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CONDUCTIVE NONWOVEN MAT AND METHOD OF USING THE CONDUCTIVE
NONWOVEN MAT

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of and priority to U.S. Provisional Application
Serial No. 62/184,324, having the title "CONDUCTIVE NONWOVEN MAT AND
METHOD OF USING THE CONDUCTIVE NONWOVEN MAT," filed on June 25, 2015,

the disclosure of which isincorporated herein in by reference in its entirety.

BACKGROUND
Pro-regenerative biomaterials for the treatment of bone conditions and disorders that
require surgical intervention are of growing importance in modern societies in which life
expectancies are increasing. Materias that have been investigated for bone repair and
regeneration include non-biodegradable materials or biodegradable materials. However,

further research needs to be done to find suitable materials.

SUMMARY

Embodiments of the present disclosure provide for nonwoven mat of fibers (e.g.,
polycaprolactone fibers), method of making the nonwoven mat, method of using the
nonwoven mat, and the like. 1n an embodiment, the fibers can be coated with an
interpenetrating network of a conductive polymer and a dopant on the surface of the fibers.

An embodiment of the present disclosure provides for amethod of differentiation of
human mesenchymal stem cells, among others, that includes: providing anonwoven mat of
fibers, wherein interpenetrating networks of a conductive polymer and a dopant are on the
surface of the fibers; introducing human mesenchymal stem cells to the nonwoven mat,
wherein the nonwoven mat and the human mesenchymal stem cells are cultured in an
osteogenic medium; and periodically providing electrical stimulation to the human
mesenchymal stem cells to cause differentiation of human mesenchymal stem cells towards
osteogenic outcomes. In an embodiment, the electrical stimulation causes increased ALP
activity and increased Ca’* deposition on the fibers relative to not periodicaly providing
electrical stimulation.

An embodiment of the present disclosure includes a structure, among others, that

includes. anonwoven mat of fibers, wherein interpenetrating networks of a conductive
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polymer and a dopant are on the surface of the fibers, wherein human mesenchymal stem
cells are disposed within the nonwoven mat. In an embodiment, osteoblasts are present
within the nonwoven mat after exposure of the nonwoven mat to an osteogenic medium. In
an embodiment, the nonwoven mat includes ALP and Ca+ deposition on the fibers.

In an embodiment, the fibers can include one or more of the following:
polycaprolactone, polyester, polyamide, PCL, PLLA, PLGA, protein, polysaccharide, lignins,
polyalanine, oligoalanine, collagen, silk, cellulose, chitin, and chitosan. In an embodiment,
the conductive polymer can include one or more of the following: polypyrrole, polyaniline,
polythiophene, poly(3,4-ethylenedioxythiophene), polyfluorene, polyphenylene, polypyrene,
polyazulene, polynapthalene, polyindole, polyazepine, poly(p-phenylene sulfide), poly(p-

phenylene vinylene), and polyfuran.

BRIEF DESCRIPTION OF THE DRAWINGS

Further aspects of the present disclosure will be more readily appreciated upon review
of the detailed description of its various embodiments, described below, when taken in
conjunction with the accompanying drawings.

Figures 1A-D illustrate physicochemical analysis of the electrospun fibers. Figs. 1A
and I1B are SEM images of mats of electrospun fibers (Fig. 1A isPCL; Fig 1B isPCL with an
interpenetrating network of polypyrrole and polystyrenesulfonate. Scale bars represent 20
um). Figs. 1C and ID are XPS spectra: N Isand S2p, respectively. Grey lines are the
spectrum of mats of electrospun PCL, whereas black lines are the spectrum of mats of
electrospun PCL with an interpenetrating network of polypyrrole and polystyrenesulfonate.

Figures 2A-2D are images of fluorescently stained cells cultured on various
substrates. DAPI-stained nuclei are blue and Alexa Fluor® 488-stained actin isgreen. Fig.
2A shows tissue-culture treated Corning® Costar® TCP controls. Fig. 2B shows mats of
electrospun PCL. Fig. 2C shows mats of electrospun PCL with an interpenetrating network
of polypyrrole and polystyrenesulfonate without electrical stimulation. Fig. 2D shows mats
of electrospun PCL with an interpenetrating network of polypyrrole and polystyrenesulfonate
with electrical stimulation. Scale bars represent 100 pm.

Figures 3A-3C illustrate biochemical analysis of cell culture experiments. Fig. 3A
shows DNA content. Fig. 3B shows ALP activity. Fig. 3C shows calcium deposition. TCP,
tissue-culture treated Corning® Costar® tissue culture plate controls. PCL, mats of

electrospun PCL. PCL-CP (-), mats of electrospun PCL with an interpenetrating network of
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polypyrrole and polystyrenesulfonate without electrical stimulation; PCL-CP (+), mats of
electrospun PCL with an interpenetrating network of polypyrrole and polystyrenesulfonate
with electrical stimulation.

Figure 4 isa schematic of an experimental setup for electrical stimulation of cells on
conducting PCL-based nanofibers (Not to scale). (CE) counter electrode. (CT) copper tape.
(PCW) polycarbonate well. (RE) reference electrode. (WE) working electrode.

DETAILED DESCRIPTION

This disclosure isnot limited to particular embodiments described, and as such may,
of course, vary. Theterminology used herein serves the purpose of describing particular
embodiments only, and isnot intended to belimiting, since the scope of the present
disclosure will be limited only by the appended claims.

Where arange of values is provided, each intervening value, to the tenth of the unit of
the lower limit unless the context clearly dictates otherwise, between the upper and lower
[imit of that range and any other stated or intervening value in that stated range, is
encompassed within the disclosure. The upper and lower limits of these smaller ranges may
independently beincluded in the smaller ranges and are also encompassed within the
disclosure, subject to any specifically excluded limit in the stated range. Where the stated
range includes one or both of the limits, ranges excluding either or both of those included
limits are also included in the disclosure.

Aswill be apparent to those of skill in the art upon reading this disclosure, each of the
individual embodiments described and illustrated herein has discrete components and features
which may bereadily separated from or combined with the features of any of the other
several embodiments without departing from the scope or spirit of the present disclosure.
Any recited method may be carried out in the order of events recited or in any other order that
islogically possible.

Embodiments of the present disclosure will employ, unless otherwise indicated,
techniques of organic chemistry, biochemistry, microbiology, molecular biology,
pharmacology, medicine, and the like, which are within the skill of the art. Such techniques
are explained fully in the literature.

Prior to describing the various embodiments, the following definitions are provided
and should be used unless otherwise indicated.

Unless otherwise defined, all technical and scientific terms used herein have the same

meaning as commonly understood by one of ordinary skill in the art of microbiology,
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molecular biology, medicina chemistry, and/or organic chemistry. Although methods and
materials similar or equivalent to those described herein can be used in the practice or testing
of the present disclosure, suitable methods and materials are described herein.

Asused in the specification and the appended claims, the singular forms "a," "an,"
and "the" may include plural referents unless the context clearly dictates otherwise. Thus, for
example, reference to "a support” includes aplurality of supports. In this specification and in
the claims that follow, reference will be made to anumber of terms that shall be defined to

have the following meanings unless a contrary intention is apparent.

Discussion :

Embodiments of the present disclosure provide for nonwoven mat of fibers (e.g.,
polycaprolactone fibers), method of making the nonwoven mat, method of using the
nonwoven mat, and the like. In an embodiment, the fibers can be coated with an
interpenetrating network of a conductive polymer and a dopant on the surface of the fibers.

In an embodiment, the nonwoven mat has e ectroactive characteristics so that an
electrical stimulation can be periodically applied to the nonwoven mat. In aparticular
embodiment, acell such asahuman mesenchymal stem cell can be incubated with the
nonwoven mat and cultured in an osteogenic medium so that the stem cells differentiate
towards osteogenic outcomes (e.g., osteoblasts). Asshown in Example 1, electrical
stimulation of the nonwoven mat in the presence of human mesenchymal stem cellsin the
osteogenic medium shows increased differentiation towards osteogenic outcomes as
compared to nonwoven mats without electrical stimulation and other types of mat.

In this regard, embodiments of the disclosure provide for methods of differentiation of
human mesenchymal stem cells. An embodiment of the present disclosure includes
introducing human mesenchymal stem cells to the nonwoven mat, where the nonwoven mat
and the human mesenchymal stem cells are cultured in an osteogenic medium. Subsequently,
electrical stimulation can be periodically applied to the human mesenchymal stem cellsto
enhance differentiation of human mesenchymal stem cells towards osteogenic outcomes.
Application of electrical stimulation to the nonwoven mat increases ALP activity and
increased Ca’+ deposition on the fibers of the nonwoven mat, which can lead to formation of
calcified bone-like extracellular matrix.

Electrical stimulation can include direct or indirect contact of the material with a
power source via awire, wireless energy transfer, magnetic force, and the like. The term

"periodically" refersto applying the electrical stimulation at established time frames that may
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be a regular or irregular time intervals on the time frames of seconds, hours, days, weeks, or
months (e.g., about 1 sto 2 months, about 1 hour to 1 day, about 1day to 1 month, or other
the like) depending upon the specific circumstances. In an embodiment, the impulses of the
electrical stimulation can last on the time frame of seconds, hours, or days (e.g., about 1
second to 1day, about 10 secondsto 1hour, about 1 minute to 12 hours, about 1 hour to 1
day, or the like) depending upon the specific circumstances. I1n an embodiment, the electrical
stimulation can bein the range of millivolts to volts (e.g., about 10 mV to 10 volts, about 1
mV to 100 mV, or the like). Thetime frame, duration of electrical stimulation, and intensity
of the electrical stimulation can be designed based on particular circumstances and
requirements of a specific situation.

In an embodiment, the nonwoven mat of fibers includes an interpenetrating network
of a conductive polymer and a dopant on the surface of the fibers. In an embodiment, the
fiber of the nonwoven mat can be polycaprolactone fiber, where the fibers include a
conductive polymer and a dopant on the surface of the fiber. In aparticular embodiment, an
interpenetrating network of polypyrrole and polystyrenesulfonate is on the surface of the
polycaprolactone fibers.

In an embodiment, the conductive polymer and the dopant on the surface forms a
layer (e.g., having athickness of about 1to 5000 nm) of these materials, where the layer may
or may not be continuous. In an embodiment, the amount of the conductive polymer and the
dopant disposed on the fibers can be about 1to 100% by mass, where the range includes each
1% increment (e.g., 1to 10%, about 50 to 80%, about 20 to 60%, and the like).

In an embodiment, the fibers can be synthetic polymers (e.g., polyesters, polyamides,
polycaprolactone, PCL, PLLA, PLGA, etc.) and natural polymers (e.g. proteins,
polysaccharides, lignins, polyalanine, oligoalanine, collagen, silk, cellulose, chitin, chitosan,
and the like). In an embodiment, the nonwoven mat can include a mixture of different types
of fibers (e.g., aportion can be polycaprolactone fibers and another portion can be polyester
fibers).

In an embodiment, the conducting polymer can include polyaniline, polythiophene,
poly(3,4-ethylenedioxythiophene), polyfluorenes, polyphenylenes, polypyrenes,
polyazulenes, polynapthalenes, polyindoles, polyazepines, poly(p-phenylene sulfide)s,
poly(p-phenylene vinylene)s, and polyfurans, aswell as copolymers and derivatives thereof.
In an embodiment, there are biodegradable versions, in which there are block(s) of
conducting units within a polymer chain containing biodegradable bonds (e.g. esters and

amides), that can also be used asthe conducting polymer.
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In an embodiment, the dopant can be apolymer that has the opposite charge to the
conducting polymer, and can be low molecular weight (e.g., chlorine ions, tosylate ions, and
the like) or high molecular weight (e.g., collagen, hyaluronic acid, and the like).

In an embodiment, the fibers can have adiameter of about 10 nm to 500 micrometers
and alength of about 1 micrometer to 1 meter. In an embodiment, the nonwoven mat can
include 1to 1million fibers. In an embodiment, the nonwoven mat can have alength of
about 500 micrometers to 2 meters and awidth of about 500 micrometers to 2 meters.

In an embodiment, the fibers (e.g., polycaprolactone fibers) can be formed using
techniques such as electrospinning, wet spinning, or dry spinning. In aparticular
embodiment, the fibers are formed by disposing a polycaprolactone fluid (or other fiber
material) in a syringe with a solvent (e.g., chloroform and methanol) and dispensing the fiber
of polycaprolactone, which is subsequently dried. The length and the diameter of the fiber
can be controlled so that the desired dimensions of the fiber can be selected.

In an embodiment, the polypyrrole (or other conducting polymer) and
polystyrenesulfonate (or other dopant) can be disposed on the polycaprolactone nanofibers by
incubating the fibers (e.g., polycaprolactone fibers) with amonomer (e.g. pyrrole, thiophene,
aniline, 3,4-ethylenedioxythiophene), polystyrenesulfonate, and an agent capable of
polymerizing the monomer (e.g., an oxidizing agent such asferric chloride, alight source or
suitable electrochemistry apparatus) for an appropriate time period (e.g., about 1to 36 hours
or about 24 hours). After incubation, the residual materials can bewashed away and the
fibers (e.g., polycaprolactone fibers) having interpenetrating networks of conducting polymer
and dopant (e.g., polypyrrole and polystyrenesulfonate) are formed. Additional details are
provided in Example 1.

In an embodiment the osteogenic medium isbased on standard cell culture medium
with the optional addition of other components such as serum, non-essential amino acids,
bone morphogenetic protein 2 (BMP-2), dexamethasone, B-glycerophosphate, ascorbic acid,
ascorbic acid-2-phosphate, heparin, retinoic acid, and 1,25-dihydroxycholecalciferol (for
example: high glucose Dulbecco's Modified Eagle Medium (DMEM, 425 mL); fetal bovine
serum (50 mL); antibiotic-antimycotic (5 mL); non-essential amino acids (5 mL),
dexamethasone (100 nM), B-glycerol phosphate (10 mM) and ascorbic acid (50 um)). The
volume of medium used should bein line with the recommended guidelines of the
manufacturer of the cell culture dishes.

Ass stated above, embodiments of the present disclosure provide for a nonwoven mat

of fibers (e.g., polycaprolactone fibers), where the fibers include interpenetrating networks of
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the conducting polymer and the dopant on the surface of the fibers (e.g., polypyrrole and
polystyrenesulfonate). In addition, human mesenchymal stem cells (e.g., on collagen- 1
coated substrates) and the differentiated products of the stem cells are disposed within the
nonwoven mat. Furthermore, the nonwoven mat includes ALP and Ca* can be deposited on
the fibers. In an embodiment, the nonwoven mat can include one or more agents (e.g., a
chemical or biological agent), where the agent can be disposed indirectly or directly onthe
nonwoven mat. Asdescribed herein, the agent can include a stem cell such asahuman
mesenchymal stem cell.

In addition, an additional agent that can be disposed on the nonwoven mat can
include, but isnot limited to, adrug, atherapeutic agent, aradiological agent, a small
molecule drug, abiological agent (e.g., polypeptides (e.g., proteins such as, but not limited to,
antibodies (monoclonal or polyclonal)), antigens, nucleic acids (both monomeric and
oligomeric), polysaccharides, haptens, sugars, fatty acids, steroids, purines, pyrimidines,
ligands, and aptamers) and combinations thereof, that can be used to image, detect, study,
monitor, evaluate, and the like, the differentiation of the stem cells. 1n an embodiment, the
agent isincluded in an effective amount to accomplish its purpose (e.g., ALP production
and/or Ca* production), where such factors to accomplish the purpose are well known in the
medical arts.

In general, the agent can be bound to the nonwoven mat by aphysical, biological,
biochemical, and/or chemical association directly or indirectly by a suitable means. Theterm
"bound” can include, but isnot limited to, chemically bonded (e.g., covalently or ionically),
biologically bonded, biochemically bonded, and/or otherwise associated with the
electroactive supramolecular polymeric assembly. In an embodiment, being bound can
include, but isnot limited to, a covalent bond, a non-covalent bond, an ionic bond, a chelated
bond, aswell asbeing bound through interactions such as, but not limited to, hydrophobic
interactions, hydrophilic interactions, charge-charge interactions, m-nt stacking interactions,
combinations thereof, and like interactions. 1n an embodiment, cell-nonwoven mat
interactions could be controlled through the inclusion of cell-adhesive peptides (e.g., RGD,
YIGSR, KQAGDV, KHIFSDDSSE, KRSR), and protease-labile domains (e.g., APGL, VRN,
or indeed oligoalanines such asthose in the backbone of MTTl and MTT2 that are degraded
by elastase).

While embodiments of the present disclosure are described in connection with the
Examples and the corresponding text and figures, there isnointent to limit the disclosure to

the embodiments in these descriptions. On the contrary, the intent isto cover al alternatives,
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modifications, and equivalents included within the spirit and scope of embodiments of the

present disclosure.

EXAMPLE:

Pro-regenerative biomaterials for the treatment of bone conditions and disorders that
require surgical intervention are of growing importance in modern societies in which life
expectancies are increasing. Materias that have been investigated for bone repair and
regeneration include non-biodegradable materials (e.g. ceramic-, glass-,
polymethylmethacrylate-, and titanium-based materials) or biodegradable materials (e.g.
autografts, allografts, and polycaprolactone (PCL)), and those that simultaneously deliver
drugs.!!! Electrospun polymer tissue scaffolds are popular because of their fibrous
morphologies that mimic the fibrous nature of the extracellular matrix of avariety of tissues,
and their readily tuneable chemical compositions and mechanical properties. Such materials
have been investigated for their application astissue scaffolds for avariety of tissues
including bone.!

Conducting polymer (CP) biointerfaces (e.g. based on derivatives of aniline, pyrrole
or thiophene), are of interest for both long term applications (e.g. electrodes) and short term
applications (e.g. drug delivery devices or tissue scaffolds).) CP-based scaffolds have been
developed for the regeneration of bone, muscle and nerve tissue,*! and conductive
electrospun fiber-based scaffolds for each of these tissues have been reported.[4! Early studies
focused on methodologies for obtaining conductive nanofibers and characterization of their
physichochemical properties,®! and subsequent studies characterized their application as
tissue scaffolds,!e! with exciting results showing that conductive nanofibers promoted the
formation of muscle-like tissue, with altered gene expession from C2C12 cells and enhanced
myotube maturation.[”! A number of interesting studies have been carried out, including those
demonstrating that electrical stimulation of human dermal fibroblasts on conductive
nanofibers promoted their proliferation;'s! those revealing that electrical stimulation of cells
from the central nervous system (e.g. rat-derived PC12 cells®™! and stem cells'?!) or peripheral
nervous system (explanted dorsal root ganglia from chicken embryos/ ! increased the length
and number of neurites protruding from the cells.

CP-based materials were first investigated for their potential application as bone tissue
scaffolds by Langer and coworkers.!'?! Bone marrow-derived stromal cells were encouraged
to differentiate towards osteogenic outcomes when cultured on 2-dimensional polypyrrole

films across which apotential difference of 20 mV mm™ was applied, with an increase in
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akaline phosphatase (ALP) activity per cell relative to non-stimulated control substrates,
Bones are inherently porous (the porosity of cortical canalsis approximately 3.5%, whereas
that of trabecular bones is approximately 80%),"*! and electrospun materials are popular bone
tissue scaffolds in part because their inherent porosity facilitates the ingrowth of cells and
potentially vascularization, !*4! consequently, research groups have built on the report from
Langer and coworkers!'?! to develop conductive nanofiber-based bone tissue scaffolds.!”!
Indeed, Haimi and coworkers reported such scaffolds enhanced the proliferation of human
adipose tissue derived stem cells, yet while there were moderate increases in ALP activity on
the scaffolds, electrical stimulation was not observed to have a significant effect on the
adipose tissue derived stem cells,!'* and Loboa and coworkers reported that electrical
stimulation of human adipose tissue derived stem cells increased their proliferation and levels
of calcium deposition, !> highlighting the potential of electroactive tissue scaffolds for bone
tissue regeneration.

Tissue scaffolds allowing the behavior of the cells that reside within them to be
controlled are of particular interest for tissue engineering. Herein we describe the preparation
of conductive fiber-based bone tissue scaffolds (nonwoven mats of electrospun
polycaprolactone with an interpenetrating network of polypyrrole and polystyrenesulfonate)
that enable the electrical stimulation of human mesenchymal stem cells to enhance their
differentiation towards osteogenic outcomes.

Here we describe the preparation of mats of electrospun PCL (an FDA-approved
biodegradable polymer, PCL isfrequently used as abase material for such scaffolds with
encouraging results both in vitro and in vivot!4''e! that were rendered conductive via growth
of an interpenetrating network of polypyrrole,'®' ! and their use asinstructive bone tissue
scaffolds that enable electrical stimulation of human bone marrow derived mesenchymal

stem cells, enhancing ALP activity and calcium deposition.

Experimental Section

Full experimental details are found in the supplementary information. In short, non-
woven mats of PCL were electrospun from syringes containing a solution of PCL in
chloroform and methanol followed by drying under high vacuum. Interpenetrating networks
of polypyrrole and polystyrenesulfonate were grown within the PCL matrix in accordance
with our previously described methodology.!'”®! Tensile tests were performed using an
Instron Materials Testing Machine 5543 Series Single Column System (Instron, Norwood,
MA) with Bluehill 2 software. The electrical properties of the conductive PCL-based fibers
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were characterized in accordance with our previously described methodology. ['! Scanning
Electron Microscopy (SEM) images were obtained using aZeiss Supra 40 VP field emission
scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was performed on a
Kratos Axis X-ray photoelectron spectrometer (Kratos Analytical Ltd., Manchester, UK).!"!
I nvitro culture of human mesenchymal stem cells (Lonza, Walkersville, MD) on collagen- 1
coated substrates was carried out for 2 1 days in osteogenic medium. Electrical stimulation of
HMSCs was achieved employing a custom built setup (Figure SI). The DNA content and
Alkaline Phosphatase (ALP) activity of samples were quantified concurrently, using the
PicoGreen® assay (Life Technologies, Thermo Fisher Scientific Inc., USA) for DNA
guantitation in accordance with the manufacturer's protocol, an ALP assay kit (Abeam®,
Cambridge, MA, USA) for ALP activity in accordance with the manufacturer's protocol, and
a Synergy HT Multi-Mode Microplate Reader (Bio-tek US, Winooski, VT). The calcium
content of samples was quantified using a Calcium Assay Kit (Cayman Chemica Company,
Ann Arbor, MI, USA) in accordance with the manufacturer's protocol with a Synergy HT
Multi-Mode Microplate Reader. Data were normalized to DNA quantity. Cells were stained
with fluorescent dyes after by fixing the cells with paraformaldehyde, and staining the actin
filaments and cell nuclei with Alexa Fluor 488® Phalloidin (Life Technologies, USA) and
4'6-diamidino-2-phenylindole (DAPI, Invitrogen, USA), respectively. Fluorescence images
of cells were obtained using an Olympus 1X70 inverted microscope equipped with an
Olympus DP80 dua color and monochrome digital camera. Images were analyzed with

Olympus cell Sens® imaging software.

Results and Discussion
Preparation and characterization of the tissue scaffolds:

Non-woven mats of PCL composed of nanofibers of 2.10 + 0.49 ym diameter were
electrospun from solutions of PCL (12 wt %) in a solution of chloroform and methanol (9:1
ratio v/v) onto non-stick aluminum foil after which they were dried under high vacuum. An
interpenetrating network of polypyrrole and polystyrene sulfonate (Figures 1A-D) was
generated within the PCL matrix by incubation of the PCL mats in an aqueous solution of
pyrrole and polystyrenesulfonate in the presence of the initiators ammonium persulfate and
ferric chloride."”*" 181 When the mats were homogeneously colored, they were washed
thoroughly with water and ethanol to remove the by-products (e.g. initiators, monomers,

oligomers and polymers) and vacuum dried. SEM showed that the surface of the non-
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conductive PCL fibers are somewhat rough (Figure 1A), and that the conductive fibers have a
homogeneous coating of aggregates of polypyrrole and polystyrenesulfonate on their surface
and are therefore notably rougher (Figure 1B).'9'17! X-ray photoelectron spectra of the non-
conductive and conductive fibers confirms that the surface chemistry is different, with the
appearance of peaks in the spectra of the conductive fibers a 400 eV (N Is, Figure 1C) and
168 eV (S2p, Figure ID) resulting from the polypyrrole and polystyrenesul fonate, [ !
respectively.

The chemical modification process did not alter the mechanical properties of the mats
significantly (Table 1). The electrical sheet resistance of the samples was measured in
accordance with the method described by Schmidt!e'!” and Zhang,!*! and generating an
interpenetrating network of polypyrrole and polystyrenesulfonate yielded mats with sheet
resistances of 52.8 + 4.7 kQ square™?, which is of a similar order of magnitude to analogously
coated poly(lactic-co-glycolic acid) nanofibers (17 kQ square!)™! or Dacron® 56 polyester
fibers (16 kQ square’y) ! While the electrochemical stability of the polypyrrole isknown to
decrease over long periods of time which may pose problems for biointerfaces implanted for
long periods of time,*°! we and others have found it to be acceptable for the short term
stimulation of cells residing in tissue scaffolds such asthose reported here,3f 38! 30t 4911701
Invitro cell culture:

With aview to the application of the mats of fibers as bone tissue scaffolds, we
rendered the surface of conductive PCL mats cell adhesive by incubation in a solution of
collagen- 1, which isthe most abundant protein in bone. TCP and PCL controls were coated
in asimilar fashion to ensure the substrates had similar surface chemistry because cell-matrix
interactions have been shown to modify cell behaviour.?!! Thereafter, we seeded bone
marrow-derived HM SCs on the scaffolds and cultured them in osteogenic medium for 21
days. We studied four different systems: 1) cells seeded on commercially available tissue-
culture treated Corning® Costar® tissue culture plates (TCP), 2) cells seeded on mats of
electrospun PCL, 3) cells seeded on mats of conductive PCL without electrical stimulation,
and 4) cells seeded on mats of conductive PCL with electrical stimulation (2 days without
stimulation, 1day with stimulation a 10 mV mm for 8 hours, no stimulation thereafter)
achieved employing a custom built setup (Figure 4).

After 21 daysin culture, cells were fixed with paraformaldehyde and actin filaments
and cell nuclei within cells were stained with Alexa Fluor® 488 Phalloidin and 4, 6-
diamidino-2-phenylindole (DAPI), respectively. We observed that cells were homogeneously
distributed on the TCP controls, and that cells had infiltrated the mats of electrospun fibres
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(Figures 2A-D). Evidence for infiltration can be found in Figures 2B, 2C and 2D in which
there are blue DAPI-stained nuclei with various sizes, the largest nuclei are inthe foca plane
of the microscope and the smaller nuclei are somewhat out of focus asthey are located deeper
in the mats of fibers, and moreover, in Figures 2C and 2D in which there are black
conductive fibers both above and below the blue DAPI-stained nuclei. Such evidence is
promising for the integration of such biomaterials in the body where infiltration of cells such
asmacrophages and osteoclasts facilitate remodelling of implanted biomaterials.
Macrophages are known to produce enzymes such as cholesterol esterase?*! that degrade
polyesters such as polycaprolactone, and we have previously shown that cholesterol esterase
can efficiently degrade the polycaprolactone component of analogously prepared materials
with interpenetrating networks of polypyrrole and polystyrenesulfonate. ' Such scaffolds
are likely to degrade over the period of several years if administered in vavo!'6d leaving
behind the residual water insoluble polyelectrolyte complex of polypyrrole and
polystyrenesulfonate. Ramanavicius and coworkers have reported detailed investigations of
the toxicity of nanoparticles composed of the polyelectrolyte complex formed by polypyrrole
and polystyrenesulfonate. **! While high concentrations were toxic to primary mouse
embryonic fibroblasts, mouse hepatoma (MH-22A) cells, and human T lymphocyte Jurkat
cells, affecting both cell viability and proliferation, this effect was dependent on the
concentration of nanoparticles, and concentrations lower than 9.7 pug ml** did not affect cell
viability or proliferation.' 23 Further, preclinical trials of such nanoparticles in mice carried
out by the same group have shown that the nanoparticles did not display any detectable
cytotoxicity towards mouse peritoneum cells, nor did they induce an alergic response, or
affect spleen, kidney or liver indexes. *4' Moreover, there were no observable changes to
immune-related haematological parameters, and no inflammation in the peritoneum after a 6-
week period of treatment. 4! Likewise, histological studies of tissues in the proximity of
polypyrrole-based materials in rats'® showed immune cell infiltration comparable to FDA-
approved poly(lactic acid-co-glycolic acid)?*a or poly(D,L-lactide-co-glycolide), *°®! and no
significant inflammation in the coronary artery after 5weeks, *°! sciatic nerve guidance
channels implanted after 8 weeks, 2>¥ or electrodes in brains after 3 or 6 weeks. 23!

Further, after 21 days we observed the differentiation of the FDVISCstowards
osteogenic fates using biochemical assays for alkaline phosphatase (ALP) activity and Ca’*
deposition normalized to their DNA content. FDVISCs cultured on the non-conductive

collagen- 1-coated tissue-culture treated Corning® Costar® TCP controls adhered and
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proliferated most effectively and their DNA content was concomitantly highest (Figure 3A).
To within experimental error, HMSCs adhered and proliferated equally well on the non-
conductive collagen- 1-coated electrospun mats of PCL (Figure 3A). The lower DNA content
of the conductive electrospun mats (either without or with electrical stimulation) is because
cell adhesion on the surface of interpenetrating networks of PCL, polypyrrole and
polystyrene sulfonate isweaker than on PCL aone; weak cell adhesion iscommonly
observed for such electroactive matrices and isthe reason that their functionalization with
cell adhesive moieties iscommon, either non-covalently during/after the synthesis/doping
process, 126! or covalently. *”1 Nevertheless, levels of ALP activity onthe matrices confirm the
viability of the cells after 3 weeks in culture (Figure 3B). Relative to FDVISCs cultured on the
non-conductive tissue-culture treated Corning® Costar® TCP controls, those cultured on
electrospun mats of PCL had dlightly higher levels of ALP activity (Figure 3B) and notably
higher levels of Ca’* deposition (Figure 3C). Interestingly, both ALP activity and Cat*
deposition were further increased on mats of electrospun PCL with an interpenetrating
network of polypyrrole and polystyrenesulfonate, and we postulate this to be aresult of
differences in the surface chemistry and roughness altering non-specific interaction between
proteins in the medium leading to their deposition onto the scaffolds. ** Furthermore, we
observed that electrical stimulation resulted inincreased ALP activity and a 3-fold increase in
Ca’* deposition relative to the unstimulated controls, which isin line with reports by Langer
and coworkers, (! and Rouabhia and Zhang. "> Thus, quantitative biochemical analyses of
the scaffolds reveal that, while the non-conductive scaffolds support differentiation of
FDVISCstowards osteogenic outcomes, the application of an electrical stimulus to HMSCs
residing in a conductive scaffold enhances their differentiation towards osteogenic outcomes,
and the increased quantity of calcium inthe scaffolds isan important step toward the
formation of bone-like calcified extracellular matrix.

Osteoinduction in porous materials can be attributed to avariety of factors including:
the incorporation and concentration of bone morphogenetic proteins (BMPs), arough surface
microstructure causing the asymmetrical division of mesenchymal cells that may produce
osteoblasts, the surface charge of the substrate triggering cell differentiation, abone-like
apatite layer formed in vivo that mesenchymal cells recognize and respond to, and localized
high levels of Ca* ions that trigger cell differentiation and bone formation. On smooth 2D
non-conductive TCP controls, we observe that levels of ALP expression and calcium
deposition are lower than on electrospun mats of non-conductive PCL (Figure 3B and 3C),

and we attribute the increased levels of ALP expression and calcium deposition to the
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differences in surface micro structure which aters cell-material interactions. W e see further
increases in both ALP expression and calcium deposition on the rougher conductive PCL-
based scaffolds both without and with electrical stimulation (Figure 3B and 3C), and believe
that this isaresult of differences inthe surface chemistry altering protein deposition from the
medium onto the scaffolds, *!! which Bose and coworkers show to modify cell-material

interactions in vitro, [”1

yet it isnoteworthy that Epinette and Manley conclude that
microstructure and surface charge are not the sole factors at play in osteoinduction inthe
clinic. Po! Furthermore, our experimental data for non-conductive mats of PCL fibers, and
conductive mats of PCL fibers without/with electrical stimulation enabled usto observe that
electrical stimulation markedly enhanced both ALP expression and calcium deposition on
these matrices (Figure 3B and 3C), supporting further investigations into the development of

conducting biomaterials for bone tissue engineering.

Conclusions

Pro-regenerative biomaterials for the trestment of bone conditions and disorders that
require surgica intervention are of growing importance in modern societies in which life
expectancies are increasing. Bone tissue scaffolds that instruct the behaviour of cells residing
within them are particularly interesting for such applications. W e report herein the
preparation of conductive PCL fiber-based bone tissue scaffolds by a simple process, and
while it would be desirable to improve cell adhesion to the scaffolds by chemical
modification of the polymers, *6'*1 we have shown that the electrical stimulation of FDVISCs
residing therein enhances their differentiation towards osteogenic outcomes, as confirmed by
quantitative biochemical assays. Importantly, electrical stimulation increased quantities of
alkaline phosphatase activity and calcium deposition, which represents an important step
towards the formation of calcified bone-like extracellular matrix; such materials should be
relatively non-immunogenic in vivo and represent interesting platforms for further

development of conductive tissue scaffolds.

Supplmental Information:
Experimental Section
Materials:
Unless otherwise stated, all chemicals for synthesis and physicochemical analysis

were of ACS grade, purchased from Sigma-Aldrich and used asreceived without further
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purification. Phosphate buffered saline (PBS) was a pH 7.4. Reagents for cell culture were
purchased from Invitrogen (Carlsbad, CA) unless otherwise noted.
Preparation of non-woven mats of PCL fibers:

Non-woven mats of PCL were electrospun from syringes containing a solution of PCL
(12 wt %) in chloroform and methanol (9: 1ratio v/v), tipped with ablunt tipped gauge 16
needle, with aflow rate of 1ml hr', an accelerating voltage of 18 kV and aworking distance
of 12 cm onto anon-stick auminium foil. The resulting mats were dried under high vacuum
for 96 hours.
Preparation of conductive PCL-based fibers with interpenetrating networks of polypyrrole
and polystyrenesulfonate

Pyrrole was purified by passage over basic alumina. White PCL-based tissue scaffolds
were placed in disposable 50 mL centrifuge tubes containing a solution of pyrrole (291 ui._,
[84 mM], 1eq.) and PSS (Mn 70 kDa, 0.799 g, [84 mM], 1eg.) in distilled water (50 mL).
Samples were sonicated for 5 minutes and cooled to 4 °C (for 1 hour). Theresfter, ferric
chloride (1.848 g, [228 mM], 2.7 eg.) was added. The samples were shaken to assure
dissolution of the ferric chloride and then incubated for afurther 24 h a 4 °C. Black
electroactive tissue scaffolds were removed from the reaction mixture, placed in fresh
distilled water, sonicated for 5 min, and then exhaustively washed (to remove monomers,
oligomers and initiators) with deionized water until the water used to wash the materials was
clear, colorless and the pH was neutral (ca. 48 h). Electroactive tissue scaffolds (PCL with an
interpenetrating network of PPy and PSS) were dried under high vacuum at 21 °C. Samples
were cut to lengths appropriate for the various subsequent experiments using arazor blade.
Mechanical properties:

Tensile tests were performed using an Instron Materials Testing Machine 5543 Series
Single Column System (Instron, Norwood, MA) with Bluehill 2 software. The dimensions of
the scaffolds (Iength, width and thickness, average of 3 positions per scaffold) were recorded
accurately with high precision digital calipers (ThermoFisher Scientific, Waltham, MA,
USA) immediately prior to tensile extension testing in the dry state. The laboratory was 21 °C
with arelative humidity of ca. 40%. The initia grip separation was set & 5 mm, and a50 N
load cell was used a adrawing rate of 30 mm per minute. The tensile properties reported are
the average of a least 10 measurements.

Electrical properties:
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Resistance (R in Q) was measured between the two silver electrodes using a digital
multimeter (DM-8A, Sperry Instrument, Milwaulkee, WI). Sheet resistance (R,) in Q/square

was calculated asfollows:

Rs=RWIL (1)

where }¥ isthe width of the electrode and L isthe distance between the two silver electrodes.
The electrodes were moved to different positions after each measurement, and the resistance
R was recorded in at least ten different positions on the materials.

Scanning electron microscopy:

Samples were mounted on a Scanning Electron Microscopy (SEM) stub and sputter
coated with Pt/Pd (15 nm) using a Cressington 208 Benchtop Sputter Coater. All samples
were imaged using aZeiss Supra40 VP field emission scanning electron microscope. Fiber
diameters were determined with the measure tool (plugin) in the open source program
"Imagel’. The data presented are the average of 60 measurements and the errors quoted are
standard deviations.

X-ray photoelectron spectroscopy (XPS):

XPS was carried out on the samples to confirm that the surface chemistry of the
scaffolds had changed after the growth of an interpenetrating network of the EAP within the
PCL matrix. XPS was performed on aKratos Axis X-ray photoelectron spectrometer (Kratos
Analytical Ltd., Manchester, UK). The binding energy was calibrated using the C I's
photoelectron peak at 284.6 eV as areference. The CasaXPS computer program was used for
peak fitting of theN |sand S2p peaks in the XPS spectra. The reported spectra are
representative of two measurements at different positions on a sample.

In vitro culture of human mesenchymal stem cells without electrical stimulation:
HMSCs were supplied by Lonza (Walkersville, MD). Electrospun scaffolds were punched
into small discs with adiameter of 11 mm to fit in 48-well cell culture plates. Samples were
rendered cell adhesive by incubation in a solution of collagen-1 in 0.02N acetic acid (50 ug
mL"t) and washed extensively with sterile ultrapure water to remove any non-adherent
collagen and residual acetic acid. Sampleswere inserted in untreated polystyrene tissue
culture plates and sterilized by incubation in 70% ethanol followed by exposure to UV for 60
min. After sterilization, the samples were incubated for 30 minutes in 24 well plates
containing HMSC growth medium that was composed of: high glucose Dulbecco's Modified
Eagle Medium (DMEM, 440 mL); fetal bovine serum (50 mL); antibiotic-antimycotic (5

mL); non-essential amino acids (5 mL), and 2 ng mL* basic fibroblast growth factor.
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Medium was aspirated and replaced prior to HMSC seeding. Cell viability before starting the
experiment was determined by the Trypan Blue exclusion method, and the measured viability
exceeded 95 % in all cases. HMSCs were seeded at 5,000 cells cm™, and incubated at 37 °C,
95 % humidity, and a CO , content of 5 %. After 3 days the medium was aspirated and the
scaffolds were and transferred to afresh 24 well plate containing osteogenic medium that was
composed of: high glucose Dulbecco's Modified Eagle Medium (DMEM, 425 mL); feta
bovine serum (50 mL); antibiotic-antimycotic (5 mL); non-essential amino acids (5 mL),
dexamethasone (100 nM), B-glycerol phosphate (10 mM) and ascorbic acid (50 uM).
Thereafter the osteogenic medium was aspirated and replaced every 2 days until the samples
were anaysed (n = 6).

In vitro culture of human mesenchymal stem cells with electrical stimulation:
Electrical stimulation of HMSCs was achieved employing a custom built setup. Non-
conductive glass dides, polycarbonate wells (square polycarbonate blocks, thickness of 1cm,
sides of 2.5 cm, with square holes with sides of 0.9 cm cut out), Dow Corning® high vacuum
grease, and medium binder clips (Staples®, Framingham, MA) were sterilized by
autoclaving. Holes were drilled into the sides of 10 cm polystyrene Petri dishes using a
Dremel saw (Lowes, Mooresfield, NC, USA), and the plates were sterilized by exposure to
UV for 60 min. Adhesive-backed copper tape (5 mm width, Ted Pella, Inc.), waterproof
Kapton® tape (1 cm width, Fisher Scientific, Waltham, MA, USA), wires and alligator clips
were sterilized by exposure to UV for 60 min.

Electroactive PCL-based tissue scaffolds were placed on glass sides and secured in
position with two thin strips of adhesive-backed copper tape that were attached to the
scaffolds, parallel to one another and separated by a distance of approximately 4 cm. One
face of the polycarbonate wells was coated with vacuum grease and placed on the
electroactive tissue scaffolds, greased side down, in contact with the glass slide. A binder clip
on either side of the well was used to secure this in position and render it water tight. A strip
of copper tape was run between the parallel copper strips attached to the scaffolds and the
ends of the dides as points of contact for the aligator clip-terminated wires attached to the
multipotentiostat (CH Instruments, Austin, TX, USA). The counter and reference electrodes
were connected together and clipped to copper tape on one side of the slide, and the working
electrode was clipped to copper tape on the other side of the dide.

Samples were rendered cell adhesive with collagen- 1 and sterilized as described
above, and HM SCs were seeded and cultured as described above. After 48 hours, the tips of

the wires attached to the samples were wound around alligator clip-terminated wires attached



WO 2016/210256 PCT/US2016/039230
18

to the multipotentiostat (CH Instruments, Austin, TX, USA). The counter and reference
electrodes were connected together and clipped to the wire protruding from one end of the
sample, and the working electrode was clipped to the wire protruding from the other side of
the sample. Wires and alligator clips were secured in position with adhesive copper tape (Ted
Pella, Inc., Reading, CA, USA) and wrapped in Parafilm® to render them electrically
insulating and waterproof (i.e. suitable for use inside an incubator). A potential step of 10 mV
mm™t was placed across the samples for the duration of 8 h after which the wires were
disconnected and the substrates cultured as normal. Throughout the electrical stimulation
experiments the osteogenic medium was aspirated and replaced every 2 days. Thereafter the
osteogenic medium was aspirated and replaced every 2 days until the samples were analysed
(n=6).

Biochemical assays.

The DNA content and Alkaline Phosphatase (ALP) activity of samples that were
broken up in abuffer of 0.2% Triton X-100 were quantified concurrently, using the
PicoGreen® assay (Life Technologies, Thermo Fisher Scientific Inc., USA) for DNA
guantitation in accordance with the manufacturer's protocol, an ALP assay kit (Abeam®,
Cambridge, MA, USA) for ALP activity in accordance with the manufacturer's protocol, and
a Synergy HT Multi-Mode Microplate Reader (Bio-tek US, Winooski, VT). The calcium
content of samples was quantified using a Calcium Assay Kit (Cayman Chemica Company,
Ann Arbor, MI, USA) in accordance with the manufacturer's protocol with a Synergy HT
Multi-Mode Microplate Reader (Bio-tek US, Winooski, VT). Data were normalized to DNA
quantity.

Fluorescence staining and imaging of cells:

Cdlls fixed with paraformaldehyde were permeabilized with 0.1% Triton X-100
(Fluka) and 2% bovine serum abumin (BSA) in PBS buffer for 5 min, followed by blocking
with 2% BSA in PBS buffer for 30 min at room temperature. Actin filaments and cell nuclei
within cells were stained with Alexa Fluor 488® Phalloidin (Life Technologies, USA) for 30
min and 4',6-diamidino-2-phenylindole (DAPI, Invitrogen, USA) for 5 min, respectively.
The cells were thereafter washed three times with PBS and stored at 4 °C until images were
acquired. Fluorescence images of cells were obtained using an Olympus 1X70 inverted
microscope equipped with an Olympus DP80 dual color and monochrome digital camera (a
1.4 megapixel Bayer mosaic color CCD camera) that was attached to the microscope with a
0.63 B-mount. Images were analyzed with Olympus cellSens® imaging software, Version

111, and images presented are representative of at least 3 samples.
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Supplementary Data

Table 1. Physicochemical properties of the materials.

_ _ Ultimate
Tensile Yield ) _
Tensile Resistance
Sample modulus Strength
Strength [kQ square™]
[MPa] [MPa]
[MPa]
PCL 212+ 0.63 134+ 023 207 +057 N/A

Conductive PCL 199+ 007 105+018 147+0.38 528 + 4.7
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It should be noted that ratios, concentrations, amounts, and other numerical data may
be expressed herein in arange format. It isto beunderstood that such arange format isused
for convenience and brevity, and thus, should be interpreted in aflexible manner to include
not only the numerical values explicitly recited asthe limits of the range, but also to include
al the individual numerical values or sub-ranges encompassed within that range asif each
numerical value and sub-range is explicitly recited. Toillustrate, a concentration range of
"about 0.1% to about 5%" should beinterpreted to include not only the explicitly recited
concentration of about 0.1 wt% to about 5wt%, but also include individual concentrations
(e.g., 1%, 2%, 3%, and 4%) and the sub-ranges (e.g., 0.5%, 1.1%, 2.2%, 3.3%, and 4.4%)
within the indicated range. In an embodiment, the term "about" can include traditional
rounding according to significant figures of the numerical value. In addition, the phrase

"about 'x' to ‘y’” includes "about 'x' to about 'y"\
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Many variations and modifications may be made to the above-described
embodiments. All such modifications and variations are intended to be included herein

within the scope of this disclosure and protected by the following claims.
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CLAIMS
We claim:
1. A method of differentiation of human mesenchymal stem cells, comprising:

providing a nonwoven mat of fibers, wherein interpenetrating networks of a
conductive polymer and a dopant are on the surface of the fibers;

introducing human mesenchymal stem cells to the nonwoven mat, wherein the
nonwoven mat and the human mesenchymal stem cells are cultured in an osteogenic medium;
and

periodically providing electrical stimulation to the human mesenchymal stem cellsto

cause differentiation of human mesenchymal stem cells towards osteogenic outcomes.
2. The method of claim 1, wherein periodically providing electrical stimulation causes
increased ALP activity and increased Ca’* deposition on the fibers relative to not periodically

providing electrical stimulation.

3. The method of claim 1, wherein the diameter of the fibers is about 10 nanometers to

500 micrometers.

4. The method of claim 1, further providing: forming osteoblasts in the nonwoven mat.

5. The method of claim 1, wherein the fibers are polycaprolactone fibers, the conducting

polymer is polypyrrole, and the dopant is polystyrenesulfonate.
6. The method of claim 5, wherein periodically providing electrical stimulation causes
increased ALP activity and increased Ca’* deposition on the fibers relative to not periodically

providing electrical stimulation.

7. The method of claim 5, wherein the diameter of the fibers is about 10 nanometers to

500 micrometers.

8. The method of claim 5, further providing: forming osteoblasts in the nonwoven mat.
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9. The method of claim 5, wherein the fibers are selected from the consisting of one or
more of the following: polycaprolactone, polyester, polyamide, PCL, PLLA, PLGA, protein,
polysaccharide, lignins, polyalanine, oligoalanine, collagen, silk, cellulose, chitin, and

chitosan.

10. The method of claim 5, wherein the conductive polymer is selected from the group
consisting of one or more of the following: polypyrrole, polyaniline, polythiophene, poly(3,4-
ethylenedioxythiophene), polyfluorene, polyphenylene, polypyrene, polyazulene,
polynapthalene, polyindole, polyazepine, poly(p-phenylene sulfide), poly(p-phenylene

vinylene), and polyfuran.

11. A structure, comprising:
anonwoven mat of fibers, wherein interpenetrating networks of a conductive polymer
and a dopant are on the surface of the fibers, wherein human mesenchymal stem cells are

disposed within the nonwoven mat.

12. The structure of claim 11, wherein osteoblasts are present within the nonwoven mat

after exposure of the nonwoven mat to an osteogenic medium.

13. The structure of claim 11, wherein the nonwoven mat includes ALP and Ca+*

deposition on the fibers.

14. The structure of clam 11, wherein the diameter of the fibers is about 10 nanometers

to 500 micrometers.

15. The structure of claim 11, wherein the fibers are polycaprolactone fibers, the

conducting polymer ispolypyrrole, and the dopant is polystyrenesulfonate.

16. The structure of claim 15, wherein osteoblasts are present within the nonwoven mat.

17. The structure of claim 15, wherein the nonwoven mat includes ALP and C&*

deposition on the fibers.
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18. The stmcture of claim 11, wherein the fibers are selected from the consisting of one or
more of the following: polycaprolactone, polyester, polyamide, PCL, PLLA, PLGA, protein,
polysaccharide, lignins, polyalanine, oligoaanine, collagen, silk, cellulose, chitin, and

chitosan.

19. The structure of claim 11, wherein the conductive polymer is selected from the group
consisting of one or more of the following: polypyrrole, polyaniline, polythiophene, poly(3,4-
ethylenedioxythiophene), polyfluorene, polyphenylene, polypyrene, polyazulene,
polynapthalene, polyindole, polyazepine, poly(p-phenylene sulfide), poly(p-phenylene

vinylene), and polyfuran.
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