
Department: Head
Editor: Name, xxxx@email

Reducing Software Developer
Human Errors by Improving
Situation Awareness
Bhaveet Nagaria
Department of Computer Science, Brunel University London

Tracy Hall
School of Computing and Communications, Lancaster University

Abstract—Software development is a human activity prone to human error. These errors are
partially related to losing situation awareness during development tasks. Situation awareness
enables the retention of contextual knowledge while performing a task. The OODA loop is an
established cognitive training method to improve situation awareness. We studied the in-situ
development errors that ten professional software developers made before and after using the
OODA loop. Our preliminary results suggest that developer errors reduce after OODA loop use.
We recommend that developers: get to know their own development weaknesses, use cognitive
training (e.g., OODA loop) to manage those weaknesses, simplify their working environment and
communicate carefully with external stakeholders.

Introduction

Despite the tools [1] and processes [2] used
during development, defects in software systems
regularly occupy news headlines. We investigate
whether defects can be reduced by focusing on
the human errors made during development. We
show that when ten developers used our online
training to improve situation awareness, errors
were reduced.

Human Error Theory [3] frames our study
having recently attracted attention in software
engineering [4], [5], [6], [7] and been previously
used in other disciplines. James Reason [3] de-

fines three types of human errors: slips, lapses
and mistakes (Sidebar 1).

Errors are introduced during two phases of
human cognition [3]; planning and execution.
Mistakes occur during planning; slips and lapses
during execution.

IEEE Software Published by the IEEE Computer Society c© 2020 IEEE 1



Department Head

Sidebar 1: Human Error Types

Slip: Carelessness, e.g. entering commands in the
wrong window.
Lapse: Forgetfulness, e.g. not saving a new build
configuration.
Mistake: Unawareness, e.g. incorrectly describing a
bug.

Maintaining situation awareness is an ap-
proach to reducing human errors successfully
used in other domains (e.g. autonomous driving
[8], medicine [9], transportation [10] and cyber
security [11]). Situation awareness is maintaining
an understanding of what is going on around you
while performing a task [12]. Endsley describes
three levels of situation awareness: (1) percep-
tion of the environment, (2) comprehension of
the situation, (3) predicting the future situation.
Agile software teams have improved their situ-
ation awareness using a ‘project wall’ to retain
oversight of the whole project while developers
perform individual tasks [13].

The OODA loop is a cognitive training
method designed to improve decision-making
[14]. The four stages of the OODA loop (Figure
1) encourages the maintenance of situation aware-
ness (SA) by iteratively ‘Observing’ (level 1 of
SA), ‘Orienting‘ (level 2 of SA), and ‘Deciding’
before ‘Acting’. We developed an online OODA
loop training package to help developers main-
tain situation awareness during their development
tasks (available at: https://bit.ly/2V6OOVL). This
training package consists of four sections where
developers learn about: situation awareness, the
OODA loop, applications of the OODA loop
within software development and then demon-
strate their understanding through a nine question
quiz.

We now discuss the experimental use of our
training package by professional developers.

Method
Full methodological detail of our experi-

mental approach is in our on-line appendix
(https://bit.ly/2V6OOVL) of which we now pro-
vide a summary. We performed a ‘before-and-
after’ OODA loop training experiment with ten
professional software developers of whom we
report findings from seven (two developers with-

Figure 1. OODA Loop

drew from the study part way through due to
increased workloads, and one did not complete
the training quiz). The developers had a variety
of backgrounds and were a convenience sample.
Each developer self-recorded the daily errors they
made over five days of in-situ development activ-
ity. Each developer then undertook our OODA
loop training, afterwhich developers recorded
their errors over the next five days. Themes for all
errors were independently coded by both authors
with an initial agreement of 61.32%. Discussion
of each disagreement (recommended by [15])
resulted in 100% Agreement. We identified seven
themes across the human errors (see Sidebar 2).

Results
Our small-scale snapshot study confirms that

developers make human errors manifesting as
slips, lapses and mistakes. Training software de-
velopers to maintain situation awareness using
the OODA Loop seems to lead to decreased
developer errors. We now discuss our findings in
more detail.

What type of human errors do developers
make?

Table 1 shows each error for each developer
classified two ways; first, errors in each of the
seven themes, second, each error classified as
either a slip, lapse or mistake. A small number of
errors are multi-classified because they cut across
human error classifications.

Table 1 suggests that the distribution of human

2 IEEE Software



error types (i.e. slips, lapses and mistakes) varies
between developers with some reporting many
more mistakes than others.

Sidebar 2: Human Error Themes

Internal communication Poor internal communica-
tion e.g. incomplete documentation.
External communication Poor external communi-
cation e.g. failing to obtain full error details from
end user.
Code structure/complexity Poor code structure and
or increased code complexity.
Complexity of development environment Having
many things running in the development environ-
ment at anyone time.
Ordering/sequencing tasks Executing a series of
tasks in the incorrect order.
Syntax issues Use the wrong syntax / syntax errors
in newly written code.
Special cases Unique errors which do not fit the
other themes e.g. UI/UX design / functionality issues

Table 1 also shows variation in the error
themes to which developers seem prone. For
example, Participant 6 makes the most syntax
errors, a number of which appear to be related to
JavaScript and specifically the use of the keyword
‘this’. Whereas Participant 8 seems to make more
code structure / complexity errors. Participant
5 is the only developer who does not record
any communication related errors. Our analysis
(see online appendix for further details) does not
suggest experience or demographics explains why
these developers seem prone to these specific
errors but it might be that the particular work
tasks during the snapshot influenced the error
themes. Future work is needed to investigate
the relationship between errors and development
context.

Table 1 suggests that most communication
based errors are mistakes rather than slips or
lapses. Mistakes are usually more substantial
errors than lapses or slips and can be more
complex to correct. This confirms the impor-
tance of strong communication during develop-
ment activities. Table 1 also shows that syntax
errors comprise mostly of slips or lapses. This
suggests that developers generally know syntax
but make minor errors despite this knowledge.
Most developers reported errors related to the
complexity of the development environment. For

example Participant 10 says that they ‘Forgot to
increase the version of an updated dependency.’
This is because Participant 10 says they were
‘Juggling three different tasks all at the same
time. Performance research on one strand, bug
fixing on two separate issues. Each with their
own programming languages! (Python, Java and
Scala)’. Table 1 shows only Participants 8 and 9
do not report such complex development environ-
ment errors. More work is needed to uncover any
contextual factors explaining this variation.

Does OODA loop training lead to a reduction in
human errors?

Developers engaged well with our OODA
loop training. All but one of whom attained scores
of eight or nine in the nine question quiz that
concluded the training package.

Table 2 shows how many errors were self-
recorded by developers before and after OODA
loop training. Although the numbers of errors
in the snapshot are small, Table 2 shows an
encouraging error reduction after training. In all
cases there is either a reduction in errors (four
developers) or no change in the number of errors
(three developers) after the OODA loop training.
We perform a paired T-test, which shows a sig-
nificant difference of 0.0414 between the number
of errors being made before and after the OODA
loop training.

We looked in more detail at the types of
errors before and after OODA loop training and
found that error reductions after training were
predominately in execution errors. For example
Participant 6 makes 18 execution errors before
training which reduces to four execution errors
after training. This reduction in execution errors
suggests that using the OODA loop during devel-
opment helps developers retain situation aware-
ness of their code and maintain concentration
sufficiently to reduce the slips and lapses that they
usually make. A larger scale study is needed to
establish whether this finding holds more gener-
ally for developers and whether the effect lasts
over time.

Do developers find OODA loop training useful?
We asked developers for their thoughts about

the training. The sentiment of all responses is
positive indicating that participants enjoyed par-

Nov/Dec 2020 3



Department Head

Table 1. High Level Themes
Team Communication

Participant
Number

Internal External Code
Structure
/ Com-
plexity

Complexity of
Development
Environment

Ordering /
Sequencing
Tasks

Syntax
Issues

Special
Cases

P1
M1 L/M 1 S 1 S/L/M 1 S/L 1

S 1
L 1

P5
S 1 L 1 S/L 1
S 2 S/L/M 1
S 3

P6

S/L/M 1 M 1 S/L 1 S/L 1 S/L 1
M 2 S/L 2 S/L 2
M 3 S/L 3 S/L 3

S/L 4
S/L 5
S/L 6

P7

M 1 M 1 S/L 1 S/L 1 S/L 1 S/L 1
S/L/M 1 S/L/M 1 S/L 2
S/L/M 2 M 1 S/L 3

M 1
L 1

P8

M 1 S/L 1
S/L 2
S/L 3
S/M 1
S/L 4

P9 M 1 M 1 S/L/M 1 S/L 1 M 1
M 2 S/L 2 S/L 2

P10
M 1 L/M 1 L 1 S 1 S 1

M 1 L 1 L 1
L 2 S 2

Day 1 to 5: White Background & Day 6 to 10: Grey Background
Key: S = Slip, L = Lapse, M = Mistake, S/L = Slip/Lapse, L/M = Lapse/Mistake & S/L/M = Slip/Lapse/Mistake

Note: The number after the key is a counter for each participant for the type of error
Note: Participants 2, 3, 4 withdrew due to a change in workload or non - engagement

Table 2. Numbers of logged Human Errors
Total
Human
Errors

Before
Training
Errors:
D1- D5

After
Training
Errors:
D6 - D10

Reduction
Rate

P1 7 6 1 83%
P5 6 3 3 0%
P6 14 9 5 44%
P7 14 8 6 25%
P8 6 5 1 80%
P9 8 4 4 0%
P10 10 5 5 0%

ticipating in the study and found the online
training tool easy to use. Participants said that
they learned about the OODA loop and how to
apply it in software development for the first time.
Participant 7 said ‘Yes, the idea of OODA was
helpful when dealing with developing problems.’
All developers found the content actionable, Par-
ticipant 2 saying ‘Fully actionable especially in
our work.’ Participant 9 says the OODA loop is
‘Very helpful and is a need in our daily work
in software engineering.’ While the majority of
the participants found the OODA loop led to an

improvement in their work, Participants 1 & 10
did not. All except Participant 1 report that they
will continue to use the OODA loop in the their
work. Participant 10 says that they will continue
to use the OODA loop in their development,
despite not finding any direct improvement.

Recommendations for reducing
developer errors

Our preliminary findings lead to the following
recommendations to help software developers re-
duce the errors they make.

• Know your own weaknesses. Every developer
is different and struggles with different con-
cepts. Our analysis shows a variety of types
of errors that developers make. Developers
becoming more conscious of the human errors
they commonly make and actively checking for
these can help reduce errors.

• Use cognitive training. We have shown that
using cognitive training, like the OODA loop,
seems to help decision making and can reduce

4 IEEE Software



the human errors a developer makes.
• Simplify your workload. One of the biggest

causes of human error reported by the de-
velopers in our study was the complexity of
the development environment. Reducing the
cognitive load by simplifying the complexity
of the development environment could reduce
human errors. Actions such as minimising the
number of simultaneous development tasks and
closing down unnecessary tools and windows
can help reduce the cognitive load.

• Communicate carefully with stakeholders
outside your team. Our study suggests that a
relatively high number of mistakes are related
to communicating with stakeholders outside of
the development team. Ensuring that commu-
nication is clearly understood seems important
to reducing mistakes.

Conclusion
We presented our preliminary study on reduc-

ing human error during development by provid-
ing developers with cognitive training designed
to improve their situation awareness. Our study
makes the following contributions:

• To the best of our knowledge this is the first
study to provide empirical evidence showing
how the number of human errors made by
professional software developers reduces when
developers are provided with training to im-
prove their situation awareness. More work is
needed to understand whether our results hold
beyond this small scale study.

• We show that software developers do make
all three types of human errors (slips, lapses
and mistakes) in their development work. Our
results also suggest that slips and lapses oc-
cur more commonly than mistakes. Slips and
lapses are likely to result in smaller defects
which should be easier to mitigate.

• We show that cognitive training using the
OODA loop leads to a decrease in the number
of human errors software developers make. We
found that developers particularly reduced the
number of execution errors they made follow-
ing OODA loop training. More work is needed
to understand if this finding is generalisable
and if the effect lasts over time.

We were encouraged that most of the developers

in our study were enthusiastic about the training
they received in how to maintain their situation
awareness. Most developers found the training
easy and useful in a topic they had no previous
knowledge. The majority of the developers said
that they will continue to use the OODA loop in
their work. We intend to explore further the use of
focused training packages to educate and support
developers in their work.

Acknowledgments
The authors would like to thank all the

study participants. This study has has been ap-
proved by Brunel University Ethics Commit-
tee reference 18067-LR-Oct/2019-20590-1. The
study was partly funded by the UK’s Engi-
neering and Physical Sciences Research Council
(EP/S005730/1).

REFERENCES
1. F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and

M. Di Penta, “How open source projects use static

code analysis tools in continuous integration pipelines,”

in 2017 IEEE/ACM 14th International Conference on

Mining Software Repositories (MSR). IEEE, 2017, pp.

334–344.

2. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,

“The impact of code review coverage and code review

participation on software quality: a case study of the

qt, VTK, and ITK projects,” in Proceedings of the 11th

Working Conference on Mining Software Repositories -

MSR 2014, ser. MSR 2014. New York, NY, USA: ACM,

2014, pp. 192–201.

3. J. Reason, Human Error. New York; Cambridge [Eng-

land]: Cambridge University Press, 1990.

4. V. Anu, G. Walia, W. Hu, J. Carver, and G. Bradshaw,

“Effectiveness of human error taxonomy during require-

ments inspection: An empirical investigation,” in Pro-

ceedings of the International Conference on Software

Engineering and Knowledge Engineering, SEKE, vol.

2016-Janua, 2016, pp. 531–536.

5. F. Huang, “Post-completion Error in Software Develop-

ment,” Proceedings of the 9th International Workshop

on Cooperative and Human Aspects of Software Engi-

neering, pp. 108–113, 2016.

6. W. Hu, J. C. Carver, V. Anu, G. Walia, and G. Bradshaw,

“Defect Prevention in Requirements Using Human Error

Information: An Empirical Study,” pp. 61–76, 2017.

7. F. Huang and B. Liu, “Software defect prevention based

Nov/Dec 2020 5



Department Head

on human error theories,” Chinese Journal of Aeronau-

tics, 2017.

8. L. Petersen, L. Robert, J. Yang, and D. Tilbury, “Sit-

uational Awareness, Driver’s Trust in Automated Driv-

ing Systems and Secondary Task Performance,” SAE

International Journal of Connected and Autonomous

Vehicles, Forthcoming, 2019.

9. M. C. Wright, J. M. Taekman, and M. R. Endsley, “Ob-

jective measures of situation awareness in a simulated

medical environment,” BMJ Quality & Safety, vol. 13, no.

suppl 1, pp. i65–i71, 2004.

10. C. D. Wickens, “Situation awareness and workload in

aviation,” Current directions in psychological science,

vol. 11, no. 4, pp. 128–133, 2002.

11. G. Ioannou, P. Louvieris, and N. Clewley, “A Markov

Multi-phase Transferable Belief Model for Cyber Situa-

tional Awareness,” IEEE Access, 2019.

12. M. R. Endsley, “Situation awareness global assessment

technique (sagat),” in Proceedings of the IEEE 1988

national aerospace and electronics conference. IEEE,

1988, pp. 789–795.

13. J. Srinivasan and K. Lundqvist, “Using agile methods in

software product development: A case study,” in 2009

Sixth International Conference on Information Technol-

ogy: New Generations. IEEE, 2009, pp. 1415–1420.

14. J. Boyd, “A discourse on winning and losing [briefing

slides],” Maxwell Air Force Base, AL: Air University

Library.(Document No. MU 43947), 1987.

15. B. Kitchenham, D. I. Sjøberg, T. Dybå, O. P. Brere-

ton, D. Budgen, M. Höst, and P. Runeson, “Trends

in the quality of human-centric software engineering

experiments–a quasi-experiment,” IEEE Transactions

on Software Engineering, vol. 39, no. 7, pp. 1002–1017,

2012.

Bhaveet Nagaria is working toward the PhD degree
with Brunel University London. His research inter-
ests include human factors and software engineer-
ing. Contact him at bhaveet.nagaria@brunel.ac.uk;
http://www.brunel.ac.uk/bhaveet-nagaria

Tracy Hall is Professor of Software Engineering
at Lancaster University. Her research
interests include code analysis, defect
prediction and human factors of developers.
Contact her at tracy.hall@lancaster.ac.uk;
https://www.lancaster.ac.uk/scc/about-
us/people/tracy-hall

6 IEEE Software


	Introduction
	Method
	Results
	What type of human errors do developers make?
	Does OODA loop training lead to a reduction in human errors?
	Do developers find OODA loop training useful?

	Recommendations for reducing developer errors
	Conclusion
	REFERENCES
	Biographies
	Bhaveet Nagaria
	Tracy Hall


