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Abstract

As Internet of Things (IoT) systems scale, attributes such as availability, reliability,

safety, maintainability, security, and performance become increasingly more import-

ant. A key challenge to realise IoT is how to provide a dependable infrastructure

for the billions of expected IoT devices. A dependable IoT system is one that can

defensibly be trusted to deliver its intended service within a given time period.

To define a FT-support solution that is applicable to all IoT systems, it is important

that error definition is a generic, language-agnostic process, so that FT can be applied

as a software pattern. It must also be interoperable, so that FT support can be

easily ‘plugged into’ any existing IoT system, which is facilitated by an adherence

to standards and protocols. Lastly, it is important that FT support is, itself, fault

tolerant, so that it can be depended on to provide correct support for IoT systems.

The work in this thesis considers how real-time and historical data analysis tech-

niques can be combined to monitor an IoT environment and analyse its short- and

long-term data to make the system as resilient to failure as possible. Specifically,

complex event processing (CEP) is proposed for real-time error detection based on the

analysis of stream data in an IoT system, where errors are defined as nondetermin-

istic finite automata (NFA). For long-term error analysis, machine learning (ML) is

proposed to predict when an error is likely to occur and mitigate imminent system

faults based on previous experience of erroneous system behaviour in the IoT system.

The contribution is threefold: (1) a language-agnostic approach to error definition

using NFAs, designed to provide ‘FT as a service’ for easy deployment and integration

into existing IoT systems; (2) an implementation of NFAs on a bespoke CEP system,

BoboCEP, that provides distributed, resilient event processing at the network edge

via active replication; and (3) a ML approach to intelligent FT that can learn from

v



system errors over time to ensure correct long-term FT support. The proposed

solution was evaluated using two vertical-farming testbeds and a dataset from a

real-world vertical farm. Results showed that the proposed solution could detect

and predict the successful detection and recovery of erroneous system behaviours. A

performance analysis of BoboCEP was conducted with favourable results.
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Chapter 1

Introduction

1.1 Problem Statement

The term Internet of Things (IoT) has a broad definition that spans a wide range

of applications. It extends the conventional concept of the Internet to a concept of

interconnected objects forming pervasive computing environments, where a variety

of heterogeneous sensor devices are connected with the intention of mining the data

which they generate [64, 74]. The purpose of IoT is to connect all of these devices,

such as radio-frequency identification (RFID) tags, infrared sensors, Global Position-

ing System (GPS) sensors and laser scanners, to the Internet. This allows systems

to identify, locate, track, monitor items in real time, to achieve greater value and

services in domains such as logistics, healthcare, and agriculture [113, 121, 23]. The

surge in the number of Internet-connected devices is growing at an exponential rate,

which is contributing to ever-increasing, massive data volumes that require real-time

analytics in order to extract business value [201].

An important challenge to realise IoT is how to provide a dependable infrastructure

for billions of devices and deliver their intended services without failing in unexpec-

ted and catastrophic ways [169, 52]. For IoT systems to deliver service on this scale,

they must be able to provide long-term dependability despite: (1) environmental

uncertainty e.g. ageing components and changes in system context; (2) functional

changes e.g. dynamic changes to applications and requirements; and (3) technolo-

gical changes e.g. new components, devices, interfaces, and protocols [181, 167]. It

must deliver service that can justifiably be trusted, encompassing attributes such as
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availability, reliability, safety, and maintainability, where reliability is a high-priority

goal to address for IoT solutions concerned with quality of service (QoS) [207].

Resilience is central to effective and scalable IoT systems. System resilience is defined

by its ability: (1) to resist external perturbations and internal failures; (2) to recover

and enter stable state(s); and (3) to adapt its structure and behaviour to constant

change [63]. One mechanism that can provide dependability and address resilience

is fault tolerance (FT), which considers how to deliver correct service at runtime

in the presence of system faults by implementing techniques during system runtime

[163, 16]. Such techniques provide a means of improving system availability and

reliability, which are key dependability attributes that can be improved using FT

methods specifically. FT can be considered a subset of system survivability, which is

a resilience concern that considers how hardware/software redundancy and diversity

help to mitigate the effects of correlated failures, such as an attack by an intelligent

adversary, or failures to large parts of the network infrastructure [184].

FT has four key responsibilities [122]: (1) to identify system errors caused by some

underlying fault(s); (2) to assess the damage caused by the fault(s); (3) to perform

actions that move the system into an error-free state; and (4) to provide system

treatment to mitigate the probability of the fault(s) recurring. There are two key

methods for providing FT [115, 144]:

• Reactive FT, where system recovery is initiated after an error has been detec-

ted, to decrease the influence of fault activation on the system.

• Proactive FT, where system recovery is initiated before an error has occurred,

by continuously monitoring the system and conducting fault predictions to

prevent their effects on the system.

Sezer et al. [181] identified that both rule-based and supervised learning approaches

were commonly used for context-based reasoning in IoT systems. Complex event

processing (CEP) is used in research and industry to identify complex situations

(i.e. composite events) by defining rule-based patterns in stream data (i.e. prim-

itive events). It is considered the paradigm of choice for monitoring and reactive

applications [36, 60], making it ideal for reactive, context-aware FT support.
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Machine learning (ML) has been widely proposed in literature to address many IoT

use cases, such as smart traffic/cities, healthcare, and agriculture [135]. In IoT, ML

has been used for making predictions, finding insights hidden in data, and making

intelligent decisions from the big data generated in IoT [138]. These attributes are

useful for providing data-centric FT support to identify and anticipate erroneous

system behaviours for proactive FT support.

Despite the benefits of FT on improving system resilience, IoT presents several chal-

lenges that make it difficult to apply conventional FT support effectively. IoT sys-

tems suffer from failures akin to conventional distributed systems, namely [73]: (1)

crash failures, where a server halts and requires a restart; (2) omission failures, where

a server stops sending and receiving messages; (3) timing failures, where a server’s

response is too early or too late; (4) response failures, where a server’s response value

or state transition that takes place is incorrect; and (5) arbitrary failures, where the

root cause is unclear. However, the nature of these failures is greatly influenced by

factors unique to IoT systems, as follows.

• Failures are exacerbated because IoT devices are typically constrained (e.g. in

terms of energy, computing power, and resources) and rely on wireless commu-

nication. This limits their ability to survive ‘in the wild’ or perform complex

recovery strategies when faults manifest, meaning that FT is better delegated

to external and more reliable entities, e.g. the fog or cloud [30].

• IoT systems are expected to continuously evolve to handle new services, fea-

tures, and devices that had not been anticipated during initial system develop-

ment, making it difficult to specify adequate error detection and recovery mech-

anisms a priori. The distribution of state and responsibility allows distributed

systems to be robust and survive a variety of failures, however achieving such

FT requires developers to reason through complex failure modes [26]. Most

IoT systems operate in dynamic contexts, where new services, devices, and

features may be added, removed, and changed over time. Therefore, IoT sys-

tems should be able to harness context awareness for dynamic and intelligent

decision making to ensure that FT remains future proof [197].
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• The scale of IoT devices is unprecedented. The number of devices that need to

be managed and that communicate with each other is an order of magnitude

greater than devices connected to the current Internet. Even more critical is

data management and its interpretation for application purposes (i.e. data

semantics) as well as efficient data handling [155].

1.2 Key Issues and Challenges

Existing FT solutions in literature suffer from many drawbacks that prevent them

from providing effective FT support in IoT, namely:

• Current FT implementations in IoT are static, tightly coupled, and

inflexible. For example: (1) they are designed for bespoke architectures [186,

86] and applications e.g. healthcare [208]; (2) they do not scale beyond small

(decentralised) solutions [186, 116]; and (3) they only provide solutions for

specific faults e.g. component failures [96] and communication link failures

[103]. This limits the effectiveness of their proposed solutions in addressing

emergent faults posed by the environmental uncertainty that is typical of most

IoT systems.

• Many FT solutions in IoT are already widely explored in distributed

systems. For example: (1) hardware redundancy, such as active-active (i.e.

load-sharing) redundancy across two data sinks [86]; (2) checkpointing [96],

where a snapshot of sensor data is stored for backward error recovery; and (3)

data traffic rerouting when gateway failure occurs [103]. IoT must go beyond

‘traditional’ FT recovery mechanisms and further consider the importance of

context awareness in FT, because IoT systems are highly associated with their

physical environments. For example, context awareness can help to optimise

waste management by installing level sensors on waste bins, so that waste

trucks can optimise routes to reduce fuel consumption [140]. Moreover, it is

important to infer context accurately because incorrect context can potentially

lead to inappropriate resource usage, user annoyance, or system failure [47].
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• IoT systems rely on highly fallible, heterogeneous, and geographic-

ally dispersed low-level sensor networks. With IoT emerges new data

sources that had not existed before and, as IoT rises in popularity, the main

challenge will be how many thousands, millions, or billions of devices can be

managed despite their reliance on battery power, which make them vulnerable

to frequent power outages. FT support must be able to scale in order to cope

with this demand, so that big data is able to be reliably collected and rapidly

processed to ensure fast decision making and achieve real-time business insights

[93]. Furthermore, FT support will need to communicate and cooperate with

these devices using a wide array of standards in order to accurately understand

system state and provide effective FT.

1.2.1 Research Questions

These challenges lead to four key research questions:

1. How can fault events and patterns be identified and classified in IoT systems?

2. How can an effective, pluggable FT framework be developed that is able to

mitigate and learn from fault events and fault patterns?

3. How can the FT framework be extended to incorporate dynamic strategies and

mechanisms that facilitate effective fault mitigation?

4. How can the FT framework be designed to support scalability?

1.3 Objectives

The aim of the work in this thesis is to address the challenges described in Section

1.2 by proposing a predictive-FT framework that is able to provide reactive FT that

can handle errors in real time, and also to learn from system errors in order to then

proactively handle imminent errors and harness the value of streaming IoT data,

which enables FT support to preempt and mitigate system errors before they are

able to cause damage to the system. An experimental and heuristic approach will

be adopted to test the objectives of this research, which are as follows:
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1. To identify and classify faults events and fault patterns in IoT sys-

tems. For a system to be resilient to faults, they must be understood properly.

The first objective is to have a thorough review of the different faults which

can occur in IoT systems and classify them so that patterns can be identified

on what are the root cause(s) and effect(s) that the faults may have on an IoT

system. A review of existing and emerging FT solutions in IoT is the starting

point for developing a comprehensive fault taxonomy.

2. To develop a service-oriented fault-tolerance framework for IoT sys-

tems that combines both reactive- and proactive-FT support. The

aim of this objective is to investigate the provision of reactive- and proactive-

FT as services to allow for changeable IoT system context and interactions.

Microservices are used to develop and integrate a reactive-FT approach based

on CEP to detect errors in real-time, and a proactive-FT approach via ML to

predict whether known errors are likely to occur imminently.

3. To incorporate strategies and mechanisms that facilitate effective

fault mitigation. The aim of this objective is to perform an extensive re-

view of strategies to resolve system errors that are reactively and proactively

detected in the second objective. The outcome of the review will inform the

development and integration of strategies and mechanisms for mitigating faults.

4. To ensure that the framework can scale to more complex IoT scen-

arios. The aim of this objective is to ensure that the system design is one that

is able to scale from small-scale to large-scale IoT systems. Microservices are

able to be replicated and repositioned across the IoT infrastructure when neces-

sary, which facilitates resilient FT support. The prior objectives would initially

be tested within a controlled, small-scale environment. However, as large-scale

IoT systems are equally viable in real-world solutions, it is important to assess

whether the framework is able to cope at scale.
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Figure 1.1: The FT-support subunits are ‘plugged into’ an existing IoT system, to
learn how the system fails, and execute actions on the system to provide reactive-
and proactive- FT support.

1.4 Significant Contribution to Thesis

The first contribution of this thesis is a literature review that provides a represent-

ative survey of state-of-the-art approaches to applying FT in IoT. It will focus on

all aspects of the responsibilities of FT, namely: (1) the errors being detected and

recovered from; (2) the techniques employed to provide this; (3) the overarching

failures against which their FT-support solutions are protecting; and (4) how the

systems are evaluated to demonstrate their efficacy. This contribution will inform

the development of a fault categorisation framework that will provide a more struc-

tured understanding of how IoT systems can fail. Namely, system failure scenarios

will be categorised by the system vulnerabilities, faults, and failures that enable the

scenarios to occur [161].

The second contribution is to devise a novel service-oriented predictive FT framework

that combines the real-time analytical power of CEP to react to errors in real time

if they cannot be predicted, and the long-term predictive power of ML to anticipate

and preempt errors that can be predicted [160, 162]. The FT framework consists

of an interconnected set of subunits (Figure 1.1), whereby reactive- and proactive-

FT support are designed to communicate information about the IoT system’s state

and errors via message passing. Specifically, they will be designed to be hosted as
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two independent microservices with individual responsibilities, meaning that they

can be deployed, scaled, and tested independently [192]. Adopting a microservices

architecture makes the solution lightweight and easy to update in scenarios where

future functionality requirements cannot be fully anticipated in advance, and mul-

tiple replicas of each microservice can exist at any given time for additional service

redundancy and scalability [71].

The framework will learn about the ways in which the system can fail using the ex-

perience gained from the CEP system. ML models will identify correlations between

contextual information and errors to anticipate the probability of a future error oc-

curring imminently. The framework provides the following specific contributions:

• Language-agnostic error definition. Most CEP systems use nondetermin-

istic finite automata (NFA) as the mechanism with which to define complex

events [75]. NFA-based CEP systems can use NFAs to define errors, and com-

posite events produced by NFAs can represent detected system errors. NFAs

can be designed to be modular, reusable, and language-agnostic so they can

be implemented in any NFA-based CEP system [161, 162].

• Distributed CEP for resilient FT support at the network edge. For

CEP-based real-time FT to be effective, it needs to be pushed as close to the

fallible sensor network as possible, and be fault tolerant itself. A bespoke CEP

system, BoboCEP, will be designed to be distributed across the network edge

on k instances of the software. The current state of partially completed NFAs

can be maintained across CEP instances via active replication, so that (k − 1)

instances can fail without complete FT-support service loss.

The third contribution is a rigorous evaluation of the FT framework against a vertical

farming system (VFS) use case. It has been predicted that IoT device installations

in the agriculture sector would increase from 30 million in 2015 to 75 million by 2020

[69]. VFS testbeds of varying scale and complexity will be designed to resemble those

that exist currently in industry. This will help to assess whether the contributions

of this thesis have the capability to scale to large-scale IoT systems [162].

The key qualities of the contributions in this thesis are as follows.
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• Interoperability. The solution will be pluggable so that it can be introduced

easily into existing IoT systems, which enables it to be applicable to all IoT

systems. This requires the solution to adhere to communication standards

that facilitate semantic interoperability, i.e. to understand system interfaces

and data automatically for seamless connectivity and for FT support to fully

understand the current system state [108].

• Reusability. FT support will be generic so that it is applicable to any IoT

system. A solid understanding of common problems in IoT systems enables

the development of common solutions to these problems. FT support solutions

can then be reused in various contexts, e.g. for newly introduced hardware and

software that fails similarly to existing system entities. Errors are represented

as simple, modular, language-agnostic NFAs and, by being expressed mathem-

atically and not programmatically, they are not tied to specific platforms or

programming languages.

• Trust. For the FT-support solution to be effective, it must also be fault

tolerant, so that it can be trusted to provide correct service despite faults in

the FT support framework itself. The proposed solution avoids being a single

point of failure (SPoF) by being capable of being redundantly distributed across

an entire IoT system’s infrastructure.

• Scalability. Evaluating the proposed FT framework on VFSs of varying scale

ensures that the framework can cope with more sensors, more data, and a

larger infrastructure that exhibits distributed event processing and load balan-

cing. Having the FT support framework deployed as independent microservices

means that support can be distributed across the IoT infrastructure e.g. re-

active FT at the network edge for low-latency error detection, proactive FT in

the cloud for more computing power.
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1.5 Thesis Structure

Chapter 2 of the thesis provides a brief background on FT in terms of its relation

to the wider topic of dependability, namely: (1) the attributes of dependability; (2)

key FT concepts such as failure, error, and fault; and (3) other means of achieving

dependability in literature, such as fault prevention, removal, and forecasting. It

also explores the key stages of FT implementation: detection, assessment, recovery,

and assessment.

Chapter 3 provides an in-depth analysis of FT specifically in the IoT domain. It

provides an extensive review of sixteen proposed state-of-the-art FT solutions in IoT,

and classifies them based upon: (1) the failures that FT is attempting to protect

against; (2) the vulnerabilities the proposed solutions have; (3) the errors detection

and recovery techniques they implement, and; (4) how the systems are evaluated.

Chapter 4 introduces an FT architecture based on microservices that underpins the

key desired attributes of the FT-support solution in this thesis, namely: (1) to

expose as much of the system state as possible; and (2) to adopt a standard method

of acquiring the interfaces of system services. These qualities enable FT support to

be ‘plugged into’ any existing IoT system and immediately begin to provide service.

Furthermore, this chapter introduces the Vulnerabilities, Faults, and Failures (VFF)

framework to classify system defects into tuples, which is used throughout the rest

of the thesis for defect classification.

Chapter 5 introduces CEP in more depth, and its relation to being the mechanism to

provide reactive-FT support. Complex Patterns of Failure (CPoF) is proposed, which

is the overarching concept of defining errors as NFAs and detecting them by using

CEP as a ‘reactive-FT engine’. A variety of error-checking NFAs are proposed to help

detect errors via data pattern analysis in CEP, namely: limit, trend, performance,

persistence, correlation, and inconsistency checking. The correlation check is crucial

to providing proactive FT with training data for supervised learning models, by

learning from error correlations that occur within IoT systems.

Chapter 6 provides insight into the VFS use case, used to evaluate the efficacy of the
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FT framework. A bespoke CEP system, BoboCEP, is proposed to provide resilient

CEP at the network edge. Then, a series of VFSs are proposed. Firstly, a small-scale

VFS testbed that contains a small number of plants, a limited infrastructure, and

a lack of hardware or software redundancy. It uses the FlinkCEP NFA-based CEP

system, which provides no CEP resilience. Secondly, a medium-scale VFS testbed is

proposed that is an upgrade of the small-scale testbed, which contains more plants,

more hardware and software redundancy, and CEP is distributed over three devices

on the network edge using BoboCEP. Finally, a dataset from a real-world, large-

scale VFS is used to validate that the FT framework can handle failure scenarios in

a real-world VFS.

Chapter 7 evaluates the FT framework using the testbeds and dataset from Chapter

6. The approach taken is to first evaluate CPoF in isolation, to show how the

proposed NFAs from Chapter 5 can provide reactive-FT support in isolation. Then,

reactive FT and proactive FT are used together to provide predictive support to: (1)

explore how correlations between with system context (e.g. time) and correlations

with other errors can help to predict and anticipate future imminent errors; (2)

ensure correct error detection despite erroneous data before detection; and (3) ensure

that error recovery has actually moved the system into an error-free state. Finally,

there is a demonstration of how BoboCEP facilitates long-term event processing and

load balancing, as well as a performance analysis of the implementation used in the

evaluation of this work.

Chapter 8 concludes the thesis by reflecting on how the work compares to the original

research objectives from Section 1.3. The limitations of the work are considered, as

well as future work that can address the limitations identified. Finally, the chapter

concludes by summarising the findings of this research.
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Chapter 2

Fault Tolerance

Fault tolerance (FT) is a means of achieving dependability that considers how to

deliver correct service and avoid service failures in the presence of system faults

[17, 16]. Its purpose is to mitigate the effects of system design faults by employing

techniques during the development of the system, to enable it to tolerate any faults

remaining in the system after its development [163].

This chapter provides a background on FT by first considering it in relation to the

wider notion of dependability, followed by an overview of the stages employed by FT

mechanisms to provide support.

2.1 Dependability

Many of the key fundamental dependability concepts and definitions that are widely

accepted in FT literature arise from numerous publications by Avižienis et al. [15, 17,

16], which are outlined in this section. They define the dependability of a computing

system as the ability for it to deliver service that can justifiably be trusted and can

avoid service failures that are more frequent and more severe than is acceptable.

The trust of a system is the acceptable level of dependence i.e. the extent to which

a system is able to avoid service failures. The key concepts of dependability are

outlined in their dependability tree (Figure 2.1), which considers the attributes of,

the threats to, and the means by which to attain dependability, discussed next.
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Figure 2.1: The dependability tree from [17], with FT highlighted in red.

2.1.1 Attributes

There are numerous attributes in literature that serve to measure the dependability of

a system, and enable it to be understood from a variety of perspectives e.g. security,

safety, and integrity. Some of the basic attributes are as follows [16]:

• Availability. Readiness for correct service. It is the degree to which a system

or component is operational and accessible when required for use [40].

• Reliability. Continuity of correct service. Is it the ability of a system or

component to perform its required functions under stated conditions for a

specified period of time [40].

• Safety. Absence of catastrophic consequences on users and the environment.

• Confidentiality. Absence of unauthorised disclosure of information.

• Integrity. Absence of improper system state alterations.

• Maintainability. Ability to undergo repairs and modifications.

The applicability and prominence of these attributes can vary between system applic-

ation. However, dependability is most often quantified in terms of availability and

reliability, which are the two key attributes that can be improved using FT methods
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specifically, i.e. a more fault-tolerant system is expected to be more available and

reliable [150, 100]. They are both crucial for providing trustworthiness that a system

is sufficiently resilient to failure, so that the system can withstand major disruptions

within acceptable degradation parameters and recover in an acceptable and timely

manner [49]. For example, they are important factors for cloud computing systems

to ensure minimal disruption to offered services as the cloud scales, where key issues

for scalability are avoiding, coping with, and recovering from failures [178, 175].

Sterbenz et al. [184] identified that the relative importance of availability and reli-

ability (Figure 2.1) depends on the application service: for example, availability is

of primary importance for transactional services such as HTTP-based web brows-

ing, whereas reliability is of primary importance for session- and connection-oriented

services, such as teleconferencing. Reliability is also a key requirement to protect

the integrity of shared, distributed ledgers, such as blockchain, which support the

execution of pieces of code called smart contracts, able to perform computations

inside a blockchain. Putting multiple smart contracts into communication turns a

blockchain into a proper distributed computing platform, which is appealing for ap-

plications that require code execution that is reliable, verifiable, and transactional

[61]. Microservices are an important design pattern for providing more reliability and

scalability because it breaks away from the monolithic megaservice antipattern that

prevents the efficient upscaling of only the specific services that are in demand [5].

Microservices are better suited for applications that require high concurrency and

high capacity, and test results have showed that they can help to reduce infrastruc-

ture costs in comparison with standard monolithic architectures, while guaranteeing

the same performance and response times as the number of users increase [202, 170].

In this thesis, the desire to address availability and reliability, and therefore improve

the dependability and trustworthiness of the system, is because the proposed FT

framework needs to avoid the situation where its own ability to provide FT support

fails, which would be catastrophic to the IoT system for which it provides support,

and to the trust that the system designer would have in implementing the proposed

framework. Key parameters to measure availability and reliability are [91, 114]:
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• Mean Time to Failure (MTTF). The average time for which a system will

perform as specified, measured from the start of operation until the time that

the first failure occurs. It can be used to compute the reliability of a system

as e−(1/MT T F ), where the failure rate is the inverse of MTTF. When hardware

reliability assessment is coupled with software and firmware, the only way to

ensure reliability is to set MTTF and repair objectives to qualify them through

reliability testing [8].

• Mean Time to Repair (MTTR). The average time required for a system

to repair or replace a failed component in order to bring the system back into

operation. It can be used, along with MTTF, as a common way to compute

availability: MTTF/(MTTF +MTTR). That is, the percentage of time that

the system can perform its designed function.

• Mean Time Between Failures (MTBF). The time from the start of opera-

tion until the a component is restored to operation after repair, i.e. MTBF =

MTTF+MTTR. It is used to provide the amount of failure for a product with

respect to time. MTBF is used for repairable components, whereas MTTF is

used for those that cannot be repaired.

2.1.2 Threats

Failures

A service failure, or simply a failure, is an event that causes a deviation from the

correct service, as defined by the functional specification of the system [16]. As

discussed by Cristian [73], when designing a system to be fault tolerant, the system

specification needs to consider not only the failure-free behaviours but also the likely

failure behaviours, known as failure semantics. That is, if a specification prescribes

that the failure behaviours likely to be observed in a system s are in some class F ,

then it can be said that: s has F failure semantics.

This is an important consideration because, when implementing FT mechanisms,

it should be known which failure behaviours are likely to occur and which have a
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probability of occurrence small enough such that they can be considered ‘negligible’.

Key failure semantics are as follows [73, 190]:

• Omission. When a server fails to respond to incoming messages. It can be

classified into two sub-types: (1) send, when a server fails to send messages;

and (2) receive, when a servers fails to receive messages.

• Crash. When a server halts and provides no further service. It is essentially

an omission failure whereby all incoming messages receive no response.

• Timing. When a server’s response is outside of a specified time interval. It

can be classified into two sub-types: (1) early, when an action is performed

too soon e.g. a timer runs too fast; and (2) late or performance, when a

response occurs too late. If a response never arrives, it is an omission failure.

• Response. When a server’s response is incorrect. It can be classified into two

sub-types: (1) value, when the value of a response is incorrect; and (2) state

transition, when the state transition of a server is incorrect.

• Arbitrary. When one of the aforementioned failure types occurs arbitrarily.

In this thesis, arbitrary failures will be considered unpredictable, i.e. failures

with no pattern of occurrence.

By treating failures as allowable system behaviours, they can be precisely defined and

understood as functional requirements, enabling a systematic approach to applying

error detection and recovery mechanisms that ensure failure mitigation.

Faults

A fault is the adjudged or hypothesised cause of an error and is the consequence of

a failure in the system, where an active fault is one that produces an error, and a

dormant fault is one that does not [163, 16]. A fault is a state in the system that

can cause a reduction, or loss of, capability for the system to provide its correct

functionality, which may cause a system to provide a lower standard of service to

cope with untreatable faults (i.e. graceful degradation) [98, 122]. Faults can be

placed into three major groupings [16]: (1) development faults, ones that occur
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Figure 2.2: A visualisation of (a) transient, (b) intermittent, and (c) permanent
fault persistence over time t. Orange circles represent an active fault, and blue
circles represent a fault having transitioned to dormancy.

during system development; (2) physical faults, ones that affect hardware; and (3)

interaction faults, ones introduced into the system from external sources.

Persistence The persistence of a fault is defined by three discrete categories (Fig-

ure 2.2), namely [150, 110]:

(a) Transient. Arbitrary faults, bounded in time, that cause erroneous behaviour

for a short time before going away, with the potential to occur arbitrarily in

the future. The errors usually do not have a clear root cause (e.g. network

interference) and are resolved using simple recovery techniques (e.g. temporal

redundancy) [91].

(b) Intermittent. A fault that does not go away entirely, but instead oscillates

between being active and dormant (e.g. loose electrical connection).

(c) Permanent. A fault that is assumed to be continuous in time. For hardware,

this reflects the permanent outgoing of a component (e.g. device failure). For

software, this reflects the crash of some process.

Vulnerabilities Faults can be internal or external to a system. For example, a

vulnerability in network security is a threat that can be exploited to cause faults in

software e.g. malware [214]. An internal fault that enables an external fault to harm

the system is a vulnerability, and is necessary for an external fault to cause an error

and possibly subsequent failures [16].
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Rauscher et al. [168] developed the eight-ingredient (8I) framework as a systematic

way of conducting vulnerability analysis on both internal and external aspects of

a given system. 8I identifies that the reliability and security of communications is

vital for continuous system operation and is the key infrastructure upon which all

other critical infrastructures depend. The framework identifies eight ‘ingredients’

that categorise different vulnerabilities which can manifest in a system, namely:

• Human. Intentional and unintentional behaviours, physical and mental lim-

itations, education and training.

• Policy. Agreements, standards, policies, and regulations defining the beha-

viour between entities and governments.

• Hardware. Electronic and physical components that compose the network

nodes, including circuits, fiber optics, and semiconductor chips.

• Software. Creating, maintaining, and protecting code, including physical stor-

age, development and testing, version control, and control of code delivery.

• Networks. Topological configurations of nodes, synchronisation, redundancy,

and physical and logical diversity.

• Payload. Information transported across the infrastructure, traffic patterns

and statistics, and information interception and corruption.

• Environment. Temperature-controlled buildings, harsh conditions such as

outside terminals and cell towers exposed to weather conditions, among others.

• Power. Internal power infrastructure, batteries, grounding, cabling, and back-

up generators.

The vulnerable areas outlined by each ingredient may vary in their applicability to

IoT systems. However, 8I provides a complete understanding of all the potential

vulnerabilities of IoT systems.
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Errors

An error is a manifestation of an active fault in the system that appears during

program execution or testing in which the logical state of an entity differs from its

intended value [150, 110]. An error is detected if its presence is indicated by an error

message or signal, and latent if undetected [16].

There is not a one-to-one relationship between a fault and an error: a fault may have

multiple errors, and those errors may not be unique to a single fault in terms of how

they manifest and are detected by a system [97]. For example, Malik et al. [137]

explored the problem of data plane link failures in software-defined networks (SDNs).

Vulnerabilities, such as human error, natural disasters, and system overload would

cause identical network crash faults that would share a common data-loss error.

However, regardless of which fault was the root cause, rerouting data flows through

a working data link was the common solution to handle the faults. If understanding

the root cause is crucial to provide the most appropriate recovery strategy, errors can

be used to trace a fault by means of fault diagnosis, by analysing failure symptoms

via sensor data analysis and signal processing [80, 205].

Error Propagation When an error is present in a system, it can be successively

transformed into other errors that spread over multiple components (Figure 2.3),

where the speed of propagation and depth (i.e. the number of affected processes) are

primary measurements of the severity of propagation [16, 13]. The greater the depth,

the more difficult it is to tolerate, which is why software-based detection techniques

require careful placement of error detectors to cover the critical error-propagation

paths and prevent excessive propagation [166]. A system’s vulnerability to error

propagation is often tested using fault injection, whereby faults are intentionally

activated to assess the coverage and latency of error-detection mechanisms in place

[125, 213]. However, up to 72% of injected faults cannot be considered representative

of residual software faults because they are consistently detected during tests [147].

The propagation between two software components is an example of dependency res-

ulting from functional interactions (e.g. data exchange), and the halting of software
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Figure 2.3: An example scenario of error propagation between two components,
adapted from Figure 10 in [16]. Fault activation is shown with a solid arrow, and
error propagation with a dashed arrow.

activities following a hardware crash is an example of dependency via a structural in-

teraction [102]. When exception handling, if an exception cannot be handled and its

error cannot be masked, it can be thrown (and therefore propagate) to the next outer

exception, which further widens the scope of the error in the system and becomes

increasingly more difficult to contain it [123].

2.1.3 Means

As defined at the start of the chapter, FT is a means of achieving dependability.

However, there also exist three other means in FT literature, namely [16, 122]:

• Fault Prevention. To prevent the occurrence of faults at the development

stage by using methodologies that help to minimise fault introduction.

• Fault Removal. To reduce the number and severity of faults at the develop-

ment stage by means of testing.

• Fault Forecasting. To estimate the present number, the future incidence,

and the likely consequences of faults via probabilistic estimation.

The purpose of FT is distinct from these other means for the following reasons. FT

is implemented during the development stage, but only takes effect at runtime and,

like fault prevention, aims to improve the trust in the system’s ability to meet its

specification. It relies upon redundancy and defensive programming techniques that

are able to detect, assess, and recover from errors, as well as treat the underlying fault

that caused errors in order to avoid faults and mask errors from the rest of the system
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[163, 122]. Shifts towards FT are driven by the observation that fault avoidance does

not deliver sufficient dependability against unexpected failure scenarios that system

designers could not anticipate during initial system design [185].

2.2 Stages

The process of implementing FT is usually described by four discrete stages that,

together, constitute the means by which FT support can enable system faults to be

tolerated. The terminology used to describe the stages, and the stages themselves,

often differ slightly across literature. Therefore, in this thesis, they are simplified

and conflated into the following four stages: detection, assessment, recovery, and

treatment, discussed next.

2.2.1 Detection

The detection stage is where FT attempts to detect erroneous system state. This

occurs due to an active fault that cannot be detected directly i.e. an active fault can

only be identified by the error(s) that it causes [122]. Errors are typically detected

by checking the system state e.g. by routine means of an audit (checksum) check,

or via special components that are designed to detect errors [91]. Lee et al. [122]

outline a broad classification of checks that the majority of error-detection measures

use, namely:

• Replication. Using alternative implementations of a system against which the

activity of the system can be checked for consistency. That is, the output from

each replica is compared to detect the presence of an error as manifest through

an inconsistent output from some replica(s) (e.g. triple-modular redundancy).

• Timing. If the specification requires timing constraints of the provision of

service, then the service can monitor whether the constraints have been met.

If they are not, a ‘timeout’ may be triggered to indicate this.

• Reversal. This involves taking the output from a system, calculating what
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the input should have been in order to produce that output, and comparing it

against the actual input to see if there was an error.

• Coding. Within an object, redundant check data is maintained in some fixed

relationship with non-redundant data, where corruption of either form of data

can therefore be detected (e.g. via parity checks).

• Reasonableness. These checks test whether the state of various system ob-

jects are ‘reasonable’ based on the intended usage and purpose of the objects.

For example, an angle θ in degrees is only acceptable if its value is 0 ≤ θ ≤ 360.

• Structural. There are two types of structural check: (1) semantic integrity,

that check the consistency of information contained within a data structure;

and (2) structural integrity, that check whether the structure itself is consistent.

• Diagnostic. These checks differ from the ones covered in that they check the

behaviour of the components from which the system is constructed, rather than

the behaviour of the system itself. They involve exercising a component with

a set of inputs for which the correct outputs are known.

Although system resilience is improved by the extra resources introduced via redund-

ant components, limits on resources demand that designers choose which threats to

target more redundant resources, leading to more flexible designs that enable com-

parison of the risks and costs of different solutions [185]. The benefit of redundancy is

that it enables the identification of discrepancies between redundant entities. These

techniques come in the following three forms.

Design Diversity

This is the technique in which redundant components (i.e. variants) are independ-

ently designed and implemented but still adhere to the same system specification, in

order to minimise the probability that a fault in one variant exists in the other vari-

ant(s) [105]. Design diversity facilitates the implementation of several error-detection

checks i.e. replication and reasonableness checks.
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Figure 2.4: The Recovery Block approach.

Adjudication In addition to at least two variants, design-diverse FT requires ad-

judication. This is a process to decide whether a “correct” result has been produced

by the variants that supposedly provides an error-free result after execution [159].

It can come in three types [163]: (1) a voter, which compares the results from two

or more variants (e.g. majority, mean, and consensus vote); (2) an acceptance test

(AT), which verifies acceptable system behaviour based on the success of an assertion

(e.g. satisfaction of requirements, and reasonableness tests); or (3) some hybrid of

the two. Examples of design diversity are as follows [163, 165, 146].

Recovery Block (RcB) This approach attempts to fulfil an AT with multiple

software variants that are executed sequentially (Figure 2.4). When a variant fails

to pass the AT, it rolls back to the last checkpoint, checks to see whether any timeouts

have occurred, and attempts to fulfil the AT on the next variant. If all variants have

been tried without successfully fulfilling the AT, an exception is raised.

As a backward error recovery technique, an error detection causes the system to revert

to a previously saved (error-free) state via checkpointing, and then re-computes the

correct system state using a sequence of variants [196]. It applies passive replication

that favours a primary variant as the first to be executed, and progressively attempts

backup variants in a given sequence until all variants have been attempted. An

example RcB algorithm is shown in Algorithm 2.1.

Khan et al. [106] considered a distributed variant of RcB for fault-tolerant wormhole

routing where a section of a parallel system that spans between the source and des-
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Algorithm 2.1 An example Recovery Block algorithm.
alternatives[] . Array of alternatives.
capture_checkpoint()

for a in alternatives do
output← execute(a) . Execute current alternative a.
if acceptance_test(output) = true then

return true . Passed acceptance test.
else

restore_checkpoint()
if has_timed_out() = true then

return exception . Timeout occurred.
end if

end if
end for

return false . All acceptance tests failed, or error occurred.

Figure 2.5: The N-Version Programming approach.

tination nodes was dynamically partitioned into overlapping distributed RcB groups.

Simulation results indicated that it was able to tolerate both node and link failures.

N-Version Programming (NVP) This approach uses at least two independently

designed variants that concurrently produce results, and uses an adjudicator to select

a final result (usually via majority vote), or an exception is raised if no result can

be determined (Figure 2.5). It uses active replication, a technique which gives all

replicas the same role without centralised control found in passive replication i.e. the

primary-backup technique used in RcB [89]. An example NVP algorithm is shown

in Algorithm 2.2.

A recent NVP case study looked favourably on NVP, in that it enabled cross-checking

between variants to find bugs, however, the lack of collaboration between the inde-
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Algorithm 2.2 An example N-Version Programming algorithm.
variants[] . Array of variants.
input . Input data for variants.
outputs[] . Outputs from variants.

for v in variants do
thread_execute(v, outputs) . Concurrently execute variants.

end for

while length(outputs) ! = length(variants) do . Wait for all variant outputs.
if has_timed_out() = true then

stop_threads()
return exception . Timeout occurred.

end if
wait(1) . Wait for 1 second.

end while

if majority_vote(outputs) = true then . Adjudicate outputs via vote.
return true . Passed vote.

else
return false

end if

pendent teams that were developing independent variants was seen to stifle develop-

ment [126]. Triple-modular redundancy (TMR) is similar to NVP but for hardware

FT, where three functionally-identical modules can detect a fault in a single module

and mask it instantly via a majority vote of the output from each module [14, 122].

The t/(n−1)-Variant Programming (TN1VP) approach is a similar approach to NVP

[212]. It can identify the correct result from a subset of the results of n variants,

providing that the number of faulty modules does not exceed t i.e. it can tolerate

at least t software faults. Both TN1VP and NVP can tolerate some related faults

between variants. However, in general, TN1VP has higher reliability, whereas NVP

is better from a safety perspective.

N Self-Checking Programming (NSCP) This approach resembles NVP, how-

ever, self-checking can check its own behaviour during execution. NSCP can adapt to

partial failures whereby an agreement between one pair but a disagreement between

another will cause the agreeing pair to be chosen as the final result; two pairs with

Fault Tolerance 25



Figure 2.6: The N Self-Checking Programming approach.

Algorithm 2.3 An example N Self-Checking Programming algorithm.
result_1← run(variant_1) on Hardware 1
result_2← run(variant_2) on Hardware 1
result_3← run(variant_3) on Hardware 2
result_4← run(variant_4) on Hardware 2

if compare(result_1, result_2) = true then
pair_1← true . First pair match.

else
pair_1← false

end if

if compare(result_3, result_4) = true then
pair_2← true . Second pair match.

else
pair_2← false

end if

if pair_1 = true and pair_2 = false then
output← result_1 or 2 . Select first pair.

else if pair_1 = false and pair_2 = true then
output← result_3 or 4 . Select second pair.

else if pair_1 = false and pair_2 = false then
return exception . Neither pair match.

else if pair_1 = true and pair_2 = true then
if compare(result_1 or 2, result_3 or 4) = true then

output← result_1 or 2 or 3 or 4 . All results match.
else

return exception . Each pair match but with different results.
end if

end if

return output
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different agreed results would raise an exception. It works as follows, with an example

algorithm shown in Algorithm 2.3.

NSCP executes two pairs of variants on two separate hardware components. The

results from each pair are compared:

• If any pair’s results do not match: a flag is set to indicate pair failure.

• If a single pair failure occurred, then the non-failing pair’s result is returned

as the NSCP result.

• If both failed, then an exception is raised.

If each pair matched, the results from each pair are then compared:

• If both pairs match, the result (shared by all variants) is returned as the NSCP

result.

• If both pairs do not match, then an exception is raised.

A simulation analysis by Gokhale et al. [87] showed that, compared to NVP and a

distributed variant of the RcB approach, the expected number of failures was highest

for NSCP. This was assumed to be because NSCP ran more software variants in

parallel than NVP and RcB, which therefore made it more error prone than the

other two approaches. NSCP ran four software variants executing in parallel, three

for NVP, and two executed sequentially, rather than in parallel, for RcB.

Data Diversity

The technique wherein if one expression of data x fails execution of function P (x),

then it is “re-expressed” as y = R(x) for re-execution as P (y), which is repeated until

P accepts some diverse form of x, or an exception is raised [163, 127]. Diversity is

achieved through the variants of input data that are generated via data re-expression.

Data diversity facilitates the implementation of several error-detection checks i.e.

reversal, coding, and structural checks.

Nguyen-Tuong et al. [151] considered data diversity in N-variant systems to pro-

tect against data corruption attacks. Data was transformed in the variants so that
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identical concrete data values had different interpretations. That is, in order to cor-

rupt data without detection, an attacker would need to alter the corresponding data

in each variant in a different way while sending the same inputs to all variants.

Rizwan et al. [172] proposed data re-expression algorithms that could be used to tol-

erate some hardware faults. For example, if memory faults occurred, data diversity

could be used to customise memory allocation for storing. Gashi et al. [83] exploited

redundancy in the SQL language by re-expressing one or more SQL statements into

different but logically equivalent statements in order to produce redundant execu-

tions. This helped to reduce the risk of a failure being repeated when the re-expressed

statement was executed on the same or another replica of the same database man-

agement system.

Retry Block (RtB) This approach uses an AT and backward error recovery to

achieve FT, which means that it closely resembles RcB. The main difference is that

RtB executes the primary alternative multiple times with re-expressed inputs, and

only switches to a backup alternative if a timeout occurs before it is able to achieve

an output that fulfils the AT. The backup alternative executes with the original

input. If it fails to fulfil the AT, an exception is raised. An example RtB algorithm

is shown in Algorithm 2.4.

Temporal Diversity

The technique in which event execution is performed at different times, such that if

an input fails at time t, it is re-executed at a later time t+n [163]. Temporal diversity

facilitates the implementation of several detection checks i.e. timing and diagnostic

checks. An example algorithm of how temporal diversity could be implemented is

shown in Algorithm 2.5.

Lewis et al. [124] considered how load balancing served as an example of temporal di-

versity by modifying the algorithm being used by the load balancer every 20 seconds.

They showed that, by adding this diversity, they were able to decrease failure rates in

handling client requests. Lathia et al. [120] used temporal diversity as a mechanism

for retaining user interest in recommendation systems by examining how a number

Fault Tolerance 28



Algorithm 2.4 An example Retry Block algorithm.
input . Input data.
timeout← false

result← primary(input) . Execute primary alternative.

while acceptance_test(result) = false do
if has_timed_out() = true then

timeout← true
break . Timeout occurred.

end if
result← primary(reexpress(input)) . Primary with re-expressed inputs.

end while

if timeout = true then
result← backup(input) . Execute backup alternative.
if acceptance_test(result) = false then

return exception . All alternatives failed.
end if

end if

return result

Algorithm 2.5 An example temporal diversity algorithm.
input . Input data.
while execute(input) = false do . Execution failed.

timeout← has_timed_out()
if timeout then

return false . Timeout occurred.
else

wait(5) . Wait for 5 seconds.
end if

end while
return true . Execution succeeded.
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of characteristics of user rating patterns affected diversity, e.g. profile size and time

between rating.

Çiço et al. [54] presented the exploitation of temporal diversity for virtual machine

(VM) instantiation in the cloud via URL calls between subsystems. Representa-

tional State Transfer (REST) requests were performed to initialise VMs. However,

if transient errors occurred, the problem could be mitigated with temporal diversity

by repeating the URL request with the same input data several times until a correct

result was obtained.

2.2.2 Assessment

The assessment stage encompasses several notions in FT literature. Firstly, it is the

period after error detection where the underlying fault that caused the error(s) is

hypothesised, based on contextual information (e.g. the erroneous component, and

the time of occurrence). This is termed the error assessment (or error diagnosis

[163]) and helps to identify the best error-recovery procedure to execute given the

hypothesised fault.

Another part of the assessment stage is to understand the extent of the damage

caused by the fault activation, because the initial error might have propagated (Sec-

tion 2.1.2) before being detected. This is termed damage confinement [122], or error

containment/isolation [163, 91], and it serves to ensure the entire scope of erroneous

behaviour is quarantined and the error is isolated to a unit of mitigation before

applying holistic error recovery to the unit.

For example, Hu et al. [95] proposed a structural health-monitoring system for

bridges that used data from a connected wireless sensor network (WSN) that con-

tained accelerometers, strain gauges, and temperature sensors for detecting bridge

vibrations and strains. An important error assessment, therefore, is to determine

whether dangerous levels of vibration and strain are a matter of bridge integrity loss

or sensor malfunction. Moreover, in a star topology network, it is challenging to

assess whether devices have failed, or congestion is the cause. Plus, if devices have

failed, it is difficult to determine which have failed, because a gateway failure will
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cause all other devices to appear to have crashed, a problem which Álvarez et al.

[10] proposed to minimise with their replicated gateway solution.

2.2.3 Recovery

With the error(s) detected and assessed, the recovery stage serves to transform the

current erroneous system state into an error-free state wherein normal system opera-

tion can continue [122]. A similar notion, error mitigation, is also an error-processing

technique. Whereas error recovery substitutes an erroneous state for an error-free

state, error mitigation attempts to remove, or mitigate, an erroneous state without

transitioning to a new state e.g. data correction [91].

The primary strategy for error recovery is via redundancy, which is defined as the

presence of auxiliary components in a system to perform the same or similar functions

as other elements for the purpose of preventing or recovering from failures [40].

The use of sufficient redundancy can enable a system to recover without explicitly

declaring error detection and therefore enables the system to mask the error, or

provide architectural dynamic reconfiguration, for fault handling [17, 123].

In hardware, power electronic converters are always based on hardware redundancy

plus associated control strategies, and it is shown that some FT methods, such

as redundant switching states and neutral shift, are easily implemented and cost

effective, but cannot maintain the-full rated power after faults [216]. In aerospace

design, Bennett et al. [25] considered redundancy in electric drive for aircrafts that

were able to maintain a constant torque despite aircraft power supply and control

signal failures, in order to ensure adherence to stringent aerospace safety, reliability,

and FT standards.

In software, critical infrastructures, such as energy, transportation, and nuclear in-

dustries, require highly reliable software that can be achieved via the cloud, where

data redundancy, availability, and survivability are attainable when essential system

components are isolated or lost [7]. The reliability of web services is achieved via

redundant services working in parallel, which are identical in functionality so that, if

one fails, it can be replaced without complete service loss [44, 88]. Microservices, a
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service-oriented architecture (SOA) subset, are an enabler for scalable, agile and reli-

able software systems, and therefore the coupling, integration, scalability, monitoring

and development of microservices helps to achieve reliability [94]. Having redundant

microservices means that, if one fails, other instances will still be available to take

the load of the failed microservice. This is also useful for load balancing whereby

many microservice instances are available simultaneously and can scale with demand

i.e. horizontal scaling [171].

In most error-detection scenarios, a fault occurs, which causes errors to be present

in a system, and the error-detection mechanism uses its internal logic to deduce the

presence of the errors and trigger a recovery strategy. For safety-critical applications,

it is desirable to identify the conditions that lead to faults to prevent predicable

errors from jeopardising safe operation [199, 180]. A mixture of both approaches

covers predictable and unpredictable faults, discussed next.

Reactive FT

This approach is where the system initiates error recovery after an error has been

detected, and requires fast decision making with a low-latency connection to the

hardware or software at fault. Key approaches are as follows [173, 19, 156, 3]:

• Checkpointing/Restart. When a task fails, it restarts from a recently saved

(i.e. checkpointed) state, rather than from the beginning, which is an efficient

technique for long-running applications.

• Job Migration. If a job cannot be completed on one machine, the task is

migrated onto another machine to complete it instead.

• Replication. Several instances of a task are replicated and run across numer-

ous different resources (i.e. active replication), such that if one fails, the other

resources can compensate.

• Exception Handling. When the normal flow of execution fails, exceptional

conditions can be defined to recover from it.
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• Self-Healing. When multiple instances of an application are running on vari-

ous machines, it automatically handles failure of application instances.

For example, in large-scale WSNs where thousands of sensors are scattered over a

wide area, there is an increase in the probability of network component and data

transmission failures. Retransmitting data, or sending data replicas across multiple

paths, provide effective reactive approaches based on redundancy to mitigate the

effects of the failures [53].

Proactive FT

This approach is where the system initiates error recovery before an error has been

detected by reacting before a fault is activated and, therefore, mitigating the fault’s

imminent system error(s) that might have potentially led to service failure(s) [70].

Proactive FT and fault forecasting (Section 2.1.3) are similar concepts. However,

the purpose fault forecasting is to estimate the present number, the future incidence,

and the consequences of faults [119], whereas proactive FT is a runtime approach to

preempting imminent errors.

Preemptive migration is similar to the reactive-FT strategy of job migration. How-

ever, with this approach, failures are prevented by preemptively migrating parts of a

system away from hardware or software that is expected to fail imminently [70, 144].

For example, a common use is to examine the behaviour and utilisation of virtual

machines (VMs) such that, when a VM is predicted to fail imminently, services are

migrated to new VMs to avoid downtime [158, 198].

As software “ages” during its life-cycle, there is an increased failure rate and per-

formance degradation that is attributed to software changes and ‘elusive’ bugs that

accumulate and lead to an eventual software failure [56]. Software rejuvenation

stops ageing software, cleans its internal state, and resumes it, where the downtime

is masked using FT strategies [35]. In modern cloud solutions, software rejuvenation

is often tied to VM preemptive migration, whereby fallible VMs are replaced by new

VM processes brought online to replace them before they fail [134, 198]. The ageing

effects on software are the result of error accumulation, in terms of leaked resources
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or corrupted state [56]. By examining the failure distribution of a system to monitor

software ageing indicators (e.g. memory leaks), the software rejuvenation trigger

interval can be optimised by predicting the time to (resource) exhaustion (TTE), in

order to maximise system availability or minimise operational costs [218].

Load balancing is also a form of proactive FT. That is, whenever the load of CPU

and memory exceeds a certain limit (e.g. 75% utilisation of CPU), the load from the

CPU is transferred to another CPU that has not exceeded its limit, which prevents

the original CPU from being overwhelmed with traffic and potentially crashing [3].

2.2.4 Treatment

The treatment stage encompasses the techniques that can be used to target a specific

fault that has caused error(s) which required detection, assessment, and recovery, by

helping to ensure that the effects of the fault do not immediate recur [122]. It is

the final stage of FT that removes the fault from the system, typically by means of

software updates or patches [91].

Bondavalli et al. [29] proposed a mechanism to discriminate intermittent and per-

manent faults against low rate, low persistence transient faults with a device called

α-count that attempts to: (1) keep components in the system that have just experi-

enced transient faults; and (2) quickly remove components affected by permanent or

intermittent faults.

Meling et al. [142] proposed the Distributed Autonomous Replication Management

(DARM) framework that improved system dependability via a self-managed fault-

treatment mechanism that adapted to network dynamics and changing requirements.

DARM provided self-healing and self-configuration, where objects were relocated

or removed to adapt to failures (i.e. job migration), or controlled changes such

as scheduled maintenance (e.g. software and operating system upgrades). Error

recovery decisions were distributed to each individual group deployed in the system,

which eliminated the need for a centralised manager and enabled groups to perform

fault treatment on themselves.
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2.3 Summary

This chapter started by placing FT within the wider notion of dependability, and

also explored similar means of achieving dependability that existed in literature:

fault prevention, removal, and forecasting. Key FT concepts were also defined, most

crucially: failures, faults, and errors, and how these three concepts relate to each

other. The ways in which dependability could be quantified were also explored, and

availability and reliability were identified as being two key attributes that can be

improved using FT methods.

With regard to how FT is implemented, four stages were identified: (1) detection,

where FT attempts to detect erroneous system state(s); (2) assessment, where the

underlying fault that caused the error(s) is hypothesised; (3) recovery, where the

current erroneous system state is transformed into an error-free state; and (4) treat-

ment, which explores techniques that can be used to target the fault which caused

the error(s) which were recovered from.
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Chapter 3

Fault Tolerance in IoT

This chapter provides a comprehensive review of proposed FT solutions in literat-

ure that specifically target the IoT domain. The sixteen systems chosen for review

are intended to be representative and were selected to take into account scale, het-

erogeneity, portability, and application. They range from small-scale, decentralised

systems to large-scale smart city applications, to provide a broad insight into how

FT is applied across diverse IoT systems.

The search string “iot fault tolerance” was used when searching for these solutions,

in order to keep them relevant to IoT. The review focusses on the motivations of the

work, the targeted domain, proposed mechanisms to provide the FT necessary to

achieve dependability, and system validation (if any). They are in ascending order

from the first author’s surname and year of publication.

The proposed solutions are summarised (Section 3.2) by considering the failures

addressed, the vulnerabilities identified as having allowed faults to be present, the

detection and recovery strategies used, and an overview of how the proposed solutions

were evaluated.

3.1 Review

3.1.1 Self-Learning Group-Based Fault Detection (SGFD)

Liu et al. [128] proposed a framework for online sensor fault detection that was

targeted at monitoring IoT systems in an industrial setting (e.g. an oil field, as
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explored in their evaluation). Their system focussed on three types of data-value

fault that were assumed to occur due to sensor failure, namely: outliers, stuck-at

faults, and spikes.

To detect these faults, they proposed a mechanism called statistics sliding windows

(SSW) that created a series of windows, wherein one contained recent sensor data

that regressed into historical windows. For example, for sensor s, the current value vc

and the previousm values would form the current windowWc = {vc−m, vc−m+1, ..., vc}

in the set of k windows of equal length Hv = {W1,W2, ...,Wk}. Values discarded

by Wc would populate a buffer window Wr that, upon reaching size m, would join

set Hv as W1, and Wk would be dropped. A stuck-at fault would be detected if, for

current window c, σ2 = 0. A spike would be detected if σ2 were large enough to pass

a given threshold.

They considered how the system could detect data trends by comparing the current

trend vector with historical ones to detect both rational and irrational events. A

rational trend meant that the sensor value transformed smoothly from one level to

another and was caused by a ‘rational reason’. An irrational trend meant that the

value changed when something was wrong with a device. They proposed the status

transform window (STW) to define a time interval and calculate the cosine angle

between the current trend and existing vectors, respectively, whereby a new trend

was identified if the angle were large enough, given some threshold.

The self-learning framework architecture comprised three modules: (1) Application

DB, the interface for a high-layer application which retrieved sensor fault predictions

and user feedback; (2) Detection Thread, a background service that contained the

main detecting process; and (3) Self-Learning Thread, which used user feedback

to revise its trend vectors. This was coupled with the group-based fault detection

algorithm that applied the aforementioned concepts to detect data-value faults.

Their evaluation was a simulation that used real data from an oil field. Experimental

results showed that the system could detect 95% of data-value faults in the simulation

data, which contained 751.68 million samples from 5800 sensors. Their solution did
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not explore error-recovery mechanisms, and was only concerned with detecting data-

value faults in an industrial IoT system.

3.1.2 Services Choreography (SerCho)

Cherrier et al. [46] explored the idea of services choreography to distribute applic-

ation logic across a network and avoid orchestrations (i.e. centralised control) to

achieve a more efficient use of energy in a constrained network. They built upon

their original work of the D-LITe framework [45] that used finite-state transducers

(FSTs) to express system logic as a variety of states through which each underlying

‘object’ (i.e. physical device) could transition. For the choreography to work, the

synchronisation between objects was required. As an object changed its state, other

objects might have needed to change their states too.

To perform all necessary state transitions, an initial state was changed and the rest

that need changing were done so in a cascade: the object with the initial state

change observed its ’to-be-checked’ list and notified other objects about the state

to which they should transition also. This was performed until the state change of

all relevant objects was completed. They proposed a mechanism to address state

desynchronisation by simply putting objects back into a compliant and coherent

state if they were discovered to be in incorrect states.

Their experimental study consisted of 4 objects: 1 generator that sent 12 events (1

per second) and waited 10 seconds before repeating (which was an arbitrary waiting

time chosen by the authors); and 3 counters organised as a cascade (i.e. in series),

which received and counted events before sending them to the next counter to do

the same. Each counter should have received all 12 events. Random message erasure

was simulated in the experiment at rates of 0%, 5%, 10%, and 15% erasure. The

first experiment applied the checking system in the 10-second waiting period to

resynchronise any counters that were not in their correct states, whereas the second

experiment did not.

As counters received data, the resynchronisation required increased with each device.

At 10% error rate, the correction mechanism failed because check messages were
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Figure 3.1: An example scenario of the decentralised FT mechanism proposed by Su
et al. [186].

lost, which demonstrated how the proposed solution was not scalable if it could not

work reliably in a system with so few devices at a 10% error rate. Furthermore, the

check frequency showed that making checks more often when the error rate increased

resulted in a higher valid state count. At 5% error rate, there was an average of 50%

valid states if checks were made after every event, meaning that very frequent checks

were needed to keep track of failed data transmission.

3.1.3 IoT/M2M Middleware (M2M-Mid)

Su et al. [186] demonstrated a decentralised FT mechanism that distributed applic-

ation ‘components’ (i.e. services) across underlying devices. Each component was

delegated to a specific device with the redundant devices waiting in standby to fulfil

the component (although redundant devices could be fulfilling different components

in the meantime). A ‘redundancy level’ determined how many devices were delegated

to provide component redundancy. The purpose behind a decentralised design was

that it provided fail-over on device failure in a way that alleviated a central body

from orchestrating recovery strategies, therefore removing any SPoF.

As shown in Figure 3.1, devices were stored in a strip (i.e. a queue), where the first

in the queue fulfilled the component’s data needs and the queued devices took over

if the primary device failed. To keep strips up to date, a heartbeat protocol was used

in a ‘daisy chain’ (i.e. ring topology) around the devices. When a device had not
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received a heartbeat message in sufficient time, it triggered the process of updating

strips across the network to remove failed devices from the system and to delegate

alternative devices that can provide any necessary components.

The performance of the proposed mechanism was measured by three metrics. Firstly,

message overhead during device failure. Of the ten devices used in the demonstration

(mapped unequally to four components), it took ~550 bytes of data to recover from

a failed node. The second metric of average recovery time for nodes was ~2500ms.

The third metric combined detection time with recovery time, and results showed

that the total time was no greater than a heartbeat period.

3.1.4 Smart Control Algorithm (SCA)

Choubey et al. [51] presented a smart home architecture consisting of a variety of

sensors in a home that were connected to a Local Master (LM), i.e. a fog device.

The LM connected to a remote Cloud Server Farm that accumulated data from all

connected homes. The purpose of their proposed FT mechanism was to attempt

to avoid data blackouts when devices failed by predicting data that could not be

generated by physical sensors.

When the system initially started, all sensors were active while the system collected a

sufficient amount of data, after which the system would identify relationships between

data using correlation coefficient. Any correlation coefficient beyond ± 0.7 indicated

that one data type could predict another due to a sufficiently a high correlation

between them. Data types were placed into two sets: one set for use as input to an

artificial neural network (ANN) situated on the LM, and another set that could be

predicted by the ANN.

After correlations had been found, the system transitioned into a smart control al-

gorithm (SCA) state, where the LM put devices to sleep that could be predicted in

order to conserve energy (Figure 3.2). Specifically, temperature was put to sleep be-

cause it could be predicted by the other four sensors. When a predicted temperature

value deviated from its last real-world value beyond some threshold, a temperature

sensor reactivated for its real-world data before being put to sleep again. The SCA

Fault Tolerance in IoT 40



Figure 3.2: An example scenario of the smart home architecture proposed by
Choubey et al. [51].

could also temporarily predict sensor data when performing maintenance on failed

sensors as a means of providing FT.

Tests demonstrated training an ANN to predict temperature data using humidity,

precipitation, time, and wind direction, after correlations were identified between

temperature and the other variables. Results showed that predicted temperatures

deviated from actual temperatures by no more than ± 2°C.

3.1.5 6LoWPAN Health Monitoring (6LoW-HM)

Gia et al. [86] explored FT in a healthcare scenario by providing backup routing

from node to sink, as well as employing a mechanism to maintain connectivity in the

case of a connection failure between node and sink. The authors outlined a desire

for healthcare systems to adhere to strict QoS requirements for data transmission

rates, as defined by the ISO/IEEE 11073 standards group. For example, heart-rate

readings were expected to be transmitted in < 3 seconds, and maintaining these

critical requirements was the motivation for their work.

The system architecture comprised a star topology of nodes, a gateway that consisted

of sink nodes and a system-on-chip (SoC) board, and a back-end server. The gateway

was responsible for providing FT mechanisms as well as collecting node data to

transmit to the back-end. The gateway monitored data flow and detected inactivity
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from sensor nodes via timing checks. On detected sensor inactivity, the protocol was

to ‘ping’ the affected device, but if this yielded no response, the ping was repeated

through a different sink node to rule out any individual sink node being the cause

of ping failure.

Four testing scenarios were conducted involving a standalone gateway and seven

sensors, all of which were positioned at varying distances from each other. The extent

to which the FT mechanism was tested included disabling a sink node and discovering

that the system was still able to receive the necessary data in all four scenarios.

This demonstrated that sink node redundancy could provide the appropriate error-

masking capabilities, however the evaluation provided little in the way of quantitative

measures and instead demonstrated a simple failure scenario.

3.1.6 FT Programming Framework (FTPF)

Hu et al. [96] devised a framework for application developers to apply FT via excep-

tion handling, facilitated by languages such as Java and Python due to the exception-

handling functionality featuring in those languages. When faced with an error, it was

detected and annunciated by raising an exception. A snapshot of sensor data was

stored for backward error recovery via checkpointing and a relevant error handler

was notified on error detection.

Their evaluation was conducted using Raspberry Pis, each with three means with

which devices could communicate between themselves: Wi-Fi, Bluetooth, and Zig-

Bee. Unlike with many other solutions, their FT mechanism was situated on devices

themselves with no centralised control. Their experiment involved eight nodes that

transferred sensor data between themselves, during which three devices’ commu-

nication components failed, triggering errors in other devices when they could not

connect to the faulty devices. Non-faulty devices would attempt to reconnect to

the faulty devices via an alternative medium (e.g. from Wi-Fi to Bluetooth) and

resynchronise between themselves so that devices knew which new mediums to use

to send future data.

Results showed that the failure detection time was between 35-45ms. However,
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because a device could only know about a failure when it tried to connect to the

faulty device, the detection time could be much higher (~200ms); a faster and more

consistent detection time could have been attained if a heartbeat protocol were in

place, as with the solution from Section 3.1.3. The recovery time was more consistent

at ~3300ms. The message overhead to resolve issues was proportional to the number

of nodes with errors.

The work used alternative communication mediums as redundant hardware for fail-

over, demonstrating that they could isolate faults down to the individual components

to prevent replacing an entire device when only a specific component was faulty.

However, with the experiment being conducted using Raspberry Pis and a high-

level programming language, there was little insight into whether the solution was

practical for systems with more constrained hardware.

3.1.7 Cloud Application Placement Problem (CAPP)

Spinnewyn et al. [183] considered the problem of efficiently placing applications on

a physical network prone to both node and link failure, where applications were

composed of services on a substrate network. They investigated: (1) the degree

to which availability-awareness improved the efficiency of application placement on

an unreliable substrate network; and (2) the degree to which placement could be

improved using redundant services and virtual links. QoS was a key requirement

of their work as they wanted to maximise the number of placed applications while

satisfying a required level of availability R for each application.

Their approach proposed active-active redundancy to enable node and link replica-

tion via application ‘duplication’ (i.e. replication). Duplication provided not only

redundancy, but also enabled applications to share physical components, such as

CPU, memory and networking resources between themselves. The decision to accept

an application request was determined by whether there was at least one duplicate

available for it, expressed as:

∀a ∈ A : Oa ≤
∑
d∈D

Gd,a (3.1)
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Where A was the set of request applications, Oa was the acceptance of an application

a (1 iff accepted), D was the set of duplicates, and Gd,a was the placement for

duplicate d of application a (1 iff placed). With regard to availability awareness,

for a duplicate to be available, each of the individual components it used must have

been available, and a component was used if it hosted any of the duplicate’s services

or virtual links.

They evaluated the performance of their algorithm by simulating a cloud environment

with unreliable nodes. They considered three metrics, namely: (1) the CPU load

factor, which was the ratio of total CPU demand of all application requests to the

total amount of CPU resources; (2) the placement ratio, which was the ratio of

applications that met the availability requirements to the total requests; and (3) the

computation time, in seconds. They compared the algorithm with a maximum of

1, 2, or 3 duplicates per application, and experiments were conducted using varying

availability levels of 0%, 90%, and 99%.

Results showed that more duplicates led to higher availability, and thus a higher

placement ratio. When the availability level was 0%, all algorithms performed equally

as well, but at 99%, the test with 3 duplicates outperformed the rest. The computa-

tion time was shown to be highly dependent of the required availability level, where

the time increased as the level of redundancy increased.

3.1.8 UbiFlow

Wu et al. [209] proposed the UbiFlow system that used SDNs in IoT for ubiquit-

ous flow control and mobility management. It adopted distributed controllers to

divide urban-scale SDNs into different geographic partitions, where all jobs related

to mobility management, handover optimisation, access point selection, and flow

scheduling were executed by the coordination of distributed controllers.

The authors identified that the main issues related to the application of software-

defined IoT were: (1) the operation and coordination of a distributed control plane

when component failure or traffic congestion occurred, by providing data replication,

flow scheduling, and load balancing; (2) link and node capabilities in IoT systems
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were highly heterogeneous and application requirements were correspondingly differ-

ent; and (3) the performance metrics of interest in IoT multi-networks went beyond

bandwidth consumption due to more heterogeneous and time-sensitive traffic that

was concerned with delay, jitter, packet loss, and throughput.

In the UbiFlow architecture, multiple controllers were deployed to divide the network

into several partitions, which represented different geographical areas. IoT devices in

a partition associated with different access points (e.g. Wi-Fi, Cellular) were connec-

ted to local switches to request various types of data flow (e.g. text, audio) from the

corresponding data server. Switches between partitions were partially interconnec-

ted so that network information recorded in different controllers could be exchanged

via switches to achieve network consistency and robust maintenance. Each controller

maintained a ‘finger’ (i.e. routing) table for routing between controllers.

The authors considered FT from many perspectives. To handle controller failure,

they adopted data replication by copying data from a local controller to others so that

the system could find a new successor that could still provide the control service. If

there were a finger-table failure, the system would choose an alternative path through

which to reroute. Rerouting also occurred if access points failed.

UbiFlow was evaluated based on both its flow scheduling and mobility management

performance via simulation and real testbed experiments, which were in the context

of an urban environment in London consisting of several parks, universities, and mu-

seums. When compared against other common SDN scheduling algorithms, UbiFlow

was able to provide significantly higher throughput due to its load balancing scheme

mitigating packet loss during high load, and adding more controllers increased the

throughput almost linearly. Their real-world testbed produced similar results to

their simulations.

3.1.9 Modalities via Virtual Services (ModVS)

Zhou et al. [220] took a different approach to hardware redundancy by using sensors

of different modalities to provide backups for failed sensors. The approach identified

compatibilities between different sensors via regression analysis in order to ascertain
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whether it was possible to combine data from multiple different sensors into ‘virtual

services’. For example, a microphone in a quiet room could be used for intruder

detection when the primary passive infrared (PIR) sensor failed. The study com-

pared a linear and non-linear model to assess which performed better with different

modalities. Ten devices were deployed with light, PIR, Kinect [217], sound, and

ultra-sound sensors.

Firstly, modalities for light sensors involved a culmination of other redundant light

sensors because no other sensor types could fulfil light data. Results showed that indi-

vidual light sensors that were distant from the failed sensor performed badly by them-

selves but achieved greater results when combined into a virtual service. Secondly,

when comparing presence-detection modalities, a non-linear model achieved better

results due to the underlying relationship between sensor data being non-linear.

One drawback to the work’s regression approach was ‘causal relationships’. For ex-

ample, if human presence made light actuators switch on, then the system might

have perceived light sensors as a presence modality because the room was always

brighter when presence was detected; of course, this did not mean that light sensors

were actually detecting presence. In addition, simultaneous sensor failures or failures

of unrecognised sensors would result in system resynchronisation, by performing a

complete device remapping and redeployment to find new backups for required ser-

vices. This meant that the regression scheme needed to be overwhelmingly supported

in order to minimise the use of this expensive fail-safe procedure.

3.1.10 Zij-Routing

Ali et al. [9] proposed the decentralised, stochastic Zij-routing algorithm that aimed

to increase the packet delivery ratio and decrease the delivery delay in IoT systems

with unreliable communication links. Their work focussed on how data was routed

via multiple hops across nodes in the network, and the chosen routing path was

determined by assigning higher transition probabilities to neighbouring IoT devices

that had higher link reliability and distance ratio. Specifically, an absorbing Markov
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chain was used to calculate the expected delivery ratio (EDR) and expected delivery

delay (EDD) from source to destination.

They defined link reliability as the ratio between the number of packets received

by some node Nj and the number of packets transmitted by some node Ni. They

expressed the EDR, assuming random path selection, as:

∑
Rk∈R

∏
(i,j)∈Rk

pijLij (3.2)

Where R was the set of paths from source to destination, Rk was the kth path, (i, j)

were the links along the path Rk, and pij was the probability of selecting the given

link. The EDD was given by:

(I−C)−1 × 1 (3.3)

Where C was a matrix of transition probabilities between states, I was an identity

matrix, and 1 was a column vector with all values equal to 1.

Their proposed routing algorithm defined the parameter Zij for a pair of IoT devices

Ni and Nj that considered: (1) the packets flowing out of the sender’s neighbouring

area; (2) the latency of packets in a sender’s neighbouring area; and (3) the distance

of IoT device Nj to the destination device. After computing Zij for each pair of

neighbouring devices, the transition probabilities for their links were calculated as:

pij = Zij∑
k∈mi

Zik

(3.4)

Where mi was a group of IoT devices with which Ni could directly communicate.

To evaluate the performance of their algorithm, they generated simulations of 100

random directed acyclic networks with random link reliability values, and then cal-

culated the average EDR and EDD for them. The algorithm was compared against

three reference decentralised routing algorithms, namely: (1) random walking, where

each IoT device had equal transition probability i.e. pij = 1/mi; (2) Lij-routing,

Fault Tolerance in IoT 47



which only considered link reliability and not all of the aforementioned character-

istics of Zij-routing; and (3) reliability expander, which measured the aptitude of

packets flowing out of the sender’s neighbouring area and the latency of packets in

the sender’s neighbouring area.

Results showed that a higher number of IoT devices in the network decreased the

EDR due to an increase in the number of hops during routing. However, Zij-routing’s

EDR was significantly better due to transition probability decision making. Similarly,

the EDD became larger as IoT devices increased because of the larger number of hops.

However, Zij-routing still had the lowest delay due to its being able to determine

the best route for packet delivery.

3.1.11 Modalities for Graceful Degradation (ModGD)

Chilipirea et al. [48] also explored the notion of modalities but as a means of replacing

sensors with alternatives that were not directly compatible. The authors cited that

many identical sensors in close proximity was unrealistic, and so they identified sensor

‘capabilities’ even if they were not as suited to the role as the original device, thus

providing a degraded service rather than no service.

With a sensor’s capability as the defining metric, sensors could be ordered and com-

pared for particular roles based on quality and accuracy, enabling an ordered re-

lationship to be formed from the most capable sensor to the least capable. For

example, identifying a specific person was a greater capability than detecting the

existence of a person, which was greater than simple motion detection. The failure

to start one sensor component meant that another could be activated in its place.

The ordered relationship of capabilities demonstrated how modalities offered a form

of graceful degradation, whereby, upon device failure, a ‘less capable’ sensor could

take its place. This meant that the degradation of a system could be predefined, and

switching to less capable sensors could be adopted as an error-recovery strategy.

The main drawback to this work was how the modalities were manually sourced and

ordered, unlike in [220] where regression strategies identified the best candidates.
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As well, they provided no experimental study demonstrating the effectiveness of the

solution, and instead provided hypothetical failure scenarios.

3.1.12 NewIoTGateway-Select (NIoTGS)

Karthikeya et al. [103] explored the infrastructure of a large-scale ‘IoT Smart City’

scenario and proposed the NewIoTGateway-Select algorithm to determine the min-

imum number of gateways necessary to reduce deployment costs and provide redund-

ancy. The algorithm considered gateway and link failures by ensuring there were at

least k alternative routes via k-coverage and k-connectivity algorithms, respectively.

The purpose of this work was to maintain connectivity to the Internet and to have

gateways that covered all coordinating devices (CD), e.g. cluster heads.

NewIoTGateway-Select first computed a set of locations for placing gateways, and

then used this set to assign a value denoting the number of CDs containing the

location in their transmission range. Candidate locations with the largest number

of CDs in range were chosen until all CDs were eventually covered by some gateway.

To protect against gateway failures, a 2-coverage algorithm could be used to ensure

every CD was covered by at least 2 gateways. To protect against link failures, the

2-connectivity algorithm could also be used to ensure that there were at least 2

independent paths between gateways.

Simulation results showed how the 2-coverage algorithm roughly doubled the number

of deployed gateways, but that the total number of gateways was still drastically

lower than the amount that would have been used without NewIoTGateway-Select.

The 2-connectivity algorithm, which explored link failures, was not discussed.

3.1.13 Smart Cities Architecture (SmartCA)

Abreu et al. [2] also considered smart cities by proposing a novel IoT architecture

designed specifically to improve the resilience of smart city infrastructures. Their

contribution was an architecture that took design and implementation into consid-

eration and the protocols and technologies that support key resilience features in

the different layers of the architecture. The authors acknowledged how smart cities
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required good end-to-end network quality and asserted that the cloud and ‘cloud-

let’ (i.e. the fog) were enabling technologies to realise a resilient IoT smart city

solution. The cloud processed resource-demanding applications and the cloudlet

delivered real-time services with minimal, one-hop latency.

Their proposed architecture had three layers:

1. IoT Infrastructure. The lowest layer of the architecture that dealt with

physical devices deployed in the smart city. Data collected by ‘IoT islands’

(i.e. clusters of devices) was sent to the IoT Services layer (below) to be

processed and analysed.

2. IoT Middleware. This layer encompassed common functionalities and ab-

straction mechanisms for easier interaction between layers. Some important

functionalities included:

• Heterogeneity Manager. This provided language-agnostic communication

for the upper layers.

• Communication Manager. This determined how data was exchanged

between services, applications, and smart objects. It supported having

different virtual networks (VNs) over the same physical infrastructure,

which enabled the overlaying of network topologies.

• Virtualized Device Manager. This provided mechanisms to identify, dis-

cover, and locate services within the IoT Infrastructure layer.

• Resilience Manager. This attempted to provide robustness and super-

vision to the IoT Infrastructure layer and addressed any faults that oc-

curred.

3. IoT Services. This layer managed applications and services that supported

the smart city and provided an analysis of the data collected by sensors using

Big Data techniques.

A key focus of the work was the use of cloudlet hardware that was close to, or one hop

away, from the underlying devices in the IoT infrastructure layer for the deployment

Fault Tolerance in IoT 50



and virtualisation of crucial components provided by the cloud. The cloudlet could

provide some cloud-like services if the cloud were unavailable, which would provide a

level of redundancy for cloud services. While they acknowledged that the cloud was

only realistically capable of processing resource-demanding applications, the cloudlet

could deliver real-time services ‘in the last mile’, even for worst-case scenarios.

No real-world implementation was provided for their work, but they covered two

scenarios of faults occurring and how the system would recover from them, both of

which were conducted in the middleware located in the cloud.

Scenario 1 This scenario explored the failure of underlying devices and how they

affected the VNs that used the devices. An error would occur if the system monitor

checked the status of the VNs and a ‘failure’ status was returned. The recovery

strategy would be to reconfigure and resynchronise the VNs to include a new virtual

sensor that would replace the affected sensor.

Scenario 2 If heavy traffic congestion occurred such that the QoS rating of the sys-

tem dropped below a specified threshold, an alternative data path would be provided

through which to reroute traffic.

3.1.14 Privacy-Preserving Data Aggregation (PPDA)

Lu et al. [129] proposed the lightweight privacy-preserving data aggregation scheme

to support data aggregation for heterogeneous IoT devices. Their system model con-

sisted of: (1) an IoT network of heterogeneous devices D1, D2, ..., DN equipped with

sensors that periodically transmitted a sensing output xi; (2) a fog device deployed

at the network edge that aggregated device data x1, x2, ..., xN and forwarded this to

(3) a control center in the cloud that performed data analytics according to applic-

ation requirements; and (4) a trusted authority that bootstrapped the system and

managed the IoT devices, fog, and control center.

If there were a malicious attack on the system via the injection of false data, the fog

would execute source authentication to filter out false data locally, without sending
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them on to the control center. False data could also cause external error propagation

by inciting erroneous decision making at the control center.

As IoT devices would periodically send their data to the control center via the fog,

the system divided this time period into w time slots where, at each time slot, the

IoT device would report its data. The trusted authority would build one-way hash

chains and add signatures to all hash chains’ heads in order to ensure that all chains

were valid for authentication. When the fog received the current hash value his in

time slot Ts, it checked the validity against the hash value hi(s−1) that was previously

verified in the last time slot, to ensure the data had not already been accepted. If this

were the case, his would be rejected. A message authentication code was additionally

computed, where an invalid code also led to data rejection.

Their evaluation did not include a demonstration of their proposed FT support.

Instead, it simply covered the communication overhead and computational costs

incurred by applying their solution.

3.1.15 CEFIoT

Javed et al. [99] proposed the CEFIoT architecture to provide FT using state-of-

the-art technologies that were deployed on both the cloud and the edge, namely:

(1) the lightweight containerisation software Docker1; (2) the data publish-subscribe

platform Kafka2; and (3) the container-orchestration system Kubernetes3.

The architecture had three layers: (1) Application Isolation, that wrapped individual

processes into separate independent blocks and configured them to operate as a

single isolated application, sending data from source to sink; (2) Data Transport,

that buffered and replicated stream data across the system for logical data flow; and

(3) Multi-Cluster Management, that monitored the previous two layers by assigning

data processing to physical nodes and load balancing.

The authors attempted to address the issue of having separate implementations for

the cloud and edge by using Docker across the infrastructure, which enabled com-
1https://www.docker.com
2https://kafka.apache.org
3https://kubernetes.io
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putations to be pushed to the edge to minimise bottlenecks at the cloud and reduce

latency. In layer (2), they attempted to solve the data-FT issue using Kafka because

it replicated data across many nodes and buffered data when the system failed to

connect to the cloud, which meant that the system provided graceful degradation

without data loss. In layer (3), they used Kubernetes for on-the-fly automatic recon-

figuration of the processing pipeline, which handled both hardware- and network-

connectivity failures.

They evaluated CEFIoT using a surveillance camera system, where they clustered

five Raspberry Pi nodes together that collected images from cameras attached to

each node, and replicated images across nodes. The image were then sent to the

cloud for further processing and storage. The system was able to tolerate a two-

node failure in the node cluster because Kubernetes shifted processes onto different

nodes, which kept the system available and the data processing pipeline alive. By

using Kafka, if a node were damaged, the data would be retrieved from another node

that had a replica of the image.

3.1.16 Personal Healthcare Devices (PerHD)

Woo et al. [208] proposed a reliable IoT system for personal healthcare devices

(PerHDs) that adhered to: (1) ISO/IEEE 11073, which is an international standard

for PerHD communication; and (2) oneM2M, which is an international standard

for IoT systems. The system used PerHDs to gather data and transmit it to a

Middle Node-Common Service Entry (i.e. a gateway) using the ISO/IEEE 11073

protocol. It was at the gateway where messages were handled, converted into a

oneM2M-compliant format, and then passed to a resource manager that executed

the necessary operations according to the converted oneM2M message. The gateway

provided efficient communication between PerHDs and a central PerHD management

server from which PerHDs could access data.

The authors outlined safety concerns involved with losing PerHD data, and so they

proposed an additional FT algorithm to increase system reliability. They attemp-

ted to accomplish this at both the gateway and the management server by linking
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Figure 3.3: An example scenario of the gateways in the IoT system proposed by Woo
et al. [208].

gateways in a daisy chain, so that a gateway would have a backup copy of its data

stored on the gateway immediately ahead of it; PerHDs were not included in the FT

mechanism because of computational limitations.

Multiple levels of gateways were used, where an upper-layer gateway (or the man-

agement server if there were not another layer of gateways) stored parity data of

all gateways in the layer below it, as well as a backup copy of the data for the last

gateway at the end of the daisy chain (Figure 3.3).

The authors explored several failure cases to demonstrate how the FT algorithm

worked. They demonstrated multiple hypothetical scenarios using three gateways

G1, G2, G3 and an upper gateway (or server) S. G1’s backup existed on G2, G2’s

was on G3, and G3’s was on S, as shown in Figure 3.3.

Case 1 If there were one fault at G1, then, once back online, it would call on S to

find out which gateway from which to request its backup data (i.e. G2), so that it

could recover and resynchronise with the system.

Case 2 If there were two non-consecutive faults at G1 and G3, then S would

provide itself as backup for G3 and S would indicate to G1 that G2 provided backup

for G1.

Case 3-1 If there were two non-consecutive faults at G1 and G2, then G3 would

recover G2 and S would recover G1 by using parity data and G2’s and G3’s data.
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It would then send the recovered data to G1 directly. S would request that G1 send

its data to G2 so that all gateways would have backup copies once again.

Case 3-2 If there were two non-consecutive faults at G1 and S, then S would call

on the next server in its own daisy chain, S’, to recover its backup and parity data.

G1 would be recovered using backup data from G2. S would request that G3 send a

copy of its data to S, so that it would have the necessary backup.

Case 3-3 The case where G3 and S fail was omitted from the work because it

followed a similar procedure to that in Case 3-2.

Their experimental study was a test between 1 server and 3 gateways, configured like

in Figure 3.3. The failure demonstrated in their experiment was the same as that

in Case 1 and was successful at employing its backup recovery data to the failed

device, with a transfer of 4182 bytes of backup data to accomplish the recovery.

3.2 Summary

3.2.1 Failures

Table 3.1 shows the failures (Section 2.1.2) that were identified in the reviewed

solutions. IoT systems are data driven, so most concern was placed on ensuring

the timely arrival of sensor data, and the primary failures under consideration were

therefore: (1) whether hardware had crashed and would cause a data blackout [51];

(2) whether devices were failing to send or receive data [186, 96]; and (3) whether

data in transit would arrive late and consequently be less valuable [208].

Few solutions paid attention to the actual data itself. That is, whether data values

were ‘correct’ and, if not, whether an erroneous state transition might be caused due

to erroneous data. For example, Liu et al. [128] considered three forms of erroneous

data: outliers, stuck-at faults, and spikes. It is through data that IoT systems derive

their value, and so response failures (Section 2.1.2) should be taken further into

consideration to ensure data integrity in IoT systems.
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Table 3.1: The failures addressed in the reviewed FT solutions (checkmarked). Little
focus had been on data-centric i.e. response value failures.

Name Section Omission Crash Timing Response
Send Receive Value State

Transition
SGFD 3.1.1 X X
SerCho 3.1.2 X X

M2M-Mid 3.1.3 X X X
SCA 3.1.4 X X X X

6LoW-HM 3.1.5 X X X
FTPF 3.1.6 X X X X
CAPP 3.1.7 X X
UbiFlow 3.1.8 X X X X
ModVS 3.1.9 X X X

Zij-Routing 3.1.10 X X
ModGD 3.1.11 X X X
NIoTGS 3.1.12 X X
SmartCA 3.1.13 X X
PPDA 3.1.14 X X X
CEFIoT 3.1.15 X X
PerHD 3.1.16 X

3.2.2 Vulnerabilities

Table 3.2 shows the vulnerabilities (Section 2.1.2) that were considered in the re-

viewed solutions. The solutions sought to ensure the continued service of hardware

in order to generate the necessary sensor data, and also to ensure that hardware was

sufficiently capable of transferring data from its source to its destination.

For this reason, hardware and network vulnerabilities were the priority for most of

the FT solutions, with particular consideration given to how power failure and human

error could contribute to failure. For example, [86] used gateway monitoring to detect

sensor node inactivity via data-flow analysis, [183] duplicated entire applications to

enable node and link replication, and [220] identified compatibilities between various

sensors so that they could be used to back up each other to some (degraded) extent.

Fault-prone software is a well-established dependability concern, such as with the

issue of residual software faults [148], and is an equally legitimate threat to IoT

systems. However, it was not widely acknowledged in any of the reviewed systems.
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Furthermore, as with Table 3.1, vulnerabilities in data and the environments in

which IoT systems were situated were not widely considered, despite correct sensor

data collection being the fundamental requirements for effective IoT decision making.

However, an environment vulnerability was considered in the evaluation of [99] when

they collected images from five cameras in their security system, and failure to ensure

this jeopardised the security of the room being monitored.

3.2.3 Error Detection

Table 3.3 shows the error-detection checks (Section 2.2.1) that were considered in the

reviewed solutions. Timing checks were the most prevalent check, used to minimise

data loss and data transmission failures. Data loss occurred when a device did not

receive data within an acceptable time, whereas data transmission failure occurred

when a device failed to send data altogether, which is why timing checks were so

prevalent. These two failures contributed to the primary error of untimely data, as

well as the fundamental requirement shared by every IoT system: to generate data

and ensure its reliable transmission to data sinks. Both of these failures could be

caused by the failure of a single device, but because hardware was so distributed in

the reviewed systems, ambiguity existed with regard to what specifically is the fault

and, thus, how to accurately identify and treat it. This left an open issue of where

data errors were best handled e.g. at the component(s) sending the data [186, 96],

or the component(s) receiving it [86], or both.

QoS requirements were acknowledged in [86, 2] as the driving force for having more

stringent checks on the timeliness of data transmission. Traffic congestion was identi-

fied as a direct threat to QoS because congestion persistently affected the data trans-

mission rate. The systems concerned with QoS were mainly smart city and health-

care applications that adopted three-tier IoT infrastructures consisting of devices,

gateways, and a back-end system. This indicated that large-scale, standards-based

systems were where QoS was of greater concern.
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3.2.4 Error Recovery

The most common approaches to recovering from system errors involved some kind of

redundancy mechanism (Table 3.4). For example, approaches included: (1) hardware

or software replication, so that one component failure was masked by other active

component(s) [183]; and (2) service migration to new components and isolating the

failed components, which also served to mask error(s) [186].

Some mechanisms were used as a means of recovering a previous state prior to an

erroneous state transition. In [96], checkpointing was adopted to restore device

variables, whereas [208] downloaded an entire backup of a device’s data once it had

been restored. In [46], when objects were supposed to transition to new states but

did not, additional message passing occurred to check objects and put them into

their required states to ‘resynchronise’ the system.

In [51], tactical data exploitation methods over hardware were used to provide re-

dundancy. They found the relationships between different types of data through an

analysis of historical sensor data. Predictions were made as to what missing data

should have been, providing a kind of ‘data redundancy’ in that it compensated

for a lack of hardware capable of generating actual real-world data. The solutions

exploring modalities in [220, 48] offered graceful degradation by exploiting relation-

ships between unrelated sensors, so that redundancy was achieved without requiring

identical hardware. This avoided cumbersome hardware redundancy by exploiting

data as much as possible in order to minimise the number of devices being deployed.

3.2.5 Evaluation

Table 3.5 shows the technologies and evaluation approaches that were considered

in the proposed solutions. IoT’s distributed nature resulted in them implementing

FT support at varying distances from data sources. IoT devices seldom carried the

responsibility of FT, except in [96] where the recovery approach updated a device’s

internal state without consensus between devices.

In decentralised solutions where the edge, fog and cloud were not used, FT mech-
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Table 3.5: The technologies and evaluations used in the reviewed FT solutions (check-
marked).

Name Section Technology Evaluation
Edge/Fog Back-End Simulation Testbed Scenario

SGFD 3.1.1 X X
SerCho 3.1.2 X X

M2M-Mid 3.1.3 X X
SCA 3.1.4 X X X

6LoW-HM 3.1.5 X X X
FTPF 3.1.6 X
CAPP 3.1.7 X X
UbiFlow 3.1.8 X X
ModVS 3.1.9 X X

Zij-Routing 3.1.10 X
ModGD 3.1.11 X X
NIoTGS 3.1.12 X
SmartCA 3.1.13 X X X
PPDA 3.1.14 X X X
CEFIoT 3.1.15 X X X
PerHD 3.1.16 X X X X

anisms were often distributed. For example, [46] synchronised state between devices

to avoid a centralised orchestration, and [186] used a ring topology with a heartbeat

protocol to check neighbouring sensors for failures. The portability of decentralised

solutions was limited because they relied upon stringent protocols and topologies in

order to function correctly, and were not demonstrated to cope well beyond small-

scale solutions.

Detecting faults is challenging with a limited system view, so FT was often pushed

towards the back-end. The ‘back-end’ is left as a broad term because some solutions,

like [220], did not specify the details of where remote storage and computing would

take place, though many solutions delegated this to an off-network cloud system.

Using a remote back-end forced systems to depend on an external system to provide

FT, leading to a higher latency and a SPoF.

In [2], the SPoF issue with the cloud was acknowledged as a reliability threat, and

therefore some cloud services were passed down to the edge. Then, during cloud

unavailability, the edge provided a subset of cloud services as a form of graceful
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degradation. This demonstrated FT-support portability, by showing how it could

fluidly shift across the infrastructure to provide graceful degradation.

Fundamentally, data from low-level hardware are the driving force of all IoT systems,

so it is the question of how reliably the data can be collected and how effective FT

support is at ensuring system reliability. FT support must therefore be delegated to

some entities (e.g. the edge, fog, cloud) that have a larger (or entire) view of the

system and can react rapidly to errors due to the heightened system visibility.
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Chapter 4

Fault-Tolerance Framework Design

Resilience and availability are important design considerations to ensure depend-

ability in IoT systems [21]. However, IoT systems are highly distributed, scalable,

and heterogeneous, which raises the question of where best to provide FT support.

This is important because underlying IoT hardware is typically error prone due to a

reliance on battery power and unreliable wireless data transmission.

In this chapter, an FT-support architecture based on microservices is proposed that

enables FT support to be ‘plugged into’ existing IoT systems. Microservices break

down the monolithic service-oriented architecture (SOA) into smaller applications

with individual responsibilities that can be deployed, scaled, and tested independ-

ently [192, 71, 65, 188].

The proposed microservices architecture provides a scalable means of applying real-

time and predictive FT support to IoT systems. The data extracted from system

monitoring provides fault patterning, where faults are assessed with respect to system

context so that the system can learn to identify when fault activations are likely to

occur based on prior experience with faults. By identifying correlations between

faults, the system can proactively handle them before they activate.

4.1 Fault-Tolerance Architecture

There are many factors that influence where FT support is best placed in an IoT

system. These include:

• Architecture. Most IoT systems attempt to abstract out underlying hardware
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Figure 4.1: The generic 5-tier IoT architecture (left) and corresponding hardware
components (middle) that define the infrastructure of IoT systems. Availability,
resilience, and security are applicable across the IoT system infrastructure (right).

using middleware so that a homogeneous representation of the system can be

provided for applications. Generic 3- and 5-tier IoT architectures have been

proposed [210, 107] where middleware sits between devices and applications in

order to expose data to applications and hide device complexities (Figure 4.1).

However, there is ambiguity in terms of what hardware maps to which layer,

so IoT architectures require a greater focus on logical and physical views so

faults can be better understood.

• Scale. FT support needs to be able to work effectively in a network of poten-

tially millions of devices. Many have proposed the edge/fog to alleviate data

flow to the cloud so that transient storage and analytics can occur at the edge

of the device network to provide cloud-like services with low latency [55, 62,

177, 136]. However, the fog is distributed like the devices from which data is

collected, so reliability concerns still apply.

• Fault Containment. FT support should be pushed as close to the potential

error source as possible, to minimise error propagation and reduce detection

latency. Bauer [22] describes a ‘hierarchy of containers’ for fault containment.

For example, a subroutine is contained within a transaction, which is within a

user session, which is within an application (i.e. the ‘outermost’ container). If

a container cannot handle an error, an outer container can try to.

The proposed architecture is an integration of four microservices, where two provide

FT support in complementary ways: (1) Real-Time FT, which provides real-time
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Figure 4.2: A reference microservices architecture.

data stream analysis using CEP for reactive FT; and (2) Predictive FT, which

provides predictive analysis using ML for proactive FT. The primary goals of the

architecture are to expose as much of the system state as possible and to adopt a

standard method of acquiring the interfaces of system services. In fulfilling these

goals, the system can provide services that allow open access to as much system in-

formation as possible. This enables FT support to seamlessly ‘plug into’ the system

and acquire all of the necessary interfaces to provide effective support, by consuming

the data it needs to detect and recover from errors. The architecture addresses the

following three categories of interoperability [152].

Platform Interoperability Existing IoT platforms encounter many challenges

due to diverse technologies in use e.g. operating systems, programming languages,

and architectures. This, in turn, hampers the ability for developers to build cross-

platform and cross-domain IoT applications [33, 152]. Arunkumar et al. [12] stated

that platform interoperability could be achieved by platform source portability and

machine image portability, the latter of which would enable application portabil-

ity across multiple cloud infrastructures via virtualisation. Microservices offer de-

velopers the ability to not only deploy their system across clouds, but to also push

portions of the system towards the network edge, which would provide an interme-

diary ‘fog layer’ between the sensor network(s) and the cloud.

Microservices are way of designing software applications as suites of independently

deployable services. A microservices-based application architecture comprises a col-

lection of small, autonomous, and self-contained services which are built to serve a
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single business functionality or capability (Figure 4.2). Each microservice provides

an API endpoint, which is often but not always a stateless REST API, that can be

accessed over HTTP(S).

Syntactic Interoperability Syntactic interoperability refers to the interoperation

of the format and data structures used during information exchange between hetero-

geneous IoT system entities [152]. In recent years, REST web services and APIs have

become pervasive in Web, mobile, cloud, and IoT applications [189]. They are often

coupled with the JavaScript Object Notation (JSON) data format because, together,

they form a lightweight alternative to previously popular technologies, such as Simple

Object Access Protocol (SOAP) and Extensible Markup Language (XML) [39]. An

example protocol is the OpenAPI Specification (OAS) [153], which defines a standard

language-agnostic description for REST APIs, enabling machines to understand the

capabilities of a service without requiring access to additional documentation.

As with many microservice architectures, communication within the proposed FT

architecture is conducted via a REST architecture style, and data is exchanged using

the JSON format. Other protocols suitable for IoT include: Constrained Application

Protocol (CoAP), MQ Telemetry Transport (MQTT), and Extensible Messaging and

Presence Protocol (XMPP). However, the advantage of REST is that virtually all

cloud platforms support it [79], making it the ideal choice for encouraging interop-

erability across IoT systems.

Semantic Interoperability Kiljander et al. [108] defined semantic interoperabil-

ity as the technologies that enable information meaning (i.e. semantics) to be shared

by communicating parties. They stated that this requirement had not been problem-

atic for human users of communication systems because the semantics of information

were processed by human users; hardware simply mediated the information. How-

ever, in IoT, devices also become ‘users’ that need to communicate directly with each

other and interpret the meaning of information at runtime.

An example protocol to facilitate this requirement is the Web Thing API [143] that

provides a standard approach for describing physical devices. It is designed to al-
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Figure 4.3: The interfaces between IoT devices and the four proposed microservices.

low access to device properties, request the execution of actions that the device can

perform, and subscribe to events that occur within the device. The proposed archi-

tecture’s REST interface (Figure 4.3) is based on three overarching categories defined

in the Web Thing API, namely:

• /properties. This describes attributes of an IoT ‘thing’ as well as internal

information about system devices and microservices.

• /events. This describes events that occur within the system and on IoT

devices. The /events/errors/detect interface is where devices can use REST

to POST errors that they detect or receive. The /events/errors/assessment

interface enables microservices to annunciate that they have provided some

kind of recovery to handle an error.

• /actions. This describes system functionality to be performed by a mi-

croservice. The /actions/control/... interface enables a microservice to

control the functionality of another.

When a microservice registers itself with a service broker, it defines which categories

(i.e. properties, events, actions) it wishes to subscribe to. Other microservices, after

registration, emit data to the subscribers. The microservices are discussed next.

4.1.1 Microservices

Edge This microservice provides an entry point for an IoT device to pass its prop-

erties (Table 4.1) to the wider system, and for other microservices to interact with

devices. It provides REST interfaces for devices to submit their properties and errors
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Table 4.1: The data transmitted when sending a property using the /properties
interface.

Field Description Example
sourceAddr The IP address of the property source. 192.168.1.2
entryAddr The IP address of the microservice that first

received the property.
192.168.1.3

name The name of the property. Temperature
type The type of the property. Number
unit The unit for the type. Celsius
value The value of the property. 20.5

timestamp When the property was created, in epoch
milliseconds.

1520168977817

and to receive commands for controlling IoT device actuators. Edge relays all of its

received data to other microservices that are subscribed to it, and any actions that

are sent to Edge are either executed internally or relayed to an IoT device.

Real-Time FT This microservice acts as a ‘firewall’ that only permits ‘reasonable’

properties from reaching DB (below) once the stream of properties have been passed

through the CEP engine (Figure 4.4), along with any error-detection events that may

also exist in the data stream. It analyses streams of ‘primitive events’ (i.e. properties,

error events), then combines them to define and detect a number high-level, complex

situations (i.e. newly detected errors) [60]. CEP provides an intelligent way to handle

errors because it can enable an IoT system designer to define recovery strategies

based on many errors rather than just one. For example, if five IoT devices fail

within three seconds, the CEP system might consider that the gateway to which the

devices connect has failed, rather than the devices themselves.

Errors can be produced based upon properties alone. For example, if a property’s

value spikes and deviates from the average, the system can tell the Edge to isolate the

device producing the property. Additionally, errors can be produced by combining

properties and errors for more intelligent error analysis and recovery.

One key benefit of the microservices architecture is that, if one microservice crashes,

it does not bring down the entire application. However, other failure types (Sec-

tion 2.1.2) have the potential to cascade into other areas of the system because of
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Figure 4.4: The architecture of the Real-Time FT microservice. Purple arrows indic-
ate the flow of properties data, yellow for detected errors, blue for error assessments,
red for error recovery actions, and black for internal data.

data (or a lack of it). Checking data reasonableness is a challenge in IoT because

what constitutes ‘reasonable’ data is highly context dependent. For example, high

temperatures in an office might be reasonable at 1pm, but not at 1am.

DB This microservice is a back-end database service that receives data for (author-

ised) services to subscribe to. Predictive FT (below) subscribes to DB to consume

its properties and error-assessment events.

Predictive FT In IoT, data is constantly flowing from sources to sinks, capturing

the latest state of the system and its physical environment. To preempt faults,

predictions must be made using this live, continuous data stream. For this, an

online learning (OL) approach is applicable. In OL, a sequence of hypotheses f =

(f1, ..., fm+1) are produced over time, where f1 is an arbitrary initial hypothesis and

fi for i > 1 is the hypothesis of the (i− 1)th example [109].

Moreover, there also exists batch learning (BL), where a single predictor is generated

based upon an entire dataset. OL is trained incrementally on continuous stream

data, and the algorithm updates and adapts on-the-fly [76], whereas BL can adapt

to change if the training and launching of each new algorithm is automated. However,

continually training a BL algorithm from scratch on all current and prior data is
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Figure 4.5: The architecture of the Predictive FT microservice. Arrow colours are
the same as in Figure 4.4.

a computationally expensive process that requires far more storage space for this

ever-expanding dataset.

OL can discard data once it has used it, but is more susceptible to concept drift,

whereby the input distribution with which an OL algorithm is trained changes and

the algorithm’s accuracy lowers over time [85]. Current OL techniques exist as ex-

tensions of established algorithms (e.g. Support Vector Machines, Bayes), ensemble

learning variants (e.g. Online Random Forests), and algorithms that are online by

design (e.g. K-Nearest Neighbor) [85, 112].

Predictive FT receives error assessments and properties which are then fed into

Learner (Figure 4.5) to train the algorithm to: (1) identify errors and the system

state(s) that lead to them; (2) learn how the system attempts to recover from errors;

and (3) evaluate the effectiveness of the recovery strategies, so that only effective

recovery strategies are learned from. Using this knowledge, fault patterns can be

generated and, using subsequent system data, help to probabilistically infer whether

errors are likely to happen imminently in the future.

Butzin et al. [38] identified the fog as an enabling technology for containerisation

in IoT, which is a key tool for deploying microservices, and proposed distributing

microservices across the fog and cloud (Figure 4.3). The fog provides a network
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Table 4.2: The data transmitted when sending an error detection event using the
/events/errors/detect interface.

Field Description Example
sourceAddr The IP address of the error source. 192.168.1.2

scope Whether the error occurred due to internal or
external factors.

Internal

ingredient The ingredient that applies to the error. Hardware
category The error category with respect to the

ingredient.
FRU

scenario The type of failure with respect to the category. Sensor Failure
fault The (hypothesised) cause of the error. PIR Sensor

persistence Whether it was a transient, intermittent, or
permanent fault.

Permanent

description A human-readable description of the error. "Cannot activate
PIR sensor."

timestamp When the error was detected, in epoch
milliseconds.

1520168977817

with a gateway to a subset of services without long-range connections to the cloud,

enabling low latency and rapid response times for the Real-Time FT microservice.

As Predictive FT is expected to be in the cloud, it can be a shared service for all

system clients, where error assessments are ‘crowdsourced’ to improve the ML models

over time.

4.1.2 Error Events

The interfaces of the proposed architecture (Figure 4.3) enable FT support via the

exchange of important event data. Properties are used for data-centric error detec-

tion. Error detection triggers Real-Time FT to perform an assessment of how the

error should be recovered from, and passes this on to Predictive FT so that it can

learn what faults Real-Time FT encountered and how it attempted to tolerate the

faults. Key system events are as follows.

Error Detection As shown in Table 4.2, the error-detection event consists of the

error source, followed by several categories that make a top-down analysis of the

error, down to the affected hardware or software that triggered it (i.e. the fault).

The format is based upon the approach proposed by Bauer [22], where ingredients
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Table 4.3: The data transmitted when sending an error assessment event using the
/events/errors/assessment interface.

Field Description Example
pattern The properties and errors that caused the

detected error.
Table 4.1 & 4.2

error The detected error. Table 4.2
actions The actions taken to recover from the detected

error.
Section 4.1.2

approach Whether a reactive or proactive recovery
approach was used.

Reactive

timestamp When the assessment was created, in epoch
milliseconds.

1520168977817

from the 8I framework (Section 2.1.2) are mapped to error categories and scenarios

to achieve a systematic approach of defining test cases. Bauer also provides error

categories, namely: field-replaceable units (FRUs), programming, data inconsistency,

redundancy, system power, network, application protocol, and procedural errors.

Error Assessment The error assessment event is the product of the Real-Time

FT microservice handling error events and inferring errors based on prior data. As

shown in Table 4.3, it comprises a list of errors and properties that are used to

detect a new error, as well as actions taken to try to recover from the new error.

The chosen actions are based upon the hypothesised fault that potentially caused

the error. A fault can only be hypothesised rather than directly identified because

only the manifestations of a fault (i.e. its errors) are detectable by an FT-support

system, and errors are not unique to any one specific fault [122, 80].

Actions When recovering from faults, systems can employ backward and forward

error recovery mechanisms, where the former tries to restore a previous error-free

state, and the latter tries to move into a new, error-free state [163]. In IoT, data,

and the services that rely on it, help to create virtual entities that resemble physical

entities in the real world by monitoring their states with sensors and actuators [21].

Therefore, forward error recovery is the ideal option to keep the system focussed

upon the latest data and environmental states.

Erroneous sensor data can hinder system performance. If DB stores erroneous data,

Fault-Tolerance Framework Design 73



Figure 4.6: Device1 and Device2 used in the example scenario.

Figure 4.7: Data showing four properties over a six minute period on Device1
(left) and Device2 (right). Device1 experiences a stuck-at fault from 21:46 onwards,
whereas Device2 is running as normal at that time.

it can harm other services that rely on its data. If Predictive FT consumes erroneous

data, its predictive models could suffer from concept drift. To combat this, the

/actions/control/block interface on Edge is called by Real-Time FT to block

data from, and interactions with, IoT devices. If the CEP system (Figure 4.4) flags

a property as erroneous, then its sourceAddr and name (Table 4.1) are sent to Edge at

entryAddr to block it and prevent further erroneous data from propagating through

the system.

4.1.3 Scenario

To demonstrate Real-Time FT and Predictive FT, a simple experiment was set up

with live data that was generated using two IoT boards, Device1 and Device2 (Figure

4.6). Each board had 15 sensors, which supported the 802.11 Wi-Fi protocol and were

controlled by a STM32F205, 120Mhz ARM Cortex M3 processor. The experiment

used infrared, ultraviolet (UV), and visible light sensors, and a microphone for sound

detection. Two experiments were performed, where the devices were left in operation
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for two weeks in both experiments. They were given constant power so errors and

faults that were not power-related could be observed.

In the first experiment (Figure 4.7), visible light dropped to 0 between 21:43 and

21:44 on Device1 before returning to normal. Then, a stuck-at fault occurred on all

light sensors on Device1, where their values exceeded 100 and remained constant until

the end of the experiment. This pattern occurred in both experiments on Device1,

where a drop in visible light happened minutes before a major stuck-at fault on all

light sensors. In this scenario, the proposed system could perform the following:

1. The CEP system (Figure 4.4) identifies Device1’s visible light drop to 0 and

flags it as erroneous data, because the value deviates from the last 10 seconds

of data by a significant margin. An error assessment targets Device1’s visible

light sensor as the cause and considers it to be a transient fault. The action

taken is to drop the data, as the values return to normal thereafter.

2. When the major stuck-at fault occurs, the assessment identifies the three light

sensors as the cause. Real-Time FT contacts the Edge microservice via the

interface /actions/control/block in order to block the three light properties

from Device1. The sound property is still accepted as it is not producing

erroneous data.

3. Each time the last two steps occur, there are two error assessments. Predictive

FT receives these assessments each time and identifies the fault pattern that

the first error is often followed minutes later by a stuck-at fault on Device1.

4. When the drop to 0 occurs, Predictive FT identifies a high probability of a

stuck-at fault and notifies Edge to activate a replica to produce these properties

so that, if/when Device1 has the predicted stuck-at fault, another sensor is

ready to take over. Otherwise, Edge can just block the properties.

4.2 Vulnerabilities, Faults, and Failures

Current FT-support implementations in IoT systems are static, tightly coupled, and

inflexible. For example: (1) they are designed for a specific architecture and ap-
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plication [86, 208]; (2) they do not scale beyond small (decentralised) solutions [186,

117]; and (3) they provide solutions to specific faults, such as link failures [103]. This

is problematic because IoT systems are expected to continuously evolve in order to

handle new services, features, and devices that had not been anticipated when the

system was first designed, and FT support needs to evolve with these changes.

Additionally, many adopt FT solutions already widely explored in distributed sys-

tems, such as hardware redundancy [86], check-pointing [96], and traffic re-routing

[103]. Their error-detection approaches are implemented in an application-specific

manner, where faults are identified a priori by system designers, with checks that

only detect errors in specific scenarios and contexts. To address these shortcomings,

the Vulnerabilities, Faults, and Failures (VFF) framework is proposed.

The VFF framework generically categorises system defects and their potential effects

on a system. It is designed to consider the relationship between system vulnerabil-

ities, faults, and failures, where these three attributes help to categorise defects so

that an erroneous scenario common to all IoT systems has a common expression

in VFF. That is, each scenario can be described as: a vulnerability v, exploited by

fault f , may lead to failure s. This facilitates the design of modular, reusable error

detection and recovery techniques to generically handle system defects common to

all IoT systems. Also, by understanding the vulnerabilities, faults, and failures that

can occur in a given system, it provides a basis for considering what errors can occur

for each VFF tuple, and then what errors are common among tuples.

4.2.1 Attributes

The attributes of the VFF framework are based upon three concepts discussed in

Chapter 2, which are briefly outlined next.

Vulnerabilities The 8I framework (Section 2.1.2) was developed for conducting

vulnerability analysis on internal and external aspects of a system and identifies

that the reliability and security of communications is vital for continuous system

operation [168]. What makes the 8I framework so useful for VFF is that it is com-
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prehensive enough to consider not only product-attributable vulnerabilities, but also

ones attributable to enterprise-level and external vulnerabilities also [22].

For the remainder of the thesis, the eight ‘ingredients’ of the 8I framework are re-

ferred to as vulnerabilities, specifically: human, policy, hardware, software, networks,

payload, environment, and power.

Faults A fault is the adjudged or hypothesised cause of error(s) [163], and therefore

a fault activation is the precondition necessary to provide an FT-support system with

errors to detect. Faults can be placed into three major groupings [16]: development,

physical, and interaction faults.

If a system vulnerability has been identified, then the ways in which it can cause

damage to a system in terms of development (i.e. software), physical (i.e. hardware),

or interaction (i.e. human or environment) can be explored, and the errors that might

occur therefore.

Failures Failure semantics categorise allowable server behaviours that occur in

distributed systems so that developers can understand the likely failures a system

might exhibit, in order to develop relevant recovery strategies. They include [73, 190]:

omission, crash, timing, response, and arbitrary failures. The VFF framework does

not include the arbitrary failure because it simply refers to the arbitrary occurrence

of any of the other previously defined classes [73].

A fault and its corresponding errors are what enable failures to manifest [98, 122].

Given a particular vulnerability and fault grouping, the failure attributes help to

further categorise a system defect in terms of the ways in which the system might

fail due to the fault’s errors. This enables the failure semantics of the system to be

properly understood and defined [73].

4.2.2 Applicability

In Table 4.4, the applicability between the attributes of VFF to IoT systems is out-

lined. Each checkmarked table cell represents an applicable tuple of a vulnerability,
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Table 4.4: Applicability between vulnerabilities, faults, and failures (checkmarked).

Vulnerability Fault Failure
Omission Crash Timing Response

Hardware
Development X X X X

Physical X X
Interaction X X

Software
Development X X X X

Physical
Interaction X X

Networks
Development X X X X

Physical X X X X
Interaction X X X X

Payload
Development X X

Physical
Interaction X X

Environment
Development

Physical
Interaction X X X X

Power
Development

Physical X
Interaction X

Human
Development

Physical X X
Interaction X X

Policy
Development X X X X

Physical X X
Interaction X X
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fault, and failure that can be addressed by the proposed FT framework. Develop-

ment faults consider how residual software bugs can cause erroneous behaviour in a

deployed system. Physical faults refer to hardware failures that are not caused by an

interaction with the hardware i.e. naturally occurring failures. Interaction faults are

erroneous situations, accidentally or maliciously caused by a human, environment,

or external system.

With hardware vulnerabilities, all fault types have the potential to influence crashes

in hardware, and introducing erroneous responses from the hardware. That is also

the case for software, without the physical faults. In hardware and software devel-

opment, all failure types are possible if the design and development of them contains

defects. Networks vulnerabilities can introduce all failures if the network is poorly

developed, endures physical problems, or is (accidentally or maliciously) tampered

with. Payloads have the potential to cause harm if they are able to exploit underlying

system defects (e.g. buffer overflow).

Hardware systems are vulnerable to environmental conditions. This is especially im-

portant in IoT, where hardware could be situated in a wide range of harsh, dynamic

environments. A lack of power will cause crashes to any affected hardware and soft-

ware and can occur spontaneously or by system interaction. Human interaction with

an IoT system might cause crashes to, and alterations in, hardware and software.

The policies put in place during the development and maintenance of the system can

influence these types of failures also.

4.3 Summary

IoT systems are highly distributed, scalable, and heterogeneous, which raises the

question of where best to provide FT. In this chapter, an FT-support architecture

based on microservices was proposed to enable FT support to be ‘plugged into’ exist-

ing IoT systems. The architecture integrated four microservices, where two provided

FT support in complementary ways: the first provided real-time data stream analysis

using CEP for reactive FT, and the second provided predictive analysis using ML for
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proactive FT. It was designed to address three types of interoperability: platform,

syntactic, and semantic interoperability.

Furthermore, the VFF framework was proposed to generically categorise system

defects by vulnerabilities, faults, and failures, in order to categorise defects so that an

erroneous scenario common to all IoT systems has a common expression in VFF. This

facilitates the design of modular, reusable error detection and recovery techniques

to categorically handle defects in IoT systems.
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Chapter 5

Complex Patterns of Failure

To define a generic FT-support solution for IoT systems, it is important that errors

are defined in a language-agnostic way, so that FT can be applied as a software

pattern. It must also be interoperable and portable, so that FT support can be

easily ‘plugged into’ any existing IoT system. This is facilitated by an adherence to

standards and protocols that allow easy inclusion of FT-support and for data to be

easily exposed to it.

This chapter proposes Complex Patterns of Failure (CPoF) as the means of detect-

ing and recovering from system errors, where error-detection events are defined as

nondeterministic finite automata (NFAs) to be implemented in NFA-based Complex

Event Processing (CEP) systems. The chapter proposes NFAs that are closely re-

lated to error checks in FT literature for the detection of errors in IoT systems via

data-stream analysis facilitated by CEP.

Coupled with the tuples from the VFF framework (Section 4.2), system defects can

be systematically defined so that, for VFF tuples, there are corresponding NFA(s)

to handle them. Furthermore, error-detection events can be recursively fed back

into the CEP data stream for reuse in other NFAs, a process termed Complexity via

Recursion (CvR), which concludes this chapter.

5.1 Complex Event Processing

IoT systems demand continuous information processing and analysis from a wide

variety of geographically diverse and potentially unreliable sources. Modern scientific
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applications are driving the need for heterogeneous sensor networks and methods to

detect events in real time that arise from complex correlations of measurements made

by independent sensing devices [191]. Event detection is a key requirement of intel-

ligent monitoring systems along with data preparation and visualisation. However,

many legacy systems are built on relational databases that require data storage and

indexing before being processed, which creates a significant latency issue that is

unsuited for real-time, reactive event processing [187].

The core challenge when analysing high-velocity streaming data is how to infer the

occurrence of interesting and complex situations in the environment. For example,

the complex situation of a fire may be derived from the correlation of raw numerical

IoT sensor data, such as a rapid increase in temperature and then smoke detection

following shortly thereafter [68].

CEP has been proposed as a means of inferring complex situations in data and

is considered to be the paradigm of choice for the development of monitoring and

reactive applications [36]. It accomplishes this by processing heterogeneous streams

of input data (i.e. primitive events) and, via the analysis of patterns in primitive

events, inferring the existence of high-level, complex phenomena (i.e. composite

events) [60]. CEP operates not only on sets of events, but also causal relationships

between events. The ability to analyse causality is beneficial in many circumstances,

such as in distributed systems where events between nodes have various relationships

to one another e.g. A happened before B [130].

While many existing CEP systems are designed for general-purpose event processing

[90, 32, 58], there also exist ones built for specific purposes. For example: (1) mobile-

driven CEP that automatically adapts event processing to the user’s location [154];

(2) predictive CEP that can anticipate disruptive events caused by incomplete or

uncertain information [149]; and (3) systems suitable for various layers of the typical

IoT infrastructure (Figure 4.1) e.g. edge [50], fog [131], and cloud [139].
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5.1.1 Nondeterministic Finite Automata

This thesis focusses on NFA-based CEP systems because NFA is the established

mechanism on which most CEP systems are based [75]. NFAs were introduced

in 1959 by Rabin and Scott [164] in response to the rising popularity of finite-state

machines (FSMs) wherein a finite number of internal states could be used for memory

and computation. NFAs enable the construction of automata that are more powerful

than conventional FSMs because they allow several state transitions at each state,

offering more a versatile machine that is closer to the ideal of the Turing machine

while ensuring only a preassigned amount of tape.

Events are typically processed as follows [60]. Instances of NFAs, or runs, are created

at runtime to handle potential instances of complex events. When a new event e

arrives, the CEP system checks whether it can satisfy the transition predicate for

the current state of any existing runs. If it can, then a run transitions to its next

state until it reaches its final (i.e. accepting) state, which causes a composite event

to be generated. Runs are ‘halted’ (i.e. removed) when they are no longer able to

proceed to a next state and are not in the accepting state. A more comprehensive

demonstration of this process is provided in Section 6.1.1.

While NFA-based CEP is the predominant approach, there exist other means of

CEP in literature. For example: (1) tree structures [141], where query expressions

are transformed into an internal tree representation and primitive events are stored

in leaf nodes; (2) event derivation under uncertainty (e.g. inaccurate, unreliable, or

lost data) using a Bayesian network to derive new events [204]; (3) FSMs [6], which

provide a simpler way to express complex events than NFAs; and (4) pushdown

automata (PDAs) [41], which provide a more capable automata model than NFAs.

5.1.2 Language Specification

For CEP systems to perform the pattern-matching necessary to detect composite

events, a core language L must exist for pattern querying, which includes necessary

constructs to be useful in real-world applications and each event represents an occur-
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rence of interest [215]. The typical language specification for CEP systems include

the following operators [59]:

• Single-Item Operators. To filter and transform items. For example, temper-

ature items can be filtered to keep those within a given range, and transformed

to convert those in Celsius to Fahrenheit.

• Logic Operators. To define rules that combine the detection of several items:

– Conjunction. Similar to the “AND” operation: items I1, I2, ..., In are

satisfied when all of them have been detected.

– Disjunction. Similar to the “OR” operation: items I1, I2, ..., In are sat-

isfied when at least one of them has been detected.

– Repetition. A special case of the conjunction operation: item I is satis-

fied when it has been detected m times and not more than n times, where

n > m.

– Negation. Similar to the “NOT” operation: item I is satisfied when I is

not detected.

• Sequences. Similar to logic operators but items are order dependent. That is,

items I1, I2, ..., In are satisfied when they have been detected in the specified

order (e.g. by timestamp).

• Iterations. A special case of sequences where the length of the sequence is not

known a priori, enabling unbounded sequences. The ‘Kleene plus’ operator is

used to express one or more items I.

• Windows. Specify portions of input flow to be considered. This constraint is

designed to limit items to those only within a given time frame, and to ensure

the termination of unbounded iterations:

– Time-Based. The bounds are defined as a function of time. For example,

all items in the last 30 seconds.

– Count-Based. The bounds depend on the number of items I in the

window. For example, the last 10 items to arrive.
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• Event Selection. Events can be widely dispersed over one or more input

streams and are therefore not always contiguous. The following strategies have

been proposed to handle this:

– Strict Contiguity. The most stringent strategy as it requires input

events to be contiguous i.e. a second matching event follows directly after

the first without any non-matching events in between.

– Skip till next match (STNM). Skip irrelevant events until the next

relevant event occurs to match more of the pattern.

– Skip till any match (STAM). Enables nondeterministic actions: a

relevant event causes the current partial match to be cloned into a new

instance that skips the current event to reserve opportunities for addi-

tional future matches.

5.1.3 Context Awareness

A key motivation for using CEP to provide FT support in IoT is because of its

ability to realise context-aware computing. A context is any information that can

characterise the situation of an entity (i.e. people, places, objects), and a system is

context-aware if it uses context to provide relevant information and services to the

user [1]. The system stores context information linked to sensor data so that data

interpretation and machine-to-machine communication can be done easily [157].

Hasan et al. [92] considered context awareness over large-scale sensor networks via

dynamic enrichment of information flows, which were combined with CEP, as the

means to realise situation awareness. Barbero et al. [20] proposed the Concept

Reply IoT platform that provided support for context-aware application deploy-

ment throughout the low-level and middleware layers of IoT systems. It contained

a reasoning framework and event-based processing agents that incorporated CEP

for content-based filtering. Nallaperuma et al. [145] proposed Incremental Know-

ledge Acquisition and Self Learning (IKASL), an unsupervised incremental learning

algorithm for detection and adaption of concept drifts in data by monitoring changes
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Figure 5.1: NFA diagram symbols: (a) transition between states using STNM; (b)
same as (a), omitting some intermediary states; (c) arrow pointing to composite
event(s) produced after run acceptance; (d) a starting point; (e) a state; (f) an
accepting final state; (g) a non-accepting halt state.

in context i.e. location, time, activity and identity. They evaluated its efficacy on a

motor-traffic dataset to detect drifts in the number of vehicles on the road.

Maarala et al. [133] focussed on the issue of providing and acquiring knowledge in

IoT environments with a study on Semantic Web technologies that could facilitate

context-awareness, interoperability, and reasoning in IoT. They identified that the

publish/subscribe message-exchange scheme supported topic and content-based mes-

sage routing and aggregation methods, and enabled context-based information fusion

from multiple heterogeneous data sources. This supports the decision to use CEP

systems for context-aware computing as it extends the functionality of publish/sub-

scribe systems by increasing the expressive power of the subscription language, in

order to consider complex event patterns that involve the occurrence of multiple

related events [59].

5.2 Error-Detection Automata

The CPoF approach involves designing error-detection NFAs that can be used across

NFA-based CEP systems to check for erroneous system behaviour via real-time data

analysis. The checks are designed to be modular, reusable, and able to detect low-

level data errors that can occur in IoT systems.

5.2.1 Automata Model

The automata model in this thesis is based on the model described in [179], and uses

the standard NFA notation shown in Figure 5.1. For each state transition there is

an event ei that causes a transition to some state Si, starting at state S1. An event
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has: (1) a value ev, i.e. its data; (2) an origin eo, i.e. where it was generated; and

(3) a timestamp et, i.e. when it was generated. All currently accepted events are in

a history set H, accessible by the current state of a run. The STNM selection policy

is assumed for state transitions because strict contiguity is unsuitable for analysing

high-volume, heterogeneous data in IoT. SA is the accepting state of an NFA.

A dashed arrow (Figure 5.1c) points from SA to a composite error-detection event d

that represents the detected error, and an error-recovery event r that represents the

attempted recovery strategy executed to handle the error; recovery is not mandatory.

The events that caused a composite event to be generated are called the pattern of

the event, which is equal to H when a run’s state is SA. State SF is the halting (i.e.

non-accepting) state that causes a run to halt when it transitions to SF .

A run might transition to SF , regardless of its current state, to provide state clear-

ance. This is where runs are prematurely halted to prevent the accumulation of runs

that cannot realistically reach their SA states, thus mitigating out-of-memory errors.

State clearance can be implemented using: (1) a time window, that halts on a time

elapse; and (2) an until predicate, that halts if true.

5.2.2 Checks

Lee et al. [122] defined an error-detection classification scheme for checking fault-

tolerant systems. It identified seven error-detection checks: reasonableness, timing,

reversal, replication, coding, structural, and diagnostic checks. The first four of these

are explored in this section. The other three are not explored because the error-

detection checks proposed in this section can also be used for coding, structural, and

diagnostic checks, and therefore do not require their own automata.

Reasonableness

Event reasonableness refers to whether an event is acceptable based on criteria en-

visaged by the system designer and implemented via the internal design and con-

struction of the system [122]. The three data unreasonableness types explored in

[128] are considered, namely: (1) outliers, where ev exceeds some threshold ε; (2)
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Figure 5.2: Reasonableness NFAs: (a) limit checking; and (b) trend checking.

stuck-at faults, where the last n event values are all equal; and (3) spikes, where

some values in the last n events are drastically higher or lower than others, resulting

in high variance.

Limit Checking Detecting outliers involves checking if ev is ‘within its limits’. In

a NFA, this would simply require a predicate that checks if e1 is not within some

defined limits (Figure 5.2a), e.g. ¬(εmin ≤ ev ≤ εmax). If true, the NFA transitions to

SA and an error-detection event dl is produced, optionally followed by error-recovery

event rl. The pattern for dl and rl is {e1}.

Trend Checking Isermann [98] proposed calculating trend checking by taking

the first derivative of the event value f ′(ev), and then limit check as before, e.g.

¬(εmin ≤ f ′(ev) ≤ εmax). If true, a trend has not been smooth and can be con-

sidered unreasonable. The NFA in Figure 5.2b is proposed for trend checking, which

calculates the slope between all relevant events that occur within time window t.

If the slope between events e1, em, or an aggregate of n prior events f(e1, ..., en), em,

surpasses a given slope threshold, error events dt, rt are generated. Otherwise, em

is ignored and the NFA reattempts with some future em event, or halts on state

clearance. This design enables spike detection by checking for exceptionally large

trend changes between events. Stuck-at detection occurs if the trend is persistently

0. The pattern for dt and rt is {e1, ..., en, em}.
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Figure 5.3: Timing NFAs: (a) performance checking; and (b) persistence checking.

Timing

A timing check is a simple implementation that detects when an operation fails to

satisfy a specified time bound, and typically uses absolute or interval timers to invoke

the detection mechanism [163]. The proposed checks are designed to address three

scenarios: (1) where there exist two events e, e′ and an ‘unacceptable’ time interval

ε between them; (2) where one event e exists and an unacceptable time elapse ε that

occurs without the next event e′; and (3) where n events occur within time ε.

Performance Checking Identifying timeliness errors such that an event beyond

time threshold ε would produce error event de, representing a performance failure

i.e. a late timing failure (Figure 5.3a). Event e1 is first accepted, and a transition

to SA occurs if: eo
2 = eo

1 ∧ (et
2 − et

1) > ε. If ≤ ε, the NFA halts. To detect when a

second event does not arrive at all, the CEP system still needs an e2 event to reach

SA. A limitation with NFAs is that negation cannot be the final state transition i.e.

it cannot reach SA by waiting for something to not happen. In literature, pruning

NFAs is accomplished using a periodically generated null event, e∅, that helps when

reasoning about intervals between events [11]. Thus, the time between e1 and e2 = e∅

can be calculated instead.

Persistence Checking Persistence is classified as [16, 110]: (1) transient: ar-

bitrary faults that cause erroneous behaviour for a short time before going away;

(2) intermittent: faults that oscillate between being active and dormant; and (3)

permanent: faults assumed to be continuous in time. If the pattern of an error
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Figure 5.4: Reversal NFA for correlation checking.

event d refers some other error event d′, then d is considered transient, because it is

independent from any other detected system errors.

The automaton from Figure 5.3b considers how de from Figure 5.3a can be checked

for persistence. For intermittent and permanent persistence, the NFA accepts n > 1

events of type de to reach SA. Halting occurs on state clearance. Intermittent

persistence can be implemented as having n > 1 occurrences of de in time t, and

permanent persistence as having n′ ≥ n occurrences in time t′ ≥ t. The intuition

behind this is that permanent persistence would have more error occurrences over

more time than intermittent faults.

Reversal

A reversal check takes the output from a system and calculates what the input(s)

should have been in order to produce that output, where the calculated inputs are

used to compare with the actual inputs to check for an error [122]. This check has

predominantly deterministic applications (e.g. reading back what was just written

to disk). However, the proposed correlation check considers how it can be used in

scenarios to check for a relationship between two (sets of) events, where the causality

between events can only be inferred, discussed next.

Correlation Checking Given n ≥ 1 system events e1, ..., en, there are n ≥ 1

erroneous events en+1, ..., em that occur afterwards within a given time frame, or

halt otherwise (Figure 5.4). If they do occur, the system can react as though the

latter event(s) were caused by the former. This check helps to handle scenarios where

an error propagates through a system and causes more errors [16].
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Figure 5.5: Replication NFA for inconsistency checking.

Replication

Replication checks utilise redundancy of the activity being checked. They assess

discrepancies between the outputs of replicas to identify erroneous behaviour, par-

ticularly faults in physical components of hardware systems e.g. TMR (Section 2.2.1)

[122]. IoT systems are expected to have large sensor networks producing comparable

data that is heavily context bound. For example, the natural light in a room causes

similar daily patterns, and deviations from the expected pattern can be detected

without redundancy, simply from context alone.

However, the temperature of machinery might change depending on how much it is

used, for example. No redundancy in temperature sensors, coupled with erroneously

low temperature readings, might lead to a hardware failure if the machinery were

to overheat. Having multiple sensors producing temperature readings would enable

checks between readings to look for inconsistencies between temperatures, so that

faulty sensors can be isolated and replaced.

Inconsistency Checking As discussed in Section 2.2.1, NVP is a form of static

redundancy that provides error masking by executing n independently developed

programs, identical in specification, and accepts the majority result from the n out-

puts [37, 203]. An NVP-like design can be adapted as an inconsistency check NFA

(Figure 5.5) that is able to identify any inconsistency from the output of n sensors

producing equivalent sensor data.

The inconsistency check performs an assessment of m events to check for inconsist-

encies between event values. The first n events are collected with the predicate:

∀ė ∈ H|ėo 6= eo, which ensures that the value from current event e has a different
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Figure 5.6: The process of CvR.

origin to all events currently consumed in event history H. The state transition for

state Sn (Figure 5.5) then has the following predicate:

∀ė ∈ H|ėo 6= eo
m ∧ ¬(a ≤ std(∀ėv ∈ em ∪H) ≤ b)|0 ≤ a ≤ b (5.1)

This checks the standard deviation of the values of all events to see whether it is not

within some acceptable range. If the standard deviation is unreasonably high, then

it suggests a data error, perhaps caused by sensor malfunctions or environmental

errors. For discrete data, where any variation in value constitutes a data error, one

can apply the above predicate with a = b = 0.

5.3 Complexity via Recursion

Instead of defining complex, monolithic NFAs to handle application-specific error

scenarios, it would be favourable to define simple, modular, and reusable NFAs,

where error-detection and recovery events produced by them are recursively fed back

into the CEP system for use in other NFAs to express more complex scenarios. This

proposed process is referred to as Complexity via Recursion (CvR).

For example, a common failure in IoT systems is sensor failure, which could be

checked using the performance checking NFA from the previous section, by assuming

that the time difference between a sensor’s last event and the current time is greater

than some threshold. However, a gateway failure will cause all of its connected

sensors to appear to have failed to FT support outside of the network, which would
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result in the FT support an error-detection event for each sensor that has now

appeared to stop producing data. Using CvR, a more complex NFA could be created

to correlate the error-detection events from each sensor and, due to these events

occurring in rapid succession, infer that it was actually the gateway that failed.

The process of CvR is as follows (Figure 5.6):

(a) A stream of events enter the CEP system over time.

(b) Each event is passed to the NFAs. When an event fulfils the predicate to

transition to the first state of an NFA, a run is created.

(c) Events are passed to each incomplete and unhalted run and might cause a state

transition.

(d) A run might eventually transition to SA, producing an error event d, or halt if

it transitions to SF .

(e) Event dmay be passed to an error-recovery handler that will attempt to recover

from d, producing an error-recovery event r detailing the actions taken to

handle the error and whether they were successful or not.

(f) Events d, r are fed back into the CEP data stream to potentially be used by

other runs.

This approach to error definition means that common errors that are universal to any

IoT system have reusable NFAs to check for them. This makes FT support easier

for system designers because they simply need to identify the failures that occur in

their system and pair them with appropriate NFAs.

5.3.1 Proactive Detection

Fülöp et al. [78] suggested that the value of a composite event would be at its highest

if it were proactively generated. That is, before the real-world complex phenomena

being detected had occurred. The event’s value decreases over time as the composite

event is generated further from the time of the complex phenomenon. This concept

is applied to the FT solution proposed in this thesis, as follows (Figure 5.7):
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Figure 5.7: The value of generating a composite error-detection event over time when
faults and errors occur in a system.

(a) Before fault activation, an error event is most valuable because it can prevent or

mitigate erroneous system behaviour and reduce the overhead of error recovery.

(b) After fault activation, an error event’s value begins to decrease with time the

longer that its underlying fault remains active and untreated.

(c) Reactive FT is able to detect its error(s) due to their observable effects on

system data.

(d) After time t has elapsed, a detection event would be considered late, and to

detect the error thereon would become less valuable over time.

CEP provides reactive recovery because the error must have already happened in

order to detect how it manifests in system data. For proactive recovery, ML is

proposed as the means to learn from CEP in terms of the errors detected and recovery

provided during CEP runtime. CvR is proposed as the basis for providing proactive

support via supervised learning techniques to predict imminent error events using

two correlation check NFAs (Section 5.2.2), as follows.

Check 1 The first correlation check NFA receives event e1 and is followed by a

second event e2 ∈ d within some time t, which reaches SA and produces an error

event dr. Event dr acts as a ‘positive’ classification label 1 for the dataset of a

supervised learning model.
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Check 2 The second correlation check NFA generates event d′r when e2 does not

occur after e1 in time t, i.e. where e2 = e∅ (Section 5.2.2). Event d′r acts as a

‘negative’ classification label 0.

Prediction With events dr, d
′
r, the prediction ‖P (e2|e1)‖ = 1 can be made when

e2 is likely to follow e1 in time t and, in response, proactively performing recovery

as though e2 ∈ d had just been reactively detected. Conversely, the prediction

‖P (¬e2|e1)‖ = 0 can be made when e2 is unlikely to occur in time t.

5.4 Summary

This chapter proposed CPoF as a means of detecting and recovering from system

errors, where error-detection events were defined as NFAs to be implemented in NFA-

based CEP systems. This was advantageous because it enabled errors to be defined

in a language-agnostic way and promoted interoperable and portable FT design that

could be easily ‘plugged into’ any existing IoT system.

The proposed NFAs were based on four error-detection checks from FT literature:

reasonableness, timing, reversal, replication. From these checks, six NFAs were

defined: (1) limit, which checked if an event was not within some defined limits;

(2) trend, which checked the first derivative of an event and then checked if it was

not within some defined limits; (3) performance, which identified event timeliness er-

rors; (4) persistence, which checked the persistence of a system error as to whether it

was transient, intermittent, or permanent; (5) correlation, which checked the correl-

ation between system events; and (6) inconsistency, which checked for discrepancies

between events that should have produced equivalent data.

The correlation check NFA was crucial in providing proactive FT via CvR. It could be

implemented as a means of using composite events are training data for supervised

learning models, in order to learn from the types of error correlations that could

occur within an IoT system.
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Chapter 6

Implementation

The key concepts proposed in Chapters 4 and 5 lay the foundation for an interop-

erable FT-support system that is able to both reactively and proactively protect

against system errors via data-centric error checking. This chapter describes how

the FT-support system was implemented and presents a use case that is specifically

relevant to current IoT trends. The use case is of a sufficient scale, such that it

can demonstrate a large array of convincing failure scenarios that the proposed FT

support should handle.

A novel NFA-based CEP system, BoboCEP, is first proposed as a means of providing

resilient FT support at the edge via the active replication of partially completed

complex events. Then, two vertical farming testbeds are presented: the first is a

small-scale testbed that was later scaled up to a medium-scale testbed with more

hardware and failure scenarios. Finally, a dataset from a real-world vertical farm is

described, with a brief explanation of how CPoF can be applied to it.

6.1 BoboCEP

Few CEP systems have been designed specifically for IoT and, to the best of my

knowledge, there does not exist a CEP system that is designed to provide a resilient

FT-support framework for IoT. Long-Term CEP (LTCEP) enabled long-term events

to be detected without excessive overhead by splitting event detection into online

and offline detection, which significantly reduced redundancy in intermediate state

and data [132]. Event Sharing CEP (ESCEP) reduced wasted energy consumption
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and increased processing efficiency using a hashing algorithm to decompose complex

events into several intermediate events, which enabled them to be shared more easily

[211]. EdgeCEP is a fully distributed CEP engine for the collaboration of devices at

the edge network, where task assignment and delivery was accomplished using tabu

search and a heuristic flow-based greedy move algorithm [50].

EdgeCEP addressed many of the design and functionality considerations for distrib-

uted edge processing. However, it is important to provide a generic means of applying

FT support to IoT systems that can be pushed as close to the fallible sensor network

as possible, and where FT support is, itself, fault tolerant. CEP-based FT support

needs to provide resilient distributed long-term event processing, as with LTCEP,

but where the current state of FT support is actively replicated to protect against

arbitrary edge device failures.

BoboCEP is a CEP system that can detect, assess, and recover from complex, erro-

neous system behaviours that are detected via patterns in primitive events. Error

definitions are expressed as NFAs (Section 5.1.1) and composite events represent

detected errors in an IoT system. BoboCEP is designed to be distributed across the

network edge on k software instances. Each instance maintains the current state

of partially completed runs via active replication, so that (k − 1) instances can fail

without complete FT-support service loss. This helps to facilitate: (1) long-term

error detection, because partially completed runs maintain the same state across the

edge, so they can be continued and completed on any device; and (2) load balancing,

by having devices send their data uniformly to any edge device, as facilitated by

active replication.

6.1.1 Event Processing

BoboCEP implements the automata model described in Section 5.2.1. Defining a

complex event requires the definition of a series of state transitions that lead to a

final state SA, which results in a composite event being generated to represent a

complex phenomenon. The events that caused a composite event to be generated

are the pattern of the event.
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Figure 6.1: The relationship between automaton states (S1, ..., SA) and their labels
(L1, ..., L6).

Due to nondeterminism in BoboCEP automata, a pattern categorises its events based

upon what layer an automaton is current at, where each layer L contains one or more

states that may be accessed nondeterministically (Figure 6.1). State S2 is a looping

state, making it a nondeterministic state because it can transition to either S3 or back

to S2 again. Every event that causes a loop back to S2 will be associated with layer

L2. S3 can transition to both S4 and S5, which also makes this a nondeterministic

state. Events for S4 and S5 will be associated with layer L4.

Process The process of fulfilling an automaton in BoboCEP is similar to most

other NFA-based CEP systems, as discussed in Section 5.1.1. An example of the

fulfilment process in BoboCEP is described next and visualised in Figure 6.2. For

this example, it is assumed that: (1) in order to transition to some state Sn, an event

must be received with value ev
t = n, where t is the time that the event was received;

(2) a layer Ln corresponds to each state Sn; and (3) S4 = SA.

At time t = 0, the automaton is currently not in any state, but an event with value

ev
0 = 1 triggers a transition to S1. Likewise, at time t = 1, event ev

1 = 2 causes

a transition to S2. At t = 2, another event ev
2 = 2 is consumed that causes S2 to

nondeterministically loop back to itself. The automaton remains in the same state,

but layer L2 for S2 is now associated with two events in its history of consumed

events: e1 and e2. At t = 3, event ev
3 = 3 nondeterministically moves the automaton

to state S3. At t = 4, event ev
4 = 1 is not an event that can cause a transition to S4.

When an event is encountered that does not cause a transition, BoboCEP responds

depending on which contiguity policy is being used, namely:

• Strict Contiguity. All matching events are strictly one after the other,
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Figure 6.2: An example of run processing, adapted from Figure 2 in [60].

without any non-matching events in-between. If an event does not match,

the run halts.

• Relaxed Contiguity. All non-matching events are ignored; the run simply

waits for a matching event. This policy is equivalent to STNM in Section 5.1.2.

• Nondeterministic Relaxed Contiguity. The same as relaxed contiguity,

but will ignore non-matching events in circumstances where are multiple next

states to transition to. This applies to S2 in Figure 6.2 because it can transition

to both S3 and back to S2. This policy is equivalent to STAM in Section 5.1.2.

6.1.2 Architecture

BoboCEP’s architecture is inspired by the information flow processing (IFP) func-

tional architecture proposed by Cugola et al. [59] that describes the main functional

components that are common to all IFP systems, of which CEP systems are a subset.

Several key components of the IFP architecture have been adopted for the design of

BoboCEP (Figure 6.3), as follows.

Receiver

This provides an entry point for data sources to input primitive events into BoboCEP.

It is where sensor data can be introduced into a given software instance. It uses an
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Figure 6.3: The BoboCEP architecture, with the key subsystems from the IFP
architecture [59] in blue.

internal Clock to order events using timestamps to create a serialised event stream

where events are ordered based upon when they entered the system.

Decider

This is the decision-making component of BoboCEP that determines whether com-

posite events are generated or not (Figure 6.4). When a BoboCEP instance first

starts, it generates a handler for each NFA to be implemented (i.e. the Rules). A

handler is a container for an NFA and all instances of the NFA that are created at

runtime (i.e. runs).

Primitive events from Receiver and events from Producer (below) are passed to

the handlers, which might trigger a run instantiation if the current event under

consideration fulfils the first predicate of the NFA, or causes state transitions if the

event fulfils a predicate in an existing run. If a run reaches its accepting state SA

(Figure 6.6), it will trigger a composite event to be generated by Producer.

Buffer Each handler contains a buffer that efficiently links events together that

are shared by all of the runs for a given NFA. It is an implementation of the Shared

Versioned Match Buffer (SVMB) proposed by Agrawal et al. [4], which is designed

to ensure that only one version of an event is stored, even if it is in use by multiple
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Figure 6.4: Handlers (red) and runs (blue) in Decider. Handler h1 currently contains
runs r1, ..., rn and can create more runs at runtime. Solid arrows show events passing
through handlers and runs, and the dashed arrow indicates a run CLONE operation.

runs, in order to provide a more memory-efficient event processing approach. It has

been successfully implemented in existing CEP systems, such as FlinkCEP1.

The process of SVMB is described with an example that follows on from the example

in Section 6.1.1, and assumes a relaxed contiguity policy throughout. If the auto-

maton from Figure 6.2 were a run r1, and events e0, ..., e3 were added to a buffer,

they would be added as shown in Figure 6.5. Events are categorised by the layer to

which they are affiliated, and can be in multiple layers if they are being shared by

different runs for different layers.

For each run is a unique run version number, and r1 is allocated version 1.0 when

e0 is added to layer L1. This version number is used until e3 causes a state transition

to L3. At this point, run r1 is then cloned, meaning that a new cloned run r2 (Figure

6.5, orange) will transition to S3 with version number 1.0.0, and the original run

r1 remains in its current state S2 and increments its version number to 1.1. A clone

occurs here because L2 has a nondeterministic transition: it can either transition to

L3 or loop back to itself. Cloning enables the original run to potentially perform a

different transition from its current state in the future.

Event e4 was ignored (as occurred in the example from Section 6.1.1). Event ev
5 = 1

would cause a new run r3 to be instantiated (Figure 6.5, blue) with version number

2.0. Event ev
6 = 4 would cause run r2 to reach SA and finish; e6 would be ignored

1https://ci.apache.org/projects/flink/flink-docs-release-1.7/api/java/org/apache/flink/cep/
nfa/sharedbuffer/SharedBuffer.html
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Figure 6.5: An example scenario of the SVMB, with run r1 in red, r2 in orange, r3
in blue, r4 in green, and r5 in pink.

by r1 and r3. On event ev
7 = 2, run r1 would loop back to S2 with its incremented

version number 1.1, and r3 would transition to S2 with 2.0. Event ev
8 = 3 would

cause r1 to clone run r4 (Figure 6.5, green) with version number 1.1.0. Run r3

would also clone run r5 (Figure 6.5, pink) with version number 2.0.0. Event ev
9 = 4

would bring r4 and r5 to their respective SA states.

Runs r1 and r3 technically cannot reach SA because they always remain in S2 and

only their clones transition forward. They are only able to trigger more future clones,

or halt to SF via some kind of state-clearance approach e.g. a time window (Section

5.1). The implementation of SVMB in BoboCEP is described in Appendix A.1.

Producer

This is the subsystem that receives notification from the Decider that a complex

phenomenon (i.e. an error detection) has occurred, and receives all of the events

that were used to infer the existence of this phenomenon (i.e. the pattern of events).

The pattern, the time of detection, and the NFA, are used to generate a composite

event representing the detection of an error.

Producer then triggers the appropriate Actions to be executed, as determined by the

Rules. These actions enable an assessment into the probable root cause of the de-

tected error, and then enable the execution of an appropriate error recovery strategy

based on the results of the assessment. The composite event is recursively sent back

to Decider for potential use in the detection of future errors, as well as any actions

that were executed during recovery (i.e. action events).
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Figure 6.6: An example NFA with different transition types: (a,d) CLONE; (b)
TRANSITION; (c) HALT; and (e) FINAL.

Forwarder

This enables BoboCEP to deliver the events generated by Producer to external

systems (e.g. database systems) for the external consumption of the complex error

events inferred by BoboCEP. This enables external systems to be notified on the

occurrence of system errors, as well as whatever assessment and recovery attempts

were made to handle the errors.

6.1.3 Message Broker

BoboCEP uses a message broker to replicate a state change in one instance to all

other running instances. This is to ensure that all instances maintain the same

internal state at all times. State changes are sent to a message queue on the broker,

which are then broadcast to all other instances, in order to invoke state updates.

The system messages exchanged are (Figure 6.6):

• TRANSITION. When a run is transitioning state but has only one next state (i.e.

deterministic), the new state, and the event that triggered the transition, are

broadcast to the other instances to force the transition on them also (b).

• CLONE. When a run is transitioning state but has multiple next states (i.e. non-

deterministic), the run is cloned, meaning that the cloned run will transition

and the original run remains in its current state (d). This message is also used

when a new run is instantiated (a).

• FINAL. When a run reaches accepting state SA, all other instances are signalled

to complete their versions of the run, but not to execute any Action associated
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with the composite event (e). The instance that initially reached SA is the one

that executes the Action in Producer.

• HALT. When a run reaches halt state SF , a signal is sent to other instances to

clear the run from their handlers (c). Whereas SA leads to composite event

generation, SF does not.

• ACTION. When an Action is executed due to composite event generation, it

notifies other instances as to whether it was successfully executed or not.

• SYNC. When a BoboCEP instance first starts, it synchronises with any other

online instances that are already synchronised to retrieve the current state of

FT support before starting error processing.

6.2 Vertical Farming Systems

It is predicted that the world population will reach 9 billion by 2050 and 70% will live

in urban centres, which will strain the earth’s resources along with climate change,

specifically the food supply chain [43]. Both land clearing and more intensive use

of existing croplands could contribute to the increased crop production needed to

meet such demand, however ~25% of global greenhouse gas emissions result from

land clearing, crop production, and fertilisation [194].

The problem outlined is the motivation for the vertical farming system (VFS) use

case in this thesis. VFSs grow produce indoors, where environmental factors (e.g.

light, water, nutrients) are tightly controlled to enable better sensing of farming and

food processing operations [23, 200]. They are a growing trend in the IoT domain,

and it is predicted that IoT device installations in the agriculture sector will increase

from 30 million in 2015 to 75 million by 2020 [69].

The number and size of VFSs in Europe has seen rapid expansion in recent years,

primarily driven by the drop in price of LED lighting technologies, a growing con-

sumer demand for healthy local produce, and vacant office buildings that arose after

the 2007-2008 global financial crisis [111]. Typical features of a VFS centre around

saving energy, and include [24]: (1) a recycled water system augmented by rainwater
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or water from a desalination plant; (2) automatic temperature and humidity control;

(3) solar panel lighting and heating; and (4) tuneable 24-hour LED illumination.

The most efficient method of water consumption in VFS is facilitated via: hydro-

ponics, where plants grow without soil by instead using mineral nutrient solutions

in a water solvent; and aeroponics, where plant roots are hanging in plastic holders

and foam material replaces soil [176, 118]. When used together, they can save up to

95% of water compared to traditional farming methods, and can help to eliminate

farming waste water that is potentially hazardous to the environment and human

health [101]. Touliatos et al. [195] grew lettuce in a VFS, where plants were grown

in upright cylindrical columns, as well as a conventional horizontal hydroponic sys-

tem. Result showed that the VFS produced 13.8 times more crops, calculated as the

ratio of yield (kg FW) to the occupied growing floor area (m2). This demonstrated

that VFSs present a viable alternative to conventional horizontal growth systems by

optimising growing space efficiency, thereby producing more crops per unit area.

Two VFS testbeds were created to evaluate the proposed FT framework. The first

was a small-scale VFS with 4 plants and little component redundancy. This was

later upgraded to a medium-scale VFS with 21 plants, more component redundancy,

and a larger infrastructure, to demonstrate the scalability of the FT framework.

Furthermore, a dataset from a real-world VFS was incorporated to validate the

research in this thesis with an industrial VFS. These are discussed next.

6.2.1 Small-Scale Testbed

The motivation behind the testbed was that it would adopt the basis processes of a

typical VFS. Namely, it would: (1) water plants when they needed to be watered,

to ensure that produce does not become under- or over-watered; and (2) activate

grow lights when natural light was not available, to ensure that photosynthesis was

always available for the produce.

The small-scale VFS testbed had two shelves, each with two plants (Figure 6.7). Be-

neath each plant was a water container (d) that contained a USB-powered 44GPH

3.5V water pump that would pump water to its connected plant when activated.
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Figure 6.7: Left: The small-scale VFS testbed. Right: The testbed’s infrastructure.

Above each plant were 5V grow lights (b) each with 40 LEDs that help to encourage

photosynthesis, germination, and flowering. Both the water pumps and the grow

lights were connected to KanKun KK-SP3 Wi-Fi smart plugs (e) that, when activ-

ated, would activate their attached actuators.

A Particle Photon Wi-Fi module containing a STM32 ARM Cortex M3 microcon-

troller (c) was on each shelf: microcontroller L for Shelf1, and R for Shelf2. Both

microcontrollers had two moisture sensors, one for each plant on its shelf, as well as a

light-dependent resistor (LDR) for each that measured the light intensity around the

shelf. Two multi-sensors, Device1 and Device2 (a), as previously described in the

scenario from Section 4.1.3, sent infrared-light data every 5 seconds to a Raspberry

Pi 3 at the network edge. Device1 was the primary multi-sensor device. Device2 was

in a hot standby state and would only activate when Device1 was identified as having

failed. If a moisture value were < 0.5, its associated water pump would activate.

If an infrared-light value were < 0.2, its associated grow lights would activate, or

deactivate if ≥ 0.2.

The edge device ran a microservice that used FlinkCEP (v1.4.2)2 as its NFA-based

CEP system to provide real-time, reactive FT. Data received by the edge would

finally be sent to a local database service on separate back-end machine one hop

away from the edge. The back-end permanently stored all data generated by sensors

in the system as well as events generated by the microservice on the edge device. The
2https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/cep.html
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Figure 6.8: Left: The medium-scale VFS testbed. Right: The testbed’s infrastruc-
ture and its default configuration, where Shelfn’s microcontrollers (orange) send data
to Edgen.

back-end also ran a microservice that used scikit-learn (v0.2)3 for ML tasks needed

to provide long-term, proactive FT.

6.2.2 Medium-Scale Testbed

The purpose of expanding the small-scale testbed was to ensure that the research

objectives outlined in this thesis (Section 1.3) could scale to a larger system that

had more sensors, more data, and a larger infrastructure that exhibited distributed

event processing and load balancing.

The medium-scale testbed had three shelves (Figure 6.8), each with two water con-

tainers (c) that pumped water to the reservoir of its self-watering propagator (SWP).

Each SWP was a tray containing a reservoir on a platform, which was covered in

capillary matting that would draw water from the reservoir into the soil of the plant

pots resting on top of it. The SWPs enabled a redundant number of water pumps

to water several plants at a time by instead pumping to the SWPs. There were 21

plant pots in total, 7 to each SWP. Therefore, two water pumps on a shelf were able

to pump to its 7 plants simultaneously. The grow lights (a) and smart plugs (d) were

configured as they were in the small-scale testbed.

There were 6 microcontrollers (b), with two on each shelf. Every 3 seconds they

would sample: (1) temperature and humidity from two plants on their shelf; (2)

water level from the reservoir; and (3) light intensity around the shelf using LDRs.
3https://scikit-learn.org/0.20
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Table 6.1: A sample of five rows from the IGS dataset.

Name Format Value Sensor Timestamp
IGS-INV01-T0001-

Sen37
Hum 60.450000 HVAC01 2019-07-05

06:49:27.543
IGS-INV01-T0001-

Sen36
DegC 32.910000 HVAC01 2019-06-25

18:49:42.497
IGS-INV01-T0001-

Sen36
Co2 530.000000 HVAC01 2019-08-02

11:00:36.250
BOT_TANK-

CIRC_CURRENT
AMPS 2.365000 WATER01 2019-04-16

12:56:30.937
T0001-Feed EC 1.236250 WATER01 2019-05-19

04:42:38.223

These payloads would be sent to one of three edge devices each running an instance

of BoboCEP: Edge1, Edge2, and Edge3. The data would then be aggregated on a fog

device further towards the cloud, which contained the ML models for the proactive

FT solution and, like with the previous testbed, also used scikit-learn (v0.2) for ML

tasks. All data would then be stored in the cloud on a relational database hosted by

Amazon Web Services4.

BoboCEP (v0.35)5 was developed using the Python (v3.7)6 programming language

and was distributed across the three edge devices running on Raspberry Pi (v2 Model

B) hardware. The BoboCEP Receivers (Section 6.1.2) consumed stream data via a

Flask (v1)7 server that enabled microcontrollers to send data ~3 seconds to the

Receivers. Shelf1 contained microcontrollers LL, LR, which, by default, routed their

data to Edge1; ML, MR to Edge2; and RL, RR to Edge3. On an edge device failure,

microcontrollers sending data to the failed device would randomly pick another edge

device through which to reroute their sensor data. RabbitMQ (v3.7)8 was used for

the BoboCEP message broker.
4https://aws.amazon.com
5https://pypi.org/project/bobocep
6https://www.python.org
7https://palletsprojects.com/p/flask
8https://www.rabbitmq.com
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Figure 6.9: Current data over a 9-day period.

6.2.3 Real-World Dataset

In addition to the VFS testbeds, the company Intelligent Growth Solutions (IGS)9

provided a dataset from their real-world VFS. Their solution was a farm containing

four towers, each with 350m2 of growing area per tower. Each growing tray had

an integrated watering system that provided a constant water supply, with surplus

water filtered and recycled. Each water pump pushed used water through a series

of three filters. As filters became clogged with debris, the pump would use more

current to maintain the same flow rate. Filters were cleaned and replaced regularly

in response to high current rate.

IGS supplied a dataset containing all of the data that they use to ensure the correct

functioning of their solution, a sample of which is shown in Table 6.1. Similarly

to the testbeds, the data collected included the temperature (DegC ) and humidity

(Hum) of the growing environment, but also collected data regarding the system’s

emissions (Co2 ).

They also collected the water pump current (BOT_TANK-CIRC_CURRENT ),

which was what enabled IGS to determine when to clean the filters in the afore-

mentioned scenario. In the current data (Figure 6.9), the current would gradually

rise over several days, until IGS maintenance staff manually cleaned the filters, which

would cause a sharp drop to the pump’s optimally low current.

In FT terminology, the fault is environmental, caused by the gradual build-up of

debris; the error is an unreasonably high current; and the failure would be the
9https://www.intelligentgrowthsolutions.com
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inability to pump water caused by clogged filters, which might cause a water overflow

or a build-up of bacteria. IGS provided this dataset to consider whether the reactive-

and proactive-FT solution proposed in this thesis would be able to identify the error

in real time, as well as predict when the error would probably occur next.

6.3 Summary

This chapter started with a justification for a new NFA-based CEP system that was

able to provide a generic means of applying FT support to IoT systems that can

be pushed as close to the fallible sensor network as possible and where FT support

was, itself, fault tolerant. BoboCEP, an NFA-based CEP system, was developed to

provide these qualities.

BoboCEP was designed to be distributed across the network edge on k software

instances, where each instance maintained the current state of partially completed

runs via active replication, so that (k − 1) instances could fail without complete

FT-support service loss. It used a SVMB to provide efficient event storage, where

events were shared across all runs that used it. A third-party message broker was

used alongside BoboCEP as the means by which message passing was performed

between instances, in order to ensure state synchronisation.

The use case designed for the evaluation of this thesis consisted of two VFS testbeds.

The first was a small-scale VFS with limited hardware/software redundancy and a

minimal centralised infrastructure. The second was an upgrade to a medium-scale

VFS, with more plants, more hardware/software redundancy, and more failure scen-

arios to detect. Finally, a dataset from a large-scale, industrial VFS was described

for use in providing a demonstration that the FT-support solution is effective on

real-world failure scenarios.
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Chapter 7

Evaluation

In the previous chapters, an FT-support system based around microservices was

proposed, where reactive-FT support provides error detection via NFA-based CEP,

and proactive-FT support provides error prediction via ML. This chapter presents an

evaluation of the FT framework proposed in this thesis using a series of experiments

that test the research objectives from Section 1.3. Firstly, CPoF experiments validate

whether it is possible to provide effective reactive-FT support via NFA-based error

checking. This is then built upon by exploring the various problems that can be

solved when proactive FT is also included as part of the FT-support process. Finally,

the benefits of BoboCEP specifically are explored, namely, resilient long-term event

processing and load balancing, as well as a performance evaluation of the BoboCEP

Python implementation.

7.1 Methodology

7.1.1 Techniques

To determine the efficacy of the proposed FT framework, its design and implementa-

tion requires evaluation. With software systems, an evaluation can be characterised

as a goal-oriented task where actions are performed that result in one or more re-

ported outcomes, which help to improve the quality of the actions or to choose

the best action alternative [84]. Some evaluation approaches conducted after sys-

tem implementation evaluate the general worth of the information system, whereas

multiple-criteria evaluation approaches, which include subjective and objective eval-
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uations, consider both user and system constraints equally [28]. This section briefly

outlines the two common techniques used to evaluate software systems, namely [84]:

• Descriptive evaluation techniques. These are used to describe the status

and the actual problems of the software in an objective, reliable and valid way.

These techniques are user based and can be subdivided into several approaches:

– Behaviour based, where the user’s behaviour is recorded while working

with a system which produces some kind of data. These procedures in-

clude observational techniques and thinking-aloud protocols.

– Opinion based, where the aim is to elicit the user’s (subjective) opinions

e.g. interviews, surveys and questionnaires.

– Usability testing, which is a combination of behaviour- and opinion-based

measures with some amount of experimental control, usually chosen by

an expert.

• Predictive evaluation techniques. These are used to make recommend-

ations for future software development and to prevent usability errors. Its

procedures include walkthroughs and inspection techniques. An important

distinction between predictive and descriptive techniques is that predictive re-

lies on data by experts who simulate real users, which is hard to apply in a

descriptive setting because of objectivity and reliability requirements.

7.1.2 Justification for Evaluations

Given the various techniques for evaluating software systems, appropriate evaluation

techniques must be decided upon to help provide some level of measurement to assess

whether the key objectives of this thesis have been fulfilled. As such, it is important

to reiterate the research objectives from Section 1.3, namely:

1. To identify and classify faults events and fault patterns in IoT systems.

2. To develop a service-oriented fault-tolerance framework for IoT systems that

combines both reactive- and proactive-FT support.
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3. To incorporate strategies and mechanisms that facilitate effective fault mitig-

ation.

4. To ensure that the framework can scale to more complex IoT scenarios.

The primary motivation for these objectives was to determine whether it was possible

to provide pluggable, interoperable FT support for IoT systems that was able to

reactively handle errors and then learn how to proactively handle them with enough

experience of what errors the system encounters in its lifetime.

Objective 1 was intended to address the lack of consistency with FT frameworks in

IoT systems. As shown in the literature review in Section 3.1, the proposed solutions

did not have a consistent understanding of how systems could fail and, therefore, led

to a large number of bespoke systems with FT support that was not cross-compatible

with each IoT system. Objective 1 attempts to address this issue with the combina-

tion of the VFF framework and CPoF, to first categorise vulnerabilities, faults, and

failures, and then apply them via reusable NFAs (Section 5.2.2). Experiments to

evaluate Objective 1 (Section 7.2) consider how the error-checking NFAs can provide

reactive FT without proactive FT included, to measure the efficacy of reactive-FT

support in isolation.

Objective 2 was intended to build upon the findings of Objective 1 by incorporat-

ing NFAs into a reactive- and proactive-FT support framework that enabled NFAs

to be applied via CEP systems and for predictive analytics to learn from and an-

ticipate errors detected by the CEP system. Experiments for Objective 2 (Section

7.3) consider how correlations between with system context (e.g. time), and cor-

relations with other recent system errors, can help to predict and anticipate future

imminent errors. These experiments provide assurance that the two complementary

inference-based mechanisms of CEP and ML can provide the desired intelligent FT

framework.

Objective 3 was intended to build on Objective 2 by considering how error-recovery

mechanisms fit into the FT framework. The experiments for Objective 2 demonstrate

effective reactive and proactive error detection, but Objective 3 warrants further

emphasis on recovery and how all of the FT stages (Section 2.2) are applicable to the
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FT framework. Experiments for Objective 3 (7.4) are similar to those in Objective 2

but with a focus on the formal definition of FT scenarios as functional requirements.

A core part of these experiments is to ensure that error detection will occur despite

data errors, and that error recovery has been correct given data correlations after

recovery had been executed.

Objective 4 was intended to build on Objectives 2 & 3 by considering whether the

FT framework has the ability to scale to larger and more complex IoT infrastructures

and failure scenarios. The experiments for Objective 3 use the small-scale VFS

testbed, and the experiments for Objective 4 use both the medium-scale VFS testbed

as well as the dataset from a real-world, large-scale VFS. Furthermore, experiments

specifically for BoboCEP are performed (Section 7.5) to consider how it is able to

provide long-term event processing and load balancing, which are both key features

for CEP-enabled reactive FT to ensure correct support at scale. A performance

analysis of the BoboCEP Python implementation is provided to determine how well

it copes under heavy loads.

The evaluation experiments help to ensure that the key qualities of the proposed

FT framework (Section 1.4) are present, namely: (1) interoperability: heterogeneous

sensor data from a variety of bespoke sensors are used with both FlinkCEP and

BoboCEP from the small- and medium-scale testbeds, respectively; (2) reusability:

the error-detection NFAs (Section 5.2) are reused to detect and provide recovery

for a variety of errors; (3) dependability: active replication of partially completed

complex events via BoboCEP provides a resilient reactive-FT platform; (4) scalabil-

ity: experiments were conducted on the small-scale and medium-scale VFS, and the

large-scale, real-world VFS via the provided dataset (Section 6.2).

7.1.3 Predictive Models

Numerous predictive models were used in the experiments of the evaluation, in order

to assess the proactive-FT elements of the proposed FT framework. Three classific-

ation and three regression algorithms were used during the evaluation, where each

scenario would use either a classification or regression model, depending on which
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suited the scenario the most. The models used a randomised 75%/25% data split

for training and testing. The input to each of the models was a dataset generated

using experience from the Real-Time FT microservice(s) providing CEP (Section

4.1.1) Example data included contextual system data from sensors and composite

error events generated by the CEP engine itself.

All sensor data had a numerical format which required no preprocessing for the

models to interpret the data. However, some models scaled data to the range [0, 1],

if necessary. The Predictive FT microservice (Section 4.1.1), which provided the

proactive-FT aspect of the FT framework, did not activate a predictive model until

at least 15 training instances had been collected for it to train with. This ensured

that each model had a minimum amount of data to make reasonable predictions. A

summary of all the models’ results are shown in Tables 7.1 & 7.4. The algorithms

used for the models are discussed next.

Classification

The system context surrounding data-centric error detection is an important consid-

eration to ensure that an error will be detected, and to identify whether erroneous

data (e.g. caused by sensor malfunctions, human tampering) will lead to an incorrect

error detection being triggered. Classification techniques can be leveraged to predict

whether an action is likely to be triggered imminently, given the current data trend.

If data is erroneous, it may not cause the system to trigger an action when it should,

and may put the system into an erroneous state. The following three classification

algorithms were used in the evaluation:

• K-Nearest Neighbor (KNN). An instance-based learning approach that

uses a simple non-parametric procedure to assign a class label to the input

pattern based on the class labels represented by the K-closest neighbours of

the vector. KNNs are known for being computationally intensive since they

rely on searching neighbours among large sets of n-dimensional vectors for each

prediction [104, 82]. In the evaluation, the models used 10 nearest neighbours

for classifying new instances.
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• Support-Vector Machine (SVM). A linear classifier that attempts to con-

struct a maximum-margin hyperplane to optimally separate data into two cat-

egories in order to provide the best generalisation capacity, and are suitable for

binary classification problems [182]. In the evaluation, its C hyperparameter

was set to 1000.0 and was trained with 1000 iterations. Its features were nor-

malised before training because, with SVMs, feature vector normalisation had

been shown to lead to superior generalisation performance [57].

• Random Forest Classifier (RFC). An ensemble learning technique that is

a hybrid of the bagging and random subspace method approaches that uses de-

cision trees as the base classifier [174]. RFC was proposed by Breiman [31] in

2001, who defined it as: a classifier consisting of a collection of tree-structured

classifiers {h(~x,Θk), k = 1, ...} where {Θk} are independent identically distrib-

uted random vectors and each tree casts a unit vote for the most popular

class at input ~x. In the evaluation, the models had 10 trees/estimators and a

maximum tree depth of 2.

These algorithms were selected because they have distinct properties, namely: (1)

KNN is an instance-based learning technique, whereas SVM and RFC are both model

based; (2) RFC uses ensemble learning, where multiple learning machines are trained

and their outputs combined [34], whereas KNN and SVM do not; and (3) KNN uses

lazy learning, where there is no explicit training stage and classification only occurs

when queries are made [206], making the model much faster than SVM and RFC

which adopt an eager learning approach.

Regression

In previous literature, regression models were considered for masking errors when

data was temporarily unavailable i.e. data blackouts. For example, Choubey et al.

[51] used an ANN to predict temperature using correlations in other sensor data

when temperature sensors were not available. Fekade et al. [72] demonstrated that

sensor clustering could recover massive amounts of missing sensor data values.

However, there is also the situation of data being available but erroneous, which
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might cause erroneous system behaviour if the data were used for decision mak-

ing. Regression techniques enable erroneous data to be masked by predicting more

reasonable data to be used instead. The following three regression algorithms were

used in the evaluation, and were selected because they have similar properties to the

chosen classification algorithms:

• Ada Boost Regressor (ABR). An ensemble-learning approach that trains

models sequentially. The first machine is trained with examples picked with

replacement from the dataset, and the samples from the models with the largest

prediction errors are more likely to be picked as members of the training set

of the next machine. By repeating this process, patterns that are difficult

are more likely to appear in the training sets [66]. ABR combines the weak

hypotheses of each machine by summing their probabilistic predictions and,

in experiments, have been shown to improve the performance of ANNs when

summing the outcomes of the networks and then selecting the best prediction

[67, 77]. In the evaluation, the maximum number of estimators used was 50,

which would stop early if a perfect fit were achieved before then.

• Support-Vector Regressor (SVR). Similar to its SVM counterpart, it is

characterised by the use of kernels, sparse solution, and VC control of the

margin and the number of support vectors. Although it is less popular than

SVMs, SVR have been shown to be effective in real-value function estimation

[18]. In the evaluation, its C hyperparameter was set to 1.0.

• Random Forest Regressor (RFR). Similar to its RFC counterpart, it grows

its trees depending on a random vector Θ, such that the tree predictor h(~x,Θ)

takes on numerical values, as opposed to class labels, and produces a numerical

output [31]. In the evaluation, the models used 10 trees/estimators with no

maximum tree depth.
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7.2 Experiments: Reactive FT

In these experiments, the concept of CPoF (Chapter 5) was evaluated in isolation,

i.e. without proactive FT included, with an assessment of how the error-checking

NFAs can be applied to failure scenarios in the small-scale VFS (Section 6.2.1).

Specifically, how the VFS attempted to detect and recover from the following two

scenarios: (1) when attempting to water a plant with no water left to pump; and (2)

when Device1 suffered a ‘performance drop’ i.e. reduced data-transmission rate.

The purpose of these experiments was to consider: (1) the applicability of the scen-

ario with regard to the VFF framework (Section 4.2); (2) the error(s) that might

have propagated if the underlying fault were activated; and (3) the error-detection

checks that would be needed to detect and recover from it.

7.2.1 Scenario: Empty Water Container

In this experiment, a service failure was identified whereby a plant was unable to be

watered because its water tank was empty. Using VFF, this was classified as: an

environment vulnerability, exploited by an interaction fault, that might have led to

a state transition response failure. This was because, if the soil were not watered,

the subsequent moisture data would not change due to a lack of state change in the

physical world.

Firstly, an NFA was needed to identify a trend in moisture data. When soil was

watered, the slope between the latest two moisture values should have become very

large for a short period before stabilising. For this, the trend check NFA (Figure

5.2b) was used to first consume an initial moisture data event e1. Then, subsequent

moisture events were checked within a time window of 30 seconds. If any second event

em in this time produced a slope ≥ 0.05, an error-detection event dt was produced.

The slope was calculated as (ev
m − ev

1)/2.

Another NFA was implemented that checked if there was not a trend check within

30 seconds of a water pump action occurring. This used the correlation check NFA

(Figure 5.4), as follows. Event e1 was fulfilled when a water-pump action was suc-
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Figure 7.1: Moisture data from the four moisture sensors of the small-scale testbed,
represented by different colours.

cessfully executed. If 3 subsequent moisture events were received, with no dt event in

that time, it was assumed that no trend would occur. The run halted if dt occurred.

In this experiment, the water container connected to the rightmost plant was empty.

Its moisture data dropped to value 0.49 at ~15:49 (Figure 7.1b). This surpassed

the 0.5 threshold and caused a water-pump action. However, it failed to pump any

water, as reflected in the lack of trend change in the data. After 3 additional moisture

values were received without a trend check event occurring, the reversal check NFA

was fulfilled, indicating no trend after the water-pump action. The recovery strategy

was to send an alert message to prompt human maintenance to resolve the issue.

For comparison, the data from the centre-right moisture sensor dropped below value

0.5 at ~15:32 (Figure 7.1a), which caused a large trend increase shortly thereafter.

7.2.2 Scenario: Data Transmission Degradation

In this experiment, a service failure was identified whereby the data transmission

rate from Device1 started to decrease i.e. performance degradation. Using VFF,

this was classified as: a network vulnerability, exploited by an interaction fault, that

might have led to a timing failure.

Firstly, an NFA to identify when a drop in performance had occurred was needed.

The performance check NFA from Figure 5.3a provided this, where e1 represented

an infrared-light data event from Device1. When the next consecutive infrared-light

event was received, e2, the difference between timestamps was checked to see if the
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Figure 7.2: LDR data from the two microcontrollers of the small-scale testbed (or-
ange, green), and infrared data from Device1 (blue) and Device2 (red).

time difference was > 10 seconds; this threshold was chosen because it was double

the 5 second data rate of Device1. If the difference between events were ≤ 10, the

run halted. This NFA produced error-detection event de.

No recovery was provided for one performance drop because, in isolation, it was

probably a transient error with no clear root cause. Instead, a second NFA was

defined to identify intermittent performance drops using the persistence-check NFA

(Figure 5.3b) where, if de occurred 3 times within 60 seconds, then the persistence of

these errors led to new error events dp, rp. The recovery was to activated and switch

over to Device2, to return the overall rate of infrared-light data to ≤ 5 seconds, as

shown in the infrared data that became intermittent at 13:42:10 (Figure 7.2a).

Each of Device1’s data events took ~10/15 seconds to arrive. The wide intervals

between these events caused de errors after each one. When this occurred 3 times in

60 seconds, an intermittent performance error was detected and caused dp, rp events,

which led to the introduction of Device2 data (Figure 7.2b).

7.3 Experiments: Proactive FT via Correlations

In these experiments, the concept of reactive FT via CPoF was combined with pro-

active FT via ML models, implemented using the small-scale VFS as before. The

scenario was that of battery depletion on Device1, and proactive FT attempted to

predict when the depletion was expected to occur via two approaches: (1) correlating
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Figure 7.3: Infrared light data from Device1 (blue) and Device2 (orange) during the
lifetime of Device1.

Device1’s duration online with data loss errors; and (2) correlating erroneous data

spikes in Device1’s data with data loss errors. This enabled contextual data (i.e.

time) and composite events (data spike error-detection event) to provide a means of

proactively detecting and resolving the same fault.

7.3.1 Scenario: Battery Depletion

Low battery voltage has been identified as a prevalent cause of data spikes in IoT

sensors [42]; a phenomenon that Device1 exhibited in Section 4.1.3. To handle this, a

data spike error was defined using the trend-check NFA (Figure 5.2b). As Device1’s

data was sent every 5 seconds, the last 12 infrared-light events from Device1 were

used to get roughly the last minute’s worth of data from the device. The first 11

events e1, ...e11 were consumed. On the twelfth event e12, the values of the first 11

events were averaged, avg = (∑11
i=1 e

v
i )/11, and compared with e12 as (ev

12−avg)/avg

to compute the percentage by which ev
12 had increased beyond the average. When

the increase was ≥ 150%, error dt was generated.

A data loss error was defined using the performance-check NFA (Figure 5.3a). It

first checked for event e1 from Device1, followed by a null event e2 = e∅ (Section

5.2.2) that occurred 15 seconds after e1. If another Device1 payload were received

in this time, the NFA would halt; otherwise error de was generated. The recovery

re for de was to ping Device1. For every 15 seconds that elapsed without Device1
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Figure 7.4: Infrared light data from Device1 (blue) and Device2 (orange), with a
close-up of battery depletion and switchover from Device1 to Device2.

data, another de, re was generated. If 3 unsuccessful re were generated without any

successful pings or Device1 data within 60 seconds, a persistent data loss error dp

was generated using a persistence check (Figure 5.3b), and recovery rp would cause

a switchover to Device2.

Error correlations were checked for via the correlation-check NFA (Figure 5.4) in

addition to the checks above. Specifically, it checked whether a data spike e1 = dt

was followed by persistent data loss e2 = dp on the same device within 10 minutes,

which produced error dr. Conversely, a second correlation check was defined to check

when dp did not follow dt within 10 minutes (i.e. e2 = e∅), which produced event d′r.

Demonstration Device1 ran on full charge until depletion, and the system mon-

itored the infrared-light values generated by it. Throughout the day, the values

fluctuated (Figure 7.3a) which produced several data-spike dt errors. Minutes before

battery depletion, the values spiked several times to 65279 (Figure 7.3b).

It also produced three unsuccessful data-loss recovery re events, which led to a per-

sistent data-loss error dp, causing a switchover to Device2 (Figures 7.3c & 7.4). The

wait for dp meant that error recovery took ~45 seconds to complete.
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Figure 7.5: Time correlation: linear SVM model to predict persistent (orange) and
non-persistent (blue) data loss.

7.3.2 Time Correlation

The first proactive-FT approach to predicting battery depletion correlated data-

loss events with Device1’s duration online. The intuition was that data-loss events

occurring after Device1 that crashed due to battery depletion were going to be per-

sistent. Thus, the system could avoid a persistent data-loss error by preempting the

switchover instead.

By repeating the previous demonstration on the small-scale VFS, a dataset was

built containing 25 examples of instances when persistent data loss occurred that

were either caused by Device1 crashing or due to some other cause (e.g. network

congestion). This resulted in 11 examples for persistence likely caused by a Device1

crash, and 14 examples for unlikely persistence. The minutes for which Device1

was online and the elapsed seconds that passed since the last Device1 payload (as

determined by data-loss error events) were chosen as two features for this model.

After training the KNN, SVM, and RFC classification models, all models achieved a

perfect accuracy of 1.0 because the data points were highly linearly separable. SVM

was chosen as the final model because it provided a smooth boundary between both

classes (Figure 7.5). RFC and KNN created jagged boundaries that did not reflect

the trend well, which might have led to misclassifications in predictions therefore.
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Figure 7.6: Time correlation: data loss error correctly identified as persistent.

Figure 7.7: Error correlation: RF model to predict persistent (orange) and non-
persistent (blue) data loss.

Demonstration Device1 was activated on a full charge with the SVM model run-

ning. The device had full battery depletion at ~18:29:37 (Figure 7.6) and had been

online for ~495 minutes (~0.9 when normalised in Figure 7.5). After the elapsed

period of data loss from Device1, an error occurred 15 seconds after the last infrared-

light value from Device1. The model predicted that this error would persist and

preemptively switched over to Device2.

This solution provided preemptive error detection that was ~30 seconds faster

than using the previous reactive-FT solution only. However, it was only effective at

predicting failure when Device1 was first activated on a full charge. Next, a model

was considered that identified the same failure based on error correlations.
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7.3.3 Error Correlation

The second proactive-FT approach for predicting battery depletion correlated data-

spike events with data-loss events. It exploited data spikes caused by low battery

voltage (Figure 7.3b) by detecting them using error-correlation event dr and execut-

ing preemptive switchover to Device2 before battery depletion could occur.

To build the model’s dataset, Device1 was activated and left to run until depletion

60 times, with varying levels of initial battery charge, in order to build a dataset

of 473 total data spikes. This resulted in 187 examples indicating malfunction that

led to an imminent crash, and 286 not caused by malfunction i.e. caused by natural

light fluctuations instead.

After training models, the RFC model was identified as the superior model, despite

having identical accuracy and F1 score to KNN (Figure 7.7). However, KNN showed

signs of overfitting whereby examples of persistent data loss (orange) were within

the non-persistent data loss boundary (blue), whereas the RFC model provided a

clear boundary between both classes.

During data collection, an interesting phenomenon occurred. As the battery neared

depletion, the infrared values would often spike to unusually high values, predom-

inantly 65279. It sometimes spiked within a ‘reasonable’ value range (i.e. 0-3500),

which influenced the predictions in the model at ~510 minutes online (Figure 7.7)

because it caused the model to predict malfunction for spikes in the normal range if

the device had been online for a long time.

Demonstration The data from the reactive-FT experiment (Figure 7.3) was in-

serted into the system in the same manner as the original, to be able to compare

how much faster proactive-FT support was to the reactive-FT solution. During ex-

ecution, many of the early data spikes (Figure 7.3a) were correctly predicted as not

being caused by malfunction, because they did not pass the decision boundary at
~3500 (Figure 7.7). However, on the first spike to 65279 (Figure 7.3b), the model

predicted an imminent malfunction, and triggered a switchover to Device2. This

introduced Device2’s data before Device1 had fully depleted (Figure 7.8).
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Figure 7.8: Error correlation: a close-up of the switchover to Device2 (orange) before
battery depletion had occurred on Device1 (blue).

Table 7.1: Models trained in the experiments from Section 7.3, with the selected
models in bold.

Correlation Model Accuracy F1-Score
Time SVM 1.000 1.000

RFC 1.000 1.000
KNN 1.000 1.000

Error SVM 0.916 0.840
RFC 0.979 0.964
KNN 0.979 0.964

This solution provided preemptive migration that was ~45 seconds faster than the

reactive-FT solution and ~30 seconds faster compared to the previous proactive-FT

solution. However, it was only effective at predicting failure when a prior data spike

error occurred, which was not always guaranteed to happen near battery depletion.

7.4 Experiments: FT Requirements

In the last section, reactive and proactive FT were shown to be able to handle the

common scenario of IoT device battery depletion using two different approaches. The

successful proactive error detection was possible because the expected erroneous data

trends occurred as expected i.e. as defined in the NFAs used to detect it.

However, there is also the situation of data being available but erroneous, which

might cause erroneous system behaviour if used for FT decision making e.g. being
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unable to detect specific errors, or “detecting” errors that do not actually exist. In

this section, a formal approach to defining reactive and proactive FT in terms of

functional requirements is proposed, where the expected trends that occur before

detection and after recovery are precisely defined.

7.4.1 Detect, Assess, Recover, Analyse

To provide correct FT support, the system needs to determine what error is being

detected, what are the necessary preconditions that need to occur to ensure correct

error detection, and also what the expected consequences are of error recovery on

the system. This is similar to the design-by-contract (DbC) methodology, where

software is annotated to formally specify behaviour used for the formal verification

of correctness which typically includes pre- and postconditions [193], but is instead

designed for inferential FT support.

DARA, a novel Detect, Assess, Recover, Analyse framework, is proposed to ensure

long-term FT support in IoT systems. DARA achieves this by combining CEP and

ML to provide a data-centric approach to FT that is able to learn from and anticipate

errors that could hamper the system’s ability to provide effective FT support. DARA

applies the VFF framework (Section 4.2) to provide a systematic, generic approach

to defining and implementing FT support, whereby erroneous conditions that could

affect error detection, and evidence that suggests ineffective error recovery, can be

formally defined and properly mitigated (Figure 7.9). The four stages of the DARA

process are described next.

Stages

Detect To provide ‘generic’ FT support that can apply to most IoT systems,

error definition and detection need to be expressed in a modular, language-agnostic

manner, so that problems common to most systems have common solutions that

can be reused in different contexts. The NFAs from Section 5.2 provide the desired

generic error-definition approach that can be implemented into any NFA-based CEP

system to provide a data-centric approach to error detection via real-time stream data

analysis. This stage adopts the CPoF approach to error definition and detection.
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Figure 7.9: The DARA process. System data are blue circles, along with error
detection d, assessment a, and recovery r events.

Assess This stage reasons on the possible faults and vulnerabilities that might

have caused an error, in order to execute the best recovery strategy to mitigate it.

The RcB approach (Section 2.2.1) is proposed for applying assessment, in order to

discover the fault that is the root cause of an error, if possible. RcB is a passive

replication strategy whereby a series of tests are performed in series, and the first test

to pass is the accepted test [219], making it highly applicable for DARA’s assessment

stage. RcB can attempt several assessments a1, ..., an in series, where the success of

an assessment suggests some particular fault and vulnerability were the cause of the

detected error under assessment. If all are unsuccessful, a default assessment a0 is

made to represent an unknown root cause.

Recover This stage encompasses many similar notions defined in FT literature:

error recovery, error mitigation, and fault treatment [122, 91]. Each assessment has

a series of recovery strategies to attempt, which are executed using the same RcB

approach used for the Assess stage. When an assessment is chosen, its corresponding

recovery strategies ar = r1, ..., rn are chosen for execution. For each unsuccessful

recovery r, the next is attempted until success. If all strategies are unsuccessful, or

no assessment succeeded, a default recovery event r0 is produced, representing that

the error was unable to be automatically recovered from.

Analyse This stage is a holistic strategy that uses long-term data analysis to

ensure that the system is in a correct state via data analysis and error prediction, so

that it is capable of detecting errors. DARA treats failures as requirements of the

system, alluding to the notion of failure semantics i.e. allowable service behaviours
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[73]. It uses ML to learn from system data trends, error trends, and system context,

to predict whether erroneous data will lead to errors going undetected.

It attempts to proactively predict two erroneous scenarios (Figure 7.9), namely: (1)

in the Pre-Detect period, whether there any indications that FT support might fail

to detect an error; and (2) in the Post-Recover period, whether there any indications

that recovery had actually failed and therefore might cause error propagation due to

the original error remaining unresolved in the system.

7.4.2 Requirements

DARA was applied to two failure scenarios that could occur in the medium-scale

VFS (Section 6.2.2), and a third scenario from the real-world VFS dataset (Section

6.2.3). The scenarios were as follows:

• W1. In the medium-scale VFS, water was pumped to the water reservoirs

that uniformly passed water to each of their 7 plant pots. Two water level

sensors were placed within each reservoir. This scenario considered what should

happen if a reservoir dried up and needed replenishing with more water from

the water pumps.

• L1. In the medium-scale VFS, plants relied on natural light when it was avail-

able, and switched to the grow lights for photosynthesis when it was dark.

This scenario considered what should happen when natural light fluctuations

occurred and how the system could detect the optimal time to switch to arti-

ficial light, so that the plants always had optimal growing conditions.

• P1. In the real-world VFS, water filters ensured that when water was being

recycled, it was always clean and without debris. Using the supplied dataset,

this scenario considered when the optimal time to clean the filters should have

been, so that the water pump’s current did not become excessively large when

filters were clogged and the pump was forced to work harder and its current

increased as a consequence.

Each of these scenarios are expressed with three requirements (Tables 7.2 & 7.3).
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Figure 7.10: W1.DAR: water level data from a reservoir over a 7-day period, with a
water-pump activation threshold at 500 (red line).

A DAR requirement, which encompasses the Detect, Assess, and Recover stages

of DARA that ensures reactive error detection and recovery. A PRE requirement,

which is one half of the Analyse stage of DARA that ensures correct detection of its

corresponding DAR requirement. A POST requirement, which is the other half of

the Analyse stage of DARA that ensures correct recovery of its corresponding DAR

requirement. The three scenarios are explored next.

7.4.3 W1: Reservoir Water Depletion

W1.DAR

This requirement was defined to prevent damage to produce caused by water de-

pletion in reservoirs. When water was low, the pumps activated to replenish the

reservoirs. The limit-check NFA (Figure 5.2a) was used to check whether an event’s

value was within some unreasonable threshold i.e. 0 ≤ e ≤ 500. Figure 7.10 shows

water level data representative of the type of data produced from the medium-scale

VFS (Section 6.2.2). On detection of a low water level after ~5.4 days, the default

assessment inferred that this was caused by water depletion.

Recovery was a hardware redundancy approach, enabled by the fact that each reser-

voir had two connected pumps and water containers (Section 6.2.2): if the CEP

system failed to activate one pump, it would try to activate the other. If both failed,

the system would notify system admins to perform a manual fix, however, this was a
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Figure 7.11: W1.PRE: slope of water level data before pump activation, showing
reasonable (blue) and erroneous (other) data trends.

last resort because the MTTR would sharply increase when an automated solution

was unable to fix the problem.

W1.PRE

There was a clear trend for how water level data should have behaved before passing

the 500 threshold, namely: the water level declined over ~5 days i.e. 120 hours.

Three circumstances could threaten correct FT support: (1) the slope had decreased

too quickly, suggesting human sensor tampering; (2) the slope had not decreased at

all in 5 days; or (3) there had been a positive trend, suggesting sensor malfunction.

Trend normalisation (Figure 7.11) showed that a reasonable trend’s slope was −200

after 120 hours (blue). Other trends (orange, green, red) should be detected early

and masked.

A dataset was built containing 18 examples of water level declines over 120 hours,

with 2724 data points in total. Any water level decline that surpassed −200 after

at least 72 hours was labelled reasonable, and erroneous either if it surpassed −200

before 72 hours, or not at all. This resulted in 9 reasonable and 9 erroneous examples.

After training KNN, SVM, and RFC models, the KNN model yielded the best result

(Figure 7.12) because its decision boundary best reflected the trend: a decision

boundary that decreased over time and remained below 0. Its accuracy and F1-

Score of 91.2% narrowly outperformed the RFC model (Table 7.4).
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Figure 7.12: W1.PRE: KNN model to predict reasonable (blue) and erroneous (or-
ange) data trends.

Figure 7.13: W1.POST: slope of water level data after pump activation, showing
reasonable (blue) and erroneous (orange) data trends.

W1.POST

After pump activation, the data trend had a large increase over a 60 second period

to some higher value, and then stabilised. Conversely, no value change would have

suggested a failure to pump water to the reservoir e.g. hardware malfunction, empty

water container(s). Trend normalisation (Figure 7.13) showed that a reasonable

trend began shortly after activation (blue), and a lack of trend otherwise (orange).

A dataset was built containing 22 examples of water level increases, with 229 data

points in total. Any increased with a slope ≥ 100 within the 60 second period was

labelled reasonable, and erroneous otherwise. This resulted in 16 reasonable and 6

erroneous examples. On training the models, the KNN model achieved the highest
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Figure 7.14: W1.POST: RFC model to predict reasonable (blue) and erroneous
(orange) data trends.

Figure 7.15: L1.DAR: light intensity data over a 24-hour period.

accuracy and F1-Score. However, the KNN showed signs of overfitting by creating

small clusters of data points not reflective of the data trend. The RFC model (Figure

7.14) best reflected the trend of the data: a straight horizontal threshold dividing a

positive trend from no trend, so this model was selected instead of KNN. The RFC

model had an accuracy 87.9% and F1-Score of 91.4%.

7.4.4 L1: Natural Light Fluctuation

L1.DAR

This requirement was defined to increase the growth rate of produce, by activating

grow lights when the room was dark to ensure photosynthesis even when natural

light was unavailable. The limit-check NFA was used again, to identify when light
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Figure 7.16: L1.PRE: slope of reasonable (blue) and unreasonable (orange) light
intensity data from 12pm to 12am (not including data from when lights were activ-
ated).

intensity was 0 ≤ e ≤ 500. A complementary requirement, L2.DAR, was also defined

(Table 7.2) that deactivated grow lights by using the performance-check NFA (Figure

5.3a) to identify when 2 hours had passed since the grow lights were last activated.

They required deactivation after 2 hours of continuous use in order to prevent damage

by overheating, which this check ensured.

Figure 7.15 shows light intensity data that was representative of the type of data

produced from the medium-scale VFS. On low light-intensity at ~5pm, the default

assessment inferred that this was caused by natural light fluctuations, and would

activate the lights. In the hours thereafter, data would frequently drop to 0 when

lights were deactivated after 2 hour periods (Figure 7.15, 8pm-6am). After a 5 minute

deactivation period, they would reactivate if natural light were still unavailable.

L1.PRE

Before light activation, light data would gradually low after ~12pm and decline below

500 in the evening. Failure to decline below 500 between 12pm-12am would suggest a

sensor malfunction. Trend normalisation (Figure 7.16) showed that reasonable light

intensity in the evening was < 500 e.g. between 6-8pm (blue). Erroneous data would

not do this (orange) and would fail to trigger light activation.

A dataset was built containing 19 examples of light intensity decrease, with 70468

data points in total. These were only sampled at times when lights were deactivated,
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Figure 7.17: L1.PRE: RFR model to predict expected light intensity at a given hour
of day (orange).

Figure 7.18: L1.POST: slope of light intensity data after light activation, showing
reasonable (blue) and erroneous (other) data trends.

so the trend that exists below the 500 threshold (Figure 7.16, red line) could be

observed. The RFR model (Figure 7.17) yielded the lowest Root Mean Square Error

(RMSE) because it was able to create a horizontal line between 8pm-12am, rather

than a smooth line that was erroneously < 0, as the ABR model was.

L1.POST

After light activation, the data trend spiked to some higher value and then stabilised.

Conversely, no such trend suggested grow light failure. Trend normalisation (Figure

7.18) showed that a trend should have spiked when the next data payload arrived

i.e. within 5 seconds (blue); other trends (green, orange) suggested failure.

A dataset was built containing 36 examples of light intensity increases, with 3527

data points in total. Any increase ≥ 100 within 10 seconds of light activation was
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Figure 7.19: L1.POST: KNN model to predict reasonable (blue) and erroneous (or-
ange) data trends.

Figure 7.20: P1.DAR: current data over a 9-day period.

labelled reasonable, and erroneous otherwise. This resulted in 24 reasonable and 12

erroneous examples. The KNN and RFC models produced virtually the same de-

cision boundaries (Figure 7.19). However, KNN’s was marginally higher in accuracy

at 95.7%. The KNN model created a horizontal boundary at ~500, which enabled

the prediction as to whether a reasonable trend had, or was likely, to appear.

7.4.5 P1: Pump Filter Blocked

P1.DAR

This requirement was defined to prevent excessive energy consumption and water

contamination by notifying staff to clean the filters on high current. The typical

current trend (Figure 7.20) showed that, when it had risen by 0.2 after 3 days,
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Figure 7.21: P1.PRE: rolling average of current data since last filter clean, showing
reasonable (blue) and erroneous (orange) trends, and their average slopes (red lines).

system admins at IGS would clean the filters, which caused a current reduction.

The trend-check NFA (Figure 5.2b) was used to check whether some data trend was

unreasonable. To minimise current spikes (Figure 7.20), the trend check performed

a rolling average of the first 20 current events since the filters were last cleaned, and

the 20 most recent current events at least 3 days later1, as follows:

(avg(em−20, ..., em)− avg(e1, ..., e20))/2 ≥ 0.2 (7.1)

Where em−20, ..., em are the latest 20 events, which have occurred at least 3 days

after the first 20 events e1, ..., e20. On high current detection, the default assessment

assumed that the sustained current increase was caused by clogged filters, and the

recovery was to notify system admins to clean them.

P1.PRE

Before admin notification, pump current data would gradually increase over at least

2 days with a slope ≥ 0.2. Failure to achieve this trend within 7 days suggested other

failures (e.g. pump malfunction) because clogged filters were an inevitable natural

system failure. Visualising these trends (Figure 7.21) showed the difference between

reasonable (blue) and erroneous (orange) current behaviour over time.

A dataset was built containing 22 examples of pump current increase, with 152166
1The current was sampled every 30 seconds and so 20 events represent ~10 minutes of data.
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Figure 7.22: P1.PRE: RFC model to predict reasonable (blue) and erroneous (or-
ange) data trends.

Figure 7.23: P1.POST: rolling average of current data since last filter clean, showing
reasonable (blue) and erroneous (orange) data trends.

data points in total. Any examples that fulfilled the trend check predicate above

were labelled reasonable, and erroneous otherwise: this led to 14 reasonable and 8

erroneous examples. The KNN model had achieved the highest accuracy and F1-

Score (Table 7.4). However, its decision boundary was very jagged and had overfit

the data. The RFC model (Figure 7.22) achieved comparable results with a boundary

that better reflected the data trend.

P1.POST

After admin notification, there was a MTTR of ~700 seconds when filters were

cleaned, causing the current to sharply decline to its original level. Conversely, no

sudden current change in at least 1400 seconds (i.e. double the MTTR) might have
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Figure 7.24: P1.POST: RFC model to predict reasonable (blue) and erroneous (or-
ange) data trends.

suggested that IGS system admins failed to clean the filters in good time. Visual-

ising these trends (Figure 7.23) showed a reasonable trend (blue) resulted in a sharp

current drop by ~0.4 amps, and erroneous (orange) trends had no such change.

A dataset was built containing 22 examples of 14 reasonable and 8 erroneous data

trends, with 891 data points in total. Erroneous trends were portions of the dataset

where ≥ 7 days had passed without any significant current changes, which suggested

the filter had not been cleaned. The RFC model (Figure 7.24) achieved the highest

accuracy of 98.5% and was able to provide a horizontal boundary between a trend

and lack of trend. This facilitated predictions whereby a lack of trend at any future

time was always erroneous.

7.5 Experiments: BoboCEP

BoboCEP is designed to be a CEP system suitable for reliable edge computing, where

partially completed complex events are distributed across k software instances via

active replication. This makes it the ideal platform for reactive FT because FT sup-

port can be dependable with minimal service loss. Two such advantages of BoboCEP

are covered in this section: (1) the ability to provide long-term event processing that

can withstand BoboCEP instance failures; and (2) the ability to load balance incom-

ing data across instances without affecting how complex events are generated. Fur-

thermore, the performance of the Python implementation of BoboCEP is explored in
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Table 7.4: Models trained in the experiments from Section 7.4, with the selected
models in bold.

Requirement Model Accuracy F1-Score RMSE
W1.PRE KNN 0.911 0.911 -

SVM 0.512 0.677 -
RFC 0.895 0.895 -

W1.POST KNN 0.913 0.942 -
SVM 0.741 0.851 -
RFC 0.879 0.913 -

L1.PRE ABR - - 307.77
SVR - - 305.39
RFR - - 288.47

L1.POST KNN 0.957 0.966 -
SVM 0.692 0.787 -
RFC 0.956 0.965 -

P1.PRE KNN 0.998 0.998 -
SVM 0.717 0.678 -
RFC 0.994 0.994 -

P1.POST KNN 0.916 0.927 -
SVM 0.382 0.552 -
RFC 0.985 0.988 -

terms of its ability to instantiate runs and process large volumes of primitive events

from the data stream.

As stated in Section 6.2.2, the medium-scale VFS used BoboCEP (v0.35), developed

using Python (v3.7). Its Receiver consumed stream data via a Flask (v1) server that

enabled microcontrollers to send data approximately every 3 seconds to three Bobo-

CEP instances running on three Raspberry Pi (v2 Model B) edge devices: Edge1,

Edge2, and Edge3. Shelf1 contained microcontrollers LL, LR, which, by default,

routed their data to Edge1; ML, MR to Edge2; and RL, RR to Edge3. On an edge

device failure, microcontrollers sending data to the failed device would randomly pick

another edge device through which to reroute their sensor data. RabbitMQ (v3.7)

was used for the BoboCEP message broker.
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Figure 7.25: Water level data from a reservoir over a 7-day period.

7.5.1 FT Scenario

Long-Term Event Processing

To demonstrate long-term event processing, the trend-check NFA (Figure 5.2b) was

used, which had two states: the first consumed an initial water-level data event e1;

the second consumed a water-level event e2 such that e2 was at least 3 days after e1

and satisfied:

(e2 − e1)/2 ≥ −200 ∧ e2 ≤ 500 (7.2)

This ensured a significant negative trend since e1, and a low water-level value overall

(i.e. ≤ 500). Run fulfilment would cause pump activation for the appropriate shelf.

Figure 7.25 shows water level data that was representative of the type of data the

medium-scale VFS produced. It demonstrates a decline of water level within 1 week,

and passes the 500 threshold at approximately 5.5 days, which would activate a water

pump to replenish its reservoir that had run dry.

When a BoboCEP instance received the first water-level value e1 (Figure 7.25a),

which contained value 1039, it would trigger run instantiation for the trend-check

NFA. The instance that created the run would then send a CLONE signal (Section

6.1.3) via the message broker, so that all other instances have a copy of the run also.

The second water-level value e2 (Figure 7.25b), which contained value 499, would
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Figure 7.26: Light intensity data from Edge1 (green), Edge2 (orange), and Edge3
(blue).

fulfil the above predicate i.e. (499−1039)/2 = −270. The instance that first reached

the run’s final state would send a FINAL signal to all other instances, so that they

would complete their copies of the run also. A pump activation would occur (Figure

7.25b) and lead to a sharp increase in water-level value, which would trigger an

ACTION signal for the other instances to know that it was executed successfully.

Load Balancing

The microcontrollers for the medium-scale VFS were designed to send data to one

edge device and, if this failed, would immediately select one of the other two edge

devices at random through which to reroute future data; the microcontroller would

simply try again with the next payload.

Microcontrollers LL, LR were connected to Edge1; ML, MR to Edge2; and RL, RR

to Edge3, as specified in Section 6.2.2. Light intensity data from the microcontrollers

were stable over a 10 minute interval. The BoboCEP instance on Edge1 was manually

terminated (Figure 7.26a) and, after a brief data blackout, LL rerouted to Edge2,

and LR to Edge3. Later, Edge2’s instance was terminated (Figure 7.26b), which

caused all of Edge2’s microcontrollers to reroute Edge3 i.e. the last remaining device.

Despite two edge device failures, all sensor data was still available to the FT-support

system, and was balanced across any available instances.
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Figure 7.27: Data from the run instantiation experiment.

7.5.2 Performance

Run Instantiation

This experiment tested how instances coped with a large volume of CLONE signals.

One, two, and three BoboCEP instances were set up, and 100 CLONE signals were

passed to them at varying rates, which would eventually lead to 100 runs being cloned

across all instances. The time to process 100 signals on each instance was averaged to

calculate the average processing delay (Figure 7.27). Results showed that instances

incurred progressively larger delays as the rate of CLONE signals increased. However,

an increase in instances did not lead to a delay increase because the message broker

serialised and broadcast CLONE signals to all instances equally.

Rule Throughput

This experiment tested how well an instance could handle a stream of data events

relative to the number of NFA handlers it had. A BoboCEP instance was preloaded

with k handlers that each had one incomplete run, so that a data event would be

checked against both the handler, which determined whether a new run should be

instantiated, and its run. None of the data events passed in this experiment were

designed to cause a CLONE or TRANSITION. 1000 data events were passed to the

instance in order to measure how long it took to process them all (Figure 7.28).
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Figure 7.28: Data from the rule throughput experiment.

Results showed that the event-processing delay increased with the data rate, and

larger delays occurred as the number of handlers increased.

7.6 Summary

This chapter evaluated the proposed FT framework to validate the key research

objectives of the thesis, as outlined in Section 1.3. The first set of experiments

in Section 7.2 provided an assessment of CPoF and its ability to provide effective,

modular, reusable reactive-FT support via two failure scenarios: an empty water

container, and data transmission degradation. The results of the experiments showed

that a variety of NFAs could be used to detect them: trend, correlation, performance,

and persistence checks.

The second and third set of experiments in Sections 7.3 & 7.4 applied both reactive

and proactive FT on four failure scenarios. Specifically, these experiments helped to

inform the development and integration of strategies and mechanisms for mitigating

the faults into the framework, and resulted in four approaches for implementing

effective proactive FT: (1) correlating system events with time (i.e. context-specific

information); (2) correlating events with other detected error events; (3) identifying

erroneous conditions that could hamper error detection; and (4) identifying erroneous

conditions that might suggest error-recovery failure. The results of the proactive-FT
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models generated (Tables 7.1 & 7.4) showed that it was possible to preempt a wide

variety of erroneous system behaviour with favourably high accuracy.

Finally, the fourth set of experiments in Section 7.5 evaluated BoboCEP’s Python

implementation specifically, by demonstrating long-term error processing and load

balancing with the medium-scale VFS testbed. A performance evaluation was also

performed on BoboCEP which showed that the implementation coped well with

reasonable loads but incurred delays under high-velocity data flows.
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Chapter 8

Conclusion

This chapter concludes the work in this thesis by first reviewing the research ob-

jectives outlined in Section 1.3. The fulfilment of these objectives is manifest in

the proposed concepts and the evaluation that implements them using the VFS use

case. The chapter then reflects on the limitations of the work and the potential

future directions to take in order to address them. Finally, the chapter concludes by

summarising the findings of this thesis.

8.1 Objectives Revisited

This section revisits the research objectives described in Section 1.3 and discusses how

the FT framework proposed in this thesis satisfies these objectives. The objectives

were identified based on the challenges and limitations of currently proposed FT-

support initiatives (Section 1.2). The objectives are compared against the results

obtained, matching the key contributions to its related objective, as follows:

1. To identify and classify faults events and fault patterns in IoT sys-

tems. The first objective was to have a thorough review of the different faults

which could occur within IoT systems and classify the faults so that patterns

could be identified regarding what faults occurred, their severity, their effects

on the system, and what was likely to cause them.

The literature review (Section 3.1) was the first indication that a mechanism

to classify fault events and patterns was needed, in order to provide a means

of comparing the FT support present in different IoT systems. This became

148



the VFF framework (Section 4.2) that enabled system defect categorisation via

the vulnerabilities, faults, and failures associated with the defects.

CPoF (Section 7.2) provided a language-agnostic, reusable means of error defin-

ition, to which VFF could be applied. System errors were detected using vari-

ous NFAs and used a CEP system as the engine to implement the NFAs. CPoF

was validated during the evaluation (Section 7.2) and it was determined that

CPoF was able to reuse its error-checking NFAs to provide reactive-FT support

for failure scenarios in the small-scale VFS testbed.

2. To develop a service-oriented fault-tolerance framework for IoT sys-

tems that combines both reactive- and proactive-FT support. The

second objective was to build on the first objective by identifying how reactive-

and proactive-FT support can work together to provide the FT framework with

the ability to anticipate future errors via proactive FT given previous experi-

ence of the error.

The correlation-check NFA (Section 5.2.2) was used as the means of passing

important error-detection experience to the proactive FT aspect of the FT

framework. When used with CvR (Section 5.3), correlation checks were able to

provide information regarding whether an error was probably going to happen

imminently or whether it was not. This was demonstrated in the experiments

from Section 7.3 that showed time and error correlations being used to predict

and react to imminent future errors.

3. To incorporate strategies and mechanisms that facilitate effective

fault mitigation. The third objective was to perform an extensive review of

strategies to resolve system errors that were reactively and proactively detected

in the second objective. The experiments from Section 7.3 had demonstrated

the need for fault mitigation by preempting an imminent battery depletion and

switching service over to a redundant device that could provide equivalent data

to the nearly-failed device.

In Section 7.4, a formal approach to fault mitigation was proposed using the

DARA framework that considered how data might influence erroneous error de-
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tection. That is, if data were erroneous, then it might cause an error-detection

event to be generated for an error that is not present (i.e. false positive), or it

might cause an error to go undetected (i.e. false negative).

This led to the notion of Pre-Detect and Post-Recover requirements in the

DARA process (Section 7.4.2) to formally identify the types of data errors that

might prevent correct FT. By defining Pre-Detect and Post-Recover require-

ments, fault mitigation strategies could be planned to circumvent the data-

error problem, for example, via temporal redundancy or re-executing tasks on

redundant hardware (Table 7.3).

4. To ensure that the framework can scale to more complex IoT scen-

arios. This objective focussed on the importance of the the framework being

able to work effectively at any system scale. The proposed FT-framework

design (Chapter 4) delegates FT support to two microservices: one provides

reactive FT and the other proactive FT. Microservices are modular and light-

weight, which means that they have the flexibility to be placed anywhere in an

IoT system’s infrastructure and easily replicated for redundancy.

The VFSs from Section 6.2 demonstrated that the FT framework could work

effectively at both a small and medium scale. The small-scale VFS was used in

the experiments from Sections 7.2 & 7.3, and the medium-scale VFS was used

in the experiments from Sections 7.4 & 7.5. Furthermore, the FT framework

was able to detect erroneous behaviour in a dataset from a large-scale, real-

world VFS in the experiments from Section 7.4, which helps to further validate

the FT framework’s efficacy in providing FT support at scale.

The BoboCEP engine (Section 6.1) was designed to provide CEP at scale for

use in the medium-scale VFS by distributing event processing across k devices

at the network edge, with experiments demonstrating its ability to perform

long-term event processing despite hardware crashes, as well as load balancing

data from multiple data sources (Section 7.5).
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8.2 Reflection

8.2.1 Limitations

Many of the design and implementation choices in this thesis resulted in a solution

that could provide the key desired qualities from Section 1.4, namely, an FT-support

solution that is interoperable, reusable, dependable, and scalable. However, there

are limitations to the proposed solution that affect its applicability in some circum-

stances, as follows.

• IoT systems require a client-server architecture model to use the FT-

support framework. The key enabling technologies used in the proposed FT

framework and its implementations from Chapter 6 are: (1) edge network

devices, to run reactive-FT support; (2) the fog and cloud, to run proactive-

FT support; and (3) microservices, to enable easy integration of FT support

into an existing centralised IoT system. Unfortunately, the assumption that

this infrastructure will be in use before the FT-support framework is incorpor-

ated will mean that some IoT systems will not be suitable; in particular, IoT

systems that adopt a constrained, decentralised architecture like in [186]. The

client-server architecture also means additional costs with regard to the cloud

infrastructure that is required for data storage and ML predictive analytics, as

well as an edge network infrastructure for deploying CEP microservices near

an IoT system’s sensor network. In very remote locations with limited Internet

connectivity, it is unlikely that an edge computing platform could actually be

deployed, or for there to be a reliable connection to a cloud platform, without

excessive additional costs to provide a more reliable Internet connection.

• CEP is only suitable for data-centric error detection. The proposed

error-checking NFAs are designed for IoT stream-data analytics to infer erro-

neous system behaviour via data. This approach to FT is advantageous in

that it makes the FT framework pluggable: it can be attached to an existing

IoT system and consume streaming data like any other process already in the

system. However, many of the internal system states may not be exposed as
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a data representation for the FT framework to consume and analyse. For ex-

ample, the structural and diagnostic checks from [122] are designed to check

the structural integrity of data and the correctness of system components via

black-box checking of system interfaces, respectively. These two checks require

a low-level FT implementation to properly assess whether internal interfaces

and data representations are correct, which would be difficult to implement in

the proposed FT framework.

• Proactive-FT solution is not appropriate for critical applications. A

key design choice for proactive-FT support is that it would use data from react-

ive FT as ground truth, by learning how errors are detected and recovered from,

and using this experience as data to train predictive models. This provides the

advantage that proactive FT is an automatic learning process that does not

require human intervention. However, it is trained on the assumption that

data from reactive-FT support is always correct. Erroneous data, or unexpec-

ted changes to system context, would make the models susceptible to concept

drift, which is where the relationship between input data and the target vari-

able changes over time [81]. For critical applications, especially safety-critical

IoT systems, a manual proactive-FT solution would be more appropriate.

8.2.2 Lessons Learned

During the early development of the FT framework, it was designed to be a gen-

eric service-oriented architecture, where all processes resided on a single software

instance. This early design proved to be too restrictive and heavyweight, and did

not reflect the rising trend of distributing cloud functionality to the edge/fog. As a

consequence, a microservices architecture was adopted instead, and individual sub-

processes were delegated to their own microservices (Section 4.1.1). This design

decision led to a more IoT-appropriate solution that made developing each system

service more manageable and scalable. Furthermore, it made software crashes less

consequential on the system. For example, if the Edge microservice failed, it would

not affect any data processing on the Real-Time FT microservice.
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Another realisation was the need for a bespoke CEP system. Despite there be-

ing many CEP systems available to use, few were actually appropriate for the IoT

domain. The FlinkCEP CEP system was initially used with the small-scale VFS

(Section 6.2.1). However, FlinkCEP was primarily designed for use with the wider

Apache Flink platform1 that is designed for distributed stream- and batch-data pro-

cessing. This led to many compatibility issues and, due to FlinkCEP’s heavyweight

design, memory issues that resulted in frequent software crashes on edge devices.

For this reason, BoboCEP was developed with few software dependencies, making it

lightweight enough to run on the network edge. Its IoT-specific design made it appro-

priate as an FT-support platform, e.g. the active replication of partially completed

complex events.

Initial experiments for proactive-FT detection used the internal states of NFA runs

as features for predictive models, and would attempt to predict whether a run would

reach its accepting state or its halt state. However, with this approach, there were

very few scenarios which were useful. Consequently, this led to more research into

context awareness, and so subsequent experiments focussed on correlating composite

events with contextual system data as well as other composite events.

8.3 Future Work

This section outlines future directions for the development of the FT framework, such

as further improvements to its design and features that could be added to enhance

its ability to provide effective FT for IoT systems.

• Provide wider protocol and data representation support. The key

quality of the proposed FT framework is its ability to be interoperable with as

many IoT systems as possible. As such, a primary design decision was for it

to have platform, syntactic, and semantic interoperability (Section 4.1). The

design led to a microservices approach where interfaces were discoverable via

the OpenAPI Specification and data could be interpreted via the Web Thing

API. However, there are numerous other ways in which data can be represented
1https://flink.apache.org
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and transmitted throughout an IoT system, and for this framework to be truly

interoperable, it must cater to these different standards and protocols.

Future iterations of the system design would incorporate more data formats

than just JSON. In particular, legacy formats, such as XML that is less efficient

but more human readable; and also more recent formats, such as Binary JSON

(BSON)2 that is more efficient but less human readable.

• Support for Linked Data to provide more intelligent error detection.

Linked Data refers to machine-readable data that is linked to other external

data and can in turn be linked to from external data, which results in a “Web of

Data” that can more accurately describe things in the world [27]. By harnessing

the power of Linked Data, the FT framework would have a richer understanding

of the data it is analysing, in order to draw more context awareness into the

error-detection process. The JSON format used by the FT framework has been

extended to provide a means of linking JSON data, called JSON for Linking

Data (JSON-LD)3, which would be a useful extension to incorporate more

semantic interoperability into the FT framework.

• Declarative FT definitions for BoboCEP. In BoboCEP (v0.35), the NFA

checks (Section 5.2.2) were directly implemented in the software as automata,

and error-recovery actions were subscribed to relevant NFAs such that, if a

composite event were generated, the subscribed actions for the given NFA

would be executed. This is a very explicit approach that enables a system

designer to precisely define the detection and recovery procedures for BoboCEP

instances to trigger.

A future direction for the software would be an interface that abstracts the

NFA error-definition process from the system designer. The interface would

instead follow the process of the DARA framework (Section 7.4.1) by describing

the failure semantics i.e. the likely ways in which the system could fail, and

for BoboCEP to automatically generate the appropriate NFAs and actions to
2http://bsonspec.org
3https://json-ld.org
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handle the errors commonly associated with those failures. This would provide

a declarative, SQL-esque approach to error definition that focusses more on

system requirements than implementation.

• More error-detection automata. Hanmer [91] provided an exhaustive clas-

sification of software error-detection patterns. For example, they include: (1)

complete parameter checking, to check inputs and parameters in order to pre-

vent erroneous task execution; (2) routine audits, to check data using routine

background tasks in order to ensure correctness; and (3) leaky bucket counter,

to maintain a counter that automatically increases and decreases with the num-

ber of errors ignored by the system, which helps to prevent too many errors

being ignored that might accumulate and cause a large-scale error in the future.

Many of Hanmer’s proposed error-detection patterns overlap with the existing

NFAs from Section 5.2.2, and some do not. In future work, more automata

could be devised to match each of the error-detection patterns by Hanmer,

which would ensure complete coverage of all possible error-detection approaches

identified in previous FT literature.

8.4 Final Remarks

IoT has led to a surge in the number of connected Internet-connected devices and

is growing at an exponential rate, which is contributing to ever-increasing, massive

data volumes that require real-time analytics in order to extract business value [201].

For IoT systems to deliver service on this scale, they must be fault tolerant, in order

to tolerate any faults remaining in the system after its development and to protect

against the constant threat of service failures [163].

This thesis provided a representative review of current FT implementations in IoT

literature which identified that they suffer many drawbacks. For example, they

were designed for specific faults [96, 103], specific applications [86, 2, 208], and

were dependent on decentralised networks [46, 186] as well as bespoke devices [96]

and protocols [208]. The research in this thesis set out to provide a solution to
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this heterogeneity and incompatibility by providing a means of expressing erroneous

system behaviour as NFAs that allow for reusable, language-agnostic reactive FT

via CEP. Furthermore, ML was used to facilitate proactive FT by learning from the

errors encountered by its reactive-FT counterpart. Experiments were conducted to

test the efficacy of the FT framework, and showed that CEP and ML were effective

as complementary means of providing FT in various failure scenarios on VFSs.

While the evaluation of the FT solution was only performed with VFSs of varying

design and scale, the solution is also applicable to use cases beyond VFSs. For

example, smart manufacturing would benefit from the low-latency analysis of the

condition of machinery using the inconsistency check NFA (Figure 5.5), which could

check for uniformity between sensors that monitor system behaviour and identify

any erroneous system behaviour if a particular sensor’s data were to deviate from its

replicas’ data. Also, analysing functional correctness throughout the manufacturing

process could be performed using the correlation check NFA (Figure 5.4) which could

check that each stage in the manufacturing process had been successfully executed

in the right order and with appropriate timeliness.

From the findings, recommendations are made to improve on the work by expanding

beyond the client-service architecture style that is used throughout the thesis, as well

as considering other means of detecting errors beyond the data-centric approach used

by CEP systems. Future work in this area should investigate developing more NFAs

for even more errors possible in IoT systems, and also to support Linked Data in

order to enable more intelligent error detection.
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Appendix A
Code Listings

In this appendix are code listings of the Python code that was used in the BoboCEP
implementation, as described in Section 6.1.

A.1 Shared Versioned Match Buffer
The Shared Versioned Match Buffer (SVMB) was proposed by Agrawal et al. [4]
to ensure only one version of an event is stored, even if it is used by multiple runs.
The BoboCEP implementation of SVMB closely resembles the original algorithm,
which is described in more detail in Section 6.1.2. The key methods from the Python
implementation of SVMB are shown in Listing A.1, with comments in the code to
aid the understanding of the SVMB process.

Listing A.1: The BoboCEP SVMB implementation in Python.
1 class SharedVersionedMatchBuffer :
2 """
3 The buffer stores events for partially completed runs.
4 A BoboEvent instance is stored within a MatchEvent instance
5 that provides a means of linking BoboEvents that can be used
6 by one or more runs.
7 The next event in a MatchEvent link points to an earlier
8 event accepted by a run.
9 Traversing the next links will identify all events for

10 a given run.
11 """
12
13 def __init__ (self) -> None:
14 super (). __init__ ()
15
16 # BoboNFA Name -> BoboState Label ->
17 # BoboEvent ID -> MatchEvent
18 self._eve = {}
19
20 # BoboNFA Name -> BoboRun ID ->
21 # RunVersion -> Last MatchEvent
22 self._ver = {}
23
24 @staticmethod
25 def _get_or_create_subdict (d: dict , key: str) -> dict:
26 """
27 Gets a nested dict inside an existing dict , or creates
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28 one there if one does not exist.
29
30 :param d: The dict in which to create a dict.
31
32 :param key: The key that will point to the new dict.
33
34 : return : The nested dict.
35 """
36 if key not in d:
37 d[key] = {}
38
39 return d.get(key)
40
41 def get_event (self ,
42 nfa_name : str ,
43 state_label : str ,
44 event_id : str ,
45 default =None) -> BoboEvent :
46 """
47 Get a BoboEvent instance from the buffer .
48
49 :param nfa_name : The NFA name.
50
51 :param state_label : The state label.
52
53 :param event_id : The event ID.
54
55 :param default : The default value , defaults to None.
56
57 : return : The BoboEvent instance ,
58 or default value if an event is not found.
59 """
60
61 try:
62 return self._eve[ nfa_name ][ state_label ][ event_id ]. event
63
64 except KeyError :
65 return default
66
67 def put_event (self ,
68 nfa_name : str ,
69 run_id : str ,
70 version : str ,
71 state_label : str ,
72 event: BoboEvent ,
73 new_run_id : str = None ,
74 new_version : str = None) -> MatchEvent :
75 """
76 Puts a BoboEvent instance into the buffer .
77
78 :param nfa_name : The BoboNFA instance name.
79
80 :param run_id : The run ID with which to associate
81 the event.
82
83 :param version : The run version of the run with which
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84 to associate the event.
85
86 :param state_label : The label of the state.
87
88 :param event: The event to add to the buffer .
89
90 :param new_run_id : The new run ID with which to associate
91 the event , so that the other run ID
92 will point to this one , defaults to None.
93
94 :param new_version : The new run version with which to
95 associate the event , so that the other
96 version will point to this one ,
97 defaults to None.
98
99 : return : A MatchEvent instance containing the BoboEvent

100 instance .
101 """
102
103 # get match events for this nfa
104 # keyed by the bobo event they represent
105 nfa_labels = self. _get_or_create_subdict (
106 self._eve , nfa_name )
107 nfa_events = self. _get_or_create_subdict (
108 nfa_labels , state_label )
109
110 # look for bobo event in buffer
111 # or add a new match event for it
112 # if a match event is not found
113 if event. event_id not in nfa_events :
114 nfa_events [event. event_id ] = MatchEvent (
115 nfa_name =nfa_name ,
116 label= state_label ,
117 event=event)
118
119 new_match_event = nfa_events [event. event_id ]
120
121 # get last event under the original run ID and version
122 # before (maybe) updating run ID and version
123 last_match_event = self. get_last_event (
124 nfa_name =nfa_name ,
125 run_id =run_id ,
126 version = version )
127
128 if new_run_id is not None:
129 run_id = new_run_id
130
131 if new_version is not None:
132 version = new_version
133
134 # point the (maybe new) run ID and version
135 # to the next match event
136 nfa_runs = self. _get_or_create_subdict (self._ver , nfa_name )
137 run_versions = self. _get_or_create_subdict (nfa_runs , run_id )
138 run_versions [ version ] = new_match_event
139
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140 # point new match event to the last match event ,
141 # if it exists
142 if last_match_event is not None:
143 # points to the last match event
144 new_match_event . add_pointer_next (
145 version =version ,
146 label= last_match_event .label ,
147 event_id = last_match_event .event. event_id )
148
149 # points backwards to the new match event
150 last_match_event . add_pointer_previous (
151 version =version ,
152 label= new_match_event .label ,
153 event_id = new_match_event .event. event_id )
154 else:
155 # adds pointer to nothing , so run is still
156 # linked to event
157 new_match_event . add_pointer_next ( version = version )
158
159 return new_match_event
160
161 def remove_version (self , nfa_name : str , version : str) -> None:
162 """
163 Removes a run version from all of the match events
164 in the buffer .
165
166 :param nfa_name : The name of the BoboNFA instance .
167
168 :param version : The run version .
169 """
170
171 # remove version from runs
172 nfa_runs = self._ver.get( nfa_name )
173
174 if nfa_runs is not None:
175 for nfa_run in tuple( nfa_runs . values ()):
176 for run_version in tuple( nfa_run .keys ()):
177 if version == run_version :
178 nfa_runs .pop(version , None)
179
180 # remove pointers in events , and maybe event itself
181 nfa_labels = self._eve.get( nfa_name )
182
183 if nfa_labels is not None:
184 for match_events in tuple( nfa_labels . values ()):
185 for match_event in tuple( match_events . values ()):
186 match_event . remove_all_pointers ( version )
187
188 # drop more pointers , drop event
189 if not match_event . has_pointers ():
190 self._eve \
191 .get( nfa_name ) \
192 .get( match_event .label) \
193 .pop( match_event .event.event_id , None)
194
195 def get_last_event (self ,
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196 nfa_name : str ,
197 run_id : str ,
198 version : str ,
199 default =None) -> MatchEvent :
200 """
201 Gets the last match event.
202
203 :param nfa_name : The BoboNFA instance name.
204
205 :param run_id : The run ID.
206
207 :param version : The run version .
208
209 :param default : A value to return if no match event
210 is found , defaults to None.
211
212 : return : The last match event ,
213 or a default value if one does not exist.
214 """
215
216 try:
217 return self._ver[ nfa_name ][ run_id ][ version ]
218
219 except KeyError :
220 return default
221
222 def get_all_events (self ,
223 nfa_name : str ,
224 run_id : str ,
225 version : RunVersion ) -> BoboHistory :
226 """
227 Gets all events associated with a run and compiles
228 them into a BoboHistory instance .
229
230 :param nfa_name : The BoboNFA instance name.
231
232 :param run_id : The run ID.
233
234 :param version : The run version .
235
236 : return : A BoboHistory instance with all of the
237 events in it.
238 """
239
240 all_events = {}
241 current_level = 0
242 current_incr = 0
243 current_version = version . get_version_as_str ()
244
245 # start with the latest match event
246 current_event = self. get_last_event (
247 nfa_name =nfa_name ,
248 run_id =run_id ,
249 version = current_version )
250
251 while True:
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252 if current_event is not None:
253 # add event to dict , keyed under the label name
254 if current_event .label not in all_events :
255 all_events [ current_event .label] = []
256 all_events [ current_event .label ]. insert (
257 0, current_event .event)
258
259 # get next match event using current version
260 next_event = self. _get_next_event (
261 event= current_event ,
262 nfa_name =nfa_name ,
263 version_str = current_version )
264
265 # no event found under current version
266 if next_event is None:
267 # get previous version by decreasing increment
268 current_incr += 1
269 current_version = \
270 version . get_previous_version_as_str (
271 decrease_level = current_level ,
272 decrease_incr = current_incr )
273
274 # get previous version by decreasing level
275 if current_version is None:
276 current_level += 1
277 current_incr = 0
278 current_version = \
279 version . get_previous_version_as_str (
280 decrease_level = current_level ,
281 decrease_incr = current_incr )
282
283 # no previous version , stop search
284 if current_version is None:
285 break
286
287 # attempt to find next event with new version
288 next_event = self. _get_next_event (
289 event= current_event ,
290 nfa_name =nfa_name ,
291 version_str = current_version )
292
293 if next_event is None:
294 break
295
296 current_event = next_event
297 else:
298 break
299
300 return BoboHistory ( events = all_events )
301
302 def _get_next_event (self ,
303 event: MatchEvent ,
304 nfa_name : str ,
305 version_str : str ):
306 try:
307 next_tuple = event. next_ids .get( version_str )
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308 if next_tuple is not None:
309 next_event = self._eve[
310 nfa_name ][ next_tuple [0]][ next_tuple [1]]
311 else:
312 next_event = None
313 except KeyError :
314 next_event = None
315
316 return next_event

A.2 Match Event
In order for SVMB to efficiently store and link its events, they are each individually
stored in a match event that provides additional pointers to other events in the
buffer. Listing A.2 shows the Python implementation of match events in BoboCEP.

Listing A.2: The BoboCEP match event implementation in Python.
1 class MatchEvent :
2 """
3 A BoboEvent instance that has been selected as a match for some
4 state criteria by one or more runs.
5
6 :param nfa_name : The name of the BoboNFA instance .
7
8 :param label: The state label with which the event is
9 associated .

10
11 :param event: The event selected as being a match for some
12 state.
13
14 :param next_ids : Matches from older states , to which this event
15 links , defaults to an empty dict.
16
17 :param prev_ids : Matches from newer states , to which this
18 event links , default to an empty dict.
19 """
20
21 def __init__ (
22 self ,
23 nfa_name : str ,
24 label: str ,
25 event: BoboEvent ,
26 next_ids : Dict[str , Tuple[str , str ]] = None ,
27 prev_ids : Dict[str , Tuple[str , str ]] = None) -> None:
28 super (). __init__ ()
29
30 self. nfa_name = nfa_name
31 self.label = label
32 self.event = event
33 self. next_ids = {} if next_ids is None else next_ids
34 self. prev_ids = {} if prev_ids is None else prev_ids
35
36 def add_pointer_next (
37 self ,
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38 version : str ,
39 label: str = "",
40 event_id : str = "") -> None:
41 """
42 Points match event to the next match event ID using a
43 run version .
44
45 :param version : The run version .
46
47 :param label: The state label , defaults to an empty string .
48
49 :param event_id : The event ID to point to , defaults to an
50 empty string .
51 """
52
53 # Cannot point match event to itself .
54 if label == self.label and event_id == self.event. event_id :
55 raise RuntimeError ()
56
57 self. next_ids [ version ] = (label , event_id )
58
59 def add_pointer_previous (
60 self ,
61 version : str ,
62 label: str = "",
63 event_id : str = "") -> None:
64 """
65 Points match event to the previous match event ID using
66 a run version .
67
68 :param version : The run version .
69
70 :param label: The state label , defaults to an empty string .
71
72 :param event_id : The event ID to point to , defaults to an
73 empty string .
74 """
75
76 # Cannot point match event to itself .
77 if label == self.label and event_id == self.event. event_id :
78 raise RuntimeError ()
79
80 self. prev_ids [ version ] = (label , event_id )
81
82 def remove_all_pointers (self , version : str) -> None:
83 """
84 Removes all pointers to a match event with a given
85 run version .
86
87 :param version : The run version .
88 """
89
90 self. next_ids .pop(version , None)
91 self. prev_ids .pop(version , None)
92
93 def has_pointers (self) -> bool:
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94 """
95 : return : True if the match event points to any other
96 match events , False otherwise .
97 """
98
99 return len(self. next_ids ) > 0 or len(self. prev_ids ) > 0

A.3 Run Version
As demonstrated in Section 6.1.2, each run has a unique run version number so that
its events can be identified within a buffer. A match event uses run versions as keys in
order to link a run’s events together. Listing A.3 shows the Python implementation
of this in BoboCEP.

Listing A.3: The BoboCEP run version implementation in Python.
1 class RunVersion :
2 """
3 The current version of a run.
4
5 :param parent_version : The parent version . If provided ,
6 the new version will copy the parent
7 version ’s levels . Defaults to None.
8 """
9

10 def __init__ (self , parent_version : ’RunVersion ’ = None) -> None:
11 super (). __init__ ()
12
13 self. _levels = [] if parent_version is None \
14 else copy( parent_version . _levels )
15
16 @staticmethod
17 def list_to_version ( version_list : List[str ]) -> ’RunVersion ’:
18 """
19 Converts a list of strings into a RunVersion instance ,
20 where each string of the list becomes a level in the
21 RunVersion instance , in list order.
22
23 :param version_list : A list of strings .
24
25 : return : A new RunVersion instance .
26 """
27
28 run = RunVersion ()
29 run. _levels = version_list
30 return run
31
32 @staticmethod
33 def list_to_version_str ( str_list : List[str ]) -> str:
34 """
35 Converts a list of strings into a valid version string
36 by joining each string in the list by the delimeter ".".
37
38 :param str_list : A list of strings .
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39
40 : return : A valid version string .
41 """
42
43 return RunVersion . _DELIMITER .join( str_list )
44
45 @staticmethod
46 def str_to_version ( version_str : str) -> ’RunVersion ’:
47 """
48 Converts a version string into a RunVersion instance
49 by splitting the string by the delimiter "." and making
50 each split a level in the new instance .
51
52 :param version_str : The version string .
53
54 : return : A new RunVersion instance .
55 """
56
57 run = RunVersion ()
58 run. _levels = version_str .split( RunVersion . _DELIMITER )
59 return run
60
61 def add_level (self , level: str) -> None:
62 """
63 Adds a new level to the version .
64
65 :param level: The level name.
66 """
67
68 self. _levels . append ([ level ])
69
70 def increment_level (self , increment : str) -> None:
71 """
72 Increments the current level.
73
74 :param increment : The increment name.
75
76 : raises RuntimeError : Attempting to increment when
77 there are no levels .
78 """
79
80 if len(self. _levels ) == 0:
81 raise RuntimeError ()
82
83 self. _levels [ -1]. append ( increment )
84
85 def size(self) -> int:
86 """
87 : return : The number of levels .
88 """
89
90 return len(self. _levels )
91
92 def size_level (self , index: int = -1):
93 """
94 :param index: The index of the level , defaults to the
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95 latest level.
96
97 : return : The number of increments in at a given level.
98 """
99

100 return len(self. _levels [index ])
101
102 def remove_all_levels (self) -> None:
103 """
104 Removes all levels from the version .
105 """
106
107 self. _levels = []
108
109 def get_version_as_list (self) -> List[str ]:
110 """
111 : return : The latest version as a list of strings , where
112 each string is the latest increment of the
113 given level.
114 """
115
116 return [level [-1] for level in self. _levels ]
117
118 def get_version_as_str (self) -> str:
119 """
120 : return : The latest version as a string , where each level
121 is the latest increment of the given level ,
122 separated with the delimeter ".", e.g. "a.b.c".
123 If there are no levels , it returns "".
124 """
125
126 if len(self. _levels ) == 0:
127 return ""
128
129 return RunVersion . _DELIMITER .join(
130 [level [-1] for level in self. _levels ])
131
132 def get_previous_version_as_list (
133 self ,
134 decrease_level : int ,
135 decrease_incr : int) -> List[str ]:
136 """
137 Gets a previous version of the run version as a list
138 of strings .
139
140 :param decrease_level : How many levels to decrease by.
141 For example , if there are 5 levels ,
142 a decrease_level of 2 will go back
143 to level 3.
144
145 :param decrease_incr : How many increments of a level to
146 decrease by.
147
148 : raises RuntimeError : Decreasing beyond the number
149 of levels .
150 : raises RuntimeError : Decreasing beyond the number
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151 of increments in the chosen level.
152
153 : return : The previous version as a list.
154 """
155
156 index_level = len(self. _levels ) - decrease_level - 1
157
158 if not (0 <= index_level < len(self. _levels )):
159 raise RuntimeError ()
160
161 index_incr = len(self. _levels [
162 index_level ]) - decrease_incr - 1
163
164 if not (0 <= index_incr < len(self. _levels [ index_level ])):
165 raise RuntimeError ()
166
167 version = [level [-1] for level in self. _levels [
168 : index_level ]]
169 version . append (self. _levels [ index_level ][ index_incr ])
170
171 return version
172
173 def get_previous_version_as_str (self ,
174 decrease_level : int ,
175 decrease_incr : int ,
176 default =None) -> str:
177 """
178 Gets a previous version of the run version as a string ,
179 delimited by ".".
180
181 :param decrease_level : How many levels to decrease by.
182 For example , if there are 5 levels ,
183 a decrease_level of 2 will go back
184 to level 3.
185
186 :param decrease_incr : How many increments of a level to
187 decrease by.
188
189 :param default : The default value to return if a version
190 string fails to be generated ,
191 defaults to None.
192
193 : return : The previous version as a string delimited by ".".
194 If there are no levels , it returns an empty string .
195 """
196
197 if len(self. _levels ) == 0:
198 return ""
199
200 try:
201 return RunVersion . _DELIMITER .join(
202 self. get_previous_version_as_list ( decrease_level ,
203 decrease_incr ))
204 except RuntimeError :
205 return default
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Appendix B
Testbed Design

This appendix describes the design of the medium-scale VFS from Section 6.2.2 in
more depth. It explores how the smart plugs were modified and interacted with via
BoboCEP, the setup of the water pumps and grow lights, as well as a more detailed
insight into the design of the microcontrollers which generated the sensor data for
the VFS. The medium-scale testbed was an upgrade of the small-scale VFS from
Section 6.2.1, which was of a comparable design.

B.1 Smart Plugs

B.1.1 KanKun KK-SP3
The KanKun KK-SP3 was a smart plug that featured an Atheros AR9330 (400MHz)
processor, 4MB flash memory, 32 MB RAM, and ran on an OpenWRT1 Linux dis-
tribution (Figure B.1a). The plugs had very weak security and the operating system
could be accessed directly via SSH, which meant that the official app used to con-
trol the plugs could be circumvented completely. This meant that custom Common
Gateway Interface (CGI) scripts could be installed onto the plugs to enable direct
control of them via HTTP.

Four scripts were written for the plugs: (1) to turn the plug ON; (2) to turn the plug
1https://openwrt.org

Figure B.1: The (a) KanKun KK-SP3 and (b) TP-Link HS100 smart plugs.
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OFF; (3) to get the current state of the plug; and (4) a timer to turn the plug ON for
t seconds and then OFF, which is shown in Listing B.1. The timer function was an
important script that was used to control the water pumps specifically. The script
guaranteed that the water pumps turned off after t seconds, rather than relying on
BoboCEP instances to send an OFF signal after an ON signal, which might have failed
to send and might have caused a water pump to flood its connected water reservoir.

Listing B.1: The CGI script for the KanKun KK-SP3 timer feature.
1 #!/ bin/sh
2
3 echo "Content -Type: text/plain"
4 echo "Cache - Control : no -cache , must - revalidate "
5 echo " Expires : Sat , 26 Jul 1997 05:00:00 GMT"
6 echo
7
8 RELAY_CTRL =/ sys/class/leds/tp -link:blue:relay/ brightness
9

10 case " $QUERY_STRING " in
11 seconds =*)
12 SECONDS =${ QUERY_STRING :8}
13
14 case $SECONDS in
15 ’’|*[!0 -9]*)
16 echo ERR
17 ;;
18 *)
19 (echo 1 > $RELAY_CTRL &&
20 sleep $SECONDS &&
21 echo 0 > $RELAY_CTRL ) &
22 echo OK
23 ;;
24 esac
25 ;;
26 *)
27 echo ERR
28 esac

B.1.2 TP-Link HS100
The TP-Link HS100 was a smart plug from TP-Link’s smart home range (Figure
B.1b). They were purchased when the KanKun KK-SP3 smart plugs had become
obsolete, however more smart plugs were needed during the upgrade from the small-
to medium-scale VFS. When setting up these plugs, they were first registered to a
TP-Link personal account and were delegated unique device IDs after registration.

BoboCEP instances were able to authenticate with the TP-Link servers by sending
custom JSON data with the account credentials by using an account token that
provided access to the smart plugs registered to the account. The BoboCEP instances
running alongside the VFS were loaded with a class that enabled access to the smart
plugs using this approach, shown in Listing B.2. This code generated a new token
every time it attempted to change the plugs to either their ON or OFF states.
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Listing B.2: A simplified version of how BoboCEP performed actions using the TP-
Link HS100 smart plugs.

1 class TPLinkHS100Action ( BoboAction ):
2 ADDR_WAP = "https :// wap. tplinkcloud .com"
3 ADDR_EU_WAP = "https ://eu -wap. tplinkcloud .com"
4 ERROR_CODE = " error_code "
5 RESULT = " result "
6 TOKEN = "token"
7
8 def __init__ (self ,
9 name: str ,

10 email: str ,
11 password : str ,
12 device_id : str ,
13 on: bool) -> None:
14 super (). __init__ (name=name)
15
16 # Account credentials to access the plug.
17 self.email = email
18 self. password = password
19
20 # Which plug to control .
21 self. device_id = device_id
22
23 # Whether to turn the plug ON or OFF.
24 self.on = on
25
26 def _perform_action (self , event: BoboEvent ) -> bool:
27 # Fetch a new token before performing the desired action .
28 token = TPLinkHS100Action . fetch_token (
29 self.email , self. password )
30
31 # If a valid token was returned .
32 if len(token) > 0:
33 # Build a path with the token included .
34 url = "{}? token ={}". format (
35 TPLinkHS100Action . ADDR_EU_WAP , token)
36
37 req = urllib . request . Request (url)
38 req. add_header (’Content -Type ’, ’application /json ’)
39
40 # Send ON/OFF request in JSON format .
41 json_body_bytes = json.dumps ({
42 ’method ’: ’passthrough ’,
43 ’params ’: {
44 ’deviceId ’: self.device_id ,
45 ’requestData ’:
46 ’{{\" system \":{{\" set_relay_state \": ’
47 ’{{\" state \":{ ’
48 ’}}}}}}} ’. format (’1’ if self.on else ’0’)
49 }
50 }). encode (’utf -8’)
51
52 req. add_header (’Content - Length ’, len( json_body_bytes ))
53 response = json.loads(
54 urllib . request . urlopen (req , json_body_bytes ). read ())
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55
56 return int( response [’error_code ’]) == 0
57 return False
58
59 @staticmethod
60 def fetch_token (email: str , password : str) -> str:
61 req = Request ( TPLinkHS100Action . ADDR_WAP )
62
63 data = {
64 " method ": "login",
65 " params ": {
66 " appType ": " Kasa_Android ",
67 " cloudUserName ": email ,
68 " cloudPassword ": password ,
69 " terminalUUID ": str(uuid4 ())
70 }
71 }
72
73 json_bytes = dumps(data ). encode (’utf -8’)
74
75 req. add_header (’Content -Type ’, ’application /json ’)
76 req. add_header (’Content - Length ’, len( json_bytes ))
77
78 res = urlopen (req , json_bytes )
79 code = res. getcode ()
80
81 if code == 200:
82 json_res = loads(res.read (). decode ())
83
84 if json_res [ TPLinkHS100Action . ERROR_CODE ] == 0:
85 return json_res [ TPLinkHS100Action . RESULT ][
86 TPLinkHS100Action .TOKEN]
87
88 return ""

B.2 Actuators
The two actuators that enabled the VFS to provide service were the water pumps
and the grow lights. Both of these devices could not be controlled directly, and
their ON and OFF states were instead controlled by the smart plugs to which they
connected. The water pumps were connected to the KanKun KK-SP3 plugs so that
they could use the timer function from Listing B.1, which ensured that they switched
OFF when activated. The grow lights were connected to the TP-Link HS100 plugs.

The grow lights themselves could be programmed to switch OFF after t hours. How-
ever, BoboCEP provided this functionality instead, and was a more adaptive solution
because it used light intensity data to determine the optimal time to activate and de-
activate the grow lights. Figure B.2 (left) shows the grow lights activating as natural
light began to deplete, which ensured constant photosynthesis for the plants.

Similarly, the water pumps were activated when the reservoir began to deplete its
supply of water. Each water pump would pump water through its connected plastic
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Figure B.2: Left: grow lights activated when natural light decreased in the evening.
Right: plastic tubing connecting a water pump to its reservoir.

tubing, which poured water directly onto the capillary matting and trickled down
into the reservoir (Figure B.2, right). By pumping water onto the matting, it ensured
that the matting did not dry out because, if it did, it would hamper the ability for
it to draw water from the reservoir below.

B.3 Microcontrollers
The microcontrollers were the means by which the medium-scale VFS could be
monitored and decisions could be made as to whether the system was behaving
erroneously. In each water reservoir were two water-level sensors (Figure B.3ai,ii).
These were held into place using double-sided adhesive tape that ensured the bottom
of the sensor touched the bottom of the reservoir, and therefore a low reading repres-
ented nearly-depleted water supplies. The water-level sensors would then influence
the water pumps associated with the reservoir being monitored, and would prompt
BoboCEP to activate the primary pump, or the redundant pump if the primary
pump failed to activate.

The LDRs were positioned on the shelves such that they were able to detect natural
light in the day, but were also close enough to the grow lights that they could
detect whether the lights were ON or OFF (Figure B.3b). This was important data
that influenced the experiment in Section 7.4.4 which ensured correct grow light
functionality. The temperature/humidity sensors were placed into plant pots to
sample two pots per shelf (Figure B.3c). The pots had plastic lids on them, which
helped the plants to retain water and reduce the amount of water that the system
needed to consume. The data from these sensors were important in providing another
means of inferring the health of the produce, because a higher humidity suggested
that the plants were well watered.

Each microcontroller was configured as shown in Figure B.4. This meant that, for
each shelf, there were two water-level sensors per reservoir, two LDRs per shelf,
and two temperature/humidity sensors in two plant pots on each shelf. This level of
redundancy provided more certainty that the data being collected by each sensor were
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Figure B.3: A microcontroller connected to a reservoir, plant pot, and shelf.

Figure B.4: The configuration of the microcontrollers.

reasonable, because a direct comparison between the data of two sensors collecting
the same data from the same shelf/reservoir could be performed.

A key feature of BoboCEP was its ability to provide load balancing due to the activ-
ate replication of its state, as discussed in Sections 6.1 & 7.5.1. The microcontrollers
helped to demonstrate this feature with a simple protocol whereby, if a microcon-
troller failed to send data to one edge device, it would randomly pick another edge
device through which to attempt to send future data. This implementation is shown
in Listing B.3. The three entry points represent the three edge devices used dur-
ing the evaluation (Section 7.5), each of which sent data to BoboCEP using the
/properties interface described in Section 4.1.

Listing B.3: A simplified version of the C++ code on the microcontrollers.
1 class EntryPoint {
2 public :
3 String addr;
4 int port;
5 String path;
6
7 EntryPoint (String , int , String );
8 };
9

10 EntryPoint :: EntryPoint ( String _addr , int _port , String _path) {
11 addr = _addr;
12 port = _port;
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13 path = _path;
14 }
15
16 const EntryPoint ENTRY_POINTS [] = {
17 EntryPoint (" 192.168.1.123 ", 5050 , "/ properties "),
18 EntryPoint (" 192.168.1.124 ", 5050 , "/ properties "),
19 EntryPoint (" 192.168.1.125 ", 5050 , "/ properties ")
20 };
21
22 int currentEntryPoint ;
23
24 void setup () {
25 currentEntryPoint = 0;
26 }
27
28 void loop () {
29 if(! send_data ( get_sensor_data_as_json (), currentEntryPoint ))
30 set_new_entry_point ();
31
32 delay (3000); // 3 seconds
33 }
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