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S.A. Formalism

The dynamics in the interaction picture for an array of N
two-level atoms driven by a coherent laser field is described
by the many-body quantum master equation (QME) for the
reduced density matrix ρ [S1, S2],
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Here σ̂+
j = (σ̂−j )† = |e〉 j j〈g|, σ̂ee

j = σ̂+
j σ̂
−
j are the atomic

raising (lowering) and excited state population operators, with
ground |g〉 j and excited |e〉 j states of atom j. The Hamiltonian
operator

H j ≡ −~δσ̂
ee
j − d · E+(r j)σ̂+

j − d∗ · E−(r j)σ̂−j . (S2)

describes the dynamics of a single atom at position r j with the
dipole moment d ≡ Dd̂. Here D is the reduced dipole ma-
trix element that we assume is real without loss of generality.
The atoms are driven by a plane-wave drive with positive fre-
quency component E+(r) = 1

2E0eik·rê = [E−(r)]∗. The drive
field frequency ω is detuned from the single-atom transition
frequency ω0 by δ ≡ ω − ω0. Here the atomic and light fields
are slowly varying, such that the rapidly rotating phase fac-
tors e±iωt are removed by moving into an interaction picture
and making the rotating wave approximation (by omitting the
fast co-rotating terms σ̂−me2iωt, σ̂+

me−2iωt). The single-atom dy-
namics is thus described by H j together with the decay terms
γ(2σ−j ρσ

+
j − σ

+
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−
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+
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−
j ), where γ ≡ D2k3/(6π~ε0) is

the single atom Wigner-Weisskopf linewidth.
The scattered light is given as a sum of the scattered light

from all the atoms

ε0Ê+
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where the dipole radiation kernel [S3],
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represents the monochromatic positive frequency component
of the scattered light at r from the dipole d located at the ori-
gin. The interaction terms in Eq. (S1) arise from each atom j

being driven by the light scattered from all other atoms ` , j.
These radiative dipole-dipole couplings have coherent ∆ j` and
dissipative γ j` contributions given by the real and imaginary
parts of

∆ j` + iγ j` =
1
~ε0

d∗ · G(r j − r`)d. (S5)

Note that Eq. (S5) gives γ j j = γ. A proper calculation of ∆ j j
would involve evaluation of the Lamb shift, and we assume
this is incorporated to the single-atom detuning δ.

The total field at position r is given as a sum of the inci-
dent field E+(r) and the scattered light Ê+

sc(r, t). We assume
that the incident field has been blocked before detection, for
example by a thin wire as in the dark-ground imaging tech-
nique of [S4]. Hence only the scattered field is detected, with
intensity

Isc(r, t) = 2ε0c〈Ê−sc(r, t) · Ê+
sc(r, t)〉. (S6)

Integrating the scattered intensity over the detector surface
S gives the total count rate, which is the expectation value of
the operator

n̂(t) =
2ε0c
~ω0

∫
S

dS Ê−sc(r, t) · Ê+
sc(r, t) =

∑
j,`

I j`σ̂
+
j (t)σ̂−` (t).

(S7)
with interference integrals

I j` ≡
2c
~ε0ω0

∫
S

dS
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]∗
G(r − r`)d (S8)

We assume the detector lies in the radiation zone kr �
1, hence we can expand the dipole radiation kernels to ob-
tain [S5]

I j` =
3γ
4π

∫
S

dθdφ sin θ
(
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)
eikr̂·(r j−r`)

= 2γ j`.

(S9)

Hence we arrive at

n̂(t) = 2
∑

j`

γ j`σ̂
+
j (t)σ̂−` (t) (S10)

for the photon-number operator.

S.B. Single-atom physics

For a single isolated atom, both the photon detection rate
〈n̂(t)〉 and the second-order correlation function g2(τ) can be



2

evaluated analytically to yield [S6–S9]

g2(τ) = 1 − e−3γτ/2
(
cosh κγτ +

3
2

sinh κγτ
κ

)
〈n̂(t)〉 =

Iin

Iin + Is
g2(τ)

(S11)

The parameter κ = 1
2

√
1 − 8Iin/Is depends on the ratio of the

incident intensity to the single atom saturation intensity, and
determines the spectral properties of the atom [S10]. For low
incident light intensity Iin � Is, Eqs. (S11) are dominated by
a term proportional to the single decay e−γt. Here the sin-
gle atom linewidth exceeds the single atom Rabi frequency
γ
√

2Iin/Is and Rabi oscillations are suppressed. Conversely,
when Iin & Is, the parameter κ is imaginary and hence both
the photon scattering rate and g2(τ) display decaying Rabi os-
cillations.

S.C. Limit of low light intensity

A consistent low light intensity (LLI) theory of Eq. (S1),
can be obtained [S11] from the equations of motions by re-
taining terms containing at most one of either σ±j or the inci-
dent field amplitude. The only remaining equations of motion
for the expectation values of atomic operators from Eq. (S1)
are those for 〈σ±j 〉, which in the LLI are,

d〈σ−j 〉

dt
= iδ〈σ−j 〉 + i

∑
`

H j`〈σ
−
` 〉 + i

d · E+(r j)
~

(S12)

withH j` ≡ ∆ j`+iγ j` (with ∆ j j ≡ 0; recall that γ j j = γ). Hence
the atom dynamics evolves linearly in terms of the drive. Here
we expand the complex symmetric matrix H j` in a complete
basis of eigenstates um, m = 1, ...,N, which are the LLI col-
lective eigenmodes,∑

`

H j`um(r`) = (ζm + iυm)um(r j), (S13)

where the imaginary part, υm, of the eigenvalue gives the col-
lective linewidth of the eigenmode um and the real part the line
shift ζm from the single-atom resonance. Note that the eigen-
states um are not necessarily orthogonal, however, they do sat-
isfy the biorthogonality condition

∑
j um(r j)un(r j) = δmn (after

appropriate normalization of the um) apart from possible rare
cases when

∑
j um(r j)um(r j) = 0.

Given some steady-state values for the 〈σ−j 〉, a measure of
the occupation of the LLI collective mode um is given by [S12]

Lm ≡

∑
j |um(r j)〈σ−j 〉|

2∑
j` |u`(r j)〈σ−j 〉|

2 . (S14)

S.D. Quantum trajectories

A direct way to solve the QME (S1) is via matrix expo-
nentiation of the density-matrix evolution operator. This is

convenient for small atom numbers. For larger systems, how-
ever, the size of the density matrix becomes prohibitively large
(∼ 22N). A more profitable scaling is to employ the Monte
Carlo wavefunction method of quantum trajectories [S13–
S16]. The evolution of the density matrix is then represented
as the ensemble average of many individual realizations of
the evolution of a many-body wavefunction ψ(t), whose size
scales as ∼2N , under a non-Hermitian Hamiltonian operator

HS −
i~
2

∑
j

Ĵ†j Ĵ j, (S15)

where Ĵ j are jump operators derived from the dissipative terms
of QME and HS represents Hermitian Hamiltonian evolution.
Incoherent evolution is incorporated via stochastic quantum
jumps that happen with a probability proportional to the loss
of norm of the wavefunction as it evolves under (S15). One
can show that this formalism is exactly equivalent to QME for
the operator expectation values [S16].

A many-body system supports multiple decay channels and
unraveling of the QME into an explicit mixture of pure states
subject to stochastic evolution can be done in several differ-
ent ways, corresponding to different constructions of the jump
operators, as long as the full incoherent evolution in Eq. (S1)
is accounted for. For the driven array of two-level atoms of
the QME (S1) we follow here the “source-mode” quantum
trajectory formalism [S5, S17]. In the single-excitation limit,
these jumps correspond to the emission of photons, while their
physical interpretation is more convoluted at sufficiently high
light intensities to cause multiple excitations when the jump
operators become formal constructions that do not necessarily
correspond to any specific measurement record. They, how-
ever, provide a straightforward mapping of Eq. (S1) to the evo-
lution of quantum trajectories of state vectors.

To formulate the source-mode jump operators, the matrix
γ j` is diagonalized to find its eigenvalues λ j and the corre-
sponding eigenvectors b j = (b1 j, . . . , bN j)T . The jump opera-
tors are then defined as

Ĵ j =
√
λ jbT

j Σ̂, Ĵ†j =
√
λ jΣ̂

†b j, (S16)

where
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)
. (S17)

Then defining

HS =
∑

j

H j + ~
∑

j`(`, j)

∆ j`σ̂
+
j σ̂
−
` , (S18)

the problem has been cast in the form of quantum trajecto-
ries and the corresponding non-Hermitian Hamiltonian for the
wavefunction evolution follows from Eq. (S15). The quantum
trajectory evolution can then be evaluated as described in, e.g.,
Ref. [S18]. Thanks to the source-mode unraveling, the dissi-
pative component of Eq. (S1) is now diagonal in the jump
operators Ĵ j, which is computationally expedient. Further, the
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FIG. S1. Transient dynamics of the photon detection rate for a 3 × 4
atom array with a drive field resonant with (a) the uniform super-
radiant (υ ≈ 9.3γ, I ≈ 0.98N) and (b) a subradiant (υ ≈ 0.11γ,
I ≈ 0.015N) LLI collective eigenmode, with NIin = 2Is, a = 0.1λ.
The full quantum solution (blue solid line) agrees very well with the
superatom (black dashed line); black dotted line shows the single
isolated atom solution. The gray shading gives the standard error
from ∼ 104 quantum trajectories. Interestingly, examining just the
incoherent contribution to the scattering rates in (b) gives even better
agreement between the SAM and full quantum solution.
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FIG. S2. Relative error η of the superatom picture as a function
of lattice spacing for a field resonant with the uniform superradi-
ant LLI mode for a 3 × 3 atom at NIin = 0.08Is (blue circles)
and NIin = 2Is (red diamonds). Unfilled markers show results for
η ≡ max |g2(τ)/[1 − g2(0)] − g(υ,κ′)

2 (τ)|τ<τ0 , where the deviation is
calculated until τ0, such that for all τ . τ0, g2(τ) < 0, while filled
markers for η ≡ max |g2(τ)/[1−g2(0)]−g(υ,κ′)

2 (τ)|all τ. The two deviate
at a ∼ 0.2λ due to a persistent oscillation arising from a second mode
at larger τ. Inset: Example g2(τ) for a = 0.08λ (blue dotted curve)
and a = 0.17λ (red solid curve) compared to the SAP results (black
dashed curves), with the larger lattice spacing showing an oscillation.

stochastic wavefunction evolution requires exponentiating a
matrix of size 22N , as opposed to the 24N matrix governing the
density matrix evolution, providing a significant numerical ad-
vantage as the system size increases beyond a few atoms.
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