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We include additional details of how the formalism em-
ployed in the main text for atomic transitions relates to
effective oscillating currents and nanoresonator systems.
We present a brief description of the mathematical model
which applies both in the limit of low light intensity with
coherent drive and to a single photon excitation in the ab-
sence of drive. We extend the discussion of the toroidal
dipole eigenmode to the occupation of the mode. Ad-
ditional details of how the proposal could be realized
experimentally are considered. Finally we give results
for simplified toroidal dipole and anapole unit cells with
atoms only in a single 2D plane.

SI. LIGHT-ATOM INTERACTIONS

SI.A. Quantum system of atoms and light

In the main text we describe the excitation of an ef-
fective toroidal dipole and anapole in a coherently driven
atomic ensemble by the equations ḃ = iHb+f where b is
a vector of atomic dipole amplitudes and f is proportional
to the amplitude of the driving field. Here we describe
the quantum model of atoms interacting with light in
the length gauge, obtained by the Power-Zienau-Woolley
transformation [S1–S4]. In the limit of low light intensity,
the system with a single electronic ground state can be
exactly described by a classical model of coupled dipoles
driven by coherent light with field E(r) [S5, S6]. The full
many-excitation dynamics is described by the many-body
quantum master equation for the density matrix [S7];
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with the square brackets representing commutators and
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where σ+
jν = |e〉jνj〈g| is the raising operator for atom j

from its ground state to its excited state with m = ν.

Here, ∆
(j)
ν is the detuning of each level from resonance.

The Hermitian interaction terms Ω
(jl)
νµ and collective dis-

sipation terms γ
(jl)
νµ due to the dipole-dipole coupling be-

tween the atoms are given by the real and imaginary part
of

Ω(jl)
νµ + iγ(jl)νµ = ξG(jl)νµ , (S3)

where G(jk)νµ = êν · G(ri − rj)êµ is the dipole radiation
kernel that, acting on a dipole d at the origin, produces
the familiar expression [S8] (with r̂ = r/|r|)

G(r)d = −dδ(r)
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and ξ = 6πγ/k3.

SI.B. Low light intensity limit

In the limit of low drive intensity we neglect terms con-
taining products of two or more excited state amplitudes,
or one or more excited state amplitudes multiplied by the
drive field [S4]. In our system, this amounts to neglect-
ing terms 〈σ+

jνσ
−
`µ〉 (along with higher order correlators of

σ±jν) and E0 〈σ+
m〉. The excited state population is negli-

gible while the ground state population is invariant. The
only non-trivial equation is for 〈σ−jν〉 and Eq. S1 reduces
to

ḃ = iHb + f , (S5)

in terms of the vector b3j+ν−1 = 〈σ−jν〉, the matrix

H3j+ν−1,3k+µ−1 = ∆(j)
ν δνµδjk+Ω(jk)

νµ (1−δjk)+iγ(jk)νµ ,

(S6)

and the drive f3j+ν−1 = i(ξ/D)êν · εE(rj).

SI.C. Single photon excitation

The dynamics of a single photon excitation, decaying
in the absence of drive, can also be described by the same
formalism. Without drive, there is decay from the single-
excitation state to the ground state, but the remaining
single-excitation state remains pure, and the dynamics
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FIG. S1. (a) Overlap of each eigenmode of a toroidal dipole
unit cell (ordered by the collective resonance linewidth) with
an ideal toroidal dipole mode with poloidal polarization. (b)
Occupation measure LT of the toroidal dipole collective eigen-
mode and sum L′ of the occupation of all other modes in the
steady state response, as laser detuning is varied, for r = 0.2λ,
a = 0.08λ.

is linear in the amplitude of this state. It is this lin-
ear response without saturation which provides identical
single-particle amplitudes to those of the low light inten-
sity limit of coherently driven atoms [S9].

We again start from the full atomic equations of motion
Eq. S1, but now assume that the initial state consists of a
pure, single-photon excitation. Then the density matrix
at later times can be written as

ρ = |Ψ〉 〈Ψ|+ pg |G〉 〈G| , (S7)

where |Ψ〉 is a state consisting of exactly one excitation,
|G〉 is the state with all atoms in their ground state, and
pg is the probability that the excitation has decayed. In
this case there is no incoherent mixing between the ex-
cited and ground state. While dissipation means that the
norm of |Ψ〉 is not conserved, the dynamics within the
single-excitation subspace is coherent, and it can always
be expanded in terms of the individual atomic excitations

|Ψ〉 =
∑
j,ν

P(j)
ν (t) σ̂+

jν |G〉 , (S8)

with amplitudes P(j)
ν (t). For single-particle expectation

values, the dynamics can equally be written in terms of

these amplitudes. In terms of the vector b3j+ν−1 = P(j)
ν ,

we have again ḃ = iHb [S10], formally equivalent to
the equations describing the low light intensity limit in
the absence of drive. The identical description is due
to the fact that in each case the relevant dynamics in-
cludes only a part of the density matrix which evolves
linearly without saturation, with the collective response

being determined by the dipole propagation kernel G(jl)νµ .

SII. COLLECTIVE TOROIDAL EIGENMODE

The collective dynamics of the atomic ensemble is de-
termined by the eigenvectors vj of H, representing the

FIG. S2. Longitudinal component |Ex| and radial compo-
nent |Eρ| of the focused radially polarized beam used to excite

the anapole, as a function of the distance ρ =
√
y2 + z2 from

the beam axis in the focal plane x = 0. Here the incoming
field before focusing is E = êρ and the NA is 0.7.

collective radiative excitation eigenmodes of the atoms,
and the corresponding eigenvalues δj + iγj [S11], where
γj denotes the collective resonance linewidth and δj the
collective resonance line shift from the single-atom res-
onance. While these eigenvectors are not orthogonal in
general, they do form a basis, and the state can be ex-
panded at all times as b(t) =

∑
i ci(t)vi. The occupation

of each eigenmode can then be defined as [S12]

Li =
|vTi b|2∑
j |vTj b|2

. (S9)

For a single-photon excitation, each eigenmode will decay
individually with

cj(t) = exp [(iδj − γj)t], (S10)

with cj(0) determined by the initial state.
The toroidal dipole unit cell has a collective eigenmode

exhibiting a strong toroidal dipole as discussed in the
main text. We can similarly measure the overlap of this
mode with an ideal toroidal dipole eigenmode vT , de-
picted in Fig. 1 of the main text, with poloidal polariza-
tion. This is given by Ci = |vTi vT |2/

∑
j |vTj vT |2. This

overlap is illustrated for each eigenmode in Fig. S1(a)
showing that there is a unique collective mode which ap-
proximates the ideal poloidal polarization mode. The
occupation LT of this eigenmode, as well as the sum of
occupations of all other modes, is plotted in Fig. S1(b)
as a function of laser detuning, with LT > 0.99 at reso-
nance. The maximum occupation in Fig. S1 corresponds
to the maximum toroidal dipole excitation of Fig. 3 in
the main text.

SIII. CLASSICAL ANALOGUE OF
POLARIZATION DISTRIBUTION

In this work, we have synthesized collective radiative
excitations of atoms that produce a toroidal dipole and
an anapole. This is achieved by a simple arrangement of
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atoms that experience strong light-mediated interactions.
In particular, the toroidal dipole is generated by the ori-
entation of the atomic transitions due to the dipole-dipole
interactions forming an effective poloidal electric cur-
rent wound around a torus. Each atom produces an ef-
fective electric dipole generated by quantum-mechanical
electric-dipole-allowed transitions in electronic orbitals.
Here we provide a classical analogue description of this
quantum-mechanical process, illustrating how effective
polarization and current densities originate from such
atomic dipole transitions. This allows us to make com-
parisons with systems of nanoparticles and solid-state ar-
tificial metamaterial resonators that have been used in
studies of electromagnetic multipole radiation.

SIII.A. Classical effective currents from trapped
atoms

Classically, we describe the interactions of light with
atoms trapped in a ring-shaped pattern, represented by a
sequence of oscillating charges. Consider a ring in the xy
plane with radius ρ, and let φ be the azimuthal angle in
the plane. Suppose there is a flow of charge on the ring
and consider an infinitesimal segment where a negative
charge −q moves from a point rφ at angle φ a distance

∆r = −ρ dφφ̂ along the ring in a time dt, leaving a pos-
itive charge q stationary at rφ. The charge distribution
can be replaced by n dipoles with spacing ∆r/n such that
the positive charge of each dipole overlaps with the neg-
ative charge of the next, leaving only the original charges
at each end. Then the polarization density in the limit
n→∞ is [S3]

P = lim
n→∞

n−1∑
p=0

(−q) ∆r

n
δ

(
r−

(
rφ +

p+ 1/2

n

)
∆r

)

= −
∫ 1

0

du q∆rδ(r− rφ − u∆r),

(S11)
giving a continuous polarization density consisting of
point dipoles dP = −q∆rδ(r−rφ−u∆r)du = qρdφ δ(r−
rφ − u∆r)duφ̂ located at rφ + u∆r and pointing in the

direction φ̂. These point dipoles describe the response
of single atoms, whose size is negligible compared to the
optical wavelength.

The current density associated with the change in the
electric charge distribution from each point dipole is
given by

dJ =
1

dt
[−q(rφ + ∆rφ)− (−q)rφ]δ(r− rφ − u∆r)du,

(S12)

= qρ
dφ

dt
δ(r− rφ − u∆r)duφ̂,

which is simply equal to dP/dt. This circulating current,
for a sufficiently small circle, creates an effective magnetic

dipole with a magnetic moment dµ = du(q/(2dt))rφ ×
∆r = du(qρ2dφ/(2dt))ẑ such that the total magnetic mo-
ment µ =

∫
dµ = (dφρ2/2)(q/dt)ẑ is simply the current

times the area of the circle within the angle dφ.
While this description applies to a continuous distribu-

tion of dipoles located at rφ +u∆r (or n discreet dipoles
without taking the limit n→∞ in Eq. S11), it can be ap-
proximated with a discrete series of a smaller number of
dipoles located at fixed positions rj . The corresponding

polarization density Pσ(r, t) = exp (−iωt)D
∑
j P

(j)
σ δ(r−

rj) induced by a driving field with frequency ω leads
to a current density J = −iωP. When these discrete
currents are arranged to point tangentially to a circle,
they approximate a closed loop of current. The magnetic
dipole moment appearing in the scattering cross section
is then [S13] m = µ/c = 1/(2c)

∫
d3r r× J(r). Similarly,

poloidal current distributions are approximated by cur-
rents from time dependent point dipoles giving a toroidal
dipole moment [S14]

T =
1

10c

∫
d3r

[
r(r · J)− 2r2J

]
. (S13)

Numerically, we include all the light-mediated dipole-
dipole interactions between the atoms and calculate the
collective excitation eigenmodes for the coupled dipoles
(see Sec. SII). One of the eigenmodes then corresponds to
the poloidal current configuration of the toroidal dipole
[Fig. S1(a)]. This also applies to the case of an array of
several toroidal dipoles, as discussed in the main text.

SIII.B. Nanoparticles and solid-state resonators

The classical description of the effective current due to
atomic dipole transitions, given in the previous section,
allows us to make comparisons with systems of nanopar-
ticles and resonators in artificial metamaterials that form
multipole radiation sources. The most dramatic dif-
ference is the quantum-mechanical nature of the opti-
cal interaction for the case of atoms, where the atomic
transitions are determined by the precise resonance fre-
quency and the quantum-mechanical Wigner-Weisskopf
resonance linewidth [S3]. Atoms also form truly point-
like electric dipoles.

In the limit of low light intensity, the atoms interacting
with incident light can be considered as a linear classical
coupled-dipole system (see Sec. SI SI.B). Small nanopar-
ticles [S15, S16] or circuit resonators [S17, S18] are fre-
quently approximated as effective coupled point dipoles
in electromagnetic fields. Nanoparticles with their elec-
tric dipoles (provided that the higher-order multipole
contributions are negligible) forming a closed ring can
then exhibit a mode that behaves as an effective magnetic
dipole [S15], analogously to the earlier classical charge
distribution description of the atoms. In resonant LCR
circuits in metamaterials, the current oscillations form
effective electric and magnetic dipoles that radiatively
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couple with the current oscillations of the other circuits.
If each circuit is modeled as a pointlike particle, and
higher-order multipole contributions of each circuit are
negligible, the dynamics corresponds to a coupled-dipole
system [S17, S18].

As a comparative example, a nanorod can be approxi-
mated as an effective point dipole [S19], where the polar-
ization density is to first order assumed to be a uniform
distribution of point dipoles throughout the volume of
the rod. Depending on the geometry of the problem and
the thickness of the nanorods, all other excitation modes,
such as radial or azimuthal currents are then in this ap-
proximation ignored. For a single nanorod of radius a
and length H at the origin, and aligned along the z axis,
the resulting polarization distribution is

P =
Q(t)

πa2
ẑΘ(a− ρ)Θ(H/2− z)Θ(H/2 + z), (S14)

where Θ is the Heaviside function, ρ =
√
x2 + y2, and

Q(t) is a generalized coordinate whose derivative Q̇(t)
describes current oscillations in the nanorod. In con-
trast to atomic dipoles, although for H . λ this polar-
ization density can be approximated by a point dipole
P = Q(t)H ẑδ(r), this approximation easily breaks down
for interacting nanorods that are too closely separated
compared with the resonant wavelength [S19].

SIV. EXPERIMENTAL CONSIDERATIONS

For most of the examples discussed in the main text
we choose r = (n + 1/2)a for integer n, with the result
that the atoms lie on selected sites of a square lattice
with lattice constant a (see main text Fig. 2). Four in-
tersecting beams, two pairs of propagating beams in the
y and z directions respectively, can be used to produce
such a lattice with confining potential

V (r) = sER

[
sin2

(
π
y

a

)
+ sin2

(
π
z

a

)]
, (S15)

where ER = π2~2/(2ma2) is the lattice recoil energy and
s is a dimensionless constant which determines the depth
of the lattice [S20]. An additional potential can con-
fine the atoms in the x = ±a/2 planes. This could be
an identical pair of counter-propagating beams in the x
direction, or a simpler double-well potential. Locally,
each atom experiences a harmonic trapping potential
V (r) = (m/2)

∑
ω2
µ(∆rµ)2 where ωy,z = 2

√
sER/~, ωx

is the harmonic trapping frequency in the x direction,
and ∆r is the displacement from the center of the lattice
site. Then the atom at site rj has a Wannier function
φj(r) = φ(r− rj) given by

φ(r) =
1

(π3l4l2x)1/4
exp

(
−y

2 + z2

2l2
− x2

2l2x

)
, (S16)

with width l = as−1/4/π and thickness lx =
√
~/(mωx).

The atoms can be increasingly strongly confined by in-
creasing the trapping strength s. Experimentally, atoms

are loaded deterministically into a Mott-insulator state
with one atom per site [S21–S23], and the desired geom-
etry achieved by removing excess atoms on a site-by-site
basis [S24].

Further techniques have also been developed to pro-
vide deeply subwavelength features in optical trapping
potentials. For example, coupling three atoms in a Λ
configuration via a strong control field with Rabi fre-
quency Ωc(y, z) = Ωc sin (ky) sin (kz) and a weak probe
field with Rabi frequency Ωp leads to a trapping poten-
tial which depends on the ratio Ωc(y, z)/Ωp, which varies
rapidly in a small region close to the nodes of Ωc(y, z),
for Ωp/Ωc � 1 [S25]. Alternatively, internal degrees of
freedom can be exploited [S26]. Lattices with periodic-
ity less than half the wavelength of the control field can
also be engineered by stroboscopicaly shifting the lat-
tice at high frequency such that the atoms experience
a time-averaged potential with higher periodicity than
the instantaneous potential at any one time [S27, S28].
Finally, optical tweezers provide an alternative means to
design arbitrary potentials [S29–S31] with single-site con-
trol [S32, S33].

Atoms such as Sr and Yb are particularly suitable for
subwavelength trapping. 33Sr has a transition between
the 3P0 state and the triply degenerate 3D1 state [S34]
with wavelength λ = 2.6µm and linewidth Γ = 2.9 ×
105/s. The magic wavelength for these states gives an
optical lattice with spacing d = 206.4nm, less than λ/10.
While most of the examples we consider require vary-
ing only the overall laser detuning, the data shown in
Fig. 4 of the main text requires the individual atomic
level shifts of different atoms to be controlled. This could
be achieved by ac Stark shifts [S35] from standing wave
lasers offset from the trapping lattice such that different
sites experience different intensities.

SV. ANAPOLE EXCITATION

To excite the anapole we use a tightly focused radially
polarized beam. The focusing leads to a longitudinal
component in the x direction on the beam axis which di-
rectly drives the x component of polarization on the two
atoms at the center of the anapole. Off axis, a combi-
nation of radial and longitudinal polarization couple to
the toroidal dipole mode of the remaining atoms. The
amplitude of the longitudinal and radial components of
the field in the x = 0 focal plane are shown in Fig. S2 as
a function of the radial distance ρ from the beam axis.

SVI. IN-PLANE TOROIDAL DIPOLE AND
ANAPOLE

An experimentally even simpler realization of both the
toroidal dipole and the anapole with atoms confined only
to a single plane can be achieved by removing the atoms
for which z 6= 0, as shown in Fig. 2(c) of the main
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(a)

(c)

(b)

(d)

FIG. S3. Excitation of toroidal dipole and dynamic anapole
with two magnetic dipole moments such that all atoms are
in the single xy plane. Multipole decomposition for toroidal
dipole unit cell of (a) atomic dipoles [in units of DE0/(~γ)],
and (b) the far-field scattered light, separated into the total
dipole component, and the remaining sum of all other con-
tributions (in units of incident light intensity Iin/k

2). Mul-
tipole decomposition for the single-plane dynamic anapole of
(c) atomic dipoles [in units of DE0/(~γ)], with p = d + ikT,
and (d) the far-field scattered light, separated into the total
dipole component, and the remaining sum all other contribu-
tions (in units of Iin/k

2). In all cases r = 0.2λ and a = 0.08λ.

text, leaving two squares with opposite chirality polar-
ization. These squares will have magnetic dipole mo-
ments pointing in the ẑ and −ẑ directions, respectively,
leading to zero net magnetic moment but contributing
to a toroidal dipole. The resulting multipole decompo-
sition of the atomic dipoles and the far-field scattered
light is shown in Fig. S3(a,b). A strong toroidal dipole is
present, although the far-field scattered light in this case
also shows a comparable contribution from higher order
modes. Again this toroidal dipole can interfere with a
net electric dipole moment on two atoms at ±(a/2)x̂ to
form an anapole. The resulting multipole decomposition
is shown in Fig. S3(c,d). There is strong suppression
of the total dipole moment and a significant dip in the
scattered light, although again the contributions of other
multipole moments, especially quadrupoles, is stronger
than the case with four squares presented in the main
text. These contributions of higher-order multipole mo-
ments could be further suppressed by adding more atomic
squares, 8, 16, etc.
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Thierry Lahaye, and Antoine Browaeys, “An atom-by-
atom assembler of defect-free arbitrary two-dimensional
atomic arrays,” Science 354, 1021–1023 (2016).

[S34] B. Olmos, D. Yu, Y. Singh, F. Schreck, K. Bongs, and
I. Lesanovsky, “Long-range interacting many-body sys-
tems with alkaline-earth-metal atoms,” Phys. Rev. Lett.
110, 143602 (2013).

[S35] Fabrice Gerbier, Artur Widera, Simon Fölling, Olaf
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