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A toroidal dipole represents an often overlooked electromagnetic excitation distinct from the standard
electric and magnetic multipole expansion. We show how a simple arrangement of strongly radiatively
coupled atoms can be used to synthesize a toroidal dipole where the toroidal topology is generated by
radiative transitions forming an effective poloidal electric current wound around a torus. We extend the
protocol for methods to prepare a delocalized collective excitation mode consisting of a synthetic lattice of
such toroidal dipoles and a nonradiating, yet oscillating charge-current configuration, dynamic anapole, for
which the far-field radiation of a toroidal dipole is identically canceled by an electric dipole.
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The concept of electric and magnetic multipoles vastly
simplifies the study of light-matter interaction, allowing the
decomposition both of the scattered light and of the charge
and current sources [1,2]. While the far-field radiation can
be fully described by the familiar transverse-electric and
-magnetic multipoles, the full characterization of the current
requires, however, an additional series that is independent of
electric and magnetic multipoles: dynamic toroidal multi-
poles [3–6]. These are extensions of static toroidal dipoles
[7] that have been studied in nuclear, atomic, and solid-state
physics, e.g., in the context of parity violations in electro-
weak interactions [8–10] and in multiferroics [11]. Often
obscured and neglected in comparison to electric and
magnetic multipoles due to its weakness, the toroidal dipole
can have an important response to electromagnetic fields in
systems of toroidal geometry [12]. Dynamic toroidal dipoles
are actively studied in artificial metamaterials that utilize
such designs, with responses varying from the microwave to
the optical part of the spectrum [13–18]. Crucially, an
electric dipole together with a toroidal dipole can form a
nonradiating dynamic anapole [19–22], where the far-field
emission pattern from both dipoles interferes destructively,
so the net emission is zero.
Light can mediate strong resonance interactions between

closely spaced ideal emitters, and an especially pristine
system exhibiting cooperative optical response is that of
regular planar arrays of cold atoms with unit occupancy
[23–36]. Subradiant linewidth narrowing of transmitted
light has now been observed in such a system formed by an
optical lattice [37]. In the experiment the whole array was
collectively responding to light with the atomic dipoles
oscillating in phase. Furthermore, the lattice potentials can
be engineered [38], and a great flexibility of optical
transitions is provided by atoms such as Sr and Yb [39].
Also several other experimental approaches exist to trap
and arrange atoms with single-site control [40–46].

Here we propose how to harness strong light-mediated
interactions between atoms to engineer collective radiative
excitations that synthesize effective dynamic toroidal
dipole and nonradiating anapole moments, even though
individual atoms only exhibit electric dipole transitions.
The method is based on simple arrangements of atoms,
where the toroidal topology is generated by radiative
transitions forming an effective poloidal electric current
wound around a torus, such that an induced magnetization
forms a closed circulation inside the torus. The toroidal and
anapole modes can be excited by radially polarized incident
light and, in the case of the anapole, with a focusing lens.
The resulting anapole excitation shows a sharp drop in the
far-field dipole radiation, despite having a large collective
electronic excitation of the atoms associated with both
electric and toroidal dipole modes. Such a configuration
represents stored excitation energy without radiation that is
fundamentally different, e.g., from subradiance [47]. We
extend the general principle to larger systems, and show in
sizable arrays how this collective behavior of atoms allows
us to engineer a delocalized collective radiative excitation
eigenmode consisting of an effective periodic lattice of
toroidal dipoles. Such an array is then demonstrated to
exhibit collective subradiance, with the narrow resonance
line sensitively depending on the lattice spacing and
manifesting itself as a Fano resonance in the coherently
transmitted light.
Utilizing cold atoms as a platform for exploring toroidal

excitation topology has several advantages, as it naturally
allows for the toroidal response at optical frequencies, with
emitters much smaller than a resonant wavelength, and
avoids dissipative losses present in plasmonics or circuit
resonators forming metamaterials. Moreover, the atomic
arrangement can form a genuine quantum system, and
our analysis is valid also in the single-photon quan-
tum limit.
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To demonstrate the formation of an effective toroidal
dipole and anapole in an atomic ensemble, we briefly
describe the radiative coupling between cold atoms. For
simplicity of presentation, we analyze the coherently driven
case, but the formalism is also valid in the quantum regime
of single-photon excitations [48].
We consider atoms at fixed positions, with a J ¼ 0 →

J0 ¼ 1 transition, and assume a controllable Zeeman
splitting of the J0 ¼ 1 levels, generated, e.g., by a periodic
optical pattern of ac Stark shifts [73]. The dipole moment of

atom j is dj ¼ D
P

j P
ðjÞ
σ êσ , where D denotes the reduced

dipole matrix element, and PðjÞ
σ and êσ the polarization

amplitude and unit vector associated with the jJ ¼ 0;
m ¼ 0i → jJ0 ¼ 1; m ¼ σi transition, respectively. The
collective response of the atoms in the limit of low light
intensity [23,49–51,74,75] then follows from _b¼ iHbþ f,

where b3j−1þσ¼PðjÞ
σ and the driving f3j−1þσ ¼ iðξ=DÞê�σ·

ϵ0EðrjÞ, with the incident light field of amplitude EðrÞ ¼
E0êin exp ðikxÞ [76], polarization êin, and frequency
ω ¼ kc. Here ξ ¼ 6πγ=k3 depends on the single-atom
linewidth γ ¼ D2k3=ð6πϵ0ℏÞ. The matrix H describes
interactions between different atoms due to multiple
scattering of light, with H3j−1þσ;3k−1þσ0 ¼ξê�σ ·Gðrj−rkÞêσ0
for ðj; σÞ ≠ ðk; σ0Þ, where the dipole radiation kernel GðrÞ
gives the field ϵ0E

ðjÞ
s ðrÞ¼Gðr−rjÞdj from a dipolemoment

dj at rj [1]. The diagonal element H3jþσ−1;3jþσ−1 ¼
ΔðjÞ

σ þ iγ, whereΔðjÞ
σ ¼ δðjÞσ þ Δ consists of an overall laser

detuning Δ ¼ ω − ω0 from the single-atom resonance ω0,

plus a relative shift δðjÞσ of each level. The dynamics follows
from the eigenvectors vn and eigenvalues δn þ iγn of H
giving the collective level shifts δn and linewidths γn [52].
The limit of low light intensity corresponds to linear

regime of oscillating atomic dipoles. The analogous quan-
tum limit is that of a single photon that experiences no
nonlinear interactions, as at minimum, two simultaneous
photons are required for interactions. Regarding one-body
expectation values, the equations of motion for the dipole
amplitudes PðjÞ

σ are indeed precisely the same [53] as those
for single-photon excitation amplitudes that are radiatively
coupled between the atoms by H [48].
To illustrate the role of toroidal multipoles, we consider

the far-field scattered light from a radiation source decom-
posed into vector spherical harmonics [1],

EðjÞ
s ¼

X∞

l¼0

Xl

m¼−l
ðαðjÞE;lmΨlm þ αðjÞB;lmΦlmÞ; ð1Þ

that allows us to represent it as light originated from a set of
multipole emitters at the origin, with l ¼ 1 representing
dipoles, l ¼ 2 quadrupoles, etc. However, while the mag-
netic coefficients αM;lm are due to magnetic multipole
sources with transverse current r × J ≠ 0, the electric
coefficients αE;lm can arise from two different types of

polarization; electric and toroidal multipoles. These
contributions can be calculated directly from the induced
polarizations. Taking atom j to be fixed at position rj,
the induced displacement current density is JσðrÞ ¼
−iωD

P
j P

ðjÞ
σ δðr − rjÞ. Inserting this in the standard

multipole decomposition for an arbitrary distribution of
currents [6] gives for the total electric andmagnetic dipoles
d ¼ P

j dj and m ¼ −ðik=2ÞPjðrj × djÞ, respectively,
and for the toroidal dipole,

T ¼ −
ik
10

X

j

½ðrj · djÞrj − 2r2jdj�: ð2Þ

The magnitude of the far-field electric dipole component,
jαE;1j≡ ½Pm jαE;1mj2�1=2 ∝ k2jpj=ð4πϵ0Þ then depends on
the combination p ¼ dþ ikT [22]. We have checked that
in our numerics corrections beyond the long-wavelength
approximation of Eq. (1) are negligible.
We now turn to the design and preparation of a collective

toroidal dipole. Even for atoms exhibiting electric dipole
transitions, their collective excitation eigenmodes can be
utilized in synthesizing radiative excitations, e.g., with
magnetic properties [73,77]. The toroidal dipole, as illus-
trated in the inset of Fig. 1(a), consists of a poloidal electric
current wound around a torus, such that magnetic dipoles
form a closed loop, reminiscent of vortex current, pointing
along a ring around the center of the torus. We approximate
this geometry using squares of four atoms [see Fig. 1(a)].
This is possible, since an isolated square has a collective
excitation eigenmode with the dipoles oriented tangentially
to the center of the square [73]. While electric dipoles of the
atoms average to zero on each square, they generate a
magnetic dipole moment normal to the plane of the square.

(a) (b)

FIG. 1. (a) Geometry of a toroidal dipole unit cell consisting of
a number of four-atom squares of width a, arranged in a circle of
radius r, with atomic dipoles indicated by the arrows. A
circulating electric polarization on the surface of a torus leads
to magnetic dipoles forming a closed loop inside a torus (inset).
These in turn contribute to a toroidal dipole moment through the
center of the entire unit cell. (b) Geometry of an anapole unit cell.
Adding two atoms to the center with induced dipole moments in
the x direction generates an electric dipole which destructively
interferes with the toroidal dipole (inset).
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Arranging several of these squares in a circle, with each
aligned perpendicular to the circumference, leads to the
magnetic dipole moments winding around the center, as
illustrated in the inset, creating a toroidal dipole pointing in
the x direction. The projections of this geometry in the yz
and xy planes are shown in Figs. 2(a) and 2(b). A general
choice of parameters could be realized with independent
optical tweezers. However, in the case that r ¼ ðnþ 1=2Þa
for integer n, the ensemble could also be formed by
selectively populating sites on a bilayer square lattice, as
indicated by the gray grid.
We demonstrate this by an example calculation of four

such squares, with r ¼ 0.2λ and a ¼ 0.08λ [Fig. 1(a)],
resulting in altogether 48 collective excitation eigenmodes.
This corresponds to a partially-populated bilayer square
lattice with lattice constant 0.08λ [Figs. 2(a) and 2(b)]. We
find a collective eigenmode exhibiting a strong toroidal
dipole, with only a weak radiative coupling due to sub-
radiant resonance linewidth υ ¼ 0.2γ. The scattered light
from this eigenmode is dominated by jαE;1j2 with >99% of
the radiated power coming from this contribution, which
can be decomposed locally into toroidal and electric dipoles
with jTj=jdj ¼ 2.2. At larger lattice spacings, the toroidal
dipole contribution can get even more dominant.
To excite the toroidal dipole mode, we consider a plane

wave propagating in the x direction. The toroidal symmetry
of the mode inhibits coupling to a drive field with uniform
linear polarization. Instead, the symmetry can be matched
by radial polarization êin ¼ êρ, where êρ points outward in
the yz plane from the center of the toroidal dipole. The
multipole decomposition of the local excitation in Fig. 3(a)
displays a strong response of the toroidal dipole, as well as
a weaker electric dipole response. Figure 3(b) shows the
decomposition of the far-field power P ¼ 2cϵ0

R jEj2dA
integrated over a closed surface into the dominant dipole
component P1 ∝ jαE;1j2, which does not distinguish
between contributions from d and T, as well as the

remaining sum of all other contributions. At the toroidal
dipole resonance Δ ¼ −40.7γ the occupation of the col-
lective eigenmode is ≈99% [48].
Here we take four squares, distributed evenly on a ring

around the center, to form the toroidal dipole moment, but
similar results can be achieved with a minimum of only
two. As illustrated in Fig. 2(c), with two squares centered
at, e.g., �rŷ having opposite chirality dipole orientation a
toroidal dipole moment can also be achieved while all
atoms lie in the single xy plane [48].
We next consider a planar square lattice in the yz plane

with each unit cell as in Fig. 1(a). Because of radiative
interactions, for a subwavelength-spaced lattice, the entire
system responds as a coherent, collective entity, with delo-
calized collective excitation eigenmodes extending over the
array. In particular, there is a collective eigenmode which
corresponds to a uniform excitation of a toroidal dipole at
each site. However, this mode cannot be excited by radially
polarized light as it would require the symmetry to be broken
around the center of each individual unit cell. Instead, we use
uniform linear polarization, with êin ¼ êy, but vary the
atomic level shifts within each atom of the unit cell inde-
pendently that are then repeated across the array on each unit
cell. We numerically optimize the toroidal dipole moment on
a single unit cell to calculate these level shifts.
The corresponding toroidal and electric dipole excita-

tions are shown in Fig. 4(a). Despite the presence of the
electric dipole, the toroidal dipole is the dominant compo-
nent at Δ ¼ −17γ where the ratio jTj=jdj ¼ 3.3 is at its
maximum. The dipole radiation is compared to the intensity
of all other contributions to the scattered light in Fig. 4(b),
showing that all other modes are also suppressed at this
detuning.
This excitation closely corresponds to an eigenmode,

delocalized across the entire array, consisting of a repetition
of the poloidal dipole excitation on each unit cell, and
forming an effective lattice of coherently oscillating toroidal
dipoles. The linewidth of the collective mode [Fig. 4(c)]
narrows strongly as the unit cell spacing decreases.

(a) (b)

(c)

FIG. 2. Projections of geometry of toroidal dipole and anapole
unit cells in (a) the yz and (b) the xy plane. Shaded atoms at y,
z ¼ 0 are absent for toroidal dipole unit cell but present for
anapole unit cell. (c) Alternative structure for realizing a toroidal
dipole or anapole excitation with all atoms in the xy plane, the
response of which is shown in Fig. S3 of Ref. [48].

(a) (b)

FIG. 3. Excitation of a toroidal dipole T as a multipole
decomposition of (a) atomic dipoles [in dimensionless units of
DE0=ðℏγÞ]. (b) Far-field radiated power consisting of dipole
contribution P1 and the remaining power of all other contribu-
tions (in units of Iin=k2, where Iin ¼ 2cϵ0jE0j2 is the incoming
intensity), as a function of the laser detuning from the atomic
resonance, with r ¼ 0.2λ and a ¼ 0.08λ, as defined in Fig. 1(a).
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The transmitted light through the array can be calculated
by adding the scattered light from each individual atom to
the incoming light. At a positon ζx̂ from a uniform lattice
of area A, when λ≲ ζ ≪

ffiffiffiffi
A

p
the electric field of the light

transmitted in the forward direction is given by [33,78–80]

ϵ0E ¼ ϵ0E0êyeikζ þ
ik
2A

X

j

½dj − êx · djêx�eikðξ−xjÞ: ð3Þ

The transmission T ¼ jEj2=jE0j2 shown in Fig. 4(d) dis-
plays narrow Fano resonances at the frequencies of toroidal
and electric dipole excitations. (We note that a second dip at
Δ ¼ −15γ is due to coupling to an unrelated electric
quadrupole mode.)
An especially fascinating configuration can be obtained

by a combination of a toroidal and electric dipole forming a
dynamic anapole. Because the far-field radiation of these
dipoles is identical, they can destructively interfere such
that the net radiation vanishes when d ¼ −ikT. Despite
having no emission, the anapole state has a nonzero energy,
and a vector potential which cannot be fully eliminated by
gauge transformation [19,81]. We show that the collective
radiative excitations of strongly coupled atoms can form a
dynamic anapole by adding a pair of atoms to the toroidal
dipole configuration of Fig. 1(a), in the same bilayer planes
of the existing atoms, that then synthesizes a coherent
superposition of electric and toroidal dipoles [Fig. 1(b)].

The inset illustrates how the contribution of the electric
dipole moment at the origin to the total dipole moment p
points in the opposite direction to that of the toroidal dipole.
Again, we illustrate the case of four squares, distributed

evenly on a ring around the center, but similar results can be
achieved with a minimum of only two. As illustrated in
Fig. 2(c), adding two central atoms at �ða=2Þx̂, results in
an anapole excitation while all atoms lie in the xy
plane [48].
The anapole can be excited by a radially polarized plane

wave focused through a lens with high numerical aperture,
leading to a longitudinal field in the x direction along the
beam axis which excites the central two atoms [48]. This
field is calculated via the standard Richard-Wolf diffraction
integral [82] with a numerical aperture of 0.7. The resulting
multipole decomposition of atomic dipoles [Fig. 5(a)]
displays a strong excitement of both the electric and
toroidal dipole. However, the combination of these
dipoles, p ¼ dþ ikT, is much weaker. The total scattered
intensity, along with the decomposition into the dipole
contribution and that of all other multipoles, is shown in
Fig. 5(b), indicating a near total cancellation of the
scattered light.
In conclusion, we have shown how strong light-mediated

dipolar interactions between atoms can be harnessed to
engineer collective radiative excitations that synthesize an
effective dynamic toroidal dipole or anapole. In both cases
the toroidal topology is generated by radiative transitions
forming an effective poloidal electric current wound around
a torus. In a large lattice we show how to engineer a
collective strongly subradiant eigenmode consisting of an
effective periodic lattice of toroidal dipoles that exhibits a
narrow Fano transmission resonance.

Data used in this publication is available at [83].

We acknowledge financial support from Engineering and
Physical Sciences Research Council (Grants No. EP/
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(a)

(c) (d)

(b)

FIG. 4. Collective excitation of a 12 × 12 square array of
toroidal dipole unit cells with spacing d ¼ 0.85λ (a ¼ 0.1λ,
r ¼ 0.2λ). (a) Multipole decomposition of atomic dipoles [in
units of DE0=ðℏγÞ] for a single central unit cell, excited by
linearly polarized light, (b) decomposition of the dipole con-
tribution to the far-field radiated power, and the sum of all other
contributions (in units of Iin=k2), (c) collective linewidth υ of the
uniform toroidal dipole eigenmode as a function of d, and
(d) coherent transmission T ¼ jEj2=jE0j2 of light through the
array, where E is the total field amplitude.

(a) (b)

FIG. 5. Excitation of a nonradiating dynamic anapole, with a
multipole decomposition of (a) atomic dipoles [in units of
DE0=ðℏγÞ], with p ¼ dþ ikT, and (b) the far-field scattered
light from all contributions, the total dipole component with
intensity proportional to jpj2, and the sum of all other contribu-
tions (in units of Iin=k2) as a function of the overall laser
frequency detuning for a ¼ 0.08λ, r ¼ 0.2λ.
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