic frequency (glycolytic or mitochondrial oscillations [142, 9, 136,
137]), or with the fluctuations without any particular frequency preference. In
the first case the periodic hyperpolarisation in the membrane potential will be
observed. This can clearly be observed in the recordings of the smooth muscle
cell (SMC) membrane potential. To support this hypothesis, the limited avail-
ability of glucose was reported to decrease the frequency of ATP/NADH oscil-
lations [190]. In the SMC experiment, where the extracellular glucose was not
available, one can observe the tendency of the membrane potential oscillations
around 8 mHz to decrease and eventually disappear. In the latter scenario,
where ATP does not follow any particular frequency, no clear membrane hy-
perpolarisation events would be present. This scenario is possible in the Jurkat
cells experiment, where 10 mM of extracellular glucose was available. Accord-
ing to the results of [240], presented in Fig. 5.19, a concentration of 10 mM is
sufficient to avoid the big drops in ATP/ADP ratio.

3. The intracellular ATP is not available at all. The pumps are not functioning
and only passive transport is present. This scenario can only be investigated by
for example investigating the effect of blocking the pumps with ouabain [90]
and/or the metabolism with oligomycin [195] on the membrane potential.
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5.6 Summary

This work is the first to investigate the dynamics of the free-running membrane po-
tential of non-excitable cells over a time series of at least 8 min with a method ex-
plicitly addressing the temporal variability – the wavelet transform. Oscillations
present in the membrane potential appear in the intermittent regime and may easily
be overlooked when not taking temporal behaviour into account. This work reports
oscillations in the membrane potential of the frequency around 0.008 Hz, strongly
visible in the dataset recorded with a perforated patch-clamp technique. In this ex-
periment no extracellular glucose was available, therefore the possibility to obtain
ATP was prevented by glucose exhaustion in a cell. Oscillations in the membrane
potential mentioned before may be the result of a residual amount of glucose being
available. In a living cell the membrane potential is continually perturbed by the
changes in the extracellular concentrations. An important motivation in this work
was to investigate how those changes influence the natural fluctuations in the mem-
brane potential. In the Jurkat cell experiment the extracellular concentrations were
changed – the direction of the change in the membrane potential is consistent with
the GHK equation, pK > pCl > pNa, and the effect on the magnitude of fluctua-
tions depends on whether the three Nernst potentials were brought closer or further
apart. It is expected that bringing them closer will decrease the total current and
therefore the fluctuations, and this is confirmed in the experiment. As the Nernst
potentials were separated further from each other, one would expect that the total
intensity of fluctuations in the membrane potential increased, and again this is ob-
served experimentally. Interestingly, intracellular Ca2+ depolarised the membrane
compared to any other intrapipette solutions as opposed to Ca2+ and ATP that make
the membrane hyperpolarised.

5.7 Ideas for future work

In addition to all aforementioned ideas there are many additional avenues for future
research. In particular, one should address the problem of the dynamical interac-
tions between the membrane potential and metabolism. The three scenarios pre-
sented in Sec. 5.5.4 should be carefully investigated. Ideally, the interior of the cell
should be kept intact to preserve mitochondria for further production of ATP. Note
that this may not apply to cancer cells or red blood cells because they obtain their
ATP through glycolysis. Therefore, the use of the perforated patch clamp technique
instead of the whole-cell patch-clamp would allow the organelles to stay inside the
cell. Possibly, the use of cell lines that are close to the natural human cells, rather
than cancer (immortalised) cells could give a better understanding of a living cell.
The following modifications in the free-running voltage experiment may shed new
light on the problem:
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• The question of putting the cell under stress-conditions or perturbing it should
be precisely addressed. One possibility to achieve this is by altering the con-
centration in the opposite direction; rather than bringing the Nernst potentials
closer, to separate them further apart (the opposite what was done in the K+

and Na+ experiments analysed here). Consequently the passive flow of ions
will increase, thus possibly increasing the burden on the Na+/K+ pump and
ATP demand. This perturbation could be a factor enhancing the coupling be-
tween metabolism and the membrane potential and could show how the dy-
namics of metabolism is reflected in the membrane potential. Possibly, the dy-
namics of the membrane potential would resemble that observed in the smooth
muscle cell experiment.

• Another idea is to monitor simultaneously the dynamics of the membrane po-
tential and the ATP/ADP ratio with perforated patch-clamp and fluorescence
methods. Manipulating the amount of glucose allows one to influence the
ATP/ADP ratio, which will further possibly influence the membrane poten-
tial. The intracellular fluctuations in the ATP/ADP ratio that are present un-
der a fixed glucose concentration are most probably impossible to measure
accurately with fluorescence methods due to the instrumental fluctuations.
However, altering the extracellular glucose concentration may give measur-
able changes in ATP/ADP ratio, as shown in Fig. 5.19.

• Another option is to investigate the influence of temperature on the dynamics
of the membrane potential. Temperature is known to have a strong effect on
metabolism [82, 49, 183]. The effect of the temperature on the passive transport
in the membrane potential is much smaller.

• A very important way of reducing the bias due to variability among different
cells in the experiment with different intrapipette solutions would be using the
pipette perfusion system [258]. This would allow one to directly investigate the
effect of changing the intrapipette solution on each cell, which is not possible
in the current data.

• Address explicitly the question: “how does the free-running membrane po-
tential dynamics depend on time?”, by having possibly the same group size
recorded in standard conditions first and non-standard after and vice versa or
repeating sufficiently long recordings several time without changing the con-
ditions.

• Another future direction is to investigate the effect of blocking or slowing
down/speeding up the Na+/K+ pumps, as described in [244] on the dynam-
ics of the membrane potential. It would allow one to investigate whether the
intermittent oscillations around 8 mHz are due to the activity of the pumps; in
case they disappear after adding the blocker, this would favour the hypothesis
that the pumps are responsible for generating the rhythm.
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• An interesting insight may be also gained by the experimenting with red blood
cells, as they obtain their energy entirely by glycolysis and do not posses mito-
chondria. Nevertheless, the earlier experiments with red blood cells using the
patch clamp technique were reported to be unsuccessful [125].
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Chapter 6

Membrane potential –
Time-reversibility and bispectral
analysis

6.1 Abstract

When investigating the dynamics of the time series, a natural step is to look for
nonlinearities or higher order coupling between the signals or between the differ-
ent timescales of the same signal. In the previous chapter the membrane potential
recordings were analysed using wavelet transform in order to search for the oscilla-
tions. This chapter makes one step forward and uses the same recordings to search
for nonlinearities. The fact that the data are univariate narrows down the possible
choice of the methods. Here, the two types of nonlinearities were investigated: time-
irreversibility (that implies nonlinearity) and nonlinearity present in the dynamical
coupling between different oscillatory modes. To measure the first one, α that intro-
duced in Sec. 3.3.1 was used. In order to investigate the latter one, bispectral analysis
developed in Chapter 4 was applied.

The analysis of time-reversibility indicated that on timescales faster than 10 ms,
the recordings indicated significant time-irreversibility. Moreover the majority of α

values were positive which correspond to a steeper increase and smoother decrease
in the time series.

Wavelet bispectral analysis allows for investigating coupling with relatively close
frequencies. The general motivation in the experiment analysed here was under-
standing how metabolism may reflect in the dynamics of the membrane potential.
That is why the low frequencies (<0.5 Hz) were of the main interest in the bispec-
tral analysis. Many recordings indicated possible coupling/nonlinearity involving
frequencies from the range 0.02–0.05 Hz. In majority of significant pairs one of the
frequencies is within a range 0.04–0.05 Hz, and the other 0.1–0.4 Hz.



112 Chapter 6. Membrane potential – Time-reversibility and bispectral analysis

6.2 Introduction

Various cellular rhythms and their possible links to the membrane potential were
reviewed in Chapter 2 and summarised in Fig. 2.8. Tab. 2.1 reviews the oscillations
in the membrane potential recorded with electrophysiology techniques. Moreover,
other coupling types were reported, e.g. between neurons and glia cells [6], cytosolic
and mitochondrial calcium oscillations [206]. The particular role of feedback-loops
in cellular oscillators has been stressed [88, 130, 181, 251]. The importance of cou-
pling was also discussed in the context of electronic-neural cell interfaces, where
strong coupling causes oscillation death [189]. Spontaneous membrane potential
oscillations with a frequency spanning from 0.017 to 0.15 Hz measured with an elec-
trophysiology method were reported in L cells [183, 184]. As a possible generator,
the authors suggested metabolic processes: cyanide completely abolished the os-
cillators, moreover the oscillations were strongly dependent on temperature. More
recently, the dynamics of oscillatory metabolism in β cells were investigated using
fluorescence imaging, simultaneously with recording the membrane potential burst-
ing using the perforated patch-clamp technique [167]. The authors reported that the
Ca2+ entry into β-cells stimulates the rate of mitochondrial metabolism, accounting
for the depletion of glycolytic intermediates during each oscillatory burst.

This work is the first to seek evidence for nonlinearities and higher-order cou-
pling/interactions in the recording of the free-running membrane potential by using
the time-reversibility measure and bispectral analysis. The recordings of the mem-
brane potential indicated significant time-irreversibility on the timescales faster than
10 msec. Moreover, the majority of the significant values were positive, what indi-
cates a relatively steeper increase, compared to a decrease in the time series on these
timescales.

Bispectral analysis allows the inference of information from a single time se-
ries. However, without additional experiments, one can only guess the rhythms
involved in creating the bispectral peaks. Many recordings indicated possible cou-
pling/nonlinearity involving frequencies from the range 0.02–0.05 Hz. In majority
of significant pairs one of the frequencies is within a range 0.04–0.05 Hz, and the
other 0.1–0.4 Hz. However, the results should be considered with caution, because
even the application of surrogates does not always guarantee the correct results, as
discussed in Sec. 4.6.

6.3 Methods

6.3.1 Cells

Experimental details are described in Chapter 5. In this chapter the membrane po-
tential of Jurkat cells (JC) from K+ cohort in standard bath and standard intrapipette
solutions, where at least 10 min was available (6 cells) and smooth muscle cell (SMC,
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1 cell), as described in Sec. 5.3.1 were analysed. This subset of recordings was con-
sidered as the closest representative to the natural cell. In the time-reversibility anal-
ysis all the cohorts (i.e. K+, Na+ and Cl– ) in standard bath conditions and standard
intrapipette solutions were analysed.

6.3.2 Preprocessing

The original time series were recorded with sampling frequency 20 kHz. All datasets
used in analysis, except the time-reversibility analysis, were downsampled to 20 Hz,
using the moving average filter described in Sec. 3.3.2, and de-trended, using the
build-in MATLAB, detrend function, that removes the best straight-line fit from the
data. The time series used for calculating time-reversibility were de-trended, then
the IAAFT surrogates were generated, and later the original time series together
with the surrogates were downsampled to the desired frequency Fsdown, used as a
parameter. Reversing the operations of downsampling and generating the surro-
gates reduced the computational burden.

6.3.3 Time-reversibility

A very simple and powerful method to detect the nonlinearity is the test for time-
reversibility, introduced earlier in Sec. 3.3.1 and initially defined in Eq. (3.6). The
additional modification used in this chapter is

αrev =
1
N

N−1

∑
n=1

(sn+1 − sn)
3 × Fs3. (6.1)

In this section, αrev is investigated as a function of sampling frequency Fs. Additional
multiplication of αrev by Fs3 gives the numerical estimate of a third power of a first
derivative on the timescale of dt = 1/Fs.

Parameter choice As pointed out in [213], the timescale for time-reversibility α,
Eq. (3.6), is an adjustable parameter that requires careful selection. Here, no prior
assumptions about the dynamics were made. For each dataset, originally sampled
with Fs = 20kHz, the signals were first de-trended and the end-points matched (as
described in [141]). Then 39 IAAFT surrogates were generated and downsampled
to the desired frequency Fsdown using a moving average filter. 8 values of the down-
sampling frequency were selected from the range 10 to 20 kHz. Values of α estimated
from data that exceeded the extrema of the values estimated from surrogates were
considered significant.

6.3.4 Wavelet analysis

Wavelet analysis is introduced and defined in Sec. 3.5.2.
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6.3.5 Bispectral density

In this chapter the autobispectral density of the signal x averaged over time interval
I is defined as

bI
ψ,xxx( f1, f2) :=

1
I

∫
I

bψ,xxx( f1, f2, t) dt, (6.2)

where bψ,xxx is a bispectral density, as defined in Eq. (4.12), f1, f2 are frequencies, ψ

wavelet function, t time. WIAAFT surrogates, described in Sec. 3.7.1, were applied.

Biamplitude and biphase

Following the idea introduced in [115], additionally biamplitude and biphase are
introduced. The time-dependent autobiamplitude of a signal x is defined as

Ib f1, f2(t) = |bxxx( f1, f2, t)|. (6.3)

Here, bψ,xxx is a bispectral density, as defined in Eq. (4.12), f1, f2 a frequency pair, t
time, |.| denotes the absolute value. The time-dependent autobiphase of a signal x is
defined as

Φ f1, f2(t) = unwrap(arg(bxxx( f1, f2, t))). (6.4)

Here, arg(.) denotes the argument of a complex number, and “unwrap” is an un-
wrapping function. If the biphase constant for several periods of the slower fre-
quency, this indicates phase coupling [115]. However, it is not clear how constant is
constant?. Therefore, an additional measure – minimum range of the biphase values
R is introduced

R(i) = min
t1

(
max

|t2−t1|≤iT1

(Φ f1, f2(t1)−Φ f1, f2(t2))
)

. (6.5)

Here, assuming that f1 ≤ f2, then T1 = 1/ f1 and i is the number of cycles of the
oscillations of f1. Φ f1, f2(t) represents the biphase, and t is time. In other words
R(i) is the measure of the minimal range that the biphase values occupy given the
number of cycles of slower frequency. The values obtained from the recordings are
compared with the WIAAFT surrogates.

6.3.6 Parameter choice

Choice of a suitable frequency resolution for the wavelet transform (σ) was dis-
cussed in Chapter 5 and set to 0.5. Nevertheless, this choice is far from optimal
for bispectral analysis. On the one hand having a lower σ allows one to investi-
gate lower frequencies, but on the other it biases the results of bispectral analysis
when frequency triplets ( f1, f2, f1 + f2) are considered, as shown in Eq. (4.21). The
equation was originally derived for fixed frequency components, yet the formula
including frequency triplets is applied in a general case. So σ = 3 was selected. This
is considered to be a relatively good compromise between frequency resolution and
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time localisation, as discussed in Secs. 4.6.1 and 4.6.2, for signals with frequencies
ranging from 0.02 to 0.2 Hz for time series of the length 10 min (JC) and from 0.005
to 0.2 Hz for 60 min (SMC). In order to allow for tracing the dynamics that gener-
ated the time-averaged bispectra, wavelet transforms using the same σ = 3 are also
presented. Time windows of length 2 min were selected for the bispectral analysis
of Jurkat cells and 10 min for smooth muscle cell. This allows one for having at
least 2 cycles of the lowest possible frequency 0.02 Hz for JC, and around 3 cycles of
0.005 Hz for SMC. However, other choices of σ may also be justified.

The choice of the bispectral peaks that were further used for biphase/biamplitude
analysis was rather heuristic. The bispectral peaks were considered significant, where
the value of bispectral density exceeded the level indicated by the surrogates. Since
there were very many values exceeding the threshold, only the peaks with the biggest
integrals around them were selected. They may not be the unique ones correspond-
ing to the meaningful coupling.

6.4 Results

This section is structured as follows: first, the results of time-reversibility analysis
are presented in Sec. 6.4.1. The majority of the datasets indicated time-irreversibility
on timescales faster than 10 milliseconds and the positive α values. Sec. 6.4.2 shows
the bispectral analysis of Jurkat and smooth muscle cells.

6.4.1 Time-reversibility

This subsection presents the results of the analysis of time-reversibility (the method
is described in detail in Sec. 3.3.1). Fig. 6.1 illustrates time-reversibility α in three
cohorts (in consecutive rows) as a function of downsampling frequency Fsdown. The
positive and negative values of alpha are separated: in the right and left column
respectively. 39 IAAFT surrogates were used to indicate the minimum and maxi-
mum: the values exceeding extrema were considered significant. The majority of the
significant values of α were observed on the timescales faster than 10 msec (down-
sampling frequency greater than 100 Hz). Fig. 6.2 illustrates the total number of
significant values of α and its median value for each Fsdown. To indicate signifi-
cant values 39 IAAFT surrogates were generated. Very few significant values were
present for Fsdown smaller than 20 Hz. The majority of the α values were positive,
except some cases in the Na+ cohort, where also negative values were observed.

Fig. 6.3 shows an example of the membrane potential time series, presented on
the timescales where α values were significant. The upper figure shows the his-
togram of ((sn+1 − sn)× Fs)3 values (which corresponds to α before an averaging).
The maximum of the histogram corresponds to a positive α value, which is associ-
ated with a steeper increase and a relatively smoother decrease in the time series.
The majority of values are cumulated around the mean value, however there are
non-zero values in the tails of the distribution.
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Figure 6.1: The mem-
brane potential indicates
time-irreversibility on short
timescales. Time-reversibility
α in three cohorts (in con-
secutive rows) is shown as
a function of downsampling
frequency Fsdown. The positive
and negative values of alpha
are separated: in the right and
left column respectively. 39
IAAFT surrogates were used
to indicate the minimum and
maximum - significant values of
α are marked with bold stars.
Each colour indicates a different
cell. As mentioned in Sec. 3.3.1,
the time-irreversibility implies
nonlinearity. The majority of
the significant values of α are
positive and appears on the
timescales faster than 10 msec
(Fsdown ≥ 100 Hz), which coin-
cides with the timescales of the
order of few milliseconds.
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Figure 6.2: Time-reversibility for standard
extracellular and intracellular solutions in
three cohorts as functions of downsam-
pling frequency Fsdown. There were 16
cells in total. The left axis (blue) illus-
trates the total number of significant val-
ues of α for each value of downsampling
frequency Fsdown. Positive and negative
values of α (or −α, where α was negative)
are presented in upper and lower plot cor-
respondingly. The right axis shows the
median value of α for the significant val-
ues only for each Fsdown. The number of
significant values is rising with increasing
Fsdown. For Fsdown greater than 100 Hz
more than half of the cells indicate time-
irreversibilty and positive α values, there-
fore implying nonlinearity on timescales
faster than 10 milliseconds.

6.4.2 Bispectral analysis

Jurkat cells

Figs. 6.4, 6.7, 6.10, 6.13, 6.16, 6.19 show the analysis of six consecutive cells from
the K+ cohort in the standard bath using standard intrapipette solutions. Each fig-
ure consists of the time-averaged wavelet bispectral density, the windowed wavelet
bispectral density, the 95th percentile of 19 WIAAFT surrogates, the amplitude of
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Figure 6.3: Example of a time series of the membrane potential, presented on the
timescale of where α values were significant. The upper figure presents the histogram of
((sn+1 − sn)× Fs)3 values (marked in orange on the lower plot) for a segment of the time
series downsampled to 100 Hz presented on the lower plot. The maximum of the histogram
corresponds to a positive α value, which is associated with a steeper increase and relatively
smoother decrease in the time series. The lower plot presents a segment of the membrane
potential recording, with the markers placed every 10 msec on the left axis, and the corre-
sponding value of ((sn+1 − sn)× Fs)3 on the right axis in orange.

the wavelet transform and the original dataset. For each cell the significant peaks
were individually selected – the values of the integrals and the corresponding fre-
quency pairs are presented in Tab. 6.1. Figs. 6.5, 6.8, 6.11, 6.14, 6.17 and 6.20 show
the analysis of the time-dependent biamplitudes and biphases for each of the signif-
icant pair, together with the bispectrum and amplitude of the wavelet transform. In
order to measure what constant means in terms of the dynamics of the biphases, the
minimal range as defined in Eq. (6.5) together with WIAAFT surrogate testing was
applied. Figs. 6.6, 6.9, 6.12, 6.15, 6.18, 6.21 show a minimal span, as a function of a
number of cycles of the slower frequency. Fig. 6.25(a) shows the significant pairs of
frequencies for all the analysed cells, significantly constant biphases, together with
the membrane potential. There is no discernible trend, neither in the frequencies
pairs, nor in the membrane potential. One observation can be made that the cells
with the less negative membrane potential have more fluctuations and also signifi-
cant bispectral peaks within the frequency range 0.02–0.05 Hz. The majority of the
values with constant biphases are, where the lower frequency was not smaller than
0.04 Hz. This may be a bias introduced by an insufficient length of the time series
for low frequencies, as discussed in [18].
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Figure 6.4: Wavelet bispectral density for several time intervals with WIAAFT surrogates,
the amplitude of wavelet transform and original time series for the recordings of membrane
potential of cell 1. (a) Wavelet-bispectral density, |bI

ψ,xxx( f1, f2)|, averaged over time 10 min;
(b) 95th percentile of 19 WIAFFT; (c) wavelet-bispectral density after subtracting the surro-
gates; (d) wavelet bispectral density average over 2 min windows; (e) amplitude of wavelet
transform (mV); (f) membrane potential, (mV). Upper colourbar has a units of mV3 and re-
lates to all the bispectra in the figure while the lower has a dimension of mV and relates to
all the wavelet transform. The circles mark selected peaks that were significant, the values
of their numerical integral can be found in the main text.
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Figure 6.5: Wavelet bispectral density, the time-averaged wavelet power, wavelet transform,
time-dependent biamplitudes and biphases for significant peaks, and original time series of
the membrane potential of cell 1. (a) Wavelet autobispectral density, as defined in Eq. (6.2).
Circles indicate the significant bispectral peaks, as explained in Fig. 6.4. Black circle corre-
sponds to a pair (0.39, 0.05) Hz, and blue to (0.179, 0.044) Hz. (b) Time-averaged wavelet
transform. Grey area indicate the values of wavelet power between 5th and 95th percentiles.
Vertical lines indicate the frequency triplets ( f1, f2, f1 + f2) that generated the peaks in the
bispectrum. Frequency triplets only to small extent coincide with the peaks in TAWP. (c)
Amplitude of wavelet transform. Time-dependent (d) biamplitude, as defined in Eq. (6.3),
(e) biphase, as defined in Eq. (6.4). The values of biamplitudes (d) change in time. For both
pairs they are the lowest between 4-6 min of the recording. For a visual guideline in (f) grey,
dashed lines in are drawn every 2π, and dots on the biphase appear once every period of the
slow frequency. Biphases of both pairs of frequencies are relatively constant – several cycles
of oscillations of the lowest frequency stays within 2π range. For a further analysis of the
biphase see Fig. 6.6. (e) Original recording of the membrane potential.
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Figure 6.6: Minimal range/span
of biphases as a number of cy-
cles of lower frequency, as de-
fined in Eq. (6.5) of the cell
1. Black curve corresponds
to a pair (0.05, 0.39) Hz, and
blue to (0.044, 0.179) Hz as
shown in Fig. 6.5. Intermit-
tent lines indicate the 5th per-
centile of 19 WIAAFT surro-
gates. Stars correspond to the
significantly smaller values of
the biphases. A biphase of a
pair (0.044, 0.179, blue) Hz has
significantly smaller range than
the surrogates, up to 12 cycles
of oscillations. A pair (0.05,
0.39) Hz – black, is significantly
more constant for 5 cycles.
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Figure 6.7: Wavelet bispectral density for several time intervals with WIAAFT surrogates,
the amplitude of wavelet transform and original time series for the recordings of mem-
brane potential of cell 2. Analysis analogous to the one presented in Fig. 6.4 for cell 2 (a)
Wavelet-bispectral density, |bI

ψ,xxx( f1, f2)|, averaged over time 10 min; (b) 95th percentile of
19 WIAFFT; (c) wavelet-bispectral density after subtracting the surrogates; (d) wavelet bis-
pectral density average over 2 min windows; (e) amplitude of wavelet transform (mV); (f)
membrane potential, (mV). Upper colourbar has a units of mV3 and relates to all the bis-
pectra in the figure while the lower has a dimension of mV and relates to all the wavelet
transform. The circles mark selected peaks that were significant, the values of their numeri-
cal integral can be found in the main text.
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Figure 6.8: Wavelet bispectral density, the time-averaged wavelet power, wavelet transform,
time-dependent biamplitudes and biphases for significant peaks, and original time series of
the membrane potential of cell 2. (a) Wavelet autobispectral density, as defined in Eq. (6.2).
Marked circles indicate the significant bispectral peaks, as explained in Fig. 6.7. Black circle
corresponds to a pair (0.265, 0.04) Hz, and blue to (0.36, 0.11) Hz. (b) Time-averaged wavelet
transform. Grey area indicate the values of wavelet power between 5th and 95th percentiles.
Vertical lines indicate the frequency triplets ( f1, f2, f1 + f2) that generated the peaks in the
bispectrum. (c) Amplitude of wavelet transform. Time-dependent (d) biamplitude, as de-
fined in Eq. (6.3), (e) biphase, as defined in Eq. (6.4). The values of biamplitudes (d) change in
time. High biamplitude of a pair (0.36, 0.11) Hz – blue, seems to coincide with the instability
of the membrane potential around the first minute of the recording. For a visual guideline
in (f) grey, dashed lines in are drawn every 2π, and dots on the biphase appear once every
period of the slow frequency. Biphases of both pairs of frequencies are relatively stable – sev-
eral cycles of oscillations of the lowest frequency stays within 2π range. For further analysis
see Fig. 6.9. (e) Original recording of the membrane potential.
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Figure 6.9: Minimal range/span
of biphases as a number of cy-
cles of lower frequency, as de-
fined in Eq. (6.5) of the cell 2.
Black curve corresponds to a
pair (0.04, 0.265) Hz, and blue
to (0.11, 0.36) Hz, as shown
in Fig. 6.8. Intermittent lines
indicate the 5th percentile of
19 WIAAFT surrogates. Stars
correspond to the significantly
smaller values of the biphases.
The span of the biphase of a pair
(0.04, 0.265, black) for 1, 2, 5 cy-
cles is significantly smaller than
the surrogates level. No signif-
icant differences in the biphase
of (0.11, 0.36) Hz.
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Figure 6.10: Wavelet bispectral density for several time intervals with WIAAFT surrogates,
the amplitude of wavelet transform and original time series for the recordings of mem-
brane potential of cell 3. Analysis analogous to the one presented in Fig. 6.4 for cell 1. (a)
Wavelet-bispectral density, |bI

ψ,xxx( f1, f2)|, averaged over time 10 min; (b) 95th percentile of
19 WIAFFT; (c) wavelet-bispectral density after subtracting the surrogates; (d) wavelet bis-
pectral density average over 2 min windows; (e) amplitude of wavelet transform (mV); (f)
membrane potential, (mV). Upper colourbar has a units of mV3 and relates to all the bis-
pectra in the figure while the lower has a dimension of mV and relates to all the wavelet
transform. The circles mark selected peaks that were significant, the values of their numeri-
cal integral can be found in the main text.
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Figure 6.11: Wavelet bispectral density, the time-averaged wavelet power, wavelet trans-
form, time-dependent biamplitudes and biphases for significant peaks, and the original time
series of the membrane potential of cell 3. (a) Wavelet autobispectral density, as defined in
Eq. (6.2). Marked circles indicate the significant bispectral peaks, as explained in Fig. 6.4.
Black circle corresponds to a pair (0.040, 0.026) Hz, and blue to (0.070, 0.026) Hz. (b) Time-
averaged wavelet transform. Grey area indicate the values of wavelet power between 5th
and 95th percentiles. Vertical lines indicate the frequency triplets ( f1, f2, f1 + f2) that gener-
ated the peaks in the bispectrum. (c) Amplitude of the wavelet transform. Time-dependent
(d) biamplitude, as defined in Eq. (6.3), (e) biphase, as defined in Eq. (6.4). For a visual
guideline in (f) grey, dashed lines are drawn every 2π, and dots on the biphase appear once
every period of the slow frequency. The individual analysis of the biphases is presented in
Fig. 6.12. However, for both biphases only three cycles were available. (e) Original recording
of the membrane potential.
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Figure 6.12: Minimal
range/span of biphases as
a number of cycles of lower fre-
quency, as defined in Eq. (6.5)
of the cell 3. Black curve
corresponds to a pair (0.026,
0.040) Hz, and blue to (0.026,
0.070) Hz, as shown in Fig. 6.11.
Intermittent lines indicate the
5th percentile of 19 WIAAFT
surrogates. Stars correspond to
the significantly smaller values
of the biphases. No significant
differences between the data
and the surrogates in any of
frequency pairs. However, there
were only 3 cycles available.
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Figure 6.13: Wavelet bispectral density for several time intervals with WIAAFT surrogates,
the amplitude of the wavelet transform and original time series of the recordings of mem-
brane potential of cell 4. Analysis analogous to the one presented in Fig. 6.4 for cell 1 (a)
Wavelet-bispectral density, |bI

ψ,xxx( f1, f2)|, averaged over time 10 min; (b) 95th percentile of
19 WIAFFT; (c) wavelet-bispectral density after subtracting the surrogates; (d) wavelet bis-
pectral density average over 2-min windows; (e) amplitude of wavelet transform (mV); (f)
membrane potential, (mV). Upper colourbar has a units of mV3 and relates to all the bis-
pectra in the figure while the lower has a dimension of mV and relates to all the wavelet
transform. The circles mark selected peaks that were significant, the values of their numeri-
cal integral can be found in the main text.
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Figure 6.14: Wavelet bispectral density, the time-averaged wavelet power, wavelet trans-
form, time-dependent biamplitudes and biphases for significant peaks, and original time
series of the membrane potential of cell 4. (a) Wavelet autobispectral density, as de-
fined in Eq. (6.2). Marked circles indicate the significant bispectral peaks, as explained in
Fig. 6.4. Black circle corresponds to a pair (0.026, 0.041) Hz, blue (0.041, 0.041) Hz, magenta
(0.026, 0.12) Hz, green (0.026, 0.2) Hz. (b) Time-averaged wavelet transform. Grey area in-
dicate the values of wavelet power between 5th and 95th percentiles. Vertical lines indicate
the frequency triplets ( f1, f2, f1 + f2) that generated the peaks in the bispectrum. (c) Ampli-
tude of the wavelet transform. Time-dependent (d) biamplitude, as defined in Eq. (6.3), (e)
biphase, as defined in Eq. (6.4). For a visual guideline in (f) grey, dashed lines are drawn ev-
ery 2π, and dots on the biphase appear once every period of the slow frequency. A biphase
of a pair (0.041, 0.041) Hz, blue, stays within very narrow range, less than π for all the 12 cy-
cles available. However, significance analysis is presented in Fig. 6.15. (e) Original recording
of the membrane potential.



126 Chapter 6. Membrane potential – Time-reversibility and bispectral analysis

0 2 4 6 8 10 12
No cycles

0

0.2

0.4

0.6

0.8

1

m
in

 s
pa

n 
(r

ad
)

Figure 6.15: Minimal
range/span of biphases as
a number of cycles of lower fre-
quency, as defined in Eq. (6.5)
of the cell 4. Black curve
corresponds to a pair (0.026,
0.041) Hz, blue (0.041, 0.041) Hz,
magenta (0.026, 0.12) Hz, green
(0.026, 0.2) Hz. Intermittent
lines indicate the 5th percentile
of 19 WIAAFT surrogates.
Stars correspond to the sig-
nificantly smaller values of
the biphases. All the biphases
stay within narrow range, e.g.
(0.041, 0.041) Hz, blue, stays
within a range ≤ 0.8π for all
12 cycles available. However
the values are not significantly
different from surrogates. The
only significant values of a span
are for at most 2 cycles (black),
therefore no conclusions are
drawn.
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Figure 6.16: Wavelet bispectral density for several time intervals with WIAAFT surrogates,
the amplitude of wavelet transform and original time series for the recordings of the mem-
brane potential of cell 5. Analysis analogous to the one presented in Fig. 6.4 for cell 1. (a)
Wavelet-bispectral density, |bI

ψ,xxx( f1, f2)|, averaged over time 10 min; (b) 95th percentile of
19 WIAFFT; (c) wavelet-bispectral density after subtracting the surrogates; (d) wavelet bis-
pectral density average over 2 min windows; (e) amplitude of wavelet transform (mV); (f)
membrane potential, (mV). Upper colourbar has a units of mV3 and relates to all the bis-
pectra in the figure while the lower has a dimension of mV and relates to all the wavelet
transform. The circles mark selected peaks that were significant, the values of their numeri-
cal integral can be found in the main text.
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Figure 6.17: Wavelet bispectral density, the time-averaged wavelet power, wavelet trans-
form, time-dependent biamplitudes and biphases for significant peaks, and original time
series of the membrane potential of cell 5. (a) Wavelet autobispectral density, as defined in
Eq. (6.2). Marked circles indicate the significant bispectral peaks, as explained in Fig. 6.4.
Black circle corresponds to a pair (0.030, 0.039) Hz, blue (0.030, 0.066) Hz, magenta (0.080,
0.110) Hz, green (0.050, 0.530) Hz. (b) Time-averaged wavelet transform. Grey area indicate
the values of wavelet power between 5th and 95th percentiles. Vertical lines indicate the fre-
quency triplets ( f1, f2, f1 + f2) that generated the peaks in the bispectrum. (c) Amplitude of
the wavelet transform. Time-dependent (d) biamplitude, as defined in Eq. (6.3), (e) biphase,
as defined in Eq. (6.4). For a visual guideline in (f) grey, dashed lines in are drawn every
2π, and dots on the biphase appear once every period of the slow frequency. Significance
analysis of the biphases is presented in Fig. 6.18. (e) Original recording of the membrane
potential.
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Figure 6.18: Minimal span of
biphases as a number of cy-
cles of lower frequency, as de-
fined in Eq. (6.5) of the cell
5. Black curve corresponds
to a pair (0.030, 0.039) Hz,
blue (0.030, 0.066) Hz, magenta
(0.080, 0.110) Hz, green (0.050,
0.530) Hz. Intermittent lines
indicate the 5th percentile of
19 WIAAFT surrogates. Stars
correspond to the significantly
smaller values of the biphases.
A biphase of a pair (0.080,
0.110) Hz, magenta, cover sig-
nificantly smaller range for 1-3
and 5-8 cycles and biphase of a
pair (0.05, 0.53) Hz, green, for
13-18 cycles.
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Figure 6.19: Wavelet bispectral density for several time intervals with WIAAFT surrogates,
the amplitude of wavelet transform and original time series for the recordings of the mem-
brane potential of cell 6. Analysis analogous to the one presented in Fig. 6.4 for cell 1. (a)
Wavelet-bispectral density, |bI

ψ,xxx( f1, f2)|, averaged over time 10 min; (b) 95th percentile
of 19 WIAFFT; (c) wavelet-bispectral density after subtracting the surrogates. No signifi-
cant peaks in bispectrum were present; (d) wavelet bispectral density average over 2 min
windows; (e) amplitude of wavelet transform (mV); (f) membrane potential, (mV). Upper
colourbar has a units of mV3 and relates to all the bispectra in the figure while the lower has
a dimension of mV and relates to all the wavelet transform. The circles mark selected peaks
that were significant, the values of their numerical integral can be found in the main text.
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Figure 6.20: Wavelet bispectral density, the time-averaged wavelet power, wavelet trans-
form, time-dependent biamplitudes and biphases for significant peaks, and original time
series of the membrane potential of cell 6. (a) Wavelet autobispectral density, as defined in
Eq. (6.2). Marked circles indicate the significant bispectral peaks, as explained in Fig. 6.4.
Black circle corresponds to a pair (0.047, 0.290) Hz, blue (0.047, 0.140) Hz, magenta (0.047,
0.047) Hz, green (0.026, 0.631) Hz, and cyan (0.133, 0.476) Hz. (b) Time-averaged wavelet
transform. Grey area indicate the values of wavelet power between 5th and 95th percentiles.
Vertical lines indicate the frequency triplets ( f1, f2, f1 + f2) that generated the peaks in the
bispectrum. (c) Amplitude of the wavelet transform. Time-dependent (d) biamplitude, as
defined in Eq. (6.3), (e) biphase, as defined in Eq. (6.4). For a visual guideline in (f) grey,
dashed lines in are drawn every 2π, and dots on the biphase appear once every period of
the slow frequency. Significance analysis of the biphases is presented in Fig. 6.21. (e) Original
recording of the membrane potential.
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Figure 6.21: Minimal span of
biphases as a number of cy-
cles of lower frequency, as de-
fined in Eq. (6.5) of the cell
6. Black line corresponds
to a pair (0.047, 0.290) Hz,
blue (0.047, 0.140) Hz, magenta
(0.047, 0.047) Hz, green (0.026,
0.631) Hz, and cyan (0.133,
0.476) Hz. Intermittent lines
indicate the 5th percentile of
19 WIAAFT surrogates. Stars
correspond to the significantly
smaller values of the biphases.
A biphase of a pair (0.047,
0.290) Hz, black, covered signif-
icantly smaller range for 4 and
13 cycles and biphase of a pair
(0.133, 0.476) Hz, cyan, for 21–28
and 60–72 cycles.
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Smooth muscle cell

Fig. 6.22 shows the analysis of the recording of the membrane potential of a smooth
muscle cell. Similar to Fig. 6.4 previously presented for JC, Fig. 6.22 consists of the
time-averaged wavelet bispectral density, the windowed wavelet bispectral density,
the 95th percentile of 19 WIAAFT surrogates, the amplitude of the wavelet trans-
form and the original dataset. For each of the significant peaks – the corresponding
frequencies and the values of the integrals are presented in Tab. 6.2. Fig. 6.23 shows
the analysis of the time-dependent biamplitudes and biphases for each of the sig-
nificant pair, together with the bispectrum and amplitude of the wavelet transform.
The minimal range as defined in Eq. (6.5) together with WIAAFT surrogate testing
was applied. Fig. 6.24 shows a minimal span, as a function of a number of cycles
of the slower frequency. Fig. 6.25(b) shows the summary of the significant pairs of
frequencies and significantly constant biphases. Numerical values of the integrals
associated with peaks in the bispectrum of the SMC are much bigger than those in
the JC bispectrum.
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Figure 6.22: Wavelet bispectral density for several time intervals with WIAAFT surrogates,
the amplitude of wavelet transform and original time series for the recordings of the mem-
brane potential of a smooth muscle cell. (a) Wavelet-bispectral density, |bI

ψ,xxx( f1, f2)|, aver-
aged over time 10 min; (b) 95th percentile of 19 WIAFFT; (c) wavelet-bispectral density after
subtracting the surrogates; (d) wavelet bispectral density average over 10 min windows; (e)
amplitude of wavelet transform (mV); (f) membrane potential, (mV). Upper colourbar is has
a units of mV3 and relates to all the bispectra in the figure while the lower has a dimension
of mV and relates to all the wavelet transform. The circles mark selected peaks that were
significant, the values of their numerical integral can be found in the main text.
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Figure 6.23: Wavelet bispectral density, the time-averaged wavelet power, wavelet trans-
form, time-dependent biamplitudes and biphases for significant peaks, and original time
series of the membrane potential of cell 1. (a) Wavelet autobispectral density, as defined in
Eq. (6.2). Circles indicate the significant bispectral peaks, as explained in Fig. 6.22. For the
exact values of frequencies see the main text. (b) Time-averaged wavelet transform. Grey
area indicate the values of wavelet power between 5th and 95th percentiles. Vertical lines
indicate the frequency triplets ( f1, f2, f1 + f2) that generated the peaks in the bispectrum.
Frequency triplets only to small extent coincide with the peaks in TAWP. (c) Amplitude of
wavelet transform. Time-dependent (d) biamplitude, as defined in Eq. (6.3), (e) biphase, as
defined in Eq. (6.4). For a visual guideline in (f) grey, dashed lines in are drawn every 2π,
and dots on the biphase appear once every period of the slow frequency. Biphases of both
pairs of frequencies are relatively constant – several cycles of oscillations of the lowest fre-
quency stays within 2π range. For a further analysis of the biphase see Fig. 6.24. (e) Original
recording of the membrane potential.

cell MP (mV) Iblack Iblue Imagenta Igreen Icyan
1 -28.6 0.011e−0.182πi 0.0067e0.073πi - - -
2 -31.4 0.008e0.085πi 0.008e0.623πi - - -
3 -36.5 0.002e−0.057πi - - - -
4 -5.9 0.032e−0.411πi 0.021e0.989πi 0.019e−0.151πi 0.014e0.110πi -
5 -15.2 0.144e−0.615πi 0.060e0.626πi 0.047e0.222πi 0.020e0.264πi -
6 -53.9 0.0001e0.195πi 0.0001e0.065πi 0.0001e0.586πi 3.15× 10−5e−0.515πi 3.38× 10−5e−0.0232πi

Table 6.1: The numerical values of the integrals around the peaks marked in Figs. 6.4–6.19(a)
(before subtracting the surrogates). The greatest values of the integrals can be attributed to
the cells with the least negative membrane potentials, e.g. -5.9, -15.2 mV.
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Figure 6.24: Minimal
range/span of biphases as
a number of cycles of lower
frequency, as defined in Eq. (6.5)
of the SMC. For transparency,
only biphases that covered
significantly smaller range are
shown. Blue curve corresponds
to a pair (0.078, 0.078) Hz,
magenta to (0.069, 0.022) Hz
and green to (0.620, 0.061) Hz as
shown in Fig. 6.5. Intermittent
lines indicate the 5th percentile
of 19 WIAAFT surrogates. Stars
correspond to the significantly
smaller values of the biphases.

Iblack 0.3057e0.343πi

Iblue 0.185e−0.465πi

Imagenta 0.155e0.054πi

Igreen 0.061e−0.800πi

Icyan 0.385e0.405πi

Iyellow 0.648e0.316πi

Ired 0.130e−0.735πi

Table 6.2: The numerical values of the integrals around the peaks marked in Fig. 6.22(a) (be-
fore subtracting the surrogates). The average value of the membrane potential was around
-90 mV.
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Figure 6.25: All significant pair of frequencies in the bispectrum for all the analysed cells.
Asterisk (corona) markers correspond to the pairs of frequencies whose biphases covered
significantly smaller range than the surrogates for at least 5 cycles of the slower frequency.
The colours correspond to the value of the average values of the membrane potential. Ma-
jority of the values with significantly stable biphases, are where the lower frequency was not
smaller than 0.04 Hz. Insignificance in the other cases may be an effect of insufficient length
of the time series. The average values of the membrane potential for smooth muscle cell (b)
was -90.0mV.

6.5 Discussion

6.5.1 Time-reversibility

On the timescales faster than 10 msec, the null hypothesis of the dynamics being
time-reversible is rejected in the majority of the datasets. Time-irreversibility implies
nonlinearity. Nonlinearity on the fast timescales will be expected from the kinetic-
like dynamics of the membrane potential, proposed by Hodgkin & Huxley [100].
The majority of α values were positive, what is associated with a relatively steeper
increase, and smoother decrease of the consecutive values. An example of this type
of dynamics on timescales of 10 msec can be observed in the recordings of the Kv

current in T lymphocytes using whole-cell patch clamp [39]. Very few significant
values were present on timescales slower than 10 msec. To my knowledge, this
work is first to seek evidence for time-irreversibility in recordings of the membrane
potential.

This work is the first one to present analysis of the free running membrane poten-
tial in Jurkat cells, using bispectral analysis. Introduced in Chapter 4, bispectral den-
sity together with surrogate testing was applied to the recordings of the membrane
potential. The proof of concept of application of the bispectral analysis (including
bispectral density) to real data is presented.

The majority of the datasets indicated significant peaks in the bispectrum, sug-
gesting possible higher order coupling or nonlinerities, etc. on the timescales around
0.026 – 0.4 Hz, yet the exact values are subjected to intercellular variability. It is not
clear what may be causing it. The majority of the time series did not indicate sig-
nificant time-irreversibility on these timescales. Therefore if dynamics is nonlinear,
then time-reversible.
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In majority of significant pairs one of the frequencies is within a range 0.04–
0.05 Hz, and the other 0.1–0.4 Hz. The first one falls within a range 0.017–0.15 Hz
of reported earlier frequency of oscillations in the membrane potential of in L cells
recorded with electrophysiology techniques [183, 184]. Authors suggested cellular
metabolism as a possible origin of those oscillations, because of very high sensitivity
to temperature. However, in this experiment, one can only guess the possible origin.

Another cluster of significant frequencies can be indicated around 0.02–0.03 Hz,
however the biphases did not occupy significantly different range than the surro-
gates. This can be due to insufficient number of cycles for this range. Frequencies
0.02 and 0.04 Hz may represent the harmonics of the same nonlinear oscillations.

Longer time series will be needed to investigate the frequency 0.0038 Hz reported
more recently in the dynamics of the membrane potential of β cells recorded with
patch clamp technique and metabolic oscillations recorded with fluorescence meth-
ods [167]. This is particularly so, when it comes to bispectral analysis.

Larger numerical values of the integrals associated with peaks in the bispectrum
of the SMC compared to the JC are an effect of bigger fluctuations (measured as
standard deviation).

6.6 Summary

This work is the first one to seek evidences for nonlinearities and higher-order cou-
pling in the recording of the free-running membrane potential by using the time-
reversibility measure and bispectral analysis. The analysis indicated time-irreversibility
on the short timescales, precisely shorter than 10 msec and nonlinerities/coupling
on longer timescales, precisely 0.026 – 0.4 Hz using bispectral analysis. Interestingly,
the type of nonlinearity on the longer timescales did not indicate time-irreversibility.

This chapter presents an application of the bispectral analysis to the recordings
of the membrane potential. The results represent a proof of concept for the appli-
cation of the bispectral analysis (including bispectral density) to real data. Many
recordings indicated possible coupling/nonlinearity. However, the results should
be considered with caution, because even an application of surrogates does not al-
ways guarantee the correct results, as discussed in Sec. 4.6.
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Chapter 7

Concluding remarks

7.1 Conclusions

The work presented in this thesis aims at improving the understanding of the nature
of the continuous membrane potential fluctuations in biological cells. To achieve
this, initially, the origin of the membrane potential is explained – seen as a conse-
quence of osmotic adjustments. Later, the most important cellular processes that
may affect the membrane potential, independent of the cell function, are reviewed –
these include cellular metabolism, the cell cycle, the regulation of cell volume, pH,
and Ca2+ oscillations. This way of looking at the membrane potential allows one to
gain a new perspective, taking into account the importance of interactions that are
of a crucial importance for the living organisms.

Subsequently, the dynamical systems are introduced; they represent the living
organisms. The dynamical systems motivate the development of new methods for
time series analysis. The latter are categorised with respect to their domain: time,
frequency, or time-frequency. Here, the particular importance is assigned to the
wavelet transform and the practicalities of its application to various signals. This
creates the background for later introduction of the bispectral density – the first
tool allowing for quantitative, not merely qualitative, interpretation of the results
of wavelet bispectrum analysis over time-frequency-frequency space. This allows
one for an investigation of the time-varying dynamics and therefore becomes a well-
suited method for analysing the biomedical signals. Practical issues, especially the
selection of the frequency resolution, are also discussed. This allows one to translate
this framework to more general applications. The pointed culprits show that even
an application of surrogates does not always guarantee correct results and can also
be misleading.

In the next chapters, namely 5 and 6, the dynamics of the free-running mem-
brane potential of non-excitable cells is investigated. The major focus in biophysics
nowadays is centred around neuroscience and neurons. Here, the importance of
understanding at more basic level, namely the non-excitable cells, is stressed. To
highlight the importance of interactions, the temporal variability of the membrane
potential was analysed with the wavelet transform. Many recordings of the mem-
brane potential indicated intermittent oscillations that may be missed when looking
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at the time-averaged wavelet power. It is probably the first set of work to report os-
cillations in the membrane potential around 0.01 Hz, that vary in time, recorded with
the patch-clamp technique. These appear intermittently, and are strongly visible in
the dataset recorded with the perforated patch-clamp technique. The fluctuating na-
ture of the membrane potential gives a great motivation to perform the experiments
where the membrane potential is not clamped.

Fluctuations in the free-running membrane potential can be modified in two
ways: by altering the extracellular concentrations and thus shifting the Nernst po-
tential for one ion or by adding Ca2+, or both Ca2+ and ATP. Ca2+ was observed
to depolarise the membrane and Ca2+ and ATP together to hyperpolarise it. The
possible mechanisms are discussed in the chapter. Interestingly, intracellular Ca2+

depolarised the membrane compared to any other intrapipette solutions as opposed
to Ca2+ and ATP together that make the membrane hyperpolarised. ATP was found
not to have any significant effect neither on the membrane potential nor its fluctua-
tions. This part shows how one can manipulate the average value of the membrane
potential and its fluctuations. This may happen at the expense of putting the cell
under stress, which is discussed in the chapter for various experimental conditions.

In the next chapter the evidences for nonlinearity in the recordings of the mem-
brane potential are presented. The time series indicated time-irreversibility on the
timescales shorter than 10 msec estimated directly from the signals. On the slower
timescales no significant time-irreversibility was present, however the bispectral
analysis indicated the signature of nonlinearities/coupling type that could be de-
tected using bispectral analysis, on the timescales 0.026 – 0.4 Hz. The values are
subjected to time and intercellular variability. The bispectrum seems to evolve over
time – this can be seen in the bispectra averaged over 2-min/10-min windows. Re-
sults from this part is a very important step on the way to built a realistic model of
the dynamics of the membrane potential.

7.2 Original contribution and future work

The original contributions of the thesis are listed below

1. The recordings of the free-running membrane potential are analysed with wavelet
transform. This work reports the intermittent oscillations, around 0.008 Hz
(subjected to time-variability) in the membrane potential recorded with the
free-running voltage for the perforated whole-cell patch-clamp configuration.
The oscillations were, to a lesser extent, visible in Jurkat cells recorded with
the whole-cell patch-clamp. Another activity around frequencies 0.03, 0.05 or
0.09 Hz appearing intermittently, can also be observed. These results moti-
vate the need for explicit consideration of time-variability when designing and
analysing the experiments.
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2. It was concluded that the fluctuations in the free-running membrane poten-
tial can be modified in two ways: by altering the extracellular concentrations
and thus shifting the Nernst potential for one ion or by adding Ca2+ or both
Ca2+ and ATP. Ca2+ was observed to depolarise the membrane and Ca2+ and
ATP together to hyperpolarise it. The possible mechanism are discussed in
Chapter 5. It was concluded that adding intracellular ATP has no significant
effect neither on the membrane potential nor its fluctuations (where at least
4 datasets were available). This part of the work explains how one can ma-
nipulate the magnitude of fluctuations in the membrane potential. Possible
mechanisms of putting the cell under stress conditions are also discussed.

3. The new method based on the wavelet bispectral density – the first tool al-
lowing for quantitative, not merely qualitative, interpretation of the results
of wavelet bispectrum analysis over time-frequency-frequency space, was in-
troduced – work jointly with J. Newman and A. Stefanovska. The method is
well-suited for investigating the time-varying dynamics. The practical issues
and parameters selection discussed in the thesis allows one to translate the
framework to analyse more general signals.

4. The signature of nonlinearities was found in the recordings of the membrane
potential. On the timescales shorter than 10 msec the time series indicated
time-irreversibility and relatively steeper increase compared to a decrease. Mean-
while, on the longer timescales (0.026 – 0.4 Hz) wavelet-bispectral analysis in-
dicated the possible nonlinearities or higher order couplings in the recordings
of the membrane potential. This results are the important step on the way to
create realistic model on the dynamics of the membrane potential.

Various suggestions for further experimental work are proposed in Sec. 5.7 to
test the scenarios proposed in Sec. 5.5.4.

In the case of wavelet-bispectral analysis one possibility is to develop the method,
possibly based on the ridge extraction procedure, mentioned in 3.5.3. This could al-
low one to track temporal variability in the bispectrum over frequency-frequency
space, in addition to biphases. In the current form only the values averaged over
the time window are considered. The bispectral density allows one to integrate
over the peaks that could be further tracked in time. Another option is to quanti-
tatively investigate various types of coupling. Possible direction for a future work
is elaborating on the question “what do the bispectral peaks mean?” in terms of
the bispectral density integral values, e.g. the values of the integrals obtained when
investigating the phase-amplitude coupling are much bigger than values in phase
coupled oscillators with time-varying basic frequencies.
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Appendix A

Membrane potential

A.1 Changes in the concentration and MP

The following simple scenario is assumed: of ions of one type crossing the mem-
brane, and causing a change in the membrane potential. The order of magnitude
of the change in the concentration of this ion is now estimated as a function of the
change in the membrane potential. The estimations are made for the whole volume
of the spherical cell, under the assumption of uniform charge and concentration dis-
tribution, which in reality is not exactly true, but this is discussed later. The change
in the membrane potential, ∆V, can be written as

∆V =
∆Q
Ctot

=
ze∆N

Cm × 4πr2 , (A.1)

where ∆Q is the charge difference, Ctot the total membrane capacitance, Cm the mem-
brane capacitance for the area unit, δN the number of ions crossing the membrane, r
the cellular radius, z the ion valence, and e the elementary change.
The change in the concentration, ∆c, can be written as

∆c =
∆N

NAw
=

3Cm

zFr× 103 ∆V, (A.2)

where NA is Avogadro’s number, w is the cellular volume, in dm3, and F is the Fara-
day constant. Assuming that Cm = 10−2F/m2, r = 6µm, and F = 9.64× 104, we
obtain ∆c ' 5× 10−8×∆V, where the units of c are mM, and of V are mV. This justi-
fies the assumption of intracellular electroneutrality, usually made in most quantita-
tive treatments of the membrane potential. This means, that there is no measurable
charge excess on either side of the membrane. In spite of the fact, that there is an
electric potential difference across the membrane due to charge separation, there is
no actual significant difference in the global concentration of positive and negative
ions across the membrane, as estimated above. This is because the charge affects the
electrochemical potential hugely greater than affects the concentration. Therefore
an infinitesimal change in concentration creates a large change in electric potential.
The solutions on either side of the membrane remain electrically neutral, and the
small excess charge accumulates near the interface. The region in which there is a
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charge imbalance is called the Debye layer, and is on the order of a few nanometers
thick [126].
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Appendix B

Signal analysis

B.1 Frequency modulated signal expansion

In this section a signal with periodically varying basic frequency is transformed to a
form where no time-variability is present. The following signal, as earlier defined in
Eq. (3.5), is considered:

S = sin(φ)

S = sin
(

ω0t− ω0

ωm
k cos(ωmt)

)
.

(B.1)

When k 6= 0, after applying a Taylor expansion and formulas for cos2n x and cos2n+1 x
one obtains:

S = sin(ωωω0t)
∞

∑
n=0

1
2n!

(
ω0

ωm
k
)2n

[
1

22n

(
2n
n

)
+

1
22n−1

n−1

∑
m=0

(
2n
m

)
cos(2(n−m)ωωωmt)

]
−

− cos(ωωω0t)
∞

∑
n=0

1
(2n + 1)!

(
ω0

ωm
k
)2n+1

[
1
4n

2n+1

∑
m=0

(
2n + 1

m

)
cos((2n + 1− 2m)ωωωmt)

]
(B.2)

In this form one can see that, first of all, the sum is infinite, and secondly it contains
only terms of the form
A sin(ω0t) cos(2(n−m)ωmt)− B cos(ω0t) cos((2n + 1− 2m̂)ωmt),
for ωm > 0; the frequencies present in the signal do not “cover” the range < ω0 − k, ω0 + k >.

B.2 Justification for the use of lognormal wavelet

This section shows how the parameter σ relates quantitatively to the frequency reso-
lution and time localisation of the wavelet transform for lognormal wavelet – adapted
from [177].

First, an approach to quantification of time localisation and frequency resolution
for windowed Fourier transforms is defined. Given an even function w, probably
the most standard way to quantify the time localisation and frequency resolution of
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the associated windowed is, inversely, by the Heisenberg uncertainty properties of
w. Given a window function w, and writing ‖w‖2 :=

∫ ∞
−∞ w(t)2 dt =

∫ ∞
−∞ ŵ( f )2 d f ,

• the Heisenberg time uncertainty of w is defined by

εtime(w) =

(∫ ∞
−∞ t2w(t)2 dt
‖w‖2

)1
2

;

• and the Heisenberg frequency uncertainty of w is defined by

εfreq(w) =

(∫ ∞
−∞ f 2ŵ( f )2 d f
‖w‖2

)1
2

.

Here, ŵ is a Fourier transform of w, t corresponds to time, and f to frequency.
Now for any τ > 0 let fτ be the probability density function of the normal distri-
bution of mean zero and variance τ2. The squared Heisenberg uncertainties of the
Gaussian function fτ are given by

εtime( fτ)
2 = 1

2 τ2 and εfreq( fτ)
2 =

1
8π2τ2 .

The product εtime( fτ)εfreq( fτ), called the Heisenberg area or the Heisenberg time-frequency
uncertainty of fτ, is equal to 1

4π (independently of τ). This is the lowest possible
value for the Heisenberg time-frequency uncertainty of a window function, and is
uniquely obtained by Gaussian windows [123, Sec. 2.2].

Now the concept of Heisenberg uncertainties is translated to wavelets. Given a
wavelet ψ, with given κ and ‖ψ‖2 :=

∫ ∞
−∞ |ψ(r)|

2 dr, and with admissibility constant
Cψ :=

∫ ∞
−∞ ψ̂(er)2 dr,

• the Heisenberg time uncertainty of ψ is defined by

εtime(ψ) = κ

(∫ ∞
−∞ r2|ψ(r)|2 dr
‖ψ‖2

)1
2

;

• the Heisenberg linear frequency uncertainty of ψ is defined by

εlinfreq(ψ) = κ−1

(∫ ∞
0 (r− κ)2ψ̂(r)2 dr

‖ψ‖2

)1
2

;

• and the Heisenberg logarithmic frequency uncertainty of ψ is defined by

εfreq(ψ) =

(∫ ∞
−∞(r− log κ)2ψ̂(er)2 dr

Cψ

)1
2

.
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The logarithmic-frequency approach in the definition of εfreq(ψ) is very natural for
wavelets, due to the inherently logarithmic nature of frequency resolution for the
wavelet transform.

Let ψσ be the lognormal wavelet as defined in Sec. 3.5.2. One can compute (via
Plancherel’s theorem) that

εtime(ψσ)
2 = 1

2 σ2 + 1
16π2 .

This is only slightly more than the classical Heisenberg time uncertainty of a Gaus-
sian window with variance σ2, namely by 1

2 σ2. The Heisenberg logarithmic fre-
quency uncertainty of ψσ is (essentially by definition) the same as the classical Heisen-
berg frequency uncertainty of a Gaussian window with variance σ2; that is,

εfreq(ψσ)
2 =

1
8π2σ2 .

Finally, one can compute that

εlinfreq(ψσ)
2 = e

1
2π2σ2 − 2e

3
16π2σ2 + 1.

For σ not too small, this is very close to 1
8π2σ2 .

B.3 Wavelet 2nd and 3rd order spectra normalisation

The following section conveys an intuitive understanding of how to find the correct
normalisation for the wavelet 2nd and 3rd order spectra - note that this is not a proof.

B.3.1 2nd order spectrum

Wavelet cross-spectrum of signal x, y and wavelet function ψ can be expressed

∫
R2

Wψ,x( f , t)Wψ,y( f , t)
f

d( f , t) =
∫

R2

x̂(ξ)φ̂( ξ
f )ŷ(ξ)φ̂(

ξ
f )

f
d(ξ, f ), (B.3)

after changing the variables r = ξ
f , we obtain

∫
R

(
x̂(ξ)ŷ(ξ)

∫
R

ψ̂(r)2

r
dr
)

dξ = Cψ

∫
R

(
x̂(ξ)ŷ(ξ)

)
dξ (B.4)
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B.3.2 3rd order spectrum

After applying the same intuition to the 3rd order spectra, we obtain

∫
R3

Wψ,x( f1, t)Wψ,y( f2, t)Wψ,z( f1 + f2, t)
f1 f2

d( f1, f2, t)

=
∫

R4

x̂(ξ1)ψ̂(
ξ1
f1
)ŷ(ξ2)ψ̂(

ξ2
f2
)ẑ( f1 + f2)ψ̂(

ξ1+ξ2
f1+ f2

)

f1 f2
d( f1, f2, ξ1, ξ2)

=
∫

R2

Bxyz(ξ1, ξ2)
∫

R2

ψ̂( ξ1
f1
)ψ̂( ξ2

f2
)ψ̂( ξ1+ξ2

f1+ f2
)

f1 f2
d( f1, f2)

 d(ξ1, ξ2).

If the term f1+ f2
ξ1+ξ2

were instead f1
ξ1

+ f2
ξ2

, then after the change of variables ri = fi
ξi

(i = 1, 2) would cause the above expression to simplify but the combination of
logarithmic-frequency nature of the wavelet transform with the linear-frequency
sum involved in bispectral analysis creates difficulties in finding the normalisation
independent of the frequencies.
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[147] Z. Levnajić and A. Pikovsky. “Network reconstruction from random phase
resetting”. In: Phys. Rev. Lett. 107 (3 2011), p. 034101.

[148] R. S. Lewis. “Calcium signaling mechanisms in T lymphocytes”. In: Annu.
Rev. Immunol. 19.1 (2001), pp. 497–521.



158 BIBLIOGRAPHY

[149] R. S. Lewis and M. D. Cahalan. “Mitogen-induced oscillations of cytosolic
Ca2+ and transmembrane Ca2+ current in human leukemic T cells.” In: Cell
Regul. 1.1 (1989), pp. 99–112.

[150] R. S. Lewis, P. E. Ross, and M. D. Cahalan. “Chloride channels activated by
osmotic stress in T lymphocytes.” In: J. Gen. Physiol. 101.6 (1993), pp. 801–826.

[151] X. Li, D. Li, L. J. Voss, and J. W. Sleigh. “The comodulation measure of neu-
ronal oscillations with general harmonic wavelet bicoherence and application
to sleep analysis”. In: NeuroImage 48.3 (2009), pp. 501–514.

[152] A. H. Lichtman, G. B. Segel, and M. A. Lichtman. “Calcium transport and
calcium-ATPase activity in human lymphocyte plasma membrane vesicles.”
In: J. Biol. Chem. 256.12 (1981), pp. 6148–6154.

[153] M. A. Lichtman, A. H. Jackson, and W. A. Peck. “Lymphocyte monovalent
cation metabolism: cell volume, cation content and cation transport”. In: J.
Cell. Physiol. 80.3 (1972), pp. 383–396.

[154] J. M. Lilly and S. C. Olhede. “Generalized Morse wavelets as a superfamily of
analytic wavelets”. In: IEEE Trans. Signal Process. 60.11 (2012), pp. 6036–6041.

[155] C.-N. Liu, M. Michaelis, R. Amir, and M. Devor. “Spinal nerve injury en-
hances subthreshold membrane potential oscillations in DRG neurons: rela-
tion to neuropathic pain”. In: J. Neurophysiol. 84.1 (2000), pp. 205–215.

[156] J. Liu, A. Prindle, J. Humphries, M. Gabalda-Sagarra, M. Asally, D. D. Lee,
S. Ly, J. Garcia-Ojalvo, and G. M. Süel. “Metabolic co-dependence gives rise
to collective oscillations within biofilms”. In: Nature 523.7562 (2015), p. 550.

[157] P. Machamer, L. Darden, and C. F. Craver. “Thinking about mechanisms”. In:
Philos. Sci. 67.1 (2000), pp. 1–25.

[158] I. H. Madshus. “Regulation of intracellular pH in eukaryotic cells.” In: Biochem.
J. 250.1 (1988), pp. 1–8.

[159] S. Mallat. A Wavelet Tour of Signal Processing, 3rd edn. Burlington: Academic
Press, 2008.

[160] V. A. Maltsev. “Oscillating and triggering properties of T cell membrane po-
tential”. In: Immunol. Lett. 26.3 (1990), pp. 277–282.

[161] R. Martinez-Corral, J. Liu, A. Prindle, G. M. Süel, and J. Garcia-Ojalvo. “Metabolic
basis of brain-like electrical signalling in bacterial communities”. In: Philos.
Trans. Royal Soc. B 374.1774 (2019), p. 20180382.

[162] T. Matsuoka and J. Ulrych. “Phase estimation using the bispectrum”. In: Proc.
IEEE 72 (10 1984).

[163] J. H. McDonald. Handbook of biological statistics. Vol. 2. Sparky House Publish-
ing Baltimore, MD, 2009.

[164] A. D. C. Mecknight. “Principles of cell volume regulation”. In: Renal Physiol.
Biochem. 3.5 (1988), pp. 114–141.



BIBLIOGRAPHY 159

[165] S. Meignen, T. Oberlin, P. Depalle, P. Flandrin, and S. McLaughlin. “Adaptive
multimode signal reconstruction from time-frequency representations”. In:
Philos. Trans. Royal Soc. A 374.2065 (2016), p. 20150205.

[166] I. Mellman, R. Fuchs, and A. Helenius. “Acidification of the endocytic and
exocytic pathways”. In: Annu. Rev. Biochem. 55.1 (1986), pp. 663–700.

[167] M. J. Merrins, C. Poudel, J. P. McKenna, J. Ha, A. Sherman, R. Bertram, and
L. S. Satin. “Phase analysis of metabolic oscillations and membrane potential
in pancreatic islet β-cells”. In: Biophys. J. 110.3 (2016), pp. 691–699.

[168] A. Messiah and J. Potter. Quantum Mechanics. Quantum Mechanics. North-
Holland, 1961.

[169] C. M. Metallo and M. G. Vander Heiden. “Understanding metabolic regula-
tion and its influence on cell physiology”. In: Mol. cell 49.3 (2013), pp. 388–
398.

[170] B. P. van Milligen, E. Sanchez, T. Estrada, C. Hidalgo, B. Brañas, B. Carreras,
and L. Garcia. “Wavelet bicoherence: a new turbulence analysis tool”. In:
Phys. Plasmas 2.8 (1995), pp. 3017–3032.

[171] R. Milo and Phillips R. Cell Biology by the numbers. Draft. New York, Abing-
don: Garland Science, 2015.

[172] T. Mimura, T. Shimmen, and M. Tazawa. “Dependence of the membrane po-
tential on intracellular ATP concentration in tonoplast-free cells of Nitellopsis
obtusa”. In: Planta 157.2 (1983), pp. 97–104.

[173] P. Mitchell. “Coupling of phosphorylation to electron and hydrogen transfer
by a chemi-osmotic type of mechanism”. In: Nature 191.4784 (1961), pp. 144–
148.

[174] A. Mokeichev, M. Okun, O. Barak, Y. Katz, O. Ben-Shahar, and I. Lampl.
“Stochastic emergence of repeating cortical motifs in spontaneous membrane
potential fluctuations in vivo”. In: Neuron 53.3 (2007), pp. 413–425.

[175] W. Moody Jr. “Effects of intracellular H+ on the electrical properties of ex-
citable cells”. In: Annu. Rev. Neurosci. 7.1 (1984), pp. 257–278.

[176] M. Moser, M. Frühwirth, R. Penter, and R. Winker. “Why life oscillates –
from a topographical towards a functional chronobiology”. In: Cancer Causes
Control 17.4 (2006), pp. 591–599.

[177] J. Newman, A. Pidde, and A. Stefanovska. “Defining the Wavelet Bispec-
trum”. resubmitted to Applied and Computational Harmonic Analysis. 2020.

[178] C. L. Nikias and J. M. Mendel. “Signal processing with higher-order spectra”.
In: IEEE Signal Process. Mag. 10.3 (1993), pp. 10–37.

[179] C. L. Nikias and A. P. Petropulu. Higher-Order Spectra Anlysis: A Nonlinear
Signal Processing Framework. Englewood Cliffs: Prentice-Hall, 1993.



160 BIBLIOGRAPHY

[180] T. Ning and J. D. Bronzino. “Bispectral analysis of the rat EEG during various
vigilance states”. In: IEEE Trans. Biomed. Eng. 36 (4 1989), pp. 497–499.

[181] B. Novák and J. J. Tyson. “Design principles of biochemical oscillators”. In:
Nat. Rev. Mol. Cell Biol. 9.12 (2008), pp. 981–991.

[182] H. Oishi, A. Schuster, M. Lamboley, N. Stergiopulos, J.-J. Meister, and J.-L.
Bény. “Role of membrane potential in vasomotion of isolated pressurized rat
arteries”. In: Life Sci. 71.19 (2002), pp. 2239–2248.

[183] Y. Okada, Y. Doida, G. Roy, W. Tsuchiya, K. Inouye, and A. Inouye. “Oscilla-
tions of membrane potential in L cells”. In: J. Membr. Biol. 35.1 (1977), pp. 319–
335.

[184] Y. Okada, G. Roy, W. Tsuchiya, Y. Doida, and A. Inouye. “Oscillations of
membrane potential in L cells”. In: J. Membr. Biol. 35.1 (1977), pp. 337–350.

[185] K. Omilusik, J. J. Priatel, X. Chen, Y. T. Wang, H. Xu, K. B. Choi, R. Gopaul,
A. McIntyre-Smith, H. S. Teh, R. Tan, et al. “The CaV1.4 calcium channel is
a critical regulator of T cell receptor signaling and naive T cell homeostasis”.
In: Immunity 35.3 (2011), pp. 349–360.

[186] S. N. Orlov, A. A. Platonova, P. Hamet, and R. Grygorczyk. “Cell volume and
monovalent ion transporters: their role in cell death machinery triggering
and progression”. In: Am. J. Physiol., Cell Physiol. 305.4 (2013), pp. C361–C372.

[187] B. O’Rourke, B. M. Ramza, and E. Marban. “Oscillations of membrane current
and excitability driven by metabolic oscillations in heart cells”. In: Science
265.5174 (1994), pp. 962–966.

[188] V. C. Özalp, T. R. Pedersen, L. J. Nielsen, and L. F. Olsen. “Time-resolved mea-
surements of intracellular ATP in the yeast Saccharomyces cerevisiae using a
new type of nanobiosensor”. In: J. Biol. Chem. 285.48 (2010), pp. 37579–37588.

[189] I. Ozden, S. Venkataramani, M. A. Long, B. W. Connors, and A. V. Nurmikko.
“Strong coupling of nonlinear electronic and biological oscillators: Reaching
the ‘amplitude death’ regime”. In: Phys. Rev. Lett. 93.15 (2004), p. 158102.

[190] A. Papagiannakis, B. Niebel, E. C. Wit, and M. Heinemann. “Autonomous
metabolic oscillations robustly gate the early and late cell cycle”. In: Mol. Cell
65.2 (2017), pp. 285–295.

[191] C. Y. Park, P. J. Hoover, F. M. Mullins, P. Bachhawat, E. D. Covington, S.
Raunser, T. Walz, K. C. Garcia, R. E. Dolmetsch, and R. S. Lewis. “STIM1 clus-
ters and activates CRAC channels via direct binding of a cytosolic domain to
Orai1”. In: Cell 136.5 (2009), pp. 876–890.

[192] S. Patel. “The role of membrane potential dynamics in cell behaviours: in-
vastigating the membrane potantial dynamics in the Jurkat and HMEC-1
cell lines using the continuous wavelet transform”. PhD thesis. Division of
Biomedical and Life Sciences, Lancaster University, 2015.



BIBLIOGRAPHY 161

[193] R. J. Paul, M. Bauer, and W. Pease. “Vascular smooth muscle: aerobic glycoly-
sis linked to sodium and potassium transport processes”. In: Science 206.4425
(1979), pp. 1414–1416.

[194] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization – A Universal Con-
cept in Nonlinear Sciences. Cambridge: Cambridge University Press, 2001.

[195] L. A. Pinna, M. Lorini, V. Moret, and N. Siliprandi. “Effect of oligomycin and
succinate on mitochondrial metabolism of adenine nucleotides”. In: Biochim.
Biophys. Acta – Bioenergetics 143.1 (1967), pp. 18–25.

[196] A. Prindle, J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G. M. Süel. “Ion
channels enable electrical communication in bacterial communities”. In: Na-
ture 527.7576 (2015), p. 59.

[197] Y. Qin, B. Tang, and Y. Mao. “Adaptive signal decomposition based on wavelet
ridge and its application”. In: Signal Process. 120 (2016), pp. 480–494.

[198] Z. Qiu, A. E. Dubin, J. Mathur, B. Tu, K. Reddy, L. J. Miraglia, J. Reinhardt,
A. P. Orth, and A. Patapoutian. “SWELL1, a plasma membrane protein, is
an essential component of volume-regulated anion channel”. In: Cell 157.2
(2014), pp. 447–458.

[199] R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger. “Performance of
different synchronization measures in real data: A case study on electroen-
cephalographic signals”. In: Phys. Rev. E 65.4 (2002), p. 041903.

[200] D. Raju, O. Sauter, and J. B. Lister. “Study of nonlinear mode coupling dur-
ing neoclassical tearing modes using bispectrum analysis”. In: Plasma Phys.
Controlled Fusion 45.4 (2003), p. 369.

[201] P. E. Rapp. “Atlas of cellular oscillations”. In: J. Exp. Biol. 81 (1979), pp. 281–
306.

[202] P. E. Rapp. “Why are so many biological systems periodic?” In: Prog. Neuro-
biol. 29.3 (1987), pp. 261–273.

[203] C. Räth, M. Gliozzi, I. E. Papadakis, and W. Brinkmann. “Revisiting algo-
rithms for generating surrogate time series”. In: Phys. Rev. Lett. 109.14 (2012),
p. 144101.

[204] T. J. Rink, R. Y. Tsien, and T. Pozzan. “Cytoplasmic pH and free Mg2+ in
lymphocytes.” In: J. Cell Biol. 95.1 (1982), pp. 189–196.

[205] J. P. Roach, A. Pidde, E. Katz, J. Wu, N. Ognjanovski, S. J. Aton, and M. R. Zo-
chowski. “Resonance with subthreshold oscillatory drive organizes activity
and optimizes learning in neural networks”. In: Proc. Natl. Acad. Sci. U.S.A.
115.13 (2018), E3017–E3025.



162 BIBLIOGRAPHY

[206] L. D. Robb-Gaspers, G. A. Rutter, P. Burnett, G. Hajnóczky, R. M. Denton, and
A. P. Thomas. “Coupling between cytosolic and mitochondrial calcium oscil-
lations: role in the regulation of hepatic metabolism”. In: Biochim. Biophys.
Acta – Bioenergetics 1366.1-2 (1998), pp. 17–32.

[207] H. M. Rosenberg, B. B. Shank, and E. C. Gregg. “Volume changes of mam-
malian cells subjected to hypotonic solutions in vitro: Evidence for the re-
quirement of a sodium pump for the shrinking phase”. In: J. Cell Biol. 80.1
(1972), pp. 23–32.

[208] M. Rosenblum, A. Pikovsky, J. Kurths, C. Schäfer, and P. A. Tass. “Phase syn-
chronization: from theory to data analysis”. In: Handbook of Biological Physics.
Vol. 4. Elsevier, 2001, pp. 279–321.

[209] P. E. Ross, S. S. Garber, and M. D. Cahalan. “Membrane chloride conductance
and capacitance in Jurkat T lymphocytes during osmotic swelling.” In: Bio-
phys. J. 66.1 (1994), p. 169.

[210] F. Sachs and M. V. Sivaselvan. “Cell volume control in three dimensions: Wa-
ter movement without solute movement”. In: J. Gen. Physiol. 145.5 (2015),
pp. 373–380.

[211] F. Sagués, J. M. Sancho, and J. García-Ojalvo. “Spatiotemporal order out of
noise”. In: Rev. Mod. Phys. 79.3 (2007), p. 829.

[212] B. Schack, H. Witte, M. Helbig, Ch. Schelenz, and M. Specht. “Time-variant
non-linear phase-coupling analysis of EEG burst patterns in sedated patients
during electroencephalic burst suppression period”. In: Clin. Neurophysiol.
112.8 (2001), pp. 1388–1399.

[213] T. Schreiber and A. Schmitz. “Discrimination power of measures for nonlin-
earity in a time series”. In: Phys. Rev. E 55.5 (1997), p. 5443.

[214] T. Schreiber and A. Schmitz. “Improved surrogate data for nonlinearity tests”.
In: Phys. Rev. Lett. 77.4 (1996), pp. 635–638.

[215] T. Schreiber and A. Schmitz. “Surrogate time series”. In: Physica D 142.3-4
(2000), pp. 346–382.

[216] E. Schrödinger. What is Life? The Physical Aspect of the Living Cell. Cambridge
University Press, 1944.

[217] J. T. C. Schwabedal and A. Pikovsky. “Effective phase dynamics of noise-
induced oscillations in excitable systems”. In: Phys. Rev. E 81.4 (2010), p. 046218.

[218] C. G. Scully, N. Mitrou, B. Braam, W. A. Cupples, and K. H. Chon. “Detect-
ing interactions between the renal autoregulation mechanisms in time and
space”. In: IEEE Trans. Biomed. Eng. 64.3 (2017), pp. 690–698.

[219] L. W. Sheppard, A. Stefanovska, and P. V. E. McClintock. “Detecting the har-
monics of oscillations with time-variable frequencies”. In: Phys. Rev. E 83
(2011), p. 016206.



BIBLIOGRAPHY 163

[220] L. W. Sheppard, A. Stefanovska, and P. V. E. McClintock. “Testing for time-
localised coherence in bivariate data”. In: Phys. Rev. E 85 (2012), p. 046205.

[221] T. Shimmen and M. Tazawa. “Control of membrane potential and excitability
of Chara cells with ATP and Mg2+”. In: J. Membr. Biol. 37.1 (1977), pp. 167–
192.

[222] J. C. Sigl and N. G. Chamoun. “An introduction to bispectral analysis for the
electroencephalogram”. In: J. Clin. Monit. 10.6 (1994), pp. 392–404.

[223] F. J. Sigworth. “The variance of sodium current fluctuations at the node of
Ranvier”. In: J. Physiol. 307.1 (1980), pp. 97–129.

[224] E. Smedler and P. Uhlén. “Frequency decoding of calcium oscillations”. In:
Biochim. Biophys. Acta 1840.3 (2014), pp. 964–969.

[225] S. Smirni, A. D. McNeilly, M. P. MacDonald, R. J. McCrimmon, and F. Khan.
“In-vivo correlations between skin metabolic oscillations and vasomotion in
wild-type mice and in a model of oxidative stress”. In: Sci. Rep. 9.1 (2019),
p. 186.

[226] S. C. Song, J. A. Beatty, and C. J. Wilson. “The ionic mechanism of membrane
potential oscillations and membrane resonance in striatal LTS interneurons”.
In: J. Neurophysiol. 116.4 (2016), pp. 1752–1764.

[227] A. Spicher, W. J. Miloch, L. B. N. Clausen, and J. I. Moen. “Plasma turbu-
lence and coherent structures in the polar cap observed by the ICI-2 sounding
rocket”. In: J. Geophys. Res. A 120.12 (2015).

[228] T. Stankovski, A. Duggento, P. V. E. McClintock, and A. Stefanovska. “Infer-
ence of time-evolving coupled dynamical systems in the presence of noise”.
In: Phys. Rev. Lett. 109 (2012), p. 024101.

[229] T. Stankovski, T. Pereira, P. V. E. McClintock, and A. Stefanovska. “Coupling
functions: Universal insights into dynamical interaction mechanisms”. In:
Rev. Mod. Phys. 89.4 (2017), p. 045001.

[230] A. Stefanovska. “Coupled oscillators: Complex but not complicated cardio-
vascular and brain interactions”. In: IEEE Eng. Med. Bio. Magazine 26.6 (2007),
pp. 25–29.
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