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We show that two-time, second-order correlations of scattered photons from planar arrays and chains of
atoms display nonclassical features that can be described by a superatom picture of the canonical single-
atom g2ðτÞ resonance fluorescence result. For the superatom, the single-atom linewidth is replaced by the
linewidth of the underlying collective low light-intensity eigenmode. Strong light-induced dipole-dipole
interactions lead to a correlated response, suppressed joint photon detection events, and dipole blockade
that inhibits multiple excitations of the collective atomic state. For targeted subradiant modes, the
nonclassical nature of emitted light can be dramatically enhanced even compared with that of a single atom.
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The first direct evidence for the quantum nature of light
was observed in resonance fluorescence of an atom [1–5],
defining a significant historical milestone in quantum
optics. Such quantum correlations can be identified by
measuring the second-order correlation function for the
emitted field that represents a joint probability of two
photon detection events appearing a time τ apart and can be
defined as

g2ðτÞ≡ lim
t→∞

h∶n̂ðtþ τÞn̂ðtÞ∶i
hn̂ðtÞi2 ; ð1Þ

where ∶∶ denotes normal ordering and n̂ðtÞ is the number
operator for detected photons. Classically, g2ð0Þ ≥ g2ðτÞ;
hence g2ð0Þ < g2ðτÞ implies quantum correlations in the
photon emission, and also defines antibunched photon
emission [6,7].
Going beyond a single atom, in a noninteracting ensem-

ble atoms will emit photons independently, leading to an
adulteration of the single-atom photon antibunching that
(neglecting interferences) scales as 1 − N−1 with the atom
number N [3,8,9]. Correlated excitations for atomic ensem-
bles have been observed for highly excited Rydberg atoms
in the microwave regime. The correlated response is
generated by dipolar interactions that inhibit transitions
into all but singly excited states, representing dipole
blockade [10–16], with applications to scalable quantum
logic gates.
In dense ensembles of cold atoms, also light-mediated

interactions between the atoms can lead to drastic and
unexpected phenomena [17–20] as multiple resonant scat-
tering events give rise to a correlated response. Correlations
can emerge even for the classical optical regime in the limit
of low light intensity (LLI) of an incident laser [21,22], and
the quest for observing the effects of strong light-mediated

interactions is attracting considerable attention [23–34].
Regular arrays of atoms are particularly interesting for the
exploration and manipulation of collective optical
responses, as more recently studied also in the quantum
regime [35–47]. Transmission-resonance narrowing due to
collective subradiance in the classical limit in a planar
optical lattice was already observed [48] and other related
experiments are rapidly emerging [49].
Here we show that photon emission events from planar

arrays and chains of atoms can still be described by the
single-isolated-atom picture, representing a collective
response of the entire atomic ensemble as one superatom.
By resonantly targeting LLI collective excitation eigen-
modes, we show that even at high light intensities the
many-atom joint photon emission g2ðτÞ displays the same
functional form as the single-isolated-atom g2ðτÞ of Eq. (1),
but with the single atom linewidth replaced by the linewidth
of the targeted LLI collective mode. We find that for
sufficiently small lattice spacings strong light-induced
interactions can increase antibunching by establishing
correlations between the atoms that represent inhibited
multiple excitations of the collective state of the atoms, or
dipole blockade. Remarkably, for underlying LLI eigenm-
odes for which the resonance linewidth is much narrower
than the one for an isolated atom (subradiance), the
nonclassical nature of emitted light can be dramatically
enhanced to much longer timescales even compared with
those of a single atom.
We consider two-level atoms with the dipole matrix

element d, coupled by light-mediated interactions and
subject to an incident laser field. The atom dynamics in
the rotating-wave approximation follows from the many-
body quantum master equation (QME) for the reduced
density matrix [50–52]
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dρ
dt

¼ −
i
ℏ

X

j

½Hj; ρ� þ i
X

jlðl≠jÞ
Δjl½σ̂þj σ̂−l ; ρ�

þ
X

jl

γjlð2σ−j ρσþl − σþl σ
−
j ρ − ρσþl σ

−
j Þ ð2Þ

with the atomic operators σ̂þj ¼ ðσ̂−j Þ† ¼ jeijjhgj,
σ̂eej ¼ σ̂þj σ̂

−
j , for ground jgij and excited jeij states of

atom j located at rj and

Hj ≡ −ℏδσ̂eej − d · EþðrjÞσ̂þj − d� · E−ðrjÞσ̂−j : ð3Þ

We take the positive-frequency component EþðrÞ ¼
1
2
E0eik·rê of the laser field to be a monochromatic plane

wave of frequency ω ¼ kc ¼ 2πc=λ and wave vector k,
detuned from the single-atom transition frequency ω0 by
δ≡ ω − ω0. The light and atomic field amplitudes are here
defined as slowly varying with the rapid oscillations at the
laser frequency factored out. The light-mediated inter-
actions between the atoms have both coherent Δjl and
dissipative γjl contributions [γjj ¼ γ ≡ jdj2k3=ð6πℏϵ0Þ is
the single atom linewidth]. These are the real and imaginary
parts, respectively, of d� ·Gðrj − rlÞd=ℏϵ0, with GðrÞ the
dipole radiation kernel of a point dipole at the ori-
gin [52,53].
In the limit of LLI the dynamics reduces to that of

classical coupled dipoles [67,68]. In this regime we may
describe [52] the optical response using LLI collective
radiative excitation eigenmodes um of Hjl ¼ Δjl þ iγjl
(with Δjj ≡ 0), with the complex eigenvalues ζm þ iυm
representing the collective linewidth υm and line shift ζm
from the single-atom resonance. The linewidths can span
many orders of magnitude, from extremely subradiant to
superradiant [29,69,70].
To calculate the rate of the detected photons for the

second-order correlation function g2ðτÞ of Eq. (1) we
assume all the scattered photons are detected and integrate
n̂ðtÞ ¼ ð2ϵ0c=ℏω0Þ

R
S dSÊ

−
scðr; tÞ · Êþ

scðr; tÞ over a closed
surface enclosing the atoms to give n̂ ¼ 2

P
jl γjlσ

þ
j σ

−
l

[52], where ϵ0Ê
þ
scðr; tÞ ¼

P
jGðr − rjÞdσ̂−j ðtÞ denotes the

scattered electric field summed over all the atoms. For a
single isolated atom, a closed expression for g2ðτÞ can be
derived analytically and is given by [1,54],

gðγ;κÞ2 ðτÞ≡ 1 − e−3γτ=2
�
cosh κγτ þ 3

2

sinh κγτ
κ

�
; ð4Þ

where κ ≡ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Iin=Is

p
, and Iin ≡ ϵ0cjE0ê · d̂j2=2

and Is ≡ ℏck3γ=6π are the incident light and satu-

ration intensities, respectively. Since gðγ;κÞ2 ð0Þ¼0 and

limτ→∞gðγ;κÞ2 ðτÞ¼1, a single isolated atom therefore shows
photon antibunching, a manifestation of the fact that an
atomic energy level can contain at most a single excitation.

For the many-body system, g2ðτÞ [Eq. (1)] in general
needs to be evaluated by first solving the QME (2)
numerically. The existence of nonclassical effects for a
many-atom ensemble is less obvious than in the single-
atom case. This can be illustrated by a simple counting
example of N independently emitting, noninteracting
atoms: Neglecting interferences then yields g2ðτÞ ¼ 1þ
N−1½gðγ;κÞ2 ðτÞ − 1�, indicating a rapidly reduced photon
antibunching as a function of the atom number, as photons
from independently emitting atoms wash out the
correlations.
For the case of strong cooperative coupling of closely

spaced atoms we have a strongly correlated quantummany-
body system with long-range dipole-dipole interactions.
While we have also numerically calculated g2 for such
situations, our key observation is that for several strongly
correlated regimes of interest, Eq. (4) remarkably can still
provide a qualitative description for emitted photon corre-
lations that also exhibit nonclassical scattered light and
inhibited multiple excitations (dipole blockade) even for
increasing atom numbers. This is because atoms collec-
tively respond as one giant superatom, where effectively
the single-particle resonance linewidth is replaced by the
resonance linewidth of the dominant underlying LLI
collective excitation eigenmode.
The dominant eigenmode in a regular array is determined

by the resonance frequency and phase-matching profile
with the incident field. We find then that the many-body
g2ðτÞ obeys a functional form analogous to Eq. (4),

g2ðτÞ ≈ 1þ b½gðυ;κ0Þ2 ðτÞ − 1�; ð5Þ

where υ ¼ υl is the linewidth of the resonant LLI eigen-
mode ul (found by diagonalizing Hjl [52]) and κ0 ≡
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8IIin=I0s

p
, with I0s ≡ ℏck3υ=6π. The overlap of

the drive field with ul, I ¼ jPj e
−ik·rjulðrjÞj2, represents

the sum of the coupling strengths of light over all the atoms
and can for uniform targeted modes with perfect phase-
matching be replaced by N, reflecting the collective
N-enhancement of the response. There is an overall
normalization in Eq. (5) by b ≈ 1 − g2ð0Þ that accounts
for nonclassical light emission at zero delay due to many-
body correlations. When b > N−1, these are enhanced
compared to the noninteracting, noninterfering case.
In the numerics, we consider 2D square arrays of atoms

in the xy plane and 1D chains along the x axis, with the
incident light direction k̂ ¼ ẑ, polarized along the atomic
dipoles d̂ ¼ x̂. We solve the QME by directly integrating
Eq. (2) or by unraveling the evolution into stochastic
quantum trajectories of state vectors [52,55–57,71].
We demonstrate nonclassically scattered light from a

strongly interacting 3 × 3 planar array of atoms in the two-
time correlation function in Fig. 1, where the nonclassi-
cality of the photon emission is strongly enhanced due to
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interactions. This corresponds to inhibited multiple exci-
tations of the collective atomic state due to light-mediated
dipole-dipole interactions, representing dipole blockade of
optical transitions, analogous to collective suppression of
microwave Rydberg excitations [11]. The drive, which is
uniform across the plane, couples most strongly to the most
superradiant LLI eigenmode with no phase variation across
the atoms. We show that the superatom picture (SAP)
[Eq. (5)] provides an excellent description of g2ðτÞ for light
resonant with this mode (υ ≈ 7.6γ, I ≈ 0.98N) [Fig. 1(a)].
The antibunching delay time is much shorter than that of a
single atom.
The incident light can also be tuned to target a subra-

diant eigenmode. Here we consider the eigenmode with the
fourth broadest resonance, with υ≈0.091γ and I ≈0.015N.
We find that the SAP again accurately describes the
dynamics [Fig. 1(b)]. The mode is approximately ulðrjÞ ≈
1.4 cosðπx̂ · rj=2aÞ − 0.12 with the constant giving rise to
nonorthogonality of the eigenmodes. The linewidths of the
superradiant and subradiant eigenmodes differ by two
orders of magnitude, resulting in very different responses,
and in both cases radically departing from the single-atom
result. The substantially larger values of 1 − g2ð0Þ com-
pared to those of noninteracting atoms show enhanced
antibunching due to interactions. In the subradiant case
nonclassical effects are enhanced compared even with
those of a single atom, with the nonclassical delay time
of g2 approximately 10 times larger than that of a single
atom. Subradiant excitations can therefore provide much
extended antibunching timescales compared with Rydberg-
atom based vapor cell devices [16], also avoiding two-
photon excitations and the involvement of highly excited
Rydberg states that are sensitive to electric and magnetic
field gradients.
The SAP also provides an excellent description of the

transient photon scattering rate hn̂ðtÞi (insets to Fig. 1 and

Fig. S1 in the Supplemental Material [52]). The SAP
for the photon scattering rate is hn̂ðtÞi ≈ nðυ;κ0ÞðtÞ, where
nðγ;κÞðtÞ≡ ½Iin=ðIin þ IsÞ�gðγ;κÞ2 ðtÞ is the photon scattering
rate for a single, isolated atom [54,58].
The suppressed short-delay joint photon detection events

in g2 represent dipole blockade that inhibits multiple exci-
tations of the collective atomic state, as illustrated in the
excited-state atom-number distributions (Fig. 2). Already
for a 2 × 3 array the multiple-excitation probability remains
very low at small spacings. While the single-excitation
weights are high, e.g., for the lattice spacing a ¼ 0.05λ, the
two-excitation weight is ≲10−5 at NIin ¼ 2Is, but rapidly
increases to 0.1 for a ¼ 0.5λ, as the antibunching is reduced
and the dipole blockade removed. The origin of the
blockade can be understood also in the excitation spec-
trum PðΩÞ ∝ R

dτeiΩτ
P

jl γjlhσ̂þj ðtþ τÞσ̂−l ðtÞi [inset to
Fig. 3(b)] that shows how the second photon excitation
is shifted due to the dipole-dipole interactions.
The accuracy and the regimes of validity of the SAP in

both planar arrays and chains are analyzed in Fig. 3. The
uniform phase profile of the drive across the atoms most
strongly couples to the superradiant, uniform eigenmode,
and we show the relative deviations η≡maxτ<τ0 jg2ðτÞ=b −
gðυ;κ

0Þ
2 ðτÞj (calculated until τ0, such that for all τ ≲ τ0,
g2ðτÞ < 1; see also Fig. S2 in the Supplemental Material
[52]). The SAP describes the behavior of g2ðτÞ very well
for a≲ 0.1λ and remains qualitatively accurate up to a ∼
0.2λ (a 9 atom chain gives similar results). The onset of the
plateau around a ≈ 0.12λ, irrespective of light intensity,
coincides with LLI eigenmode resonances overlapping
with the superradiant mode. For a≳ 0.2λ, the SAP deviates
from g2ðτÞ. The deviations as a function of N in Fig. 3(a)
show how the accuracy of the SAP decreases gradually in
larger systems.
Increasing deviations for large values of τ for a ≳ 0.2λ

are due to the presence of a persistent oscillation [a weak
oscillation is also visible in Fig. 1(a)]. To understand this
behavior, we look at the steady-state occupations of the LLI

FIG. 1. Superatom picture and nonclassical light scattering for a
3 × 3 atom array (lattice spacing a ¼ 0.1λ) with a drive field
resonant with (a) the uniform superradiant (υ ≈ 7.6γ, NIin ¼ 2Is)
and (b) a subradiant (υ ≈ 0.091γ, NIin ¼ 0.5Is) LLI collective
eigenmode; g2ðτÞ for the full quantum solution (blue solid line),
superatom (black dashed line), and single isolated atom (black
dotted line). The red star marks the noninteracting, interfering
result of g2ð0Þ, showing that interactions substantially enhance
photon antibunching. For the subradiant mode the nonclassical
emission is enhanced compared with a single atom. Insets show
the corresponding photon detection rates.
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FIG. 2. Dipole blockade by the occupation weights PðnÞ of
states with n ¼ 1 and 2 excited atoms as a function of the lattice
spacing a in a 2 × 3 array, with (a) the superradiant, (b) subradiant
LLI eigenmode targeted. For small a, n ¼ 2 states are suppressed
by the blockade, regardless of intensity, but the blockade is
weakened for larger a and the occupation increases dramatically
while the weight of n ¼ 1 states changes little in comparison.
Drive intensity NIin given as a multiple of Is.
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modes for hσ−j i, defined as [59] Lm ≡P
j jumðrjÞhσ−j ij2=P

jl julðrjÞhσ−j ij2. The presence of the persistent oscilla-
tion coincides with a simultaneous non-negligible occu-
pation of two eigenmodes. One can then qualitatively
understand the effect of the two-mode interference from
the linear combination

g2ðτÞ ≈ 1þ b½Cgðυ1;κ0Þ2 ðτÞ þ ð1 − CÞgðυ2;κ2Þ2 ðτÞ − 1�; ð6Þ

where the increasing contribution from the less radiant
mode with increasing lattice spacing leads to deviations
from the simple SAP at large τ. Although we consider only
chains and arrays, systems with higher symmetry such as
rings [72] or configurations that optimize interactions offer
the potential to more effectively target individual superatom
resonances and enhance the photon blockade.
For atoms in optical lattices, proposals exist to produce a

tight atom confinement [73], but generally the atomic
positions fluctuate. We can take into account the position
fluctuations in the numerics by ensemble-averaging over
many stochastic realizations of randomly sampled atom
positions in each lattice site [69]. We find in Fig. 3(b) that
the accuracy of the superatom picture increases due to the
fluctuations, as the oscillations resulting from the second
eigenmode contribution are washed out. However, increas-
ing position fluctuations eventually also start increas-
ing g2ð0Þ.
The normalization of the SAP two-time correlation

function at zero delay g2ð0Þ in Eq. (5) represents the
strength of nonclassical and correlated light emission of the

atoms. For noninteracting atoms in the absence of multiple
scattering, interference effects only slightly modify the
result g2ð0Þ ¼ 1 − N−1. Strong light-mediated correlations,
however, can substantially shift the value of g2ð0Þ, directly
reflected in the antibunching of the emitted photons. In
Fig. 4(a) we show g2ð0Þ as a function of lattice spacing and
atom number, with the drive tuned to the uniform LLI
eigenmode. We find that light-mediated interactions
enhance the nonclassical nature of light for small lattice
spacing (up to a≲ 0.15λ) that coincides with the regime
where the SAP shows good accuracy over all values of τ.
For chains with large lattice spacing (a≳ 0.5λ), light-
mediated interactions between atoms are no longer suffi-
cient to establish collective correlation effects, and g2ð0Þ
follows the noninteracting, noninterfering scaling g2ð0Þ ¼
1 − N−1 [Fig. 4(b)], with small or absent antibunching. In
denser arrays, however, we find that nonclassical collective
effects persist also as the atom number increases. For
example, g2ð0Þ ≈ 0.08 for a 9-atom chain with a ¼ 0.05λ.
In Rydberg atoms, dipole blockade inhibits multiple

excitations within the blockade radius R [74]. Because of
the long-range interactions present in our system, R is in
general not well defined. However, power-law-fit estimates
of the dependence of g2ð0Þ on the system size can be
obtained from Fig. 4(b), resulting in R of the order of λ,
with a small roughly linear increase in R with decreasing
lattice spacing [75]. Correlations can be suppressed with a
sufficiently broad laser [76] with increasing contributions
from multiple modes [Eq. (6)] when the bandwidth notably
exceeds γ.
The time-honored two-time correlation function (1) for

joint photon emission events from a single atom reveals
nonclassical resonance fluorescence of light [1,54]. Here
we showed that the same functional form also describes
emission from strongly coupled arrays of atoms, represent-
ing a superatom picture of correlated many-atom resonance
fluorescence. For a single atom the suppression of joint
photon emission events is a direct consequence of the

2 4 6 80 0.2 0.4 0.6
0

0.5

1 (a)

(b)0 0.3 0.6
0

0.5

1

FIG. 4. Enhanced antibunching due to quantum correlations of
light-induced dipole-dipole interactions in a 9-atom chain and
3 × 3 array. (a) g2ð0Þ for a chain as a function of lattice spacing
(inset: array) compared with noninteracting atoms (dashed line);
(b) g2ð0Þ as a function of atom number for chains with different
lattice spacing a=λ compared with noninteracting, noninterfering
atoms (dashed line). Solid lines are guides for the eye.
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FIG. 3. Validity of the superatom picture and the effect of
position fluctuations of the atoms for a field resonant with the
uniform superradiant LLI mode. (a) Relative error η of the SAP as
a function of lattice spacing (bottom axis) for a 3 × 3 atom array
at NIin ¼ 0.08Is (blue circles) and NIin ¼ 2Is (red diamonds),
and as a function of atom number (top axis, crosses) for a chain at
a ¼ 0.15λ, NIin ¼ 0.08Is; (b) position fluctuations of the atoms
improve the accuracy of SAP (a ¼ 0.2λ, 2 × 3 array): fixed atoms
(blue solid line), fluctuating atoms with rms Gaussian density
width 0.1a at each lattice site (yellow dashed-dotted line),
superatom (black dashed line), and single atom (black dotted
line). The red star marks the noninteracting, interfering result of
g2ð0Þ. Inset: Power spectrum for a 2 × 3 array (Iin ¼ 2Is,
a ¼ 0.08λ) showing a superradiant central peak (SAP result:
dashed line) with additional small excitations far off resonance.
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fermionic statistics with ðσ̂�Þ2 ¼ 0 for the single excitation;
after the photon emission the electron is in the ground state
and cannot reemit before being excited again. For a many-
atom system, the antibunching with g2ð0Þ ≃ 0 similarly
represents the presence of only one excitation, where
multiple excitations are inhibited by dipole blockade—
reminiscent of the fermionic character of multiple photon
excitations of atoms in waveguides [37].
In the superatom picture of many-atom resonance

fluorescence the strength of the correlations can surpris-
ingly be determined by the underlying LLI collective
excitation eigenmodes, even when the atoms are strongly
driven by the incident laser. Such an effective collective
description is quite different from representing the classical
optical response of an atomic ensemble as a superatom in
the limit of LLI by coupled collective eigenmodes [59,77].
Our analysis of the g2ðτÞ correlations illustrates how
relatively simple and intuitive representations could pos-
sibly more generally be extended to understand strongly
correlated many-body phenomena in quantum optics far
beyond linearly responding coupled classical dipoles.
Data used in this publication is available at [78].

We acknowledge financial support from Engineering and
Physical Sciences Research Council (Grants No. EP/
S002952/1 and No. EP/P026133/1) and discussions with
L. F. dos Santos.

Note added.—We have become aware of a related parallel
theoretical work on the calculation of dipolar blockade in
atom chains in Ref. [79].
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