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The vibrational resonance (VR) phenomenon has

received a great deal of research attention over

the two decades since its introduction. The wide

range of theoretical and experimental results obtained

has, however, been confined to VR in systems with

constant mass. We now extend the VR formalism

to encompass systems with position-dependent mass

(PDM). We consider a generalized classical counterpart

of the quantum mechanical nonlinear oscillator with

PDM. By developing a theoretical framework for

determining the response amplitude of PDM systems,

we examine and analyse their VR phenomenona,

obtain conditions for the occurrence of resonances,

show that the role played by PDM can be both

inductive and contributory, and suggest that PDM

effects could usefully be explored to maximise the

efficiency of devices being operated in VR modes. Our

analysis suggests new directions for the investigation

of VR in a general class of PDM systems.

1. Introduction
Nonlinear science has attracted global interest on account

of its broad applications to a diversity of disciplines.

These range from the physical to the technological fields,

and from biology to medicine, as well as the social

sciences [1]. It describes the dynamics of systems defined

by nonlinear functions. Although the behaviour of such
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nonlinear systems is typically controlled by quite simple deterministic or stochastic laws, their

dynamics can nonetheless be highly complicated and often counter-intuitive. The nonlinearity

inherent in most systems, particularly in experimental situations, may appear in a diversity of

forms, such as physical, structural, frictional, or geometrical and, in many contexts, external

forces [2]. A major cause of structural nonlinearity in materials, frequently ignored because

of its complex mathematical implications, is that of varying inertial mass. Such changes affect

considerably the structural nonlinearity of dynamical systems [2,3].

Varying mass usually implies that the mass is dependent on a generalized coordinate: either

velocity, or position or time; or on a function of both position and time. The mass changes

with respect to these variables during motion as the result of addition and/or removal of

particles [4]. In general, systems with varying masses are encountered in fields such as rocket

science, tethered satellite dynamics [3]), meteorites [5], aerology, oceanography [5]), offshore

and civil engineering [6]. They are also applicable in condensed matter system such as NH3

inverted potential structure [7] and semiconductor heterogeneous structures [8,9], particle-

accreting systems such as raindrops [10], as well as accretion of planets and asteroids in the

early solar system [11]. They can be classified into two main groups: continuous-particle-ejecting

systems or discrete-particle-ejecting systems, depending on whether or not the addition/removal

of particles to/from the initial bulk mass takes place over an infinitesimally short time [3,4]. In

systems with continuous mass variation, the mass-time (or mass-position) function can either

be deterministic or stochastic [12]. The dynamics of stochastic systems has been well studied,

particularly in systems under the combined influences of a deterministic signal, an added noisy

excitation, and a random mass. There have been numerous analyses and applications involving

the phenomenon of stochastic resonance [13]. However, in many physical systems, the associated

inertial mass is neither constant, nor stochastically varying, nor dynamically changing with time

but, rather, is explicitly position-dependent.

In position-dependent mass (PDM) systems, where the variable mass is specified in terms

of its position, several types of mass variation function have been considered [14,15]. Much of

the works were related to quantum variants [16], but classical PDM systems have also received

considerable attention, with an emphasis on derivation of the dynamical equation of motion from

Lagrangian or Hamiltonian dynamics [14,17–19]. Notably, the classical equation of motion of

PDM systems contains an extra non-conservative generalized force term of quadratic order in the

modified Newton’s equation, a term which is nonlinear in velocity and linearly proportional to

the mass gradient [18–20]. This nonlinearity can impact on the dynamics of the system, including

the occurrence of resonance which we demonstrate for the first time below.

Traditionally, resonance occurs in a system when its natural frequency of vibration is equal

to the frequency of an external driving force, leading to an enhanced output response [21].

However, the term has been generalized to define more broadly all processes involving the

enhancement, suppression or optimization of a system’s response through the modulation of any

system property, thereby removing the restriction to frequency matching. When the resonance

takes place in a nonlinear system it is called nonlinear resonance and, in this case, frequency

matching is absent except under special condition [22] and hence is not a prerequisite for the

occurrence of resonance.

Nonlinear resonances are characterized by the enhancement of a system’s maximum response

at low-frequency (LF) induced by an external driving force, and it manifests in diverse forms,

depending on the nature of the force [21]. When the force takes the form of a high-frequency

(HF) periodic signal, it results in what is now known as vibrational resonance (VR) [23,24]: in VR,

an optimal amplitude of HF excitation applied to a nonlinear system alters its response to an LF

signal in a resonant fashion. The effect of the HF excitation is thus similar to the effect of noise

in the better-known phenomenon of stochastic resonance (SR) [13,25–27]. Other important forms of

nonlinear resonance have been discussed by Rajasekar and Sanjuán [21].

In parallel with SR, VR has also been subjected to close research attention over the last two

decades, in large part due to its potential industrial applications. These relate particularly to
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communications, for filtering, optimisation and control of signal output, signal identification,

separation and extraction of signals, noise attenuation, or for emphasising specific aspects

of a signal. Other advanced technological applications include ratchet-like devices such as

switches, amplifiers, sensors, transducers, filters, and nonlinear mixers, which offer the prospect

of improved operating conditions and efficiency when operated within VR regimes [21].

Following its introduction by Landa and McClintock [23] and motivated by the

aforementioned potential applications, VR has now been demonstrated and analyzed in a

diversity of model systems both theoretically, numerically and experimentally, cutting across

many fields such as neuroscience, plasma physics, laser physics, acoustics and engineering.

Specifically, the VR phenomenon has been investigated in bistable systems [24,28–35], multistable

systems [36,37], ratchet devices [38], excitable systems [39], quintic oscillators [40–44],

coupled oscillators [25,45–47], overdamped systems [30], delayed dynamical systems [44,

46,48–52], asymmetric Duffing oscillators [53], fractional order oscillators [32,42,54], neural

models [39,50,55–61], oscillatory networks [46,55,58–60,62–64], biological nonlinear systems [49,

61,64] parametrically excited systems [34,65–69], systems with nonlinear damping [37,70–

72], and deformed potential [73], disordered systems [74], quantum systems [75,76], as well

as harmonically trapped and roughed potentials [72,77]. More importantly, VR has been

demonstrated in experimental realisations, especially in multistable systems, arrays of hard

limiters, bistable vertical-cavity surface-emitting lasers [28,29,33,78–81] and Chua circuits [82,83].

Additional novel phenomena, intriguing properties, and new directions for potential

applications have been found more recently. For example, a connection between VR and phase-

locking modes was established by Morfu and Bordet [84]. Rajamani et al. [85] observed a novel

ghost-vibrational resonance, while vibrational antiresonance has been reported by Sakar and

Shankar Ray [47]. Furthermore, the existence of subharmonic and superharmonic resonances [86]

and higher harmonics [87] were also reported. In another line of development, new methods

of analysis in which nonlinear systems are driven by aperiodic forces have been investigated

– giving birth to fresh perspectives for aperiodic vibrational resonance, re-scaled aperiodic

vibrational resonance and twice-sampled aperiodic vibrational resonance methods [88], re-scaled

and improved twice-sampling [68], and a new spectral amplification factor approach [89].

The potential applications of VR have been explored in, for instance, improving energy

harvesting from mechanical vibrations [90], energy detectors [91], the detection, transmission and

amplification of signals [60,92,93], and the detection of faults in bearings [94–97], as well as in the

design of Dual Input Multiple Output (DIMO) logic gates and memory devices [83,98–100].

The large and growing body of research on VR has assumed constant mass, and no attempt

has been made to examine VR in systems whose mass is spatially varying. Recently, Usama et

al. [101] examined the role of constant-non-unitary mass for VR in a multistable system [37].

They showed that variation in mass can complement the role of bi-harmonic external forcing

much like damping nonlinearity [37,71], and can also determine the condition for resonance.

However, only numerical results were presented, without an underpinning theory. Moreover,

similarly to previous analyses, the variation in mass was assumed to be position-independent. It

is important to emphasize that, when mass variation occurs in natural and mechanical systems,

it can be associated with jump-like variations in velocity or angular velocity which, in practical

applications, could lead to serious malfunction and/or destruction of parts of the machines in

question, as can sometimes occur due to resonances. Thus, the analysis of VR in systems with

position-dependent mass is necessary for both scientific and technological purposes.

In this paper, we consider a simple, but general, PDM system with a regular mass function

consisting of a constant mass (mass amplitude) and a quadratic spatial nonlinearity, modelled by

a bistable potential [14,18,20]. We develop a general theoretical framework for dealing with VR in

PDM systems. Theoretical results are complemented with numerical simulations. The rest of the

paper is structured as follows. In Section 2, the classical PDM model will be described. Theoretical

analyses of VR in the PDM systems are presented in Section 3. Section 4 discusses our numerical

simulations and Section 5 summarizes the results and draws conclusions.
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2. Position-Dependent Mass Oscillators
We consider a classical oscillator whose dynamics may be described by the Lagrangian

function [20]

L(x, ẋ; t) = T − V (x) =
1

2
m(x)ẋ2 − V (x), (2.1)

where T = 1
2m(x)ẋ2 is the kinetic energy of the system,V (x) is the system’s potential, and m(x) is

an explicitly position-dependent mass function with x being its position at time t. In the analysis

that follows, we assume a Duffing-type oscillator potential, i.e.

Vd(x) =
1

2
m(x)ω2

0x
2 +

1

4
βx4, (2.2)

where β is the potential parameter i.e. the system’s coefficient of nonlinearity and ω0 is the

oscillator’s natural frequency. The associated Euler-Lagrange equation can be written as

d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= φ, (2.3)

where φ accounts for all the external contributions to the motion from dissipative and driving

forces, assumed here to be φ=−αẋ+ f cosωt+ g cosΩt. α is the damping coefficient and the

amplitudes and frequencies of the external driving signals are f and ω for the weak component

and g and Ω for the fast component, respectively. Using the Lagrangian function (2.1) in the Euler-

Lagrange Eq. (2.3), the corresponding Newton’s equation of motion may be written as

m(x)ẍ+
1

2
m′(x)ẋ2 +

dV (x)

dx
= φ. (2.4)

The prime in Eq. (2.4) implies differentiation with respect to space variable x and the overdot

indicates differentiation with respect to time.

As mentioned in the Introduction, Section 1, the nature of the problem or potential function

considered determines the type of mass variation functions to be employed [14]. For instance,

m(x) can be a quadratic or exponential function of position x [20,102,103]. The former has

been classified on the basis of its singularity property: as either regular mass-functions without

singularity or as singular mass-functions with single or dual singularities [20]. Moreover, a

classification of finite-gap PDM systems with diverse physical applications, such as the families

of trigonometric, hyperbolic, and elliptic mass functions was presented in Ref. [15]. In this paper,

we adopt the simplest regular mass-function without singularities:

m(x)=
m0

1 + λx2
, (2.5)

originally proposed by Mathews and Lakshmanan [14] in relation to relativistic fields of

elementary particles. The mass-function (2.5) appears frequently in the modelling of diverse

nonlinear mechanical systems(See Refs. [19,20] and references therein). Here, m0 is a constant

mass, equivalent to the mass amplitude, and λ is the strength of the spatial nonlinearity in mass.

m(x) is bounded and defined over the entire real line D(m1) =ℜ with its maximum, m0, at x=0

and varnishing as |x|→∞.

One can easily show that the equation of motion of the PDM-Duffing oscillator can be written

as

m(x)ẍ−m2(x)γλxẋ2 + αẋ+m2(x)γω2
0x+ βx3 = f cosωt+ g cosΩt, (2.6)

where γ = 1
m0

. Remarkably, the PDM-Duffing oscillator (Eq. (2.6)) is consistent with the system

described by Equation (23) in Ref. [19] for a unit mass amplitude (m0 = 1) and g= 0. When

the strength of nonlinearity in mass is negligible, that is λ=0, Eq. (2.6) reduces to the well-

studied bi-harmonically driven Duffing oscillator (equation (1) in Ref. [23]). Thus, the PDM

system is a generalised version of the model systems considered hitherto in the study of VR.

A typical example of a physical system described by Eq. (2.6) is a dual-frequency-driven gas

bubble in which the mass of the bubble is dependent on the bubble’s radius – which is a spatial

coordinate [104]. The dual-frequency driving force, which can be realized by means of acoustic
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waves with two frequency components, is applied to control the bubble’s properties, including

the promotion of acoustic cavitation. We refer the reader to a very recent study of driven bubbles

highlighting the state-of-the art in applications of dual-frequency irradiation [105]. Moreover, the

optical properties of semiconductor devices, such as AlxGa1−xAs/GaAs, many of which are

also characterised by position-dependent effective masses [8,9], can be modulated and controlled

effectively by employing external fields consisting of an applied electromagnetic field and a high-

frequency intense laser field (ILF). The quantum mechanical counterpart of VR [75,76] would of

course be more appropriate for the analysis of the combined impacts of the position-dependent

effective mass (PDEM) and applied fields on the properties of semiconductors.

In what follows, we will express Eq. (2.6) in a form that makes our analytical procedure

convenient for the application of the well-established method of separation of motions (MSM).

This is the basis of the theoretical analysis. For a nonlinear system whose mass depends explicitly

on position or velocity, or both, intuitively one would encounter a position-dependent function

(k1 ± k2x
p)n, where k1 and k2 are constants, and p and n are positive and negative integers,

respectively. This function cannot fit into the general framework of MSM. By dividing Eq. (2.6) by

m(x) we express it as,

ẍ − m0(1 + λx2)−1(γλxẋ2 − γω2
0x) + γ(1 + λx2)(αẋ+ βx3)

= γ(1 + λx2)(f cosωt+ g cosΩt). (2.7)

and obtain (k1 ± k2x
p)n = (1 + λx)−1 which can be approximated using the Binomial expansion.

Considering only the first three terms of the binomial expansion of (1 + λx2)−1, we write Eq. (2.7)

as

ẍ−m0(1− λx2 + λ2x4)(γλxẋ2 − γω2
0x) + γ(1 + λx2)(αẋ+ βx3)

= γ(1 + λx2)(f cosωt+ g cosΩt). (2.8)

Furthermore, by setting δ = βγ − λω2
0 , and ξ = βγλ+ λ2ω2

0 , in Eq. (2.8), the PDM-Duffing

oscillator can be expressed in the form

ẍ− λ(x− λx3 + λ2x5)ẋ2 + αγ(1 + λx2)ẋ+ ω2
0x+ δx3 + ξx5

= γ(1 + λx2)(f cosωt+ g cosΩt). (2.9)

The corresponding potential V (x) of the system is

V (x) =
ω2
0

2
x2 +

δ

4
x4 +

ξ

6
x6. (2.10)

Henceforth, we shall refer to Eq. (2.9) as the PDM-Duffing oscillator. The system potential

shown in Figs. 1 and 2 for different values of the PDM parameters: the mass amplitude m0(=

1, 1.5, 2, 4) and the strength of spatial nonlinearity λ(= 0, 1, 1.5, 2), respectively, is computed from

Eq. (2.10). The dynamical properties of the system can be altered by adjustment of its potential

which, in turn, is largely determined by the PDM parameters (m0, λ). We choose mass parameter

regimes within which the system potential is double-well, so that 0<m0 < 1.5 and 0<λ< 1 for

α= 0.2, β = 1, ω2
0 =−1.

3. Theoretical analysis
We now apply the standard MSM perturbation method, where the system’s dynamics is assumed

to be comprised of a slow component y(t) and a fast component z(t, τ ). The MSM method is

used to derive two integro-differential equations in each component such that the superposition

of their solutions completely solves the main equation of the system (Eq. (2.9)). Thus, defining
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Figure 1. The system potential (Eq. (2.10)) for α=0.2, β= 1, ω2

0
=−1, λ= 1, m0 = 1, 1.5, 2, 4,

x= y + z, and after factorizing like terms, the PDM-Duffing Eq. (2.9) can be re-written as

ÿ + z̈ − λ(λ2y5 + (5λ2z)y4 + (10λ2z2 − λ)y3 + (10λ2z3 − 3λz)y2 + (5λ2z4 − 3λz2 + 1)y

+ λ2z5 − λz3 + z)(ẏ2 + 2ẏż + ż2) + αγ(1 + λ(y2 + 2yz + z2))(ẏ + ż) + ξy5 + 5ξzy4

+ (10ξz2 + δ)y3 + (10ξz3 + 3δz)y2 + (ω2
0 + 5ξz4 + 3δz2)y + ω2

0z + δz3 + ξz5

= γ(1 + λ(y2 + 2yz + z2))(f cosωt+ g cosΩt). (3.1)

By further expansion of Eq. 3.1, and considering that the fast signal z is rapidly oscillating with

period 2π
Ω , we have

ÿ − λ(λ2y5 + 5λ2zy4 + (10λ2z2 − λ)y3 + (10λ2z3 − 3λz)y2 + (5λ2z4 − 3λz2 + 1)y

+ λ2z5 − λz3 + z)(ẏ2 + ż2) + αγ(1 + λ(y2 + 2yz + z2))ẏ + ξy5 + 5ξzy4

+ (10ξz2 + δ)y3 + (10ξz3 + 3δz)y2 + (ω2
0 + 5ξz4 + 3δz2)y + ω2

0z + δz3 + ξz5

= γ(1 + λ(y2 + 2yz + z2))(f cosωt+ g cosΩt). (3.2)

The mean value of z w.r.t fast time τ is given by

z̄ =
1

2π

∫2π
0

zdτ = 0, (3.3)

so that Eq. (3.2) becomes

ÿ − λ(λ2y5 + (10λ2z2 − λ)y3 + 10λ2z3y2 + (5λ2z4 − 3λz2 + 1)y + λ2z5 − λz3)(ẏ2 + ż2)

+ αγ(1 + λ(y2 + z2))ẏ + ξy5 + (10ξz2 + δ)y3 + 10ξz3y2 + (ω2
0 + 5ξz4 + 3δz2)y + δz3 + ξz5

= γ(1 + λ(y2 + z2))f cosωt. (3.4)

Eq.(3.4) is the system’s equation of slow motion, in which we are primarily interested.

An approximation method is used to determine the averages in the equation of slow motion.

This is done by first obtaining the equation of fast oscillation in z by subtracting the equation
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of the slow component y (Eq.(3.4)) from equation (3.1) for the composite system x. Hence, the

system’s equation of fast oscillation gives

z̈ − (2ẏλ(λ2y5 + (5λ2z)y4 + (10λ2z2 − λ)y3 + (10λ2z3 − 3λz)y2 + (5λ2z4 − 3λz2 + 1)y

+ λ2z5 − λz3 + z) + αγ(1 + λ(y + z)2))ż + λ2(ż2 − ż2)y5 + 5λ2(zż2 − zż2)y4

+ (10λ2(z2ż2 − z̄2ż2)− λ(ż2 − ż2))y3 + (10λ2(z3ż2 − z̄3ż2)− 3λ(zż2 − zż2))y2

+ (5λ2(z4ż2 − z̄4ż2)− 3λ(z2ż2 − z̄2ż2) + (ż2 − ż2))y + λ2(z5ż2 − z̄5ż2)− λ(z3ż2 − z̄3ż2)

+ (zż2 − zż2) + (ẏ2(5λ2y4 − 3λy2 + 1) + 2αγλyẏ + 5ξy4 + 3δy2 + ω2
0)(z − z)

+ (ẏ2(10λ2y3 − 3λ) + 2αγλyẏ + 10ξy3 + 3δy)(z2 − z2)

+ (ẏ2(10λ2y2 − λ) + 10ξy2 + δ)(z3 − z3) + (ẏ25λ2 + 5ξy)(z4 − z4) + (ẏ2λ2 + ξ)(z5 − z5)

= γ(1 + λ(y + z)2)(g cosΩt) + γλ(2y(z − z) + (z2 − z2))(f cosωt) (3.5)

-2 -1 0 1 2
x

-1

-0.5

0

0.5

1

V
(x

)

λ = 0
λ = 1
λ = 1.5
λ = 2

Figure 2. The system potential (Eq. (2.10)) for m0 = 1, α=0.2, β= 1, ω2

0
=−1 and λ= [0, 1, 1.5, 2].

We note that Eqns. (3.4) and (3.5) are a pair of integro-differential equations which describe

the equations of slow oscillations y and fast vibrations z, respectively, and their superposition

completely solves the composite system (Eq. (2.9)). Next, we apply the inertial approximation

z̈≫ ż≫ z≫ z2, by assuming the component z is much faster than the slow component y, so that

y and ẏ are considered as constants in Eq. (3.5). Hence Eq. (3.5) is reduced to

z̈ = γg cosΩt, (3.6)

which has a solution

z =− γg

Ω2
cosΩt, (3.7)

leading to the mean values

z = z3 = z5 = 0, z2 =
γ2g2

2Ω4
, z4 =

3γ4g4

8Ω8
, ż2 =

γ2g2

2Ω2
. (3.8)
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Figure 3. The effective potential (Eqn. (3.13)) for (a) λ= 0.1 and different values of g(= 0, 40, 60, 80); (b) g =80

and different values of λ(= 0, 0.02, 0.05, 0.1). Other parameters are set as: m0 = 1.5, Ω = 9.842, α= 0.2, β= 1,

ω2

0
=−1

Using Eq. (3.8) in Eq. (3.4), the equation of motion for the slow component becomes

ÿ − λ(λ2y5 + (10λ2z2 − λ)y3 + (5λ2z4 − 3λz2 + 1)y)(ẏ2 + ż2) + αγ(1 + λ(y2 + z2))ẏ

+ ξy5 + (10ξz2 + δ)y3 + (ω2
0 + 5ξz4 + 3δz2)y= γ(1 + λ(y2 + z2))f cosωt. (3.9)

Eq. (3.9) can be simplified by collecting terms in y as

ÿ − λ(λ2y5 + (10λ2z2 − λ)y3 + (5λ2z4 − 3λz2 + 1)y)(ẏ2) + αγ(1 + λ(y2 + z2))ẏ

+ (λ(5λ2z4 − 3λz2 + 1)ż2 + ω2
0 + 5ξz4 + 3δz2)y

+ (λ(10λ2z2 − λ)ż2 + (10ξz2 + δ))y3 + (λ3ż2 + ξ)y5 = γ(1 + λ(y2 + z2))f cosωt.(3.10)

By setting

C1 = 5λ2z4 − 3λz2 + 1=
15λ2γ4g4

8Ω8
− 3λγ2g2

2Ω4
+ 1, C2 = 10λ2z2 − λ=

5λ2γ
2
g2

Ω4
− λ,

C3 = 1 + λz2 =1 +
λγ2g2

2Ω4
,

η1 = λC1ż2 + ω2
0 + 5ξz4 + 3δz2 =

λC1γ
2g2

2Ω2
+ ω2

0 +
15ξγ4g4

8Ω8
+

3δγ2g2

2Ω4
,

η2 = λC2ż2 + 10ξz2 + δ =
λC2γ

2g2

2Ω2 +
5ξγ2g2

Ω4 + δ, η3 = λ3ż2 + ξ =
λ3γ2g2

2Ω2 + ξ, (3.11)

the system’s slow oscillation described by Eqn(3.4) can be written as

ÿ − λ(C1y + C2y
3 + λ2y5)ẏ2 + αγ(C3 + λy2)ẏ + η1y + η2y

3 + η3y
5 = γ(C3 + λy2)f cosωt.(3.12)

Thus, the effective potential of the system is given by

Veff (y) =
η1
2
y2 +

η2
4
y4 +

η3
6
y6. (3.13)
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The slow oscillation takes place about one of the equilibrium points

y∗1 = 0, y∗2,3 =±

√

√

√

√

−η2 +
√

η22 − 4η1η3

2η3
, y∗4,5 =±

√

√

√

√

−η2 −
√

η22 − 4η1η3

2η3
. (3.14)

The choice of the system parameters ω2, β,m0, λ, g and Ω determines the shape and depth of the

effective potential since the magnitude and the signs of η1, η2 and η3 can be changed by varying

them. Thus, the structure of Veff (y) can change depending on the sign of η1, η2 and η3 by varying

any of the potential parameter (ω2, β), HF parameters (g,Ω) or PDM parameters (m0, λ). Different

potential structures can be realized for different parameter choices. For instance, by assuming that

η3 > 0, the following cases arise:

Case I η1, η2 > 0, or η1 > 0, η2 < 0 with η22 < 4η1η3. The only equilibrium point is y∗1 .

Case II η1 < 0, η2 - arbitrary. Three equilibrium points exist: −y∗1 , y
∗
2,3.

Case III η1 > 0, η2 < 0 with η22 > 4η1η3. Five equilibrium points exist: −y∗1 , y
∗
2,3, y

∗
4,5,.

Clearly, the effective potential is not just dependent on the parameters of the fast driving signal,

as is typical of the VR phenomenon, but also depends on the parameters (m0, λ) of the PDM –

implying that either or both of the PDM parameters must make a significant contribution to the

shapes of the resonances. The effective potential of the driven PDM-Duffing oscillator given by

Eq. (3.13) is shown in Fig. 3(a) for four different values of the HF amplitude g(= 0, 25, 40, 80) for

the parameter values m0 =1, λ= 0.1, α= 0.2, β = 1, ω2
0 =−1, and in Fig. 3(b) for four different

values of the strength of spatial nonlinearity in mass λ(= 0, 0.02, 0.05, 0.1) for the parameter

values g= 80, m0 =1.5, α= 0.2, β = 1 and ω2
0 =−1. By varying the HF amplitude, the shape and

depth of Veff (y) can be altered from double-well (at g= 0, 25, 40) to single-well (at g=80) by

choice of the HF amplitude g, even when the PDM parameters (m0, λ) are restricted to the regime

(m0, λ)∈ ((0, 1.5), (0, 1)) where the system has a double-well potential in the absence of the HF

signal. Additionally, in the presence of an HF signal, the shape and depth of the effective potential

Veff (y) can be altered from single-well (when λ= 0.05, 0.1) to double-well (when λ= 0, 0.02)

depending on the choice of strength of mass nonlinearity λ.

Next, we linearize Eq. (3.12) around the equilibrium points (y∗, ẏ∗) in order to obtain an

approximate analytic response amplitude Qana which can also be compared to the response

amplitude Qnum obtained from the Fourier coefficients of the solution of the full equation of the

system (2.9). The system’s oscillation can be described in terms of the deviation of slow motion

y from the equilibrium points y∗ by using the deviation variable Y = y − y∗ in Eq. (3.12). This

yields the motion around equilibrium points in the form

Ÿ − λ(∆+∆1Y +∆2Y
2 +∆3Y

3 +∆4Y
4 + λ2Y 5)Ẏ 2 + αγ(Ξ1 + Ξ2Y + λY 2)Ẏ

+ Θ +Θ1Y +Θ2Y
2 +Θ3Y

3 +Θ4Y
4 + η3Y

5 = γ(Ξ1 +Ξ2Y + λY 2)f cosωt, (3.15)

where

∆ = C1y
∗ +C2y

∗3 + λ2y∗5,∆1 =C1 + 3C2y
∗2 + 5λ2y∗4,∆2 = 3C2y

∗ + 10λ2y∗2,

∆3 = C2 + 10λ2y∗2, ∆4 =5λ2y∗, Ξ1 =C3 + λy∗2, Ξ2 = 2λy∗, (3.16)

Θ = η1y
∗ + η2y

∗3 + η3y
∗5, Θ1 = η1 + 3η2y

∗2 + 5η3y
∗4,

Θ2 = 3η2y
∗ + 10η3y

∗2, Θ3 = η2 + 10η3y
∗2, Θ4 = 5η3y

∗.

By ignoring the nonlinear parts of Eq. (3.15) and using the approximation f ≪ 1 such that |Y | ≪ 1

in the long-term limit t→∞, the linearized equation of motion then becomes

Ÿ + µẎ + ω2
rY = F cosωt, (3.17)
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where the resonant frequency is ωr =
√
η1, µ= αγC3 and F = γC3f when the oscillation is

considered around the equilibrium point y∗ =0. For y∗ 6= 0, ω2
r =Θ1, µ=αγΞ1 and F = γ(Ξ1 +

Ξ2Y + λY 2)f . It is clear that the steady state solution of equation (3.12) takes the form

Y (t) =AL cos(ωt+ Φ), (3.18)

and that the response amplitude can be computed as

Qana =
AL

f
=

γC3
√

(ω2
r − ω2)2 + µ2ω2

, (3.19)

If we set S = (ω2
r − ω2)2 + µ2ω2 in Eqn. (3.19), the qualitative features of Qana would be

determined by S. A local minimum in S implies resonance, i.e. the appearance of a maximum

in Qana. When a variation of any of the system parameters leads the system to resonance, the

value of the parameter at which resonance occur (e.g. λ= λvr) can be obtained from the root of

the equation Sλ = dS
dλ =0 and Sλλ|λ=λvr

> 0.

When the sign of either η1 or η2 is changed by varying any of g, Ω, m0 or λ, the effective

potential changes structure from single-well to double-well as shown in Fig. 3. The value of gvr
and λvr when the effective potential is a single-well can be obtained by setting Sg = 0 and Sλ =0

and satisfies the condition:

gvr =











{√z | z ǫ σ1} ∪ {−√
z | z ǫ σ1}, if e 6=0,

±Ω2
√

−b ± (σ2−dΩ2)
σ3

, if a 6= cΩ2 ∧ e=0

(3.20)

where

a =
15γ4ξ

8
, b=

3δγ2

2
, c=

3λ2γ4

4
, d=

15γ4ξ

8
, e=15

λ3γ6

16
, f = ω2 − ω2

0 ,

σ1 =
√

(e z3 − c Ω4 z2 + a Ω2 z2 + d Ω8 z + f Ω10),

σ2 =
√

b2 + 2bdΩ2 + d2Ω4 + 4cfΩ2 − 4af, σ3 = 2(a− cΩ2). (3.21)

In addition, the resonance condition for λvr gives

λvr =











√

(az3 + bΩ4z2 − cΩ8z + dΩ10, z), if a 6= 0

Ω3(cΩ±
√
c2Ω2−4bd)
2b , if a= 0 ∧ b 6= 0.

(3.22)

a=
15γ6g6

16
, b=

3γ4g4

4
, c=

γ2g2

2
, d=

15γ4ξg4

8Ω8
+

3δγ2g2

2Ω4
+ ω2 − ω2

0 , (3.23)

and

ωvr =

√

ω2
r − µ

2
, ω2

r − µ

2
. (3.24)

When the effective potential is a double-well, it is challenging to establish analytical conditions

in terms of gvr and λvr. However, they can be computed numerically by analysing the cases

ω2
r − ω2 = 0 and ωrg = 0 or ωrλ = 0 since Sg = 0 ( or Sλ = 0) at resonance.

4. Numerical Results and Discussions
To validate the analytic results, the theoretical response amplitude Q given by Eq. (3.19) was

compared with the numerical Q computed from the Fourier spectrum of the solution of the

main PDM-Duffing equation (Eq. (2.9)) expressed as coupled first-order autonomous ordinary

differential equations (ODEs) of the form:



11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

0 0.5 1 1.5 2ω

0

5

10

Q

(a)

0 50 100 150g
0

10

20

Q

(b)

0 50 100 150 200g
0

5

10

Q

(c) m
0
=1 m

0
=1.3 m

0
=1.5m

0
=0.5

ω=0.25

ω=0.5

ω=0.1

g=80
g=100

g=120
g=140

Figure 4. The variation of response amplitude Q with (a) ω for four values of HF amplitude g (80, 100, 120, 140) for

a system with unit mass (m0 = 1, λ= 0) and f =0.05, (b) with HF amplitude g for three values of LF ω (ω= 0.1,

ω=0.25 and ω=0.5) for a system with unit mass (m0 = 1, λ= 0) and f =0.01, and (c) with g for five values of mass

amplitudes m0 = (1, 1.1, 1.2, 1.3, 1.5) and f = 0.05 for a system with constant mass (λ=0). Other parameters

are set as: Ω =9.842, ω= 0.5, α= 0.2, β = 1, ω2

0
=−1. The thick lines represent analytically computed response

amplitudes from Eq. (3.19) while thin lines, broken lines and markers of the same colour represent corresponding the

numerically computed response amplitude from the main equation of the PDM-Duffing oscillator (Eq. (2.9)) using Eq. (4.5).

dx

dt
= y,

dy

dt
= λ(x− λx3 + λ2x5)ẋ2 − αγ(1 + λx2)ẋ− ω2

0x− δx3 − ξx5

+γ(1 + λx2)(f cosωt+ g cosΩt). (4.1)

The solution of Eq. (4.1), corresponding to the output signal of the system, is obtained by

numerical integration using the fourth order Runge-Kutta (FORK) scheme with step size ∆t=

0.01T over a simulation time interval Ts = nT , where T = 2π
ω is the period of the oscillation,

ω is the low-frequency (LF) of the input signal and n(= 1, 2, 3, . . . ) is the number of complete

oscillations. We used (x(0), ẋ(0.1)) initial conditions with a relaxation time of 20T . Except where

otherwise specified, the values of fixed system parameters were: α= 0.2, β = 1, ω2
0 =−1, Ω =

9.842, ω= 0.5 and f = 0.05. The PDM parameters were set as (m0, λ)∈ ((0, 1.5), (0, 1)). These

parameter choices ensure that the system remains in the overdamped regime for which only

periodic or quasiperiodic motion is admissible and where the system remain a bistable oscillator.

The other system parameters were chosen within regimes that optimize the emergence of VR for

n= 200.

The response amplitude Q at frequency ω was then obtained from the Fourier sine and cosine

coefficients of the output signal with components Qs and Qc given by

Qs =
2

nT

∫nT
0

x(t) sinωt dt, Qc =
2

nT

∫nT
0

x(t) cosωt dt. (4.2)
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Figure 5. The variation of response amplitude Q with (a) mass amplitude m0 for four values HF amplitude g (= 20, 40, 60,

80, g = 100) for a system with mass independent of position (λ= 0). (b) mass amplitude m0 for four values of strength of

mass nonlinearity λ(= 0, 0.1, 0.3, 0.5). Other parameters are set as: Ω = 9.842, ω= 0.5, α= 0.2, β= 1, ω2

0
=−1,

f = 0.05. The thick lines represent analytically computed response amplitudes from Eq. (3.19) while the thin lines, broken

lines and markers represent the numerically computed response amplitude from the main equation of the PDM-Duffing

oscillator (Eq. (2.9)) using Eq. (4.5).

Conventionally, the amplitude of the output signal is given by,

A=

√

Q2
s +Q2

c. (4.3)

while the phase shift is,

Φ= tan−1
(

Qs

Qc

)

. (4.4)

The response amplitude is thus given by

Qnum =

√

Q2
s +Q2

c

f
. (4.5)

The analytically computed response amplitudes from Eq. (3.19) (indicated by solid lines) are

compared with the corresponding numerical response amplitudes (indicated by thin lines, broken

lines or/and markers) computed directly from the main equation of the system (Eq. (2.9)) using

Eq. (4.5) by superposing response curves for a range of system parameter.

We begin by considering VR for a Duffing oscillator with a constant unitary unit mass, a special

case for which M(x) = 1 [23,24,106]. Then, we extend it to the PDM-Duffing oscillator in which

m(x) =m0 and λ= 0, corresponding to a Duffing oscillator with constant mass. Remarkably,

for a particle with constant unitary mass (m0 =1, λ=0), the PDM-Duffing oscillator (Eq. (2.9)

is reduced to the bistable oscillator considered in the pioneering work on VR by Landa and

McClintock (2000) [23]. As expected for this special case, VR is observed as shown in Fig. 4. In

fact, the results of the preliminary analysis for a PDM-Duffing system with constant unitary mass

as presented in Fig. 4(a) are consistent with both the theoretical and numerical results presented

by Blekhmann and Landa (2001) (see Fig. 2(b) of Ref. [106]). Further evidence of VR in this special
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Figure 6. The dependence of response amplitude Q with g for system with position dependent mass for four different

combinations of the mass amplitude m0 and nonlinear strength λ, (a) m0 = 1, λ=0, (b) m0 = 1.1, λ= 0.1, (c) m0 =

1.2, λ= 0.2, (d) m0 = 1.3, λ= 0.3. Other parameters are set as: Ω = 9.842, ω= 0.5, α= 0.2, β = 1, ω2

0
=−1, f

= 0.05. The thick lines represent analytically computed response amplitudes from Eq. (3.19) while the thin lines, broken

lines and markers represent the numerically computed response amplitude from the main equation of the PDM-Duffing

oscillator (Eq. (2.9)) using Eq. (4.5).
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Figure 7. The dependence of response amplitude Q with g (a) for system with position dependent mass for four values

mass nonlinear strength λ, (λ=0, λ=0.05, λ= 0.2, λ= 0.5) for mass amplitude m0 − 1.1. (b)Inset shows reduction

in maximum response amplitude Qmax with increasing values of the mass nonlinear strengths λ considered in (a). Other

parameters are set as: Ω = 9.842, ω=0.5, α=0.2, β = 1, ω2

0
=−1, f = 0.05. The thick lines represent analytically

computed response amplitudes from Eq. (3.19) while the thin lines with markers represent the numerically computed

response amplitude from the main equation of the PDM-Duffing oscillator (Eq. (2.9)) using Eq. (4.5).
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Figure 8. The dependence of response amplitude Q on strength of mass spatial nonlinearity λ for four values of HF force

amplitude g presented in panels (a) g =20, (b) g = 25, (c) g =30, (d) g =35, respectively for m0 = 1. Other parameters

are set as: Ω = 9.842, ω=0.5, α= 0.2, β =1, ω2

0
=−1, f =0.05. The thick lines represent analytically computed

response amplitudes from Eq. (3.19) while the thin lines represent the numerically computed response amplitude from

the main equation of the PDM-Duffing oscillator (Eq. (2.9)) using Eq. (4.5).

case is presented for the dependence of the response amplitude Q on the HF amplitude g for three

values of the LF ω(= 0.1, 0.25, 0.1), as shown in Fig. 4(b) for f =0.01.

Next we consider the effect of the PDM parameters on the observed resonances and thus focus

on the possible impact of the mass parameters m0 and λ. First we consider the effect of the mass

amplitude m0 on known resonances for the preliminary case λ= 0, as presented in Fig. 4(c)

for the variation of the response amplitude Q with HF amplitude g for the constant unitary

mass m0 = 1 and three larger and smaller values (m0 = 0.5, m0 = 1.3, m0 =1.5) for f = 0.05 and

other parameters unchanged. In Fig. 4(c), for m0 = 1 and ω= 0.5 the resonance curve confirms

the response curve presented by Landa and McClintock [23] (see Curve 2 of Figure 2(a), left

panel). The VR phenomenon also exists for the other mass amplitudes considered (in Fig. 4(c)),

with no significant enhancement as m0 increases but with a marked shift in the HF amplitude

value for which Q is maximum. As m0 increases, this optimal HF amplitude value g(Qmax) also

increases. Thus, for a Duffing oscillator with a unitary particle mass, the mass amplitude plays a

complementary role to the HF signal parameters (g, Ω) in the observed resonances.

Furthermore, the possibility of initiating resonance through variation of the PDM mass

amplitude, with the cooperation of the HF input signal, is confirmed by the results presented in

Fig. 5. Fig. 5(a) shows the dependence of the response amplitude Q on m0 for four values of the

HF amplitude g(= 20, 40, 60, 80, 100) for a particle with constant mass (λ=0). Resonances with

single peaks at m0(Qmax) directly dependent on the HF amplitude g can be seen for each value

of g. Although resonances can thus be achieved by varying g, there is no significant optimization,

and the impact of g on Q is a shift in the peak position in the direction of increasing m0. In

addition, by switching on the mass spatial nonlinearity and examining the dependence of Q on

m0 for increasing mass nonlinearity (λ= 0, λ=0.1, λ= 0.2, λ= 0.5) at g=20, single resonance

peaks indicative of VR for the dependence of Q on g (or Ω, shown in Fig. 4(b)) are observed for

each value of λ. It is evident that the mass amplitude m0 can be used to initiate VR or/and can

complement the HF input signal parameters in determining the conditions for resonance. This

is similar to the effect of constant mass on the VR phenomenon observed in the dynamics of
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an inhomogeneously damped one-dimensional single particle moving in a symmetrical periodic

potential [37,101]. For the observed resonances in Fig. 5, the PDM mass amplitude m0 and the

HF signal amplitude g are directly related: increasing the value of g corresponds to increasing the

value of mass amplitude m0.

To gain further insight into the contributions of the position-dependent mass to VR, we

also considered the effect of the PDM nonlinear strength λ on the observed resonances. First,

we showed that the resonances for constant unitary mass can also be realized with a suitable

combination of PDM parameters when the mass spatial nonlinearity is activated. This is presented

in Fig. 6(a)-(d) for varying HF amplitude g and for four different combinations of the PDM

parameters (m0, λ)∈ (1, 0), (1.1, 0.1), (1.2, 0.2), (1.3, 0.3), respectively for f = 0.05. As shown

in Fig. 6(b)-(d), VR is observed for combinations of the PDM parameters other than the simple

case shown in Fig. 6(a). This implies that, besides the independent impact of the mass amplitude

m0, the combination of PDM parameters plays a role in determining the conditions for VR. The

variation of the response amplitude Q with HF amplitude g for four values of spatial nonlinearity

strength λ (λ=0, λ=0.05, λ= 0.2, λ= 0.5) is presented in Fig. 7 for m0 = 1.1. The shape of

the resonance curve, maximum response amplitude Qmax, and g(Qmax) all depend on λ. The

maximum response amplitude Qmax at which VR occurs decreases with increase in the strength

of the spatial nonlinearity, as presented in the inset (b) of Fig. 7. Here, we have zoomed the top

portions of the numerically computed response curves, i.e. Fig. 7(a).

Finally, Fig. 8 demonstrates that cooperation between the HF input signal and the PDM

parameters can induce VR through the mass spatial nonlinearity strength λ for m0 =1. This is

presented for four values of the HF input signal amplitude g(g=20, g= 25, g= 30, g= 35) in

panels (a) - (d) of Fig. 8, respectively. The observed single resonances are typical of VR induced

by the HF input parameters. In this figure, resonance occurs for a pair of low values of λ and

high values of g, illustrating the cooperation effect between the HF driving force and the PDM

in the VR process. In general, the strength of the spatial nonlinearity optimizes the effect of HF

amplitude when the system is driven into resonance and vice-versa.

In Fig. 9, we present a 3-dimensional plot illustrating the numerically computed response

amplitude Q as functions of both the strength of the mass nonlinearity λ and the HF signal

amplitude g for ω (= 0.1, 0.25, 0.5, 1.0), respectively. The occurrence of VR is demonstrated

in Fig. 4(b) for a PDM oscillator with constant mass (m0 =1, λ= 0) by varying the HF amplitude

g for three values of ω (= 0.1, 0.25, 0.5). Other parameters are set as stated for Fig. 4(b).

Clearly, ”hills” corresponding to high values of the response amplitude Q, stretching along λ and

spreading into the (g, λ)-plane show the occurrence of single resonance at ω =0.1 and ω =0.25

(shown in Fig. 9(a) and (b), respectively). As ω assumes larger values, double-peaked “hills”

appear simultaneously as shown in Fig. 9(d) for ω= 1. The value of the mass nonlinear strength

λ determines the occurrence of either single or double-peaked resonances with ω =0.5 as shown

in Fig. 9(c). For λ= 0, Fig. 9(a)–(c) provides a clearer picture of the features depicted in Fig. 4(b)

in relation to the occurrence of VR in the system and, in addition, demonstrates the possibility

of obtaining VR at other values of mass nonlinear strength (0<λ≤ 0.8). Thus, salient features

of the superposed resonance curves in Fig. 4(b) are validated by Fig. 9(a)–(c) including: (i) the

reduction in the value of Qmax when ω which can be seen by comparing the maximum response

amplitudes in Fig. 9((a) to (c)); and (ii) the appearance of single-peaked resonance in Fig. 4(b)

when ω= 0.1 and ω= 0.25 and double-peaked resonances at ω= 0.5. In the 3D plot of Fig. 9,

the above details are obvious with a single-peaked resonance appearing when λ=0 in Fig. 9(a)

and (b) and double-peaked resonances when λ≃ 0 in Fig. 9(c). Further increase in the value of ω

to ω= 1 results in sustained double-peaked resonances for all values of mass nonlinear strength

0≤ λ≤ 0.8 as shown in Fig. 9(d). Note that in Fig. 3 the effective potential changes from a double-

well structure (for g= 0) to a single-well structure as g takes on larger values, such that g ≥ 80.

The transition to double-well structure is readily enhanced by the cooperation between the PDM

parameter λ and the high-frequency amplitude g.
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Figure 9. [Color Online] The dependence of the numerically computed response amplitude Q on the strength of mass

nonlinearity λ and the HF signal amplitude g for four values of the low frequency ω: (ω =0.1, ω=0.25, ω= 0.5,

ω=1.0) shown in (a)–(d), respectively. Other parameters are set as: Ω = 9.842, m0 = 1, α= 0.2, β =1, ω2

0
=−1,

f =0.01.

Fig. 10 presents a broader picture of the effect of the PDM parameters (λ, m0) on the system’s

response amplitude Q. Here, Q was also computed numerically. It is plotted in 3D as functions

of both the strength of the mass nonlinearity λ and the amplitude g for four values of mass

amplitude: m0 = 0.5, m0 = 1, m0 =1.5, m0 = 1.5 in panels (a)–(d), respectively, for f = 0.05.

Resonance peaks take the form of ridge-shaped “hills”, stretching along λ parameter values

and spreading across the (g, λ)-plane when m0 is increased, as shown in Fig. 10(a)–(d). The

results clearly indicate the continuous occurrence of single resonance peaks. Indeed a slice of

Fig. 10 along λ=0 is consistent with Fig. 4(c) in terms of the values of amplitude g at which

resonances occur. There is also a correspondence between the increase in the value of the HF

signal amplitude and the increase in the mass amplitude m0, as indicated in Fig. 4(c) and Fig. 5.

This correspondence can be generalized for all values of λ∈ (0, 0.8). Moreover, the occurrence

of resonance for different combinations of PDM parameters as presented in fig. 6 for four

combinations of PDM parameters is also illustrated in Fig. 10. The inverse relationship between

the response amplitude Q and the strength of mass nonlinearity λ as depicted in Fig. 7 and Fig. 8

for m0 = 1 can be validated by considering the values of g where resonances occur along the

λ-axis in Fig. 10(b). This inverse relationship between gV R and λV R becomes pronounced with

increasing values of m0 (m0 = 0.5, 1.0, 1.3, 1.5) as shown in Fig. 10(a)-(d), and manifests as a

gradual spread in the resonance hills from one end (as shown in Fig. 10(a) when m0 = 0.5) across

the (g, λ)-plane as seen in Fig. 10(d) when m0 = 1.5.

5. Summary and Conclusion
We have provided a detailed but succinct review of the VR phenomenon [23], which was

proposed two decades ago. We cite numerous works exploring and elucidating the mechanism of

VR in several different systems, as well as the contributory or inductive roles of diverse system

parameters in the occurrence of VR. Practical experimental realisations and applications of VR

have also been explored and discussed.
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Figure 10. [Color Online] The dependence of the numerically computed response amplitude Q on the strength of mass

nonlinearity λ and the HF signal amplitude g for four values mass amplitude: m0 = 0.5, m0 = 1, m0 =1.3, m0 = 1.5

shown in (a)–(d), respectively. Other parameters are set as: Ω = 9.842, ω=0.5, α= 0.2, β = 1, ω2

0
=−1, f =0.05.

We emphasize that many of the above investigations deal with additive driving forces,

whereas rather less attention is paid to parametric driving and amplitude-modulated forcing [34,

65–69]. In connection with signal detection, transmission and amplification, parametric driving

and amplitude modulated forcing are excellent tools for achieving higher laser modulation

bandwidths which are desirable qualities for applications in multigigabit optical fiber transmitters

[107] and could be suitable for designing measurement techniques where high-frequency

response is required [108]. Thus, exploring high-frequency parametric vibrations could find

practical applications in communications systems as well as in the detection and assessment of

structural damages in systems with breathing cracks – suggesting a new direction for vibrational

resonance investigations.

Complementing all of the previous VR investigations, where systems had constant mass, we

have demonstrated VR in a Duffing oscillator whose mass is position dependent. In particular,

we considered the PDM-Duffing, with the mass defined as a regular function comprising of

mass amplitude m0 and strength of spatial nonlinearity λ. Based on the generalized Duffing

oscillator equation with PDM, we presented and validated the VR phenomenon in a bistable

potential by considering the reduced case in which m0 = 1, λ= 0. We then extended the problem

by examining the effects of the mass parameters on the response curves (Q vs. g) and explored the

resonances induced by the PDM parameters in the presence of the HF input signal. We conclude

that, in the generalized PDM-Duffing oscillator, the roles played by PDM are both inductive and

contributory. They can with advantage be explored to maximize the efficiency of devices that

operate in VR modes. We believe that our new formalism describing VR in PDM systems, and

its applications as enumerated above, paves the way to a new body of research on vibrational

resonance.
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