
BoboCEP: Distributed Complex Event Processing
for Resilient Fault-Tolerance Support in IoT

Alexander Power and Gerald Kotonya
School of Computing and Communications

Lancaster University
Lancaster, United Kingdom

{a.power3, g.kotonya}@lancaster.ac.uk

Abstract—Providing effective fault-tolerance (FT) support for
Internet of Things (IoT) systems is hampered by the many ad hoc
ways that it is implemented. We propose BoboCEP, a Complex
Event Processing (CEP) system that provides resilient FT support
for IoT systems, where errors are defined as nondeterministic
finite automata. BoboCEP is designed to be distributed at the
network edge, which facilitates resilient event processing and
load balancing due to the active replication of FT support across
the edge. We evaluated BoboCEP on a vertical farming use case
to demonstrate long-term FT support and load balancing, and
stress tested it under scenarios with high data throughput.

Index Terms—internet of things, complex event processing,
fault tolerance, distributed systems, edge computing

I. INTRODUCTION

The Internet of Things (IoT) has caused a surge in the
number of interconnected devices and is growing at an ex-
ponential rate. This growth has, in turn, contributed to an
explosion in data that requires real-time analytics in order to
extract business value [1]. However, IoT system dependability
is threatened by faults and errors that can cause failures and
data loss1. Fault tolerance (FT) offers a way to address this.

Current FT solutions in IoT are designed in an ad hoc
and application-specific manner that can only handle a subset
of failure scenarios, and are often situated on non-resilient
platforms. For example, they are designed to work with
specific hardware and protocols [3], bespoke architectures [4],
and FT support itself is often a single point of failure (SPoF)
[5]. What is required is a generic means of applying FT
support to IoT systems that can be pushed as close to the
fallible sensor network as possible, and where FT support is,
itself, fault tolerant.

We propose BoboCEP, a Complex Event Processing (CEP)
system that can detect, assess, and recover from complex,
erroneous system behaviors (i.e. composite events) that are de-
tected via patterns in stream data (i.e. primitive events). Error
definitions are expressed as nondeterministic finite automata
(NFAs), and composite events represent detected errors in an
IoT system. BoboCEP is designed to be distributed across the
network edge on k instances of the software. Each instance
maintains the current state of partially completed NFAs via
active replication, so that (k − 1) instances can fail without
complete FT-support service loss.

1We use the error, fault, and failure definitions by Avižienis et al. [2].

The key contributions of BoboCEP are: (1) generic error
definition and FT implementation, by defining errors as NFAs;
(2) fault-tolerant FT support at the network edge, which
facilitates long-term error detection without interruption; and
(3) load balancing, due to the active replication of FT support
across the edge. The rest of the paper is as follows. Section
II discusses relevant background work. Section III explores
BoboCEP and its design. Section IV evaluates BoboCEP with
a vertical farming use case. Section V concludes our paper.

II. BACKGROUND

In our previous work [6], [7], we explored how CEP
systems could be used as an effective means of providing
data-centric error detection, assessment, and recovery. Errors
were defined as NFAs that are completed when applicable
steam data fulfilled the states of the automaton; a completion
represented the detection of an error. We adopted CEP as
an FT-support framework, where all errors were defined as
NFAs and would execute appropriate recovery actions on error
detection. However, few CEP systems have been designed
specifically for the IoT domain, and to provide a distributed,
resilient approach to CEP-based FT support at the edge.

Ma et al. [8] proposed a long-term CEP (LTCEP) approach
that enabled long-term events to be efficiently detected without
excessive overhead. This was accomplished by splitting the
detection processing into two phases: (1) online detection,
which performed real-time detection within a limited time
period before buffering any intermediate result it had achieved;
and (2) offline detection, which generated a complex event
using intermediate result linking from both online detection
results and the event buffer. This approach was shown to
significantly reduce redundancy in intermediate state and data.

Xie [9] proposed an event sharing CEP (ESCEP) system for
the design of high event-overlap rate (i.e. repeatedly detecting
the same event), to reduce the wasted energy consumption and
increase processing efficiency. It used a hashing algorithm to
decompose complex events into several intermediate events,
which enabled them to be shared more easily.

Choochotkaew et al. [10] proposed EdgeCEP, a fully dis-
tributed CEP engine for the collaboration of devices at the
edge network. Distributed task assignment and delivery is
accomplished using tabu search and a heuristic flow-based
greedy move algorithm. Their large-scale, simulated nursing



Fig. 1. The BoboCEP architecture.

Fig. 2. Handlers (red) and runs (blue) in Decider. Handler h1 currently
contains runs r1, ..., rn and can create more runs on-the-fly (asterisk).

home scenario showed that EdgeCEP approached 6.6 times
fewer total packets than a centralized CEP approach.

EdgeCEP is the closest system to BoboCEP in terms of de-
sign and functionality, however our contribution is to provide
resilient event processing in a distributed CEP environment.
To the best of our knowledge, there does not exist a CEP
system for IoT that is designed to provide a resilient FT
support framework. We are able to provide long-term event
processing, as with [8], by actively replicating system state,
to protect against arbitrary edge device failures.

III. BOBOCEP

A. Architecture

BoboCEP’s architecture is inspired by the information flow
processing (IFP) functional architecture proposed by Cugola
et al. [11] that describes the main functional components that
are common to all IFP systems, of which CEP systems are
a subset. We have adopted the key components of the IFP
architecture in the design of BoboCEP, as follows (Figure 1):

1) Receiver: Provides an entry point for data sources to
push primitive events into BoboCEP. It uses an internal Clock
to order and serialize events using timestamps to create an
event stream.

2) Decider: The decision-making component of BoboCEP
that determines whether composite events are generated or not
(Figure 2). It generates a handler for each NFA in the set of
all NFAs to be implemented (i.e. the Rules). A handler is
a container for the NFA and all instances of the NFA that
are created at runtime, which are called runs. Each handler
contains a buffer that efficiently links events together that are
shared by all of the runs for a given handler.

Fig. 3. An example NFA, with different transition types: (a,d) CLONE; (b)
TRANSITION; (c) HALT; and (e) FINAL.

Our buffer is an implementation of the Shared Versioned
Match Buffer proposed by Agrawal et al. [12] which ensures
that only one version of an event is stored, even if it in
use by multiple runs, in order to provide a more memory-
efficient event processing approach. It has been successfully
implemented in existing CEP systems, such as FlinkCEP2.

Events from Receiver and Producer are passed to the
handlers, which might trigger a run to be instantiated, or cause
state changes (Section III-B) in existing runs. If a run reaches
the accepting state SA of its NFA (Figure 3), it will trigger a
composite event to be generated by Producer.

3) Producer: Producer receives notification from Decider
of a complex phenomenon (i.e. an error) being detected, and
receives all of the events that infers the phenomenon (i.e. the
pattern). The pattern, the time of detection, and the NFA,
are used to generate a composite event representing the error.
Producer then triggers the appropriate Actions to be executed,
as determined by the Rules. That is: after error detection,
Producer begins an assessment into the probable root cause of
the error, and then executes an appropriate recovery strategy.
The composite event is recursively sent back to Decider for
potential use in the detection of future errors.

4) Forwarder: Delivers composite events from Producer to
subscribed data sinks e.g. databases, external systems.

B. Message Broker

BoboCEP uses a message broker to replicate a state change
in one instance to all other running instances, to ensure that
all instances maintain the same internal state at all times. State
changes are sent to a message queue on the broker, which are
then broadcast to all other instances, in order to invoke state
updates. The system messages exchanged are (Figure 3):

• TRANSITION. When a run is transitioning state but has
only one next state (i.e. deterministic), the new state, and
the event that triggered the transition, are broadcast to the
other instances to force the transition on them also (b).

• CLONE. When a run is transitioning state but has multiple
next states (i.e. non-deterministic), the run is cloned,
meaning that the cloned run will transition and the
original run remains in its current state (d). This message
is also used when a new run is instantiated (a).

• FINAL. When a run reaches accepting state SA, all other
instances are signalled to complete their versions of the

2https://ci.apache.org/projects/flink/flink-docs-release-
1.7/api/java/org/apache/flink/cep/nfa/sharedbuffer/SharedBuffer.html



Fig. 4. Our indoor vertical farming testbed.

run, but not to execute any Action associated with the
composite event (e). The instance that initially reached
SA is the one that executes the Action in Producer.

• HALT. When a run reaches halt state SF , a signal is sent
to other instances to clear the run from their handlers
(c). Whereas SA leads to composite event generation, SF

does not.
• ACTION. When an Action is executed due to composite

event generation, it notifies other instances of this, and
whether it was successfully executed or not.

• SYNC. When a BoboCEP instance first starts, it synchro-
nizes with any other online instances that are already
synchronized to retrieve the current state of FT support
before starting error processing.

IV. EVALUATION

This evaluation focused on how BoboCEP can provide our
key contributions (Section I) as well as a software performance
analysis. Our testbed was an indoor ‘vertical farming’ system
i.e. growing produce indoors where environmental factors are
tightly controlled [13]. Our system had three shelves (Figure
4), each with two water containers (c) that pumped water to
the reservoir of its self-watering propagator. Grow lights (a)
turned on when the room was dark, and off when bright.

Each shelf had two microcontrollers on the left and right
of its shelf (b) that both monitored plant temperature and
humidity and the light intensity around the shelf. The leftmost
sensor on the left shelf is LL, rightmost is LR; ML, MR for
middle shelf; and RL, RR for right shelf. Pumps and lights
were connected to smart plugs (d) that enabled edge devices
to control them.

We used BoboCEP (v0.35)3, developed using Python (v3.7).
Its Receiver consumed stream data via a Flask (v1)4 server
that enabled microcontrollers to send data approximately every
3 seconds to three BoboCEP instances running on three
Raspberry Pi (v2 Model B) edge devices: Edge1, Edge2, and
Edge3. We used RabbitMQ (v3.7)5 for our message broker.

A. FT Scenario
1) Long-Term Event Processing: For our FT scenario, we

considered the trend check NFA from our previous work [6],

3https://github.com/r3w0p/bobocep
4https://palletsprojects.com/p/flask
5https://www.rabbitmq.com

Fig. 5. Top: Water level data. Bottom: Light intensity data from Edge1 (green),
Edge2 (orange), and Edge3 (blue).

[7]. This NFA had two states: the first consumed an initial
water level data event e1; the second consumed a water level
event e2, such that e2 was at least 3 days after e1 and satisfied:

(e2 − e1)/2 ≥ −200 ∧ e2 ≤ 500

This ensured a significant negative trend since e1, and a low
water level value overall (i.e. ≤ 500). Run fulfilment would
cause pump activation for the appropriate shelf. Figure 5 (top)
presents water level data that is representative of the type of
data our system might produce. It demonstrates a decline of
water level within 1 week, and passes the 500 threshold at
approximately 5.5 days, which would activate a water pump
to replenish its reservoir that had run dry.

When a BoboCEP instance receives the first water level
value e1 (Figure 5a), which contains value 1039, it triggers the
instantiation of a run for the trend check NFA. The instance
that created the run then sends a CLONE signal (Figure 3a)
via the message broker, so that all other instances have a copy
of the run also.

The second water level value e2 (Figure 5b), which contains
value 499, fulfils the above predicate i.e. (499 − 1039)/2 =
−270. The instance that first reaches the run’s the final state
sends a FINAL signal (Figure 3e) to all other instances, so
that they will complete their copies of the run also. A pump
activation would occur (Figure 5b), leading to a sharp increase
in water level value. This triggers an ACTION signal for the
other instances to know this Action was executed successfully.

2) Load Balancing: Our microcontrollers were designed
to send data to one edge device and, if this failed, would
immediately select one of the other two edge devices at
random through which to reroute future data and simply try
again with the next payload.



Fig. 6. Data from (a) run instantiation and (b) rule throughput experiments.

We connected LL, LR to Edge1; ML, MR to Edge2; and RL,
RR to Edge3 (Figure 5, bottom). The light intensity data from
the microcontrollers was relatively stable over a 10 minute
interval. We manually terminated Edge1 (Figure 5c) and, after
a brief data blackout, LL rerouted to Edge2, and LR to Edge3.
Later, we then terminated Edge2 (Figure 5d), which caused
all of Edge2’s microcontrollers to reroute Edge3 i.e. the last
remaining device. Despite 2 edge device failures, all sensor
data was still available to the FT support system, and was
balanced across any available instances at the time.

B. Performance

1) Run Instantiation: We wanted to test how instances
coped with a large volume of CLONE signals. We set up 1,
2, and 3 instances, and passed 100 CLONE signals at varying
rates, which would eventually lead to 100 runs being cloned
across all instances. The time to process 100 signals on each
instance was averaged to calculate the average processing
delay (Figure 6a). Results showed that instances incurred
progressively larger delays as the rate of CLONE signals
increased. However, an increase in instances did not lead to
a delay increase because the Message Broker serialized and
broadcast CLONE signals to all instances equally.

2) Rule Throughput: We wanted to test how well an in-
stance could handle a stream of data events relative to the
number of NFA handlers it had. We preloaded an instance with
k handlers that each had one incomplete run, so that a data
event would be checked against both the handler (to determine
whether a new run should be instantiated) and its run. None

of the data events passed in this experiment were designed to
cause a CLONE or TRANSITION. We passed 1000 data events
to the instance and measured how long it took to process them
all (Figure 6b). Results showed that the event processing delay
increased with the data rate, and incurred even larger delays
when the number of handlers was greater.

V. CONCLUSION AND FUTURE WORK

We proposed BoboCEP, a CEP system to provide generic,
resilient FT support that is designed to be distributed at the
network edge. Our evaluation demonstrated long-term error
processing and edge device failures with a vertical farming
testbed. We stress-tested BoboCEP and identified that it coped
well with reasonable loads but incurred delays under high-
velocity data flows. In future work, we will improve the
efficiency of our BoboCEP implementation to achieve greater
performance under heavy loads and high data throughput.

REFERENCES

[1] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato, “A
survey on network methodologies for real-time analytics of massive iot
data and open research issues,” IEEE Communications Surveys Tutorials,
vol. 19, no. 3, pp. 1457–1477, 2017.

[2] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[3] M. W. Woo, J. Lee, and K. Park, “A reliable iot system for personal
healthcare devices,” Future Generation Computer Systems, vol. 78, pp.
626–640, 2018.

[4] D. P. Abreu, K. Velasquez, M. Curado, and E. Monteiro, “A resilient
internet of things architecture for smart cities,” Annals of Telecommuni-
cations, vol. 72, no. 1-2, pp. 19–30, 2017.

[5] T. N. Gia, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen,
“Fault tolerant and scalable iot-based architecture for health monitoring,”
in Sensors Applications Symposium (SAS), 2015 IEEE. IEEE, 2015,
pp. 1–6.

[6] A. Power and G. Kotonya, “Complex patterns of failure: Fault tolerance
via complex event processing for iot systems,” in 2019 International
Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2019,
pp. 986–993.

[7] ——, “Providing fault tolerance via complex event processing and ma-
chine learning for iot systems,” in Proceedings of the 9th International
Conference on the Internet of Things. ACM, 2019, pp. 1:1–1:7.

[8] M. Ma, P. Wang, and C.-H. Chu, “Ltcep: Efficient long-term event pro-
cessing for internet of things data streams,” in 2015 IEEE International
Conference on Data Science and Data Intensive Systems. IEEE, 2015,
pp. 548–555.

[9] Y. Xie, “Escep: A cep based on event sharing in internet of things,” in
2017 8th IEEE International Conference on Software Engineering and
Service Science (ICSESS). IEEE, 2017, pp. 187–190.

[10] S. Choochotkaew, H. Yamaguchi, T. Higashino, M. Shibuya, and
T. Hasegawa, “Edgecep: Fully-distributed complex event processing
on iot edges,” in 2017 13th International Conference on Distributed
Computing in Sensor Systems (DCOSS). IEEE, 2017, pp. 121–129.

[11] G. Cugola and A. Margara, “Processing flows of information: From data
stream to complex event processing,” ACM Computing Surveys (CSUR),
vol. 44, no. 3, p. 15, 2012.

[12] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient
pattern matching over event streams,” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM,
2008, pp. 147–160.

[13] J. Bauer and N. Aschenbruck, “Design and implementation of an
agricultural monitoring system for smart farming,” in IoT Vertical and
Topical Summit on Agriculture-Tuscany (IOT Tuscany), 2018. IEEE,
2018, pp. 1–6.


