
Radiative toroidal dipole and anapole excitations in collectively responding arrays of
atoms

K. E. Ballantine∗ and J. Ruostekoski†

Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
(Dated: June 23, 2020)

A toroidal dipole represents an often overlooked electromagnetic excitation distinct from the
standard electric and magnetic multipole expansion. We show how a simple arrangement of strongly
radiatively coupled atoms can be used to synthesize a toroidal dipole where the toroidal topology
is generated by radiative transitions forming an effective poloidal electric current wound around
a torus. We extend the protocol for methods to prepare a delocalized collective excitation mode
consisting of a synthetic lattice of such toroidal dipoles and a non-radiating, yet oscillating charge-
current configuration, dynamic anapole, for which the far-field radiation of a toroidal dipole is
identically canceled by an electric dipole.

The concept of electric and magnetic multipoles vastly
simplifies the study of light-matter interaction, allowing
the decomposition both of the scattered light and of the
charge and current sources [1, 2]. While the far-field ra-
diation can be fully described by the familiar transverse-
electric and -magnetic multipoles, the full characteriza-
tion of the current requires, however, an additional series
that is independent of electric and magnetic multipoles:
dynamic toroidal multipoles [3–6]. These are extensions
of static toroidal dipoles [7] that have been studied in
nuclear, atomic, and solid-state physics, e.g., in the con-
text of parity violations in electroweak interactions [8–10]
and in multiferroics [11]. Often obscured and neglected in
comparison to electric and magnetic multipoles due to its
weakness, the toroidal dipole can have an important re-
sponse to electromagnetic fields in systems of toroidal ge-
ometry [12]. Dynamic toroidal dipoles are actively stud-
ied in artificial metamaterials that utilize such designs,
with responses varying from microwave to optical part
of the spectrum [13–18]. Crucially, an electric dipole to-
gether with a toroidal dipole can form a non-radiating dy-
namic anapole [19–22], where the far-field emission pat-
tern from both dipoles interferes destructively, so the net
emission is zero.

Light can mediate strong resonance interactions be-
tween closely-spaced ideal emitters and an especially pris-
tine system exhibiting cooperative optical response is
that of regular planar arrays of cold atoms with unit
occupancy [23–36]. Subradiant linewidth narrowing of
transmitted light was now observed in such a system
formed by an optical lattice [37]. In the experiment the
whole array was collectively responding to light with the
atomic dipoles oscillating in phase. Furthermore, the lat-
tice potentials can be engineered [38], and a great flex-
ibility of optical transitions is provided by atoms such
as Sr and Yb [39]. Also several other experimental ap-
proaches exist to trap and arrange atoms with single-site
control [40–46].

Here we propose how to harness strong light-mediated
interactions between atoms to engineer collective radia-
tive excitations that synthesize effective dynamic toroidal

dipole and non-radiating anapole moments, even though
individual atoms only exhibit electric dipole transitions.
The method is based on simple arrangements of atoms,
where the toroidal topology is generated by radiative
transitions forming an effective poloidal electric current
wound around a torus, such that an induced magneti-
zation forms a closed circulation inside the torus. The
toroidal and anapole modes can be excited by radially
polarized incident light and, in the case of the anapole,
with a focusing lens. The resulting anapole excitation
shows a sharp drop in the far-field dipole radiation, de-
spite having a large collective electronic excitation of the
atoms associated with both electric and toroidal dipole
modes. Such a configuration represents stored excitation
energy without radiation that is fundamentally different,
e.g., from subradiance [47]. We extend the general prin-
ciple to larger systems, and show in sizable arrays how
this collective behavior of atoms allows us to engineer a
delocalized collective radiative excitation eigenmode con-
sisting of an effective periodic lattice of toroidal dipoles.
Such an array is then demonstrated to exhibit collective
subradiance, with the narrow resonance line sensitively
depending on the lattice spacing and manifesting itself
as a Fano resonance in the coherently transmitted light.

Utilizing cold atoms as a platform for exploring
toroidal excitation topology has several advantages, as
it naturally allows for the toroidal response at optical
frequencies, with emitters much smaller than a reso-
nant wavelength, and avoids dissipative losses present in
plasmonics or circuit resonators forming metamaterials.
Moreover, the atomic arrangement can form a genuine
quantum system, and our analysis is valid also in the
single photon quantum limit.

To demonstrate the formation of an effective toroidal
dipole and anapole in an atomic ensemble, we briefly de-
scribe the radiative coupling between cold atoms. For
simplicity of presentation, we analyze coherently driven
case, but the formalism is also valid in the quantum
regime of single photon excitations [48].

We consider atoms at fixed positions, with a J = 0→
J ′ = 1 transition, and assume a controllable Zeeman
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FIG. 1. (a) Geometry of a toroidal dipole unit cell consist-
ing of a number of four-atom squares of width a, arranged
in a circle of radius r, with atomic dipoles indicated by the
arrows. A circulating electric polarization on the surface of a
torus leads to magnetic dipoles forming a closed loop inside
a torus (inset). These in turn contribute to a toroidal dipole
moment through the center of the entire unit cell. (b) Geom-
etry of an anapole unit cell. Adding two atoms to the center
with induced dipole moments in the x direction generates an
electric dipole which destructively interferes with the toroidal
dipole (inset).

FIG. 2. Projections of geometry of toroidal dipole and
anapole unit cells in (a) The yz and (b) the xy plane. Shaded
atoms at y, z = 0 are absent for toroidal dipole unit cell but
present for anapole unit cell. (c) Alternative structure for re-
alizing a toroidal dipole or anapole excitation with all atoms
in the xy plane the response of which is shown in Fig. S3 [48].

splitting of the J ′ = 1 levels, generated, e.g., by a pe-
riodic optical pattern of ac Stark shifts [49]. The dipole

moment of atom j is dj = D
∑
j P

(j)
σ êσ, where D de-

notes the reduced dipole matrix element, and P(j)
σ and

êσ the polarization amplitude and unit vector associated
with the |J = 0,m = 0〉 → |J ′ = 1,m = σ〉 transition, re-
spectively. The collective response of the atoms in the
limit of low light intensity [23, 50–54] then follows from

ḃ = iHb + f , where b3j−1+σ = P(j)
σ and the driving

f3j−1+σ = i(ξ/D)ê∗σ ·ε0E(rj), with the incident light field
of amplitude E(r) = E0êin exp (ikx) [55], polarization êin,
and frequency ω = kc. Here ξ = 6πγ/k3 depends on
the single-atom linewidth γ = D2k3/(6πε0~). The ma-
trix H describes interactions between different atoms due
to multiple scattering of light, with H3j−1+σ,3k−1+σ′ =

ξê∗σ ·G(rj−rk)êσ′ for (j, σ) 6= (k, σ′), where the dipole ra-

diation kernel G(r) gives the field ε0E
(j)
s (r) = G(r−rj)dj

from a dipole moment dj at rj [1]. The diagonal ele-

ment H3j+σ−1,3j+σ−1 = ∆
(j)
σ + iγ, where ∆

(j)
σ = δ

(j)
σ +∆

consists of an overall laser detuning ∆ = ω − ω0 from

the single-atom resonance ω0, plus a relative shift δ
(j)
σ of

each level. The dynamics follows from eigenvectors vn
and eigenvalues δn + iγn of H giving the collective level
shifts δn and linewidths γn [56].

The limit of low light intensity corresponds to linear
regime of oscillating atomic dipoles. The analogous quan-
tum limit is that of a single photon that experiences no
nonlinear interactions, as at minimum, two simultaneous
photons are required for interactions. Regarding one-
body expectation values, the equations of motion for the

dipole amplitudes P(j)
σ are indeed precisely the same [57]

as those for single-photon excitation amplitudes that are
radiatively coupled between the atoms by H [48].

To illustrate the role of toroidal multipoles, we con-
sider the far-field scattered light from a radiation source
decomposed into vector spherical harmonics [1],

E(j)
s =

∞∑
l=0

l∑
m=−l

(
α
(j)
E,lmΨlm + α

(j)
B,lmΦlm

)
, (1)

that allows us to represent it as light originated from
a set of multipole emitters at the origin, with l = 1
representing dipoles, l = 2 quadrupoles, etc. However,
while the magnetic coefficients αM,lm are due to mag-
netic multipole sources with transverse current r×J 6= 0,
the electric coefficients αE,lm can arise from two differ-
ent types of polarization; electric and toroidal multipoles.
These contributions can be calculated directly from the
induced polarizations. Taking atom j to be fixed at po-
sition rj , the induced displacement current density is

Jσ(r) = −iωD
∑
j P

(j)
σ δ(r − rj). Inserting this in the

standard multipole decomposition for an arbitrary distri-
bution of currents [6] gives for the total electric and mag-
netic dipoles d =

∑
j dj and m = −(ik/2)

∑
j(rj × dj),

respectively, and for the toroidal dipole

T = − ik
10

∑
j

[
(rj · dj) rj − 2r2jdj

]
. (2)

The magnitude of the far-field electric dipole compo-
nent, |αE,1| ≡ [

∑
m |αE,1m|2]1/2 ∝ k2|p|/(4πε0) then de-

pends on the combination p = d + ikT [22]. We have
checked that in our numerics corrections beyond the long-
wavelength approximation of Eq. (1) are negligible.

We now turn to the design and preparation of a collec-
tive toroidal dipole. Even for atoms exhibiting electric
dipole transitions, their collective excitation eigenmodes
can be utilized in synthesizing radiative excitations, e.g.,
with magnetic properties [49, 58]. The toroidal dipole, as
illustrated in the inset of Fig. 1(a), consists of a poloidal
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FIG. 3. Excitation of a toroidal dipole T as a multipole de-
composition of (a) atomic dipoles [in dimensionless units of
DE0/(~γ)]. (b) far-field radiated power consisting of dipole
contribution P1 and the remaining power of all other con-
tributions (in units of Iin/k

2, where Iin = 2cε0|E0|2 is the
incoming intensity), as a function of the laser detuning from
the atomic resonance, with r = 0.2λ and a = 0.08λ, as defined
in Fig. 1(a).

electric current wound around a torus, such that mag-
netic dipoles form a closed loop, reminiscent of vortex
current, pointing along a ring around the center of the
torus. We approximate this geometry using squares of
four atoms [see Fig. 1(a)]. This is possible, since an iso-
lated square has a collective excitation eigenmode with
the dipoles oriented tangentially to the center of the
square [49]. While electric dipoles of the atoms average
to zero on each square, they generate a magnetic dipole
moment normal to the plane of the square. Arranging
several of these squares in a circle, with each aligned per-
pendicular to the circumference, leads to the magnetic
dipole moments winding around the center, as illustrated
in the inset, creating a toroidal dipole pointing in the x
direction. The projections of this geometry in the yz
and xy planes are shown in Fig. 2(a,b). A general choice
of parameters could be realized with independent optical
tweezers. However, in the case that r = (n+1/2)a for in-
teger n, the ensemble could also be formed by selectively
populating sites on a bilayer square lattice, as indicated
by the grey grid.

We demonstrate this by an example calculation of four
such squares, with r = 0.2λ and a = 0.08λ [Fig. 1(a)], re-
sulting in altogether 48 collective excitation eigenmodes.
This corresponds to a bilayer configuration of atoms, con-
fined to selective sites of a square lattice with lattice con-
stant 0.08λ. We find a collective eigenmode exhibiting a
strong toroidal dipole, with only a weak radiative cou-
pling due to subradiant resonance linewidth υ = 0.2γ.
The scattered light from this eigenmode is dominated by
|αE,1|2 with > 99% of the radiated power coming from
this contribution, which can be decomposed locally into
toroidal and electric dipoles with |T|/|d| = 2.2. At larger
lattice spacings, the toroidal dipole contribution can get
even more dominant.

To excite the toroidal dipole mode, we consider a plane
wave propagating in the x direction. The toroidal sym-
metry of the mode inhibits coupling to a drive field with
uniform linear polarization. Instead, the symmetry can

FIG. 4. Collective excitation of a 12 × 12 square array of
toroidal dipole unit cells with spacing d = 0.85λ (a = 0.1λ,
r = 0.2λ). (a) Multipole decomposition of atomic dipoles [in
units of DE0/(~γ)] for a single central unit cell, excited by lin-
early polarized light; (b) decomposition of the dipole contri-
bution to the far-field radiated power, and the sum of all other
contributions (in units of Iin/k

2); (c) collective linewidth υ of
the uniform toroidal dipole eigenmode as a function of d; (d)
coherent transmission T = |E|2/|E0|2 of light through the ar-
ray, where E is the total field amplitude.

be matched by radial polarization êin = êρ, where êρ
points outwards in the yz plane from the center of the
toroidal dipole. The multipole decomposition of the lo-
cal excitation in Fig. 3(a) displays a strong response of
the toroidal dipole, as well as a weaker electric dipole re-
sponse. Figure 3(b) shows the decomposition of the far-
field power P = 2cε0

∫
|E|2 dA integrated over a closed

surface into the dominant dipole component P1 ∝ |αE,1|2,
which does not distinguish between contributions from d
and T, as well as the remaining sum of all other contri-
butions. At the toroidal dipole resonance ∆ = −40.7γ
the occupation of the collective eigenmode is ≈ 99% [48].

Here we take four squares, distributed evenly on a ring
around the center, to form the toroidal dipole moment,
but similar results can be achieved with a minimum of
only two. As illustrated in Fig. 2(c), with two squares
centered at, e.g., ±rŷ having opposite chirality dipole
orientation a toroidal dipole moment can also be achieved
while all atoms lie in the single xy plane [48].

We next consider a planar square lattice in the yz plane
with each unit cell as in Fig. 1(a). Due to radiative in-
teractions, for a subwavelength-spaced lattice, the entire
system responds as a coherent, collective entity, with de-
localized collective excitation eigenmodes extending over
the array. In particular, there is a collective eigenmode
which corresponds to a uniform excitation of a toroidal
dipole at each site. However, this mode cannot be ex-
cited by radially polarized light as it would require the
symmetry to be broken around the center of each individ-
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FIG. 5. Excitation of a non-radiating dynamic anapole, with
a multipole decomposition of (a) atomic dipoles [in units of
DE0/(~γ)], with p = d + ikT, and (b) the far-field scattered
light from all contributions, the total dipole component with
intensity proportional to |p|2, and the sum of all other contri-
butions (in units of Iin/k

2) as a function of the overall laser
frequency detuning for a = 0.08λ, r = 0.2λ.

ual unit cell. Instead, we use uniform linear polarization,
with êin = êy, but vary the atomic level shifts within
each atom of the unit cell independently that are then
repeated across the array on each unit cell. We numer-
ically optimize the toroidal dipole moment on a single
unit cell to find these level shifts numerically.

The corresponding toroidal and electric dipole excita-
tions are shown in Fig. 4(a). Despite the presence of the
electric dipole, the toroidal dipole is the dominant com-
ponent at ∆ = −17γ where the ratio |T|/|d| = 3.3 is
at its maximum. The dipole radiation is compared to
the intensity of all other contributions to the scattered
light in Fig. 4(b), showing that all other modes are also
suppressed at this detuning.

This excitation closely corresponds to an eigenmode,
delocalized across the entire array, consisting of a repe-
tition of the poloidal dipole excitation on each unit cell,
and forming an effective lattice of coherently oscillating
toroidal dipoles. The linewidth of the collective mode
[Fig. 4(c)] narrows strongly as the unit cell spacing de-
creases.

The transmitted light through the array can be calcu-
lated by adding the scattered light from each individual
atom to the incoming light. At a positon ζx̂ from a uni-
form lattice of area A, when λ <∼ ζ �

√
A the electric

field of the light transmitted in the forward direction is
given by [33, 59–61]

ε0E = ε0E0êyeikζ +
ik

2A
∑
j

[dj − êx · dj êx] eik(ξ−xj).

(3)
The transmission T = |E|2/|E0|2 shown in Fig. 4(d)
displays narrow Fano resonances at the frequencies of
toroidal and electric dipole excitations. (We note that a
second dip at ∆ = −15γ is due to coupling to an unre-
lated electric quadrupole mode.)

An especially fascinating configuration can be obtained
by a combination of a toroidal and electric dipole form-
ing a dynamic anapole. Because the far-field radiation of
these dipoles is identical, they can destructively interfere

such that the net radiation vanishes when d = −ikT.
Despite having no emission, the anapole state has a non-
zero energy, and a vector potential which cannot be fully
eliminated by gauge transformation [19, 62]. We show
that the collective radiative excitations of strongly cou-
pled atoms can form a dynamic anapole by adding a pair
of atoms to the toroidal dipole configuration of Fig. 1(a),
in the same bilayer planes of the existing atoms, that
then synthesizes a coherent superposition of electric and
toroidal dipoles [Fig. 1(b)]. The inset illustrates how the
contribution of the electric dipole moment at the origin
to the total dipole moment p points in the opposite di-
rection to that of the toroidal dipole.

Again, we illustrate the case of four squares, dis-
tributed evenly on a ring around the center but simi-
lar results can be achieved with a minimum of only two.
As illustrated in Fig. 2(c), adding two central atoms at
±(a/2)x̂, results in an anapole excitation while all atoms
lie in the xy plane [48].

The anapole can be excited by a radially polarized
plane-wave focused through a lens with high numerical
aperture, leading to a longitudinal field in the x direc-
tion along the beam axis which excites the central two
atoms [48]. This field is calculated via the standard
Richard-Wold diffraction integral [63] with a numerical
aperture of 0.7. The resulting multipole decomposition of
atomic dipoles [Fig. 5(a)] displays a strong excitement of
both the electric and toroidal dipole. However, the com-
bination of these dipoles, p = d + ikT, is much weaker.
The total scattered intensity, along with the decompo-
sition into the dipole contribution and that of all other
multipoles, is shown in Fig. 5(b), indicating a near total
cancellation of the scattered light.

In conclusion, we have shown how strong light-
mediated dipolar interactions between atoms can be
harnessed to engineer collective radiative excitations
that synthesize an effective dynamic toroidal dipole or
anapole. In both cases the toroidal topology is gener-
ated by radiative transitions forming an effective poloidal
electric current wound around a torus. In a large lattice
we show how to engineer a collective strongly subradi-
ant eigenmode consisting of an effective periodic lattice
of toroidal dipoles that exhibits a narrow Fano transmis-
sion resonance.
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We include additional details of how the formalism em-
ployed in the main text for atomic transitions relates to
effective oscillating currents and nanoresonator systems.
We present a brief description of the mathematical model
which applies both in the limit of low light intensity with
coherent drive and to a single photon excitation in the ab-
sence of drive. We extend the discussion of the toroidal
dipole eigenmode to the occupation of the mode. Ad-
ditional details of how the proposal could be realized
experimentally are considered. Finally we give results
for simplified toroidal dipole and anapole unit cells with
atoms only in a single 2D plane.

SI. LIGHT-ATOM INTERACTIONS

SI.A. Quantum system of atoms and light

In the main text we describe the excitation of an ef-
fective toroidal dipole and anapole in a coherently driven
atomic ensemble by the equations ḃ = iHb+f where b is
a vector of atomic dipole amplitudes and f is proportional
to the amplitude of the driving field. Here we describe
the quantum model of atoms interacting with light in
the length gauge, obtained by the Power-Zienau-Woolley
transformation [S1–S4]. In the limit of low light intensity,
the system with a single electronic ground state can be
exactly described by a classical model of coupled dipoles
driven by coherent light with field E(r) [S5, S6]. The full
many-excitation dynamics is described by the many-body
quantum master equation for the density matrix [S7];

ρ̇ = i
∑
j,ν

[Hjν , ρ] + i
∑

jlνµ(l 6=j)

Ω(jl)
νµ

[
σ̂+
jν σ̂
−
lµ, ρ

]
+
∑
jlνµ

γ(jl)νµ

(
2σ̂−lµρσ̂

+
jν − σ̂

+
jν σ̂
−
lµρ− ρσ̂

+
jν σ̂
−
lµ

)
,

(S1)

with the square brackets representing commutators and

Hjν = ∆(j)
ν σ̂+

jν σ̂
−
jν

+
ξ

D
êν · ε0E0(rj)σ̂

+
jν +

ξ

D
ê∗ν · ε0E∗0 (rj)σ̂

−
jν ,

(S2)

where σ+
jν = |e〉jνj〈g| is the raising operator for atom j

from its ground state to its excited state with m = ν.

Here, ∆
(j)
ν is the detuning of each level from resonance.

The Hermitian interaction terms Ω
(jl)
νµ and collective dis-

sipation terms γ
(jl)
νµ due to the dipole-dipole coupling be-

tween the atoms are given by the real and imaginary part
of

Ω(jl)
νµ + iγ(jl)νµ = ξG(jl)νµ , (S3)

where G(jk)νµ = êν · G(ri − rj)êµ is the dipole radiation
kernel that, acting on a dipole d at the origin, produces
the familiar expression [S8] (with r̂ = r/|r|)

G(r)d = −dδ(r)

3
+
k3

4π

{
(r̂× d)× r̂

eikr

kr

− [3r̂ (r̂ · d)− d]

[
i

(kr)2
− 1

(kr)3

]
eikr

}
,

(S4)

and ξ = 6πγ/k3.

SI.B. Low light intensity limit

In the limit of low drive intensity we neglect terms con-
taining products of two or more excited state amplitudes,
or one or more excited state amplitudes multiplied by the
drive field [S4]. In our system, this amounts to neglect-
ing terms 〈σ+

jνσ
−
`µ〉 (along with higher order correlators of

σ±jν) and E0 〈σ+
m〉. The excited state population is negli-

gible while the ground state population is invariant. The
only non-trivial equation is for 〈σ−jν〉 and Eq. S1 reduces
to

ḃ = iHb + f , (S5)

in terms of the vector b3j+ν−1 = 〈σ−jν〉, the matrix

H3j+ν−1,3k+µ−1 = ∆(j)
ν δνµδjk+Ω(jk)

νµ (1−δjk)+iγ(jk)νµ ,

(S6)

and the drive f3j+ν−1 = i(ξ/D)êν · εE(rj).

SI.C. Single photon excitation

The dynamics of a single photon excitation, decaying
in the absence of drive, can also be described by the same
formalism. Without drive, there is decay from the single-
excitation state to the ground state, but the remaining
single-excitation state remains pure, and the dynamics
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(a) (b)

FIG. S1. (a) Overlap of each eigenmode of a toroidal dipole
unit cell (ordered by the collective resonance linewidth) with
an ideal toroidal dipole mode with poloidal polarization. (b)
Occupation measure LT of the toroidal dipole collective eigen-
mode and sum L′ of the occupation of all other modes in the
steady state response, as laser detuning is varied, for r = 0.2λ,
a = 0.08λ.

is linear in the amplitude of this state. It is this lin-
ear response without saturation which provides identical
single-particle amplitudes to those of the low light inten-
sity limit of coherently driven atoms [S9].

We again start from the full atomic equations of motion
Eq. S1, but now assume that the initial state consists of a
pure, single-photon excitation. Then the density matrix
at later times can be written as

ρ = |Ψ〉 〈Ψ|+ pg |G〉 〈G| , (S7)

where |Ψ〉 is a state consisting of exactly one excitation,
|G〉 is the state with all atoms in their ground state, and
pg is the probability that the excitation has decayed. In
this case there is no incoherent mixing between the ex-
cited and ground state. While dissipation means that the
norm of |Ψ〉 is not conserved, the dynamics within the
single-excitation subspace is coherent, and it can always
be expanded in terms of the individual atomic excitations

|Ψ〉 =
∑
j,ν

P(j)
ν (t) σ̂+

jν |G〉 , (S8)

with amplitudes P(j)
ν (t). For single-particle expectation

values, the dynamics can equally be written in terms of

these amplitudes. In terms of the vector b3j+ν−1 = P(j)
ν ,

we have again ḃ = iHb [S10], formally equivalent to
the equations describing the low light intensity limit in
the absence of drive. The identical description is due
to the fact that in each case the relevant dynamics in-
cludes only a part of the density matrix which evolves
linearly without saturation, with the collective response

being determined by the dipole propagation kernel G(jl)νµ .

SII. COLLECTIVE TOROIDAL EIGENMODE

The collective dynamics of the atomic ensemble is de-
termined by the eigenvectors vj of H, representing the

FIG. S2. Longitudinal component |Ex| and radial compo-
nent |Eρ| of the focused radially polarized beam used to excite

the anapole, as a function of the distance ρ =
√
y2 + z2 from

the beam axis in the focal plane x = 0. Here the incoming
field before focusing is E = êρ and the NA is 0.7.

collective radiative excitation eigenmodes of the atoms,
and the corresponding eigenvalues δj + iγj [S11], where
γj denotes the collective resonance linewidth and δj the
collective resonance line shift from the single-atom res-
onance. While these eigenvectors are not orthogonal in
general, they do form a basis, and the state can be ex-
panded at all times as b(t) =

∑
i ci(t)vi. The occupation

of each eigenmode can then be defined as [S12]

Li =
|vTi b|2∑
j |vTj b|2

. (S9)

For a single-photon excitation, each eigenmode will decay
individually with

cj(t) = exp [(iδj − γj)t], (S10)

with cj(0) determined by the initial state.
The toroidal dipole unit cell has a collective eigenmode

exhibiting a strong toroidal dipole as discussed in the
main text. We can similarly measure the overlap of this
mode with an ideal toroidal dipole eigenmode vT , de-
picted in Fig. 1 of the main text, with poloidal polariza-
tion. This is given by Ci = |vTi vT |2/

∑
j |vTj vT |2. This

overlap is illustrated for each eigenmode in Fig. S1(a)
showing that there is a unique collective mode which ap-
proximates the ideal poloidal polarization mode. The
occupation LT of this eigenmode, as well as the sum of
occupations of all other modes, is plotted in Fig. S1(b)
as a function of laser detuning, with LT > 0.99 at reso-
nance. The maximum occupation in Fig. S1 corresponds
to the maximum toroidal dipole excitation of Fig. 3 in
the main text.

SIII. CLASSICAL ANALOGUE OF
POLARIZATION DISTRIBUTION

In this work, we have synthesized collective radiative
excitations of atoms that produce a toroidal dipole and
an anapole. This is achieved by a simple arrangement of
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atoms that experience strong light-mediated interactions.
In particular, the toroidal dipole is generated by the ori-
entation of the atomic transitions due to the dipole-dipole
interactions forming an effective poloidal electric cur-
rent wound around a torus. Each atom produces an ef-
fective electric dipole generated by quantum-mechanical
electric-dipole-allowed transitions in electronic orbitals.
Here we provide a classical analogue description of this
quantum-mechanical process, illustrating how effective
polarization and current densities originate from such
atomic dipole transitions. This allows us to make com-
parisons with systems of nanoparticles and solid-state ar-
tificial metamaterial resonators that have been used in
studies of electromagnetic multipole radiation.

SIII.A. Classical effective currents from trapped
atoms

Classically, we describe the interactions of light with
atoms trapped in a ring-shaped pattern, represented by a
sequence of oscillating charges. Consider a ring in the xy
plane with radius ρ, and let φ be the azimuthal angle in
the plane. Suppose there is a flow of charge on the ring
and consider an infinitesimal segment where a negative
charge −q moves from a point rφ at angle φ a distance

∆r = −ρ dφφ̂ along the ring in a time dt, leaving a pos-
itive charge q stationary at rφ. The charge distribution
can be replaced by n dipoles with spacing ∆r/n such that
the positive charge of each dipole overlaps with the neg-
ative charge of the next, leaving only the original charges
at each end. Then the polarization density in the limit
n→∞ is [S3]

P = lim
n→∞

n−1∑
p=0

(−q) ∆r

n
δ

(
r−

(
rφ +

p+ 1/2

n

)
∆r

)

= −
∫ 1

0

du q∆rδ(r− rφ − u∆r),

(S11)
giving a continuous polarization density consisting of
point dipoles dP = −q∆rδ(r−rφ−u∆r)du = qρdφ δ(r−
rφ − u∆r)duφ̂ located at rφ + u∆r and pointing in the

direction φ̂. These point dipoles describe the response
of single atoms, whose size is negligible compared to the
optical wavelength.

The current density associated with the change in the
electric charge distribution from each point dipole is
given by

dJ =
1

dt
[−q(rφ + ∆rφ)− (−q)rφ]δ(r− rφ − u∆r)du,

(S12)

= qρ
dφ

dt
δ(r− rφ − u∆r)duφ̂,

which is simply equal to dP/dt. This circulating current,
for a sufficiently small circle, creates an effective magnetic

dipole with a magnetic moment dµ = du(q/(2dt))rφ ×
∆r = du(qρ2dφ/(2dt))ẑ such that the total magnetic mo-
ment µ =

∫
dµ = (dφρ2/2)(q/dt)ẑ is simply the current

times the area of the circle within the angle dφ.
While this description applies to a continuous distribu-

tion of dipoles located at rφ +u∆r (or n discreet dipoles
without taking the limit n→∞ in Eq. S11), it can be ap-
proximated with a discrete series of a smaller number of
dipoles located at fixed positions rj . The corresponding

polarization density Pσ(r, t) = exp (−iωt)D
∑
j P

(j)
σ δ(r−

rj) induced by a driving field with frequency ω leads
to a current density J = −iωP. When these discrete
currents are arranged to point tangentially to a circle,
they approximate a closed loop of current. The magnetic
dipole moment appearing in the scattering cross section
is then [S13] m = µ/c = 1/(2c)

∫
d3r r× J(r). Similarly,

poloidal current distributions are approximated by cur-
rents from time dependent point dipoles giving a toroidal
dipole moment [S14]

T =
1

10c

∫
d3r

[
r(r · J)− 2r2J

]
. (S13)

Numerically, we include all the light-mediated dipole-
dipole interactions between the atoms and calculate the
collective excitation eigenmodes for the coupled dipoles
(see Sec. SII). One of the eigenmodes then corresponds to
the poloidal current configuration of the toroidal dipole
[Fig. S1(a)]. This also applies to the case of an array of
several toroidal dipoles, as discussed in the main text.

SIII.B. Nanoparticles and solid-state resonators

The classical description of the effective current due to
atomic dipole transitions, given in the previous section,
allows us to make comparisons with systems of nanopar-
ticles and resonators in artificial metamaterials that form
multipole radiation sources. The most dramatic dif-
ference is the quantum-mechanical nature of the opti-
cal interaction for the case of atoms, where the atomic
transitions are determined by the precise resonance fre-
quency and the quantum-mechanical Wigner-Weisskopf
resonance linewidth [S3]. Atoms also form truly point-
like electric dipoles.

In the limit of low light intensity, the atoms interacting
with incident light can be considered as a linear classical
coupled-dipole system (see Sec. SI SI.B). Small nanopar-
ticles [S15, S16] or circuit resonators [S17, S18] are fre-
quently approximated as effective coupled point dipoles
in electromagnetic fields. Nanoparticles with their elec-
tric dipoles (provided that the higher-order multipole
contributions are negligible) forming a closed ring can
then exhibit a mode that behaves as an effective magnetic
dipole [S15], analogously to the earlier classical charge
distribution description of the atoms. In resonant LCR
circuits in metamaterials, the current oscillations form
effective electric and magnetic dipoles that radiatively
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couple with the current oscillations of the other circuits.
If each circuit is modeled as a pointlike particle, and
higher-order multipole contributions of each circuit are
negligible, the dynamics corresponds to a coupled-dipole
system [S17, S18].

As a comparative example, a nanorod can be approxi-
mated as an effective point dipole [S19], where the polar-
ization density is to first order assumed to be a uniform
distribution of point dipoles throughout the volume of
the rod. Depending on the geometry of the problem and
the thickness of the nanorods, all other excitation modes,
such as radial or azimuthal currents are then in this ap-
proximation ignored. For a single nanorod of radius a
and length H at the origin, and aligned along the z axis,
the resulting polarization distribution is

P =
Q(t)

πa2
ẑΘ(a− ρ)Θ(H/2− z)Θ(H/2 + z), (S14)

where Θ is the Heaviside function, ρ =
√
x2 + y2, and

Q(t) is a generalized coordinate whose derivative Q̇(t)
describes current oscillations in the nanorod. In con-
trast to atomic dipoles, although for H . λ this polar-
ization density can be approximated by a point dipole
P = Q(t)H ẑδ(r), this approximation easily breaks down
for interacting nanorods that are too closely separated
compared with the resonant wavelength [S19].

SIV. EXPERIMENTAL CONSIDERATIONS

For most of the examples discussed in the main text
we choose r = (n + 1/2)a for integer n, with the result
that the atoms lie on selected sites of a square lattice
with lattice constant a (see main text Fig. 2). Four in-
tersecting beams, two pairs of propagating beams in the
y and z directions respectively, can be used to produce
such a lattice with confining potential

V (r) = sER

[
sin2

(
π
y

a

)
+ sin2

(
π
z

a

)]
, (S15)

where ER = π2~2/(2ma2) is the lattice recoil energy and
s is a dimensionless constant which determines the depth
of the lattice [S20]. An additional potential can con-
fine the atoms in the x = ±a/2 planes. This could be
an identical pair of counter-propagating beams in the x
direction, or a simpler double-well potential. Locally,
each atom experiences a harmonic trapping potential
V (r) = (m/2)

∑
ω2
µ(∆rµ)2 where ωy,z = 2

√
sER/~, ωx

is the harmonic trapping frequency in the x direction,
and ∆r is the displacement from the center of the lattice
site. Then the atom at site rj has a Wannier function
φj(r) = φ(r− rj) given by

φ(r) =
1

(π3l4l2x)1/4
exp

(
−y

2 + z2

2l2
− x2

2l2x

)
, (S16)

with width l = as−1/4/π and thickness lx =
√
~/(mωx).

The atoms can be increasingly strongly confined by in-
creasing the trapping strength s. Experimentally, atoms

are loaded deterministically into a Mott-insulator state
with one atom per site [S21–S23], and the desired geom-
etry achieved by removing excess atoms on a site-by-site
basis [S24].

Further techniques have also been developed to pro-
vide deeply subwavelength features in optical trapping
potentials. For example, coupling three atoms in a Λ
configuration via a strong control field with Rabi fre-
quency Ωc(y, z) = Ωc sin (ky) sin (kz) and a weak probe
field with Rabi frequency Ωp leads to a trapping poten-
tial which depends on the ratio Ωc(y, z)/Ωp, which varies
rapidly in a small region close to the nodes of Ωc(y, z),
for Ωp/Ωc � 1 [S25]. Alternatively, internal degrees of
freedom can be exploited [S26]. Lattices with periodic-
ity less than half the wavelength of the control field can
also be engineered by stroboscopicaly shifting the lat-
tice at high frequency such that the atoms experience
a time-averaged potential with higher periodicity than
the instantaneous potential at any one time [S27, S28].
Finally, optical tweezers provide an alternative means to
design arbitrary potentials [S29–S31] with single-site con-
trol [S32, S33].

Atoms such as Sr and Yb are particularly suitable for
subwavelength trapping. 33Sr has a transition between
the 3P0 state and the triply degenerate 3D1 state [S34]
with wavelength λ = 2.6µm and linewidth Γ = 2.9 ×
105/s. The magic wavelength for these states gives an
optical lattice with spacing d = 206.4nm, less than λ/10.
While most of the examples we consider require vary-
ing only the overall laser detuning, the data shown in
Fig. 4 of the main text requires the individual atomic
level shifts of different atoms to be controlled. This could
be achieved by ac Stark shifts [S35] from standing wave
lasers offset from the trapping lattice such that different
sites experience different intensities.

SV. ANAPOLE EXCITATION

To excite the anapole we use a tightly focused radially
polarized beam. The focusing leads to a longitudinal
component in the x direction on the beam axis which di-
rectly drives the x component of polarization on the two
atoms at the center of the anapole. Off axis, a combi-
nation of radial and longitudinal polarization couple to
the toroidal dipole mode of the remaining atoms. The
amplitude of the longitudinal and radial components of
the field in the x = 0 focal plane are shown in Fig. S2 as
a function of the radial distance ρ from the beam axis.

SVI. IN-PLANE TOROIDAL DIPOLE AND
ANAPOLE

An experimentally even simpler realization of both the
toroidal dipole and the anapole with atoms confined only
to a single plane can be achieved by removing the atoms
for which z 6= 0, as shown in Fig. 2(c) of the main
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(a)

(c)

(b)

(d)

FIG. S3. Excitation of toroidal dipole and dynamic anapole
with two magnetic dipole moments such that all atoms are
in the single xy plane. Multipole decomposition for toroidal
dipole unit cell of (a) atomic dipoles [in units of DE0/(~γ)],
and (b) the far-field scattered light, separated into the total
dipole component, and the remaining sum of all other con-
tributions (in units of incident light intensity Iin/k

2). Mul-
tipole decomposition for the single-plane dynamic anapole of
(c) atomic dipoles [in units of DE0/(~γ)], with p = d + ikT,
and (d) the far-field scattered light, separated into the total
dipole component, and the remaining sum all other contribu-
tions (in units of Iin/k

2). In all cases r = 0.2λ and a = 0.08λ.

text, leaving two squares with opposite chirality polar-
ization. These squares will have magnetic dipole mo-
ments pointing in the ẑ and −ẑ directions, respectively,
leading to zero net magnetic moment but contributing
to a toroidal dipole. The resulting multipole decompo-
sition of the atomic dipoles and the far-field scattered
light is shown in Fig. S3(a,b). A strong toroidal dipole is
present, although the far-field scattered light in this case
also shows a comparable contribution from higher order
modes. Again this toroidal dipole can interfere with a
net electric dipole moment on two atoms at ±(a/2)x̂ to
form an anapole. The resulting multipole decomposition
is shown in Fig. S3(c,d). There is strong suppression
of the total dipole moment and a significant dip in the
scattered light, although again the contributions of other
multipole moments, especially quadrupoles, is stronger
than the case with four squares presented in the main
text. These contributions of higher-order multipole mo-
ments could be further suppressed by adding more atomic
squares, 8, 16, etc.
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