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Abstract: Spatio-temporal fusion is a technique used to produce images with both fine spatial and temporal 10 

resolution. Generally, the principle of existing spatio-temporal fusion methods can be characterized by a 11 

unified framework of prediction based on two parts: (i) the known fine spatial resolution images (e.g., Landsat 12 

images), and (ii) the fine spatial resolution increment predicted from the available coarse spatial resolution 13 

increment (i.e., a downscaling process), that is, the difference between the coarse spatial resolution images 14 

(e.g., MODIS images) acquired at the known and prediction times. Owing to seasonal changes and land cover 15 

changes, there always exist large differences between images acquired at different times, resulting in a large 16 

increment and, further, great uncertainty in downscaling. In this paper, a virtual image pair-based 17 

spatio-temporal fusion (VIPSTF) approach was proposed to deal with this problem. VIPSTF is based on the 18 

concept of a virtual image pair (VIP), which is produced based on the available, known MODIS-Landsat 19 

image pairs. We demonstrate theoretically that compared to the known image pairs, the VIP is closer to the 20 

data at the prediction time. The VIP can capture more fine spatial resolution information directly from known 21 

images and reduce the challenge in downscaling. VIPSTF is a flexible framework suitable for existing spatial 22 

weighting- and spatial unmixing-based methods, and two versions VIPSTF-SW and VIPSTF-SU are, thus, 23 

developed. Experimental results on a heterogeneous site and a site experiencing land cover type changes show 24 

that both spatial weighting- and spatial unmixing-based methods can be enhanced by VIPSTF, and the 25 
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advantage is particularly noticeable when the observed image pairs are temporally far from the prediction time. 26 

Moreover, VIPSTF is free of the need for image pair selection and robust to the use of multiple image pairs. 27 

VIPSTF is also computationally faster than the original methods when using multiple image pairs. The 28 

concept of VIP provides a new insight to enhance spatio-temporal fusion by making fuller use of the observed 29 

image pairs and reducing the uncertainty of estimating the fine spatial resolution increment. 30 

 31 

Keywords: Virtual image pair (VIP), Spatio-temporal fusion, Downscaling, Time-series images. 32 
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 34 

1. Introduction 35 

 36 

Remote sensing satellite sensor data for the globe have been applied in many areas, such as land cover 37 

change monitoring (Dyer, 2012), vegetation monitoring (Shen et al., 2011) and ecological evaluation (Pisek et 38 

al., 2015). Among the satellite sensors, the Landsat series (e.g., Thematic Mapper (TM), Enhanced Thematic 39 

Mapper (ETM+), Operational Land Imager (OLI)) and the Terra/Aqua MODerate resolution Imaging 40 

Spectroradiometer (MODIS) are perhaps the most commonly used due to their regular revisit capabilities, 41 

wide swath and free availability. Normally, there is a trade-off between spatial and temporal resolutions. The 42 

Landsat sensors can acquire images at a fine spatial resolution of 30 m, but they have a revisit period of up to 43 

16 days. Moreover, due to cloud contamination, the effective temporal resolution is much coarser (e.g., only a 44 

few useable Landsat images are available per year). On the contrary, MODIS can acquire images for the same 45 

scene at least once per day, but the images are at a coarse spatial resolution of 500 m. To meet the demand of 46 

timely, fine spatial resolution monitoring, spatio-temporal fusion methods have been developed to blend the 47 

available temporally sparse fine spatial resolution images and temporally dense coarse spatial resolution 48 

images to create time-series with both fine spatial and temporal resolutions (Belgiu and Stein, 2019; Chen et 49 

al., 2015; Gao et al., 2015; Zhang et al., 2015; Zhu et al., 2018). Generally, three main categories of 50 
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spatio-temporal fusion methods can be identified: spatial weighting-based, spatial unmixing-based and hybrid 51 

methods. 52 

The spatial and temporal adaptive reflectance fusion model (STARFM) (Gao et al., 2006) is one of the 53 

earliest and the most commonly applied spatial weighting-based methods. STARFM predicts the reflectance 54 

of fine spatial resolution pixels based on a linear weighting of the reflectances of spatially surrounding similar 55 

pixels. The similar pixels in the neighborhood are selected according to their spectral similarity with the center 56 

pixel. STARFM is more effective for homogeneous landscapes and areas with stable land cover during the 57 

period of interest. The spatial temporal adaptive algorithm for mapping reflectance change (STAARCH) 58 

increased the accuracy of spatio-temporal fusion for areas experiencing land cover change (i.e., forest 59 

disturbance) by introducing a disturbance factor to quantify the reflectance change in Landsat images (Hilker 60 

et al., 2009). To increase the accuracy for heterogeneous regions, an enhanced spatial and temporal adaptive 61 

reflectance fusion model (ESTARFM) was proposed by introducing a conversion coefficient to characterize 62 

the linear relationship between the changes in MODIS and Landsat reflectances (Zhu et al., 2010). ESTARFM 63 

was advantageous for reproducing small and linear targets. Wang and Atkinson (2018) introduced a Fit-FC 64 

method to deal with strong seasonal changes in spatio-temporal fusion. These spatial weighting-based 65 

methods have been applied widely to predict land surface temperature (LST) (Huang et al., 2013; Shen et al., 66 

2016; Weng et al., 2014; Wu et al., 2015), leaf area index (Houborg et al., 2016; Zhang et al., 2014), and 67 

normalized difference vegetation index (NDVI) (Meng et al., 2013; Tewes et al., 2015) at both fine spatial and 68 

temporal resolutions. 69 

Spatial unmixing-based methods are generally performed based on a coarse image at the prediction time and 70 

a land cover classification map produced from the known fine spatial resolution data (e.g., multispectral 71 

images at the target fine spatial resolution (Amorós-López et al., 2013; Gevaert et al., 2015; Zurita-Milla et al., 72 

2008), and aerial image (Mustafa et al., 2014) or land-use database (Zurita-Milla et al., 2009) at the finer 73 

spatial resolution). Based on the assumption that the land cover does not change during a given period, the fine 74 

spatial resolution land cover map at known time is upscaled to characterize the coarse proportions of land 75 
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cover classes at the prediction time. The representative reflectance of each land cover class within a coarse 76 

pixel can be predicted inversely from the coarse proportions and observed coarse reflectance. The multisensor 77 

multiresolution technique (MMT) proposed by Zhukov et al. (1999) is one of the first spatial unmixing-based 78 

methods. MMT assigns the predicted land cover class reflectance directly to a fine spatial resolution pixel 79 

according to its corresponding class. Busetto et al. (2008) considered both spatial and spectral differences for 80 

weighting the contributions of neighboring coarse pixels in the spatial unmixing model. To avoid large 81 

deviations of the predicted reflectance of each class, Amorós-López et al. (2013) introduced a new 82 

regularization term to the objective function in the spatial unmixing model, where the difference between the 83 

class reflectances at target fine and observed coarse spatial resolutions is minimized. The spatial-temporal data 84 

fusion approach (STDFA) calculated the temporal change in reflectance for each class by unmixing the coarse 85 

difference images. The predicted temporal change at fine spatial resolution is then added to the known fine 86 

spatial resolution image (Wu et al., 2012). Gevaert and García-Haro (2015) applied a Bayesian solution to 87 

constrain the fine spatial resolution reflectance in the unmixing model. 88 

Hybrid methods combining the mechanisms of the above two categories of methods have also been 89 

developed. The Flexible Spatiotemporal DAta Fusion (FSDAF) method estimates the temporal change of each 90 

class by spatially unmixing the coarse difference images, and then distributing the residuals estimated from 91 

thin plate spline (TPS) interpolation based on spatial weighting of neighboring similar pixels (Zhu et al., 2016). 92 

Liu et al. (2019) proposed an improved FSDAF (IFSDAF) for producing NDVI time-series with both fine 93 

spatial and temporal resolutions. Instead of distributing the residuals entirely based on the TPS interpolation 94 

result (i.e., space-dependent increment), IFSDAF also considers temporally-dependent increment by spatial 95 

unmixing. To enhance the performance for restoration of land cover change, an enhanced FSDAF that 96 

incorporates sub-pixel class fraction change information (SFSDAF) was proposed by Li et al. (2020). 97 

SFSDAF accounts for the changes in class reflectance and proportions jointly in the spatial unmixing model. 98 

Xu et al. (2015) performed spatial weighting based on STARFM before spatial unmixing, where the STARFM 99 

prediction is used to construct a regularization term to avoid large deviations of predicted class reflectances. 100 
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Apart from the methods mentioned above, Bayesian-based methods (Li et al., 2013) and learning-based 101 

methods (Das and Ghosh, 2016; Huang and Song, 2012; Liu et al., 2016) have also been developed. 102 

Although the specific mechanisms of the spatio-temporal fusion methods vary, the methods can be 103 

summarized by a unified framework 104 

ˆ (t_predict) (t_known)  L L L                                                       (1) 105 

( )f  L M .                                                                    (2) 106 

Eq. (1) indicates that the prediction of the Landsat image at the prediction time is divided into two parts; the 107 

known Landsat image (t_known)L  and the unknown Landsat level increment L  (Liu et al., 2019). Note 108 

that multiple known Landsat images (i.e., multiple MODIS-Landsat image pairs are available) can also be 109 

included in the term (t_known)L , which is then a combination of the multiple Landsat images 110 

correspondingly. The first part makes use of available fine spatial resolution information directly, while the 111 

second part predicts fine spatial resolution information from the available coarse spatial resolution data. As 112 

seen from Eq. (2), the estimation of L  depends on MODIS level increment M , which is the difference 113 

between the MODIS images at the known and prediction times. Obviously, the estimation of L  is the most 114 

pivotal issue: this involves downscaling, the quality of which exerts a direct influence on the accuracy of 115 

prediction. The function f  (i.e., the downscaling operator) differs according to the specific spatio-temporal 116 

fusion method. For spatial weighting-based methods, f  is usually a linear weighting function (Gao et al., 117 

2006; Zhu et al., 2010), while for spatial unmixing-based methods, f  is a linear unmixing model 118 

(Amorós-López et al., 2013; Zhukov et al., 1999). No matter which method is adopted, a smaller increment 119 

M  will definitely decrease the uncertainty in estimating L . To reduce the error produced by estimation of 120 

L  and produce a greater accuracy for spatio-temporal fusion, it is important to minimize M . One possible 121 

solution is to acquire MODIS-Landsat image pairs as temporally close to the prediction time as possible. Due 122 

to cloud and shadow contamination, however, the number of available high-quality Landsat images is always 123 
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limited (Ju and Roy, 2008). Thus, it can be challenging to acquire image pairs that are sufficiently close to the 124 

prediction time; that is, it is always difficult to decrease M  just from the perspective of using data. 125 

Alternatively, another possible solution to reduce M  is to perform transformations to the known MODIS 126 

images based on an identified model. As acknowledged widely, there exists a corresponding relationship 127 

between the Landsat and MODIS images acquired at the same time. Suppose the zoom factor between the 128 

MODIS and Landsat images is s  such that the reflectance of each MODIS pixel can be regarded as the 129 

average of the reflectance of 2s  Landsat pixels covering the same area. Preserving this relationship, the 130 

transformation applied to known Landsat images can be linked to that of the MODIS images. Inspired by this, 131 

in this paper we introduced the concept of the virtual image pair (VIP), that is, the synthesization of a 132 

MODIS-Landsat image pair closer to that at the prediction time (i.e., with a smaller M ) than the original 133 

observed MODIS-Landsat image pairs. When the VIP is adopted, the input of the function f  in Eq. (2) will 134 

become smaller, thus, reducing the burden of estimating L . Actually, in this case, the final prediction is 135 

dependent on the new ‘known’ Landsat image (i.e., the virtual Landsat image) to a larger extent than existing 136 

methods, which is closer to the Landsat image to be predicted and can capture more fine spatial resolution 137 

information directly from the observed Landsat images. 138 

In this paper, based on the concept of VIP, a VIP-based spatio-temporal fusion (VIPSTF) approach is 139 

proposed. VIPSTF produces the VIP based on the observed MODIS-Landsat image pairs that may have a 140 

considerable temporal distance to the prediction time. The new MODIS level increment is downscaled by the 141 

function f  in Eq. (2) to predict the new Landsat level increment. As mentioned above, f  varies when 142 

different methods are used. For the proposed VIPSTF approach, both spatial weighting- and spatial 143 

unmxing-based methods can be incorporated into it. Specifically, the popular STARFM (Gao et al., 2006) and 144 

STDFA (Wu et al., 2012) methods are adopted to characterize the function f  in VIPSTF in this paper. 145 

VIPSTF can reduce the difference between MODIS images at the known and prediction times effectively, 146 

reducing the burden in estimation of the Landsat level increment and finally leading to greater prediction 147 

accuracy. 148 
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The remainder of this paper is organized into four sections. In Section 2, the relation between the MODIS 149 

and Landsat images in the VIP is first deduced in Section 2.1. Section 2.2 introduces the method to produce the 150 

VIP and demonstrates mathematically its validity in reducing M . Furthermore, the proposed VIPSTF 151 

approach including both spatial weighting and spatial unmixing-based versions is introduced explicitly in 152 

Section 2.3. Section 3 presents the experimental results of VIPSTF and compares it with other spatio-temporal 153 

fusion methods. Section 4 discusses the main findings and the problems to be investigated further. Section 5 154 

concludes the paper. 155 

 156 

 157 

2. Methods 158 

 159 

Similarly to most of existing spatio-temporal fusion methods, the proposed method is performed for each 160 

band separately. In this paper, for simplicity of mathematical expression, the principle is illustrated based on a 161 

single band of Landsat and MODIS images. The implementation can be applied to each band similarly. 162 

 163 

2.1. Relation between Landsat and MODIS images in the virtual image pair (VIP) 164 

 165 

In this paper, the VIP is proposed to decrease the difference between images acquired at the known time and 166 

prediction time, and further, to increase the accuracy of spatio-temporal fusion. The VIP is generated by 167 

combining the original known time-series images through a certain mathematical transformation. Suppose that 168 

we have N  known MODIS-Landsat image pairs acquired at 1t ,…, Nt . The Landsat images are denoted as 169 

1L ,…, NL , while the MODIS images are denoted as 1M ,…, NM . The functions 1g  and 2g  are applied to 170 

Landsat and MODIS time-series images to produce the VIP 171 

VIP 1 1( , , )NgL L L                                                                   (3) 172 
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VIP 2 1( , , )NgM M M                                                                 (4) 173 

where VIPL  and VIPM  are the virtual Landsat image and virtual MODIS image, respectively. 174 

Suppose the zoom factor between the Landsat and MODIS images is s . The value (i.e., reflectance in this 175 

paper) of each MODIS pixel can generally be treated as the average of every 2s  Landsat pixel covering the 176 

same area at the same time (Li et al., 2020; Zhu et al., 2010). Based on this assumption, an intrinsic relation can 177 

be built between the corresponding Landsat and MODIS pixels for any MODIS-Landsat image pair 178 

2

0 0 0 02
1

1
( , ) ( , )

s

i i

i

M x y L x y
s 

  .                                                           (5) 179 

In Eq.(5), 0 0( , )M x y  is the value of the MODIS pixel located at 0 0( , )x y , and 0 0( , )i iL x y  is the value of the i th 180 

pixel of the 2s  Landsat pixels covering the same area as 0 0( , )M x y . 181 

No matter which method is adopted to determine the two functions 1g  and 2g , it is always important to 182 

ensure consistency between the Landsat and MODIS images defined in Eq. (5). Accordingly, the 183 

corresponding pixels in VIPL  and VIPM  should satisfy the relationship as well, and the two functions can also 184 

be connected correspondingly. Specifically, according to Eqs. (3) and (5), we can simply characterize VIPM  185 

using 1g  186 

 
2 2

VIP 0 0 VIP 0 0 1 1 0 0 0 02 2
1 1

1 1
( , ) ( , ) ( , ), , ( , )

s s

i i i i N i i

i i

M x y L x y g L x y L x y
s s 

   .                        (6) 187 

Suppose 1g  is a linear transformation function, the fixed coefficient 21/s  can be applied to each Landsat 188 

pixel directly, that is, Eq. (6) can be rewritten as 189 

 

2 2

VIP 0 0 1 1 0 0 0 02 2
1 1

1 1 0 0 0 0

1 1
( , ) ( , ), , ( , )

( , ), , ( , )

s s

i i N i i

i i

N

M x y g L x y L x y
s s

g M x y M x y

 

 
  

 



 
.                                   (7) 190 

When each pixel in the virtual MODIS image undergoes the same transformation in Eq. (7), the whole 191 

MODIS image can be represented as follows 192 
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VIP 1 1( , , )NgM M M .                                                               (8) 193 

Comparing Eq. (8) with Eq. (4), it is clear that the function 2g  is the same as 1g . That is, the transformation 194 

applied to the MODIS time-series is consistent with that for the Landsat time-series. Note that such 195 

consistency exists based on the assumption of a linear transformation. 196 

 197 

2.2. Production of the VIP 198 

 199 

2.2.1 The specific form of the VIP 200 

 201 

As mentioned in Section 2.1, the linear transformation is a feasible solution to produce the VIP and can 202 

relate the virtual Landsat and MODIS images effectively. Specifically, the transformation applied to the 203 

Landsat time-series to produce VIPL  can be expressed explicitly as 204 

VIP 1 1

1

( , , )
N

N k k

k

g a b


  L L L L                                                        (9) 205 

where ka  is the transformation coefficient for the k th image in the Landsat time-series and b  is a constant. 206 

According to the consistency in linear transformation demonstrated above, the virtual MODIS image VIPM  207 

can be expressed similarly 208 

VIP 1 1

1

( , , )
N

N k k

k

g a b


  M M M M .                                                 (10) 209 

In the linear transformation function, different coefficient sets (i.e., composed of ka  and b ) will result in 210 

different VIPs. It is critical to develop a reliable scheme to estimate the coefficients appropriately. In this paper, 211 

the coefficient set is estimated based on the linear regression model fitted between the MODIS data at the 212 

known and prediction times 213 

1

N

p k k

k

a b


  M M r .                                                             (11) 214 
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In Eq. (11), r  is the residual image, and kM  and pM  are the k th known MODIS image and the MODIS at 215 

the prediction time, respectively. The coefficients ka  and b  are obtained using the least squares method. 216 

 217 

2.2.2 The rationale of the specific form 218 

 219 

As the ultimate purpose of any definition of VIP is to reduce M  (i.e., the virtual MODIS image needs to 220 

be closer to the MODIS image at the prediction time), the coefficient set should follow the key rule that the 221 

new M  between the virtual MODIS image and the MODIS image at the prediction time should be smaller 222 

than the original M . To evaluate whether the coefficient set estimated by the regression model satisfies the 223 

rule, we need to quantify M  and M  beforehand. The root mean square error (RMSE) is one of the most 224 

widely used indices to measure the statistical difference in the pixel values (i.e., reflectance in this paper) 225 

between two images. It is used to quantify M  and M  in this paper. RMSE is defined as 226 

 
2 2

1

1
RMSE ( , ) ( , ) [( ) ]

m

i i i i

i

U x y V x y E
m 

    U V                                      (12) 227 

where U  and V  represent two images composed of m  pixels. Mathematically, the RMSE between two 228 

images equals the square root of the expectation of the square of the difference image U V . Therefore, we 229 

can calculate the expectation of the square of M  and M  (i.e., 
2( )E M  and 

2( )E M ) instead for their 230 

comparison. 231 

For spatio-temporal fusion using multiple image pairs, the original M  cannot be expressed simply as the 232 

difference between MODIS images. According to the general framework of spatio-temporal fusion 233 

summarized in the Introduction, prediction using multiple image pairs can be written as 234 

1

1 1

ˆ ( )

     ( )

N

p i i p i

i

N N

i i i p i

i i

w f

w w f



 

    

  



 

L L M M

L M M

                                                       (13) 235 
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where iw  is the weight for the i th prediction and satisfies 
1

1
N

i

i

w


 . In Eq. (13), the prediction is divided into 236 

two parts. The first part 
1

N

i i

i

w


 L  is known, while the second part, the weighted sum of ( )p if M M , can be 237 

regarded as the increment term produced by multiple image pairs. The function f  differs according to the 238 

used spatio-temporal fusion method, and usually a linear model can be adopted for its characterization (e.g., 239 

the linear weighting function in the spatial weighting-based methods and the linear unmixing model for spatial 240 

unmixing-based methods). In this case, the second part can be altered as 241 

1 1

( ) ( )

( )

N N

i p i i p i

i i

w f f w

f

 

 
   

 

 

 M M M M

M

.                                                (14) 242 

That is, M  can be expressed as 
1

( )
N

i p i

i

w


 M M  for fusion using multiple image pairs. 243 

When the VIP is used, based on Eqs. (10) and (11), M  can be expressed as 244 

VIPp
  M M M .                                                                  (15) 245 

To compare 
2( )E M  and 

2( )E M , they are transformed individually, as presented in Appendix A. After 246 

derivation, 
2( )E M  and 

2( )E M  can be expressed as 247 

2 2

1 1 1

( ) ( ) ( ) ( )
i

N N N

i k k i p i

i k i

E Var w a Var E w
  

 
     

 
  M M r M M                          (16) 248 

2( ) ( )E Var M r .                                                               (17) 249 

Comparing Eq. (16) with Eq. (17), we can conclude that 
2( )E M  is obviously smaller than 

2( )E M , 250 

suggesting that the produced VIP is closer to the data at the prediction time than that for conventional 251 

spatio-temporal fusion model. Furthermore, by setting the weight iw  for the i th known MODIS image in Eq. 252 

(16) as 1 (i.e., only the i th MODIS-Landsat image pair is used for fusion), we have 253 

2 2

1

( ) ( ) ( ) ( )
i

N

i k k p i

k

E Var a Var E


    M M r M M .                                      (18) 254 
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It is clear that 2( )iE M  is still larger than 
2( )E M . This means the VIP is closer to the data at the prediction 255 

time than any known image pair, thus, capturing more fine spatial resolution information directly from the 256 

known images. Therefore, it is feasible to use the regression model to estimate the coefficient set and produce 257 

the VIP. 258 

 259 

2.3. VIP-based spatio-temporal fusion (VIPSTF) 260 

 261 

According to the general framework in Eq. (13), the prediction of the Landsat image includes two parts: the 262 

linear superposition of known Landsat images and the increment computed by applying a function f  to M . 263 

When the VIP is introduced for spatio-temporal fusion, the framework in Eq. (13) is replaced by the proposed 264 

VIPSTF model as follows 265 

VIP

VIP

VIP VIP

ˆ

( )

( )

p

p

f

f

  

  

  

L L L

L M

L M M

.                                                         (19) 266 

The VIPSTF prediction is a combination of the produced VIPL  and the Landsat level increment L . The 267 

increment L  is predicted by applying the function f  to the MODIS level increment M . 268 

As mentioned in the Introduction, there are two main types of methods to characterize f : one is spatial 269 

weighting (SW)-based and the other is spatial unmixing (SU)-based. In this paper, the popular STARFM and 270 

STDFA methods are considered as representative choices for SW and SU, respectively. We name the 271 

corresponding VIPSTF-based versions as VIPSTF-SW and VIPSTF-SU. The flowchart of the proposed 272 

VIPSTF approach (including both VIPSTF-SW and VIPSTF-SU versions) is shown in Fig. 1. 273 

 274 
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 275 

Fig. 1. Flowchart of VIPSTF, where both spatial weighting (SW)- and spatial unmixing (SU)-based solutions (i.e., VIPSTF-SW and 276 

VIPSTF-SU) are illustrated. 277 

 278 

2.3.1 Spatial weighting-based VIPSTF (VIPSTF-SW) 279 

 280 

In the proposed VIPSTF-SW method, a spatial weighting strategy is applied to predict the Landsat level 281 

increment L  from the MODIS level increment M , as shown in Eq. (20) 282 
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0 0

1

( , ) ( , )
sn

i i i

i

L x y M x y


                                                         (20) 283 

where ( , )i ix y  is the spatial location of the similar pixels surrounding the pixel centered at 0 0( , )x y , sn  is the 284 

number of similar neighboring pixels and i  is a weight assigned according to the distance between the center 285 

and similar pixels. Note that to match the spatial resolution of Landsat increment L , the MODIS increment 286 

M  needs to be interpolated (e.g., by bicubic interpolation) to the Landsat spatial resolution in advance. The 287 

similar pixels are searched according to the spectral difference between the center pixel and neighboring pixels 288 

in the virtual Landsat image VIPL : the first sn  pixels with the smallest spectral difference are chosen as similar 289 

pixels in each local window. Eq. (20) means that the increment for the center Landsat pixel is determined as a 290 

linear combination of M  of neighboring similar pixels. As seen in Eq. (19), by combining the prediction in 291 

Eq. (20) with the virtual Landsat image VIPL , the final prediction of VIPSTF-SW is obtained. 292 

The main difference between the spatial weighting strategy in VIPSTF-SW and the conventional strategy in 293 

STARFM lies in two aspects. First, in VIPSTF-SW, the difference (i.e., M ) between the MODIS image at 294 

the prediction time and the virtual MODIS image is used as the basis for spatial weighting. This is 295 

distinguished from STARFM where M  is larger, as demonstrated in Section 2.2. Second, in VIPSTF-SW, 296 

the similar pixels for each center pixel are searched based on the single image VIPL , rather than all known 297 

Landsat images in STARFM where the search is performed for each Landsat image in turn. Among the 298 

Landsat time-series images, some images are temporally far from the prediction time, which will decrease the 299 

validity of the selection of spectrally similar neighboring pixels. Therefore, the virtual Landsat image VIPL , 300 

which combines Landsat time-series images with adaptive coefficients, is more appropriate for searching 301 

similar neighboring pixels. 302 

 303 

2.3.2 Spatial unmixing-based VIPSTF (VIPSTF-SU) 304 

 305 
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In the proposed VIPSTF-SU method, land cover classification is performed on the virtual Landsat image 306 

VIPL  to acquire the fine spatial resolution land cover map. The map is upscaled to the MODIS spatial 307 

resolution to produce the coarse proportions for each land cover class. Based on the assumption that the 308 

distribution of land cover does not change during the period of interest, the coarse proportions at different 309 

times are the same. Thus, the proportion of each class for each MODIS pixel derived from the classification 310 

map of VIPL  is applied to unmix M  to produce the increment at the Landsat level. By solving the following 311 

linear SU model, the increment for each class can be obtained 312 

1 1 1 1 1 1 1 1 1

1

1
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( , ) ( , ) ( , ) ( ) ( , )
w w w w w w w w
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i i c i i C i i i i
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    
    
      
    
    
          

.                 (21) 313 

In Eq. (21), C  is the number of classes, wn  is the number of coarse MODIS pixels in the moving window,314 

( , )M x y  is the MODIS level increment M  of the coarse MODIS pixel located at ( , )x y  in the moving 315 

window, ( , )cp x y  is the coarse proportion of class c  for the coarse MODIS pixel located at ( , )x y , and ( )L c  316 

is the increment for the c th class. For each Landsat pixel, its increment L  is determined as 317 

 0 0 0 0( , ) ( , )L x y L c x y                                                          (22) 318 

where 0 0( , )c x y  is the land cover class of the Landsat pixel located at 0 0( , )x y  (determined by the 319 

classification map of VIPL ). The final VIPSTF-SU prediction of a Landsat pixel can be obtained by combining 320 

the increment in Eq. (22) with the corresponding pixel in VIPL . 321 

Similarly, the SU model in the proposed VIPSTF-SU method differs from the original SU-based model (i.e., 322 

STDFA) in two aspects. First, M  is used as the basis for unmixing, rather than M  in STDFA. Second, in 323 

VIPSTF-SU, the single image VIPL  is used to produce the land cover map, rather than the composed Landsat 324 

image whose features are stacked by all known Landsat images. 325 
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3. Experiments 326 

 327 

3.1. Data and experimental setup 328 

 329 

For validation of the proposed VIPSTF approach, MODIS and Landsat time-series images for two sites 330 

were used in our experiments. The first site is located in southern New South Wales, Australia (145.0675°E, 331 

34.0034°S) (called Site 1 hereafter) and presents a heterogeneous landscape, while the second site is located in 332 

southern New South Wales, Australia (145.0675°E, 34.0034°S) (called Site 2 hereafter) with great land cover 333 

change caused by flood inundation. In Site 1, we used Landsat 7 ETM+ time-series from 7 October 2001 to 3 334 

May 2002 and the corresponding 15 MODIS Terra MOD09GA Collection 5 images acquired on almost the 335 

same days. In Site 2, 11 pairs of Landsat and MODIS images from 16 April 2004 to 14 February 2005 were 336 

used. For both sites the spatial extent is 20 km by 20 km. The detailed acquisition dates of the images are 337 

presented in Table 1. Chronologically, we numbered the Landsat images of Site 1 as L1 to L15, and the 338 

corresponding MODIS images as M1 to M15. A similar numbering system was applied to Site 2. Partial 339 

Landsat and MODIS data for Sites 1 and 2 are shown in Figs. 2 and 3, respectively. It is noted that Site 2 is 340 

defined as the site with land cover change. Except for visual inspection (e.g., the flood inundation), the 341 

correlation coefficient (CC) between images acquired on different dates for Site 2 is much smaller than that for 342 

Site 1, even for two images acquired close in time (e.g., the CC between L8 and L9 for Site 1 is 0.7312, while 343 

the CC between L8 and L9 for Site 2 is only 0.3963). 344 

 345 

Table 1 Acquisition dates of the MODIS-Landsat data of the two sites 346 

Site 1 Site 2 

Image ID Date Image ID Date 

M1-L1 2001.10.07 M1-L1 2004.04.16 

M2-L2 2001.10.16 M2-L2 2004.05.02 

M3-L3 2001.11.01 M3-L3 2004.07.05 

M4-L4 2001.11.08 M4-L4 2004.08.06 

M5-L5 2001.11.24 M5-L5 2004.08.22 

M6-L6 2001.12.03 M6-L6 2004.10.25 

M7-L7 2002.01.04 M7-L7 2004.11.26 



 

 

17 

M8-L8 2002.02.12 M8-L8 2004.12.12 

M9-L9 2002.03.09 M9-L9 2005.01.13 

M10-L10 2002.03.16 M10-L10 2005.01.29 

M11-L11 2002.04.02 M11-L11 2005.02.14 

M12-L12 2002.04.10   

M13-L13 2002.04.17   

M14-L14 2002.04.26   

M15-L15 2002.05.03   

 347 

     348 
(a)                            (b)                            (c)                            (d)                           (e) 349 

     350 
(f)                            (g)                            (h)                            (i)                           (j) 351 

Fig. 2. Partial data of Site 1. (a) L4. (b) L7. (c) L8. (d) L9. (e) L13. (f)-(j) are corresponding MODIS data. 352 

 353 

     354 
(a)                            (b)                            (c)                            (d)                           (e) 355 

     356 
(f)                            (g)                            (h)                            (i)                           (j ) 357 

Fig. 3. Partial data of Site 2. (a) L2. (b) L7. (c) L8. (d) L9. (e) L11. (f)-(j) are corresponding MODIS data. 358 

 359 

Sections 3.2 and 3.3 provide the results for Site 1 (the heterogeneous site) and Site 2 (the site with land cover 360 

change), respectively. For Site 1, spatio-temporal fusion was performed to predict the Landsat image on 12 361 

February 2002 (i.e., L8), based on one MODIS-Landsat image pair (Section 3.2.1) and multiple image pairs 362 
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(Section 3.2.2). For Site 2, the prediction date is 12 December 2004, and the results based on one image pair 363 

are provided. The proposed VIPSTF approach (including both VIPSTF-SW and VIPSTF-SU versions) is 364 

compared with STARFM (Gao et al., 2006), STDFA (Wu et al., 2012), the unmixing-based data fusion 365 

(UBDF) algorithm (Zurita-Milla et al., 2008) and Flexible Spatiotemporal DAta Fusion (FSDAF) algorithm 366 

(Zhu et al., 2016). For STDFA and VIPSTF-SU, the images were classified into five classes with 367 

k-means-based unsupervised classification, and for STARFM and VIPSTF-SW, 20 similar pixels were 368 

selected within each local window. 369 

 370 

3.2. Test for the heterogeneous site (Site 1) 371 

 372 

3.2.1 Prediction by one image pair 373 

 374 

Among the 15 MODIS-Landsat image pairs of Site 1, we chose one MODIS-Landsat image pair from L1 to 375 

L15 (except L8) as the known images, in turn, along with the MODIS image at the prediction time as input. 376 

That is, the spatio-temporal fusion methods predict L8 with 14 different inputs. The predictions of the six 377 

methods when using M7-L7 as the input image pair are exhibited in Fig. 4 for visual comparison. Obviously, 378 

vegetation in the reference image presents as vibrant red. However, the predictions of the vegetation for 379 

FSDAF, STARFM and STDFA have a noticeably different color. When the VIP is used in fusion by 380 

VIPSTF-SW and VIPSTF-SU, the predictions are visually closer to the reference compared to the original 381 

STARFM and STDFA methods as well as FSDAF. Although the color in the UBDF prediction resembles that 382 

in the reference image, the method fails to reproduce the intra-class change (i.e., a reflectance value is assigned 383 

to the pixels of the same class within the coarse pixel) and also the blocky artifacts is noticeable. 384 

 385 
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       386 
 387 

 388 

 389 

 390 

 391 

 392 

 393 

(a)                         (b)                         (c)                         (d)                         (e)                          (f)                         (g) 394 

Fig. 4. Results of different spatio-temporal fusion methods for Site 1 (M7-L7 as known image pair) (NIR, red, and green bands as 395 

RGB). (a) UBDF. (b) FSDAF. (c) STARFM. (d) VIPSTF-SW. (e) STDFA. (f) VIPSTF-SU. (g) Reference.  396 

 397 

Quantitative evaluation was conducted using the RMSE and CC, as listed in Table 2. The UBDF and 398 

FSDAF methods produce mean CCs of around 0.7220 and 0.8314, respectively. For VIPSTF-SW, the mean 399 

CC is 0.8345, with an increase of 0.0392 compared to STARFM. For VIPSTF-SU, the mean CC is 0.0174 400 

larger than for STDFA. STARFM and STDFA produced mean RMSEs of 0.0454 and 0.0453, respectively. 401 

For VIPSTF-SW and VIPSTF-SU, the corresponding mean RMSEs decrease by 0.0090 and 0.0060, 402 

respectively. Among all six methods, VIPSTF-SW produces the greatest accuracy, with the largest CC of 403 

0.8435 and the smallest RMSE of 0.0321. The scatter plots in Fig. 5 reveal the difference between the actual 404 

Landsat image and the predictions, where the NIR band is used as an example. Clearly, the points in STARFM 405 

and STDFA present greater dispersion. In VIPSTF-SW and VIPSTF-SU predictions, the points are more 406 

aggregated and closer to the y=x  line. 407 

Fig. 6 shows the RMSEs and CCs of the six methods based on the use of different image pairs (i.e., M1-L1 408 

to M7-L7 and M9-L9 to M15-L15, 14 cases in all). The accuracy increases closer to the prediction time and 409 

decreases away from the prediction time, with the predictions using the Landsat images temporally closest to 410 

M8-L8 having the greatest accuracy. Checking the results for each method, FSDAF is found to be a 411 

competitive method that produces smaller RMSEs and larger CCs than UBDF, STARFM and STDFA in most 412 

cases. Moreover, the proposed VIPSTF-SW and VIPSTF-SU methods produce smaller RMSEs and larger 413 
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CCs than original STARFM and STDFA, and the two VIPSTF-based methods are also more accurate than 414 

FSDAF and UBDF. Interestingly, when different image pairs are used, the performances of VIPSTF-SW and 415 

VIPSTF-SU are more robust than the original STARFM and STDFA as well as FSDAF. More specifically, 416 

when temporally further image pairs are used, the gain in accuracy for VIPSTF is more obvious. As a result, 417 

the difference between VIPSTF and the original STARFM and STDFA methods varies greatly according to 418 

the used image pairs. For example, when using M7-L7, the CCs of STARFM and VIPSTF-SW are 0.8043 and 419 

0.8435, respectively, with a difference of 0.0392, but the difference increases to 0.2552 when using M3-L3. 420 

Similarly, the difference between VIPSTF-SU and STDFA is 0.0174 when using M7-L7 but up to 0.1716 421 

when using M3-L3. 422 

 423 

Table 2 Accuracies of different spatio-temporal fusion methods for Site 1 (M7-L7 as known image pair) 424 

  Ideal UBDF FSDAF STARFM VIPSTF-SW STDFA VIPSTF-SU 

RMSE 

Blue 0 0.0161 0.0148 0.0163 0.0127 0.0164 0.0134 

Green 0 0.0220 0.0199 0.0243 0.0166 0.0230 0.0175 

Red 0 0.0326 0.0311 0.0409 0.0235 0.0355 0.0251 

NIR 0 0.0684 0.0664 0.0788 0.0667 0.0753 0.0668 

SWR1 0 0.0601 0.0455 0.0500 0.0400 0.0513 0.0449 

SWR2 0 0.0513 0.0363 0.0365 0.0332 0.0404 0.0380 

Mean 0 0.0418 0.0357 0.0411 0.0321 0.0403 0.0343 

CC 

Blue 1 0.7260 0.8691 0.8643 0.8732 0.8470 0.8532 

Green 1 0.7223 0.8452 0.8251 0.8506 0.8134 0.8303 

Red 1 0.7619 0.8668 0.8562 0.8818 0.8484 0.8653 

NIR 1 0.5788 0.6272 0.4899 0.6496 0.5531 0.6073 

SWR1 1 0.7652 0.8768 0.8784 0.8906 0.8542 0.8632 

SWR2 1 0.7778 0.9036 0.9122 0.9151 0.8881 0.8894 

Mean 1 0.7220 0.8314 0.8043 0.8435 0.8007 0.8181 

 425 

      426 
(a)                              (b)                             (c)                              (d)                              (e)                              (f) 427 

Fig. 5. Scatter plots of the actual and predicted values of the NIR band for Site 1 (M7-L7 as known image pair). (a) UBDF. (b) 428 

FSDAF. (c) STARFM. (d) VIPSTF-SW. (e) STDFA. (f) VIPSTF-SU. 429 

 430 
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  431 
(a)                                                                                                (b) 432 

Fig. 6. The prediction accuracy based on different image pairs for Site 1. (a) RMSE. (b) CC. 433 

 434 

3.2.2 Prediction by multiple image pairs 435 

 436 

For prediction by multiple image pairs, we chose L8 as the Landsat image to predict and the temporally 437 

closest M7-L7 and M9-L9 image pairs were selected as the input. When using more image pairs for prediction, 438 

the selection of input spreads along both sides one-by-one. For the cases of using 2, 4, 6, 8, 10, 12 and 14 439 

image pairs we compared STARFM, STDFA, VIPSTF-SW and VIPSTF-SU. Fig. 7 shows the sub-area for the 440 

predictions of the different methods using 2, 6, 10 and 14 image pairs. When two image pairs are used for 441 

prediction, the prediction of STARFM tends to be less accurate than the other three methods, as the prediction 442 

shows unexpected dark blocks. As the number of image pairs increases, the difference between the reference 443 

and the predictions of STARFM and STDFA enlarges, while the predictions of VIPSTF-SW and VIPSTF-SU 444 

are more accurate. It can be seen from the predictions using 14 image pairs that the restoration of the red and 445 

green patches in STARFM and STDFA is not as satisfactory as those for VIPSTF-SW and VIPSTF-SU, which 446 

are very close to the reference. 447 

Fig. 8 shows the quantitative accuracy assessment of the predictions using multiple image pairs. The 448 

accuracy of the prediction by one image pair is also included for comparison. Obviously, no matter how the 449 
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number of image pairs changes, VIPSTF always provides a more accurate prediction than the corresponding 450 

original method. Moreover, from using one to multiple image pairs for prediction, the CCs of VIPSTF increase 451 

greatly (e.g., by 0.1795 for STARFM and 0.1471 for STDFA). When using more than two image pairs, the 452 

prediction accuracy of VIPSTF increases slowly. More precisely, the CC of VIPSTF-SW is 0.8973 for two 453 

image pairs, and increases to 0.9032 for 14 image pairs. The increase of CC of VIPSTF-SW is about 0.0060 454 

from using 2 to 14 image pairs. This is also the same case for VIPSTF-SU, where the corresponding increase in 455 

the CC is 0.0124. By contrast, the accuracies of STARFM and STDFA present an apparent fluctuation, and the 456 

main trend is that the accuracy can decrease as the number of image pairs increases to a large value. The CCs 457 

of STARFM and STDFA decrease by 0.0741 and 0.0667, respectively, when changing from using 6 to 12 458 

image pairs. 459 

 Reference STARFM STDFA VIPSTF-SW VIPSTF-SU 

2 

     

6 

     

10 

     

14 

     

Fig. 7. The predictions based on different numbers of image pairs for Site 1. 460 
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  461 
(a)                                                                                           (b) 462 

Fig. 8. The accuracy of prediction by multiple image pairs for Site 1. (a) RMSE. (b) CC. 463 

 464 

3.2.3 Reduction in the difference between the images at the known and prediction times 465 

 466 

As demonstrated theoretically in Section 2.3, the square root of the expectation of M , which equals the 467 

RMSE between the MODIS images at the known and prediction times, will decrease when using the VIP. 468 

Since the VIP includes both Landsat and MODIS images, we calculated the mean RMSEs between the 469 

Landsat images and also the mean RMSEs between the MODIS images when using the original image pair and 470 

the VIP for comparison. Fig. 9 displays the results for using one image pair (14 cases in all, as in Fig. 6). It can 471 

be noticed that the RMSEs between the MODIS images range from 0.0192 to 0.0508 when using the original 472 

image pair, and range from 0.0011 to 0.0302 when using the VIP. As for the Landsat images, the RMSEs range 473 

from 0.0384 to 0.0869 and 0.0350 to 0.0574 when the original image pair and the VIP are used, respectively. 474 

In each case, the RMSEs are obviously smaller when the VIP is used. 475 

The corresponding results for multiple image pairs were also calculated, as shown in Fig. 10. The black 476 

triangles represent the mean RMSEs between the different known images (MODIS or Landsat images) and the 477 

image (MODIS or Landsat image) at the prediction time, while the red circles are the mean RMSEs between 478 

the virtual MODIS or Landsat image and the image (MODIS or Landsat image) at the prediction time. It is 479 
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seen clearly that the red circle is always less than the black triangle for each prediction, indicating that the 480 

RMSE between the VIP and the image at the prediction is always smaller, which is consistent with Eq. (18). 481 

Therefore, the VIP can effectively reduce the difference between images at the known and prediction times 482 

(i.e., the increments at both the MODIS and Landsat levels). 483 

 484 

  485 
(a)                                                                                                  (b) 486 

Fig. 9. The RMSE between images at the known and prediction times when using the original image pair and the VIP based on one 487 

image pair. (a) RMSE between MODIS images. (b) RMSE between Landsat images. 488 

 489 

  490 
(a)                                                                                          (b) 491 

Fig. 10. The RMSE between images at the known and prediction times when using the original image pair and the VIP based on 492 

multiple image pairs. (a) RMSE between MODIS images. (b) RMSE between Landsat images. 493 
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STARFM and STDFA use the original image pairs for prediction, which have a large MODIS level 494 

increment M . In VIPSTF-SW and VIPSTF-SU, however, the virtual MODIS image with a smaller M  is 495 

used for prediction. To investigate how M  can influence the prediction accuracy, we calculated the 496 

reduction in the increment (in terms of the difference between the mean RMSEs of M  and M ), and the 497 

corresponding increase in accuracy achieved by using VIPSTF (in terms of the difference between the 498 

prediction RMSEs of VIPSTF and the original methods). Fig. 11 shows the scatter plots for VIPSTF-SW and 499 

VIPSTF-SU. It can be seen that when the difference between M  and M  increases, the difference between 500 

the prediction accuracy increases as well. That is, the increase in accuracy is larger when the reduction in the 501 

MODIS level increment M  is larger. 502 

 503 

  504 
(a)                                                                                 (b) 505 

Fig. 11. Scatter plots of reduction in the MODIS level increment (in terms of the difference between M  and M ) and the 506 

corresponding increase of prediction accuracy (in terms of RMSE decrease) for Site 1. (a) STARFM and VIPSTF-SW. (b) STDFA 507 

and VIPSTF-SU. 508 

 509 

3.2.4 Computational cost 510 

 511 

The computational costs for STARFM, STDFA, VIPSTF-SW and VIPSTF-SU are shown in Fig. 12. It is 512 

obvious that the computational costs of STARFM and STDFA increases linearly when more image pairs are 513 
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used, while those of VIPSTF-SW and VIPSTF-SU remain stable from using 1 to 14 image pairs. This is 514 

because both the spatial weighting procedure of STARFM and the spatial unmixing process of STDFA require 515 

time-consuming computation. When a new image pair is added, an additional time-consuming spatial 516 

weighting or spatial unmixing process is implemented. In VIPSTF, however, only a single VIP is constructed 517 

based on the simple linear transformation, and the time spent on producing the VIP is negligible. Moreover, 518 

the spatial weighting or spatial unmixing process is implemented only once, which saves computational cost 519 

significantly. 520 

 521 

Fig. 12. Computational costs of the methods for Site 1. 522 

 523 

3.3. Test for the site with land cover change (Site 2) 524 

 525 

For the site with land cover change, we chose the image numbered L8 as the Landsat image to predict. The 526 

10 Landsat images numbered L1 to L7 and L9 to L11 were selected as the inputs to prediction, respectively. 527 

The predictions produced using M7-L7 as input are shown in Fig. 13. Since the Landsat image to predict 528 

covers a large area inundated by floods which does not occur in the known Landsat images, large uncertainties 529 

exist in the predictions. From the visual comparison, all six methods can capture the flood information, but the 530 

boundary of the flood for each prediction varies noticeably. It is apparent that FSDAF, VIPSTF-SW and 531 

VIPSTF-SU can predict the boundary more accurately; see the black zone below the flood area. Furthermore, 532 
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when comparing the sub-area, the predictions of VIPSTF-SW and VIPSTF-SU have a more similar color to 533 

the reference image than STARFM, STDFA and FSDAF. Table 3 lists the accuracy of the six methods when 534 

using M7-L7 as the image pair. Overall, UBDF produces the smallest mean CC of 0.5595, while VIPSTF-SW 535 

provides the largest mean CC of 0.7432. Compared to STARFM, the mean RMSE is decreased by 0.0048 and 536 

the mean CC is increased by 0.0324 using VIPSTF-SW. Similarly, when using VIPSTF-SU, the mean RMSE 537 

is decreased by 0.0022 and the mean CC is increased by 0.0101 compared to STDFA. FSDAF produces a more 538 

accurate prediction than UBDF, STDFA and STARFM, but is less accurate than VIPSTF-SW. 539 

 540 

       541 
 542 

 543 

 544 

 545 

 546 

 547 

 548 

(a)                          (b)                          (c)                         (d)                         (e)                          (f)                         (g) 549 

Fig. 13. Results of different methods for Site 2 (M7-L7 as known image pair). (a) UBDF. (b) FSDAF. (c) STARFM. (d) VIPSTF-SW. 550 

(e) STDFA. (f) VIPSTF-SU. (g) Reference. 551 

 552 

Table 3 Accuracy of different spatio-temporal fusion methods for Site 2 (M7-L7 as known image pair) 553 

  Ideal UBDF FSDAF STARFM VIPSTF-SW STDFA VIPSTF-SU 

RMSE 

Blue 0 0.0201 0.0140 0.0147 0.0143 0.0162 0.0162 

Green 0 0.0240 0.0201 0.0209 0.0194 0.0233 0.0222 

Red 0 0.0284 0.0242 0.0253 0.0229 0.0280 0.0265 

NIR 0 0.0462 0.0328 0.0325 0.0315 0.0401 0.0400 

SWR1 0 0.0633 0.0610 0.0681 0.0584 0.0674 0.0638 

SWR2 0 0.0512 0.0555 0.0614 0.0481 0.0593 0.0526 

Mean 0 0.0389 0.0346 0.0372 0.0324 0.0391 0.0369 

CC 

Blue 1 0.4774 0.6540 0.6396 0.6949 0.5597 0.5800 

Green 1 0.5265 0.6766 0.6586 0.7026 0.5700 0.5924 

Red 1 0.5011 0.6659 0.6466 0.6952 0.5554 0.5706 

NIR 1 0.6043 0.8317 0.8384 0.8456 0.7423 0.7351 

SWR1 1 0.6427 0.7494 0.7486 0.7671 0.6758 0.6800 

SWR2 1 0.6051 0.7168 0.7330 0.7541 0.6470 0.6525 

Mean 1 0.5595 0.7157 0.7108 0.7432 0.6250 0.6351 
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The prediction accuracies of the six methods based on the use of multiple image pairs are shown in Fig. 14. 554 

The prediction accuracies do not show an obvious trend as for Site 1, and the accuracies are smaller. The 555 

reason is that spatio-temporal fusion becomes more challenging when great land cover change exists. It is 556 

evident that either VIPSTF-SW or VIPSTF-SU produces greater accuracy than the original STARFM or 557 

STDFA. The CCs of VIPSTF-SW range from 0.6636 to 0.7432, while CCs of STARFM range from 0.4684 to 558 

0.7108. As for VIPSTF-SU, the RMSEs are smaller than for STDFA, and the CCs are larger than for STDFA 559 

in most cases. In addition, the accuracy of FSDAF lies between that of STARFM and VIPSTF-SW, and the 560 

accuracy of UBDF fluctuates when using different image pairs. 561 

 562 

  563 
(a)                                                                                           (b) 564 

Fig. 14. The prediction accuracy based on different image pairs for Site 2. (a) RMSE. (b) CC. 565 

 566 

 567 

4. Discussion 568 

 569 

4.1. The impact of image pairs 570 

 571 

In the experiments for the heterogeneous site, predictions using multiple image pairs were provided for 572 

different spatio-temporal fusion methods. From Fig. 8, we find that as the number of image pairs increases to a 573 
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large value (e.g., larger than six), the accuracy increases slowly for VIPSTF-SW and VIPSTF-SU, but 574 

decreases obviously for STARFM and STDFA. For STARFM and STDFA, the final predictions are the 575 

weighted sum of separate predictions based on different image pairs. The weightings are mainly determined by 576 

the temporal difference between the known and prediction times in a local window. We calculated the absolute 577 

mean CCs of all six bands between the Landsat images at the known time (i.e., time of L1 to L15 except L8) 578 

and prediction time (i.e., time of L8), as shown in Fig. 15. The absolute CCs for the Landsat images of the eight 579 

image pairs are distributed between the two blue dotted lines in Fig. 15. It can be noted that when L4 and L12 580 

were added for fusion, the absolute CCs decrease obviously on both sides, which corresponds to the dramatic 581 

decrease in the accuracy of STARFM and STDFA in Fig. 8. This means STARFM and STDFA are sensitive to 582 

the CC between the image at the known and prediction times, but the existing scheme of combining multiple 583 

image pairs cannot accurately account for this factor. As a result, the image pairs with small correlation (e.g., 584 

the CC between L2 and L8 is 0.0649) can affect greatly the final prediction accuracy. In contrast, for VIPSTF, 585 

when constructing the VIP, different coefficients were assigned to images at different known times, and the 586 

coefficients are closely related to the CC between the image at the known and prediction times. For 587 

clarification, the absolute coefficients |a| of the green, red and NIR bands for L1 to L15 (except L8) in the case 588 

of using 14 image pairs are depicted in Fig. 16(a), while the relation with the CC (the red band is used as an 589 

example) is depicted in Fig. 16(b). In general, the lines of |a| in Fig. 16(a) show a similar trend to that of the 590 

|CC| in Fig .15. Moreover, as seen from Fig. 16(b), |a| is larger when |CC| is larger. This means the known 591 

image pairs with small correlation will be less informative in VIPSTF. Therefore, VIPSTF can assign |a| to 592 

different known images adaptively according to its correlation with the image at the prediction time. In 593 

spatio-temporal fusion, several studies investigated how to determine the optimal input image pairs (Chen et 594 

al., 2020; Tang et al., 2020), such as using the CC between coarse observations or even the CC between the 595 

coarse and fine images in each image pair to find the optimal image pairs. However, this issue remains open. 596 

For the VIPSTF proposed in this paper, the adaptive assignment of weights to different image pairs is robust 597 
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when using multiple image pairs, and more importantly, releases the requirement for image pair selection, 598 

which is a complicated task. 599 

 600 

 601 

Fig. 15. The CC between Landsat images at the known and prediction times. 602 

 603 

  604 
(a)                                                                             (b) 605 

Fig. 16. Variation in the absolute regression coefficient |a|. (a) |a| of Landsat at different times (e.g., 14 images). (b) Scatter plot 606 

between |CC| and |a| for the Red band. 607 

 608 

In practice, due to the influence of cloud contamination, it is difficult to acquire sufficient MODIS and 609 

Landsat time-series image pairs with reliable quality. Also, image pre-processing, including geometric 610 

registration between the MODIS and Landsat images, may require intensive effort. Intuitively, we expect the 611 
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employment of more image pairs to be beneficial and to increase accuracy. According the experimental results, 612 

however, the inclusion of more image pairs does not necessarily benefit obviously VIPSTF if the number of 613 

image pairs is already large. Thus, there emerges an imbalance in the costs and benefits. To avoid futile efforts 614 

in acquiring the MODIS and Landsat data in practical applications, it is necessary to define an index based on 615 

the idea of cost-benefit ratio to guide the determination of the number of image pairs. It is expected that the 616 

optimal number may vary according to the study area. 617 

 618 

4.2. The relation between the Landsat and MODIS images 619 

 620 

In the proposed VIPSTF approach, it is assumed that the reflectance of each MODIS pixel is the average of 621 

the corresponding Landsat pixels covering the same area (Li et al., 2020; Zhu et al., 2010). However, there 622 

always exists inconsistency between MODIS and Landsat images, which produces a bias in the assumed 623 

relationship (Chen et al., 2020; Li et al., 2020; Xie et al., 2018). The reason for this phenomenon is that the 624 

acquisition conditions (e.g., atmospheric effects, Sun-sensor geometry, bidirectional reflectance distribution 625 

function (BRDF) effects, the response function, noise, etc.) vary for different sensors (Gao et al., 2014; Roy et 626 

al., 2016). For example, although Terra, Aqua and Landsat are all Sun-synchronous orbit satellites, their 627 

viewing angles are different. MODIS images are acquired at very large viewing angles, while Landsat images 628 

are acquired with near-nadir view. All these factors will cause an inevitable bias in the simple averaging model. 629 

The bias can also differ greatly for MODIS-Landsat pairs acquired in different spatial regions and at different 630 

times. Since the bias is difficult to characterize at the current stage, it is challenging to express the relationship 631 

between Landsat and MODIS in a perfectly accurate mathematical model. However, if any prior knowledge or 632 

auxiliary information is available, it can be used readily when constructing the relation between the Landsat 633 

and MODIS images for possible enhancement of the proposed VIPSTF approach. 634 

 635 

4.3. Production of the VIP 636 
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 637 

This paper introduced the concept of the VIP to synthesize a MODIS-Landsat image pair closer to the 638 

prediction time. Theoretically, there should be opening solutions to produce the VIP. In this paper, it was 639 

determined specifically using a linear transformation model. See Eqs. (3) and (4), when constructing the VIP, 640 

we defined two functions, 1g  and 2g . Based on the assumption of linear transformation, 1g  and 2g  were 641 

defined as the linear weighted sum of MODIS and Landsat time-series images, as expressed in Eqs. (9) and 642 

(10). The rationale for the production of the VIP (i.e., the linear regression-based solution to determine the 643 

coefficients) was demonstrated mathematically. Experiments also validate that both the virtual MODIS and 644 

Landsat images are closer to that for the prediction time (see Figs. 9 and 10). Except for the linear 645 

transformation adopted in this paper, other transformation models such as nonlinear transformation may also 646 

be considered in future research. The application of these models may potentially lead to a more appropriate 647 

characterization of VIP and increase the fusion accuracy finally. Nevertheless, two points need to be 648 

emphasized when developing other transformation methods. First, the main objective of the production of the 649 

VIP is to reduce M , that is, to produce a VIP closer to the prediction time. Second, the transformation 650 

should preserve the consistency between the MODIS and Landsat images, such as in Eq. (5). This means that 651 

the two functions 1g  and 2g  need to be connected in a certain way, either explicitly or intrinsically. 652 

 653 

4.4. The applicability of VIPSTF 654 

 655 

In the general framework of the existing spatio-temporal fusion methods in Eqs. (1) and (2), the function f  656 

is the most critical issue for prediction. For the SW and SU methods used in the proposed VIPSTF approach, 657 

f  is a specific function that can be characterized explicitly by a mathematical expression. However, there 658 

also exists some other spatio-temporal fusion methods where f  cannot be defined as an explicit function. For 659 

example, in some learning-based methods (e.g., sparse representation (Huang and Song, 2012; Song and 660 
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Huang, 2013; Zhao et al., 2018), support vector regression (Moosavi et al., 2015) and deep learning (Das and 661 

Ghosh, 2016; Song et al., 2018)), the processing of M  is performed in a black box. In this paper, VIPSTF 662 

was demonstrated to be more accurate by applying the linear mechanism of SW and SU methods to process the 663 

new MODIS increment M  between the virtual MODIS image and the MODIS at the prediction time. Based 664 

on this encouraging performance, it is also worthwhile to investigate whether VIPSTF has the potential to be 665 

adopted to other spatio-temporal fusion methods (e.g., learning-based methods) where the function f  cannot 666 

be expressed explicitly. For these methods, however, the combination with VIPSTF tends to be more complex, 667 

and the feasibility remains to be validated and developed. On the other hand, for some learning-based methods, 668 

at least two image pairs (one before and one after the prediction time) are required. The VIP produced in this 669 

paper is actually a single image pair. Thus, it would be interesting to construct multiple VIPs (e.g., one VIP 670 

before and one VIP after the prediction time) for these methods, or even extend the original learning-based 671 

methods to be applicable to only one image pair. This is part of our ongoing research. 672 

 673 

4.5. Comparison between VIPSTF-SW and VIPSTF-SU 674 

 675 

In this paper, two versions of VIPSTF were developed by extending existing SW and SU schemes for 676 

characterizing the function f . From the prediction by one image pair for the heterogeneous area in Section 677 

3.2, the two types of methods have close performances and the difference in accuracy is small. For the area 678 

experiencing land cover changes in Section 3.3, however, the prediction of the SW methods have a greater 679 

accuracy than the SU methods in most cases; see the lines in Fig. 14(b). The reason is that there is a strong 680 

assumption in the SU-based methods: the proportions of land cover classes do not change during the time of 681 

interest. This assumption means the matrix of coarse proportions in Eq. (21) is fixed for any time, which makes 682 

the SU methods especially sensitive to land cover changes. In future research, it may be of great interest to 683 

develop more adaptive SU methods to account explicitly for land cover changes. For example, a bias term 684 

reflecting the degree of change in proportions could be included in the original coarse proportions to predict 685 
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more reliable increments for each class. However, how to quantify the change degree would be a critical issue, 686 

which may require reliable change detection between coarse spatial resolution images. On the other hand, 687 

blocky artifacts always exist in the predictions of SU methods because the unmixing step is implemented in 688 

units of coarse pixels, so that the pixels belonging to the same class in a local window may have very different 689 

reflectances. The spatial filtering scheme used in the Fit-FC method proposed in our previous research (Wang 690 

and Atkinson, 2018) may be a plausible solution to remove them, but the prediction can sometimes be visually 691 

smooth. It is found that the use of coarse proportions upscaled from soft classification results of an available 692 

fine spatial resolution land cover map, rather than a fine hard classified map in spatial unmixing, can alleviate 693 

the blocky artifacts (Liu et al., 2020; Ma et al., 2018; Wang et al., 2020). The theoretical basis behind this 694 

needs to be investigated further. Therefore, it would also be interesting to seek solutions to reduce the blocky 695 

artifacts in SU-based methods including the proposed VIPSTF-SU method for further enhancement. 696 

 697 

4.6. Comparison with solutions based on Landsat time-series 698 

 699 

Some studies have been developed for predicting Landsat images based on the homologous Landsat 700 

time-series accumulated from other days (Hilker et al., 2009; Zhu et al., 2015; Zhu et al., 2018). For example, 701 

Zhu et al. (2015) synthesized Landsat images at any given time using all available Landsat data based on 702 

seasonal trend analysis. Zhu et al. (2018) filled the missing pixels due to SLC-off and cloud contamination to 703 

produce spatially complete Landsat data. These researches are different from the spatio-temporal fusion 704 

investigated in this paper. First, from the perspective of data, they are performed based on the availability of 705 

Landsat time-series, sometimes for a very long time (e.g., >30 years in Zhu et al. (2015)). Spatio-temporal 706 

fusion, however, is flexible to the number of available Landsat images and has a much lighter dependence on 707 

the number of data. That is, spatio-temporal fusion can also be performed using only one temporal neighboring 708 

Landsat image. Second, from the perspective of principles, spatio-temporal fusion actually focuses on the 709 

issue of downscaling, by taking full advantage of the coarse MODIS images and the fine Landsat images to 710 
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predict the completely missing Landsat images on the same dates of MODIS images. The solutions based on 711 

long Landsat time-series account for seasonal trends and fit a model to characterize the reflectance at any time 712 

(Zhu et al., 2015). The gap-filling solution in Zhu et al. (2018) is performed using spatial and temporal 713 

interpolation, based on partly available Landsat data at the prediction time, rather than completely missing 714 

Landsat data at the prediction time as in spatio-temporal fusion. Given the common goal of predicting Landsat 715 

images, these two types of solutions can be potentially combined, which may be one breakthrough to enhance 716 

the performance of predicting missing Landsat data. Seasonal trends present the law of dynamic change of 717 

land cover at Landsat resolution at different times, while spatio-temporal fusion further exploits information 718 

from additional coarse MODIS images. This provides an interesting avenue for future research. 719 

 720 

 721 

5. Conclusion 722 

 723 

For spatio-temporal fusion, uncertainty exists mainly in the downscaling process of estimating the fine 724 

spatial resolution level increment (e.g., Landsat level increment) from the coarse level increment (e.g., 725 

MODIS level increment), which also means the difference between images of the known and prediction times. 726 

This paper proposed to construct a VIP which is closer to the data at the prediction time to capture more fine 727 

spatial resolution information directly from the known Landsat images, thus, reducing the burden of 728 

estimating the Landsat level increment. It was demonstrated theoretically that the VIP can reduce the MODIS 729 

level increment. Based on the concept of VIP, the VIPSTF approach was proposed. VIPSTF is a general 730 

approach suitable to both spatial weighting- and spatial unmixing-based methods. Accordingly, two versions 731 

of VIPSTF (i.e., VIPSTF-SW and VIPSTF-SU) were developed in this paper. Experiments were performed on 732 

two groups of datasets, and the proposed VIPSTF-based methods were compared to existing UBDF, FSDAF, 733 

STARFM and STDFA methods. The main findings are summarized as follows. 734 
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1) VIPSTF can enhance the performance of spatio-temporal fusion. The accuracies of both VIPSTF-SW 735 

and VIPSTF-SU are greater than the original STARFM and STDFA methods as well as the popular 736 

UBDF and FSDAF methods. For the prediction using M7-L7 as the known image pair for Site 1, the 737 

mean CC of VIPSTF-SW is 0.8435, which is 0.0392, 0.1215 and 0.0121 larger than for STARFM, 738 

UBDF and FSDAF, respectively. Also, the mean RMSE of VIPSTF-SU is 0.0060, 0.0075 and 0.0014 739 

smaller than for STDFA, UBDF and FSDAF, respectively. 740 

2) Both the virtual MODIS and Landsat images in the VIP are closer to the data at the prediction time than 741 

the original image pairs. The VIP can effectively reduce the increments at both the MODIS and Landsat 742 

levels. The advantage of VIPSTF is especially obvious when the reduction in the increment is large (i.e., 743 

the case where the original image pairs are temporally far from the prediction time). 744 

3) VIPSTF is applicable to both heterogeneous sites and sites experiencing temporal land cover type 745 

changes. 746 

4) For the prediction by multiple image pairs, as the number of image pairs increases, the prediction 747 

accuracies of STARFM and STDFA can decrease, but that of VIPSTF increases slowly or stays stable. 748 

This means that VIPSTF is robust to the use of different image pairs, which releases it from the 749 

complicated problem of image pair selection. 750 

5) For the site with land cover changes, VIPSTF-SW is more accurate than VIPSTF-SU, and the latter is 751 

more sensitive to land cover changes. When using M7-L7 as the known image pair, the mean CC of 752 

VIPSTF-SW is 0.1081 larger than for VIPSTF-SU. 753 

6) When using more image pairs, the computational cost of STARFM and STDFA increases noticeably, 754 

while VIPSTF always maintains a constant and smaller running time. 755 

 756 

 757 

 758 

 759 
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Appendix A 766 

 767 

As seen from Eq. (14), M  can be expressed as 
1

( )
N

i p i

i

w


 M M  when using multiple image pairs for 768 

fusion. Considering the relationship between the expectation and the variance, 
2( )E M  can be calculated as 769 
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As for the variance term 
1
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 
 

 
 M M , pM  can be represented by the transformation of kM  771 

according to Eq. (11) (note that kM  and iM  do not refer to the same MODIS image). Thus, we have 772 
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In Eq. (A2), iM  is merged with 
1

N

k k

k

a


 M  by defining a new coefficient 774 
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Moreover, the term 
1

N

i

i

w b


  can be canceled in Eq. (A2) as both iw  and b  are constant, and the term 
1

N

i

i

w


 r  is 776 

simplified as r  since 
1

1
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 . 777 

Considering the expansion rule of the variance of the sum of two variables, Eq. (A2) can be rewritten as 778 
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According to the relationship between the covariance and the expectation, ( , )kCov M r  can be transformed as 780 

( , ) ( ) ( ) ( )k k kCov E E E  M r M r M r                                                  (A5) 781 

where   means the inner product between two vectors. 782 

For classical least squares-based linear regression modeling, there are two important properties. First, the 783 

expectation of the product of the independent variable and the residual is zero. Second, the expectation of the 784 

residual is zero (Draper and Smith, 2014) 785 
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Therefore, Eq. (A5) equals to zero and Eq. (A4) can then be rewritten as 787 
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According to Eq. (A7), Eq. (A1) can be updated as 789 
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When the VIP is used, based on Eqs. (10) and (11), 
2( )E M  can be derived as 791 
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Fig. 1. Flowchart of VIPSTF, where both spatial weighting (SW)- and spatial unmixing (SU)-based solutions (i.e., VIPSTF-SW and 911 

VIPSTF-SU) are illustrated. 912 

Fig. 2. Partial data of Site 1. (a) L4. (b) L7. (c) L8. (d) L9. (e) L13. (f)-(j) are corresponding MODIS data. 913 

Fig. 3. Partial data of Site 2. (a) L2. (b) L7. (c) L8. (d) L9. (e) L11. (f)-(j) are corresponding MODIS data. 914 

Fig. 4. Results of different spatio-temporal fusion methods for Site 1 (M7-L7 as known image pair) (NIR, red, and green bands as 915 

RGB). (a) UBDF. (b) FSDAF. (c) STARFM. (d) VIPSTF-SW. (e) STDFA. (f) VIPSTF-SU. (g) Reference.  916 

Fig. 5. Scatter plots of the actual and predicted values of the NIR band for Site 1 (M7-L7 as known image pair). (a) UBDF. (b) 917 

FSDAF. (c) STARFM. (d) VIPSTF-SW. (e) STDFA. (f) VIPSTF-SU. 918 

Fig. 6. The prediction accuracy based on different image pairs for Site 1. (a) RMSE. (b) CC. 919 

Fig. 7. The predictions based on different numbers of image pairs for Site 1. 920 

Fig. 8. The accuracy of prediction by multiple image pairs for Site 1. (a) RMSE. (b) CC. 921 

Fig. 9. The RMSE between images at the known and prediction times when using the original image pair and the VIP based on one 922 

image pair. (a) RMSE between MODIS images. (b) RMSE between Landsat images. 923 

Fig. 10. The RMSE between images at the known and prediction times when using the original image pair and the VIP based on 924 

multiple image pairs. (a) RMSE between MODIS images. (b) RMSE between Landsat images. 925 

Fig. 11. Scatter plots of reduction in the MODIS level increment (in terms of the difference between M  and M ) and the 926 

corresponding increase of prediction accuracy (in terms of RMSE decrease) for Site 1. (a) STARFM and VIPSTF-SW. (b) STDFA 927 

and VIPSTF-SU. 928 

Fig. 12. Computational costs of the methods for Site 1. 929 

Fig. 13. Results of different methods for Site 2 (M7-L7 as known image pair). (a) UBDF. (b) FSDAF. (c) STARFM. (d) VIPSTF-SW. 930 

(e) STDFA. (f) VIPSTF-SU. (g) Reference. 931 

Fig. 14. The prediction accuracy based on different image pairs for Site 2. (a) RMSE. (b) CC. 932 

Fig. 15. The CC between Landsat images at the known and prediction times. 933 

Fig. 16. Variation in the absolute regression coefficient |a|. (a) |a| of Landsat at different times (e.g., 14 images). (b) Scatter plot 934 

between |CC| and |a| for the Red band. 935 
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