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Abstract12

1. Pollination is a key ecosystem service for global agriculture but evidence of pollinator population13

declines is growing. Reliable spatial modelling of pollinator abundance is essential if we are to14

identify areas at risk of pollination service deficit and effectively target resources to support pollinator15

populations. Many models exist which predict pollinator abundance but few have been calibrated16

against observational data from multiple habitats to ensure their predictions are accurate.17

2. We selected the most advanced process-based pollinator abundance model available and cal-18

ibrated it for bumblebees and solitary bees using survey data collected at 239 sites across Great19

Britain. We compared three versions of the model: one parameterised using estimates based on ex-20

pert opinion, one where the parameters are calibrated using a purely data-driven approach and one21

where we allow the expert opinion estimates to inform the calibration process.22

3. All three model versions showed significant agreement with the survey data, demonstrating this23

model’s potential to reliably map pollinator abundance. However, there were significant differences24

between the nesting/floral attractiveness scores obtained by the two calibration methods and from25

the original expert opinion scores.26

4. Our results highlight a key universal challenge of calibrating spatially-explicit, process-based27

ecological models. Notably, the desire to reliably represent complex ecological processes in finely28

mapped landscapes necessarily generates a large number of parameters, which are challenging to cal-29

ibrate with ecological and geographical data that is often noisy, biased, asynchronous and sometimes30

inaccurate. Purely data-driven calibration can therefore result in unrealistic parameter values, de-31

spite appearing to improve model-data agreement over initial expert opinion estimates. We therefore32

advocate a combined approach where data-driven calibration and expert opinion are integrated into33

an iterative Delphi-like process, which simultaneously combines model calibration and credibility as-34

sessment. This may provide the best opportunity to obtain realistic parameter estimates and reliable35

model predictions for ecological systems with expert knowledge gaps and patchy ecological data.36

Keywords— calibration, credibility assessment, Delphi panels, ecosystem services, pollinators, process-based37

models, validation38

1 Introduction39

Pollination is a key ecosystem service underpinning the reproduction of many flowering plants, including many40

crops. Pollinators enhance production in ∼ 75% of globally significant crops, adding > $235bn p.a. of productivity41

and substantially increasing the nutritional security of people the world over (Smith et al., 2015; Breeze et al.,42

2016). However, pollinator populations are under increasing pressure from landscape simplification (Kennedy43

et al., 2013), agrochemical use (Rundlöf et al., 2015; Woodcock et al., 2017) and climate change (Kerr et al.,44

2015), and there is growing evidence of instability in pollinator-dependent crop yields (Garibaldi et al., 2011;45

Garratt et al., 2014). Unless addressed, these pressures are expected to cause significant declines in global46

pollinator diversity in the coming decades (Rasmont et al., 2015; Balfour et al., 2018), threatening global food47
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security.48

To date, very few countries have sufficient data to monitor pollinator abundance (O’Connor et al., 2019) or49

diversity (Carvalheiro et al., 2013, Kerr et al., 2015; Powney et al., 2019) and so cannot reliably identify areas50

suffering declines or at risk of sub-optimal pollination services (Garibaldi et al., 2011). Although field monitoring51

of national scale trends in pollinators and pollination services is both scientifically and economically viable (Breeze52

et al., 2019; O’Connor et al., 2019), it will take several years to build up such databases. Until then, additional53

approaches are needed to help target resources to support pollinator populations.54

Spatial modelling of pollinator populations can support decision-making and is essential to predict the effects55

of future land-use change on pollinator populations. The most simplistic spatial models of pollination are purely56

based on crop forage distance from semi-natural habitat (Priess et al., 2007). Other studies assign habitat quality57

scores to all habitat types in the landscape (Schulp et al., 2014; Nogué et al., 2016), but this does not capture the58

fact that pollinators may use different habitats for different resources. The more sophisticated InVEST pollinator59

model, developed by Lonsdorf et al. (2009), assigns a separate nesting and flowering quality score to each habitat60

for different taxa, accounting for flight distances. This model and adaptations of it have already been used to61

infer spatially explicit current (Koh et al., 2016; Zhao et al., 2019) and future trends in pollinators/pollination62

(Chaplin-Kramer et al., 2019) and estimate pollinator natural capital (Ricketts and Lonsdorf, 2013).63

More recent studies have refined this process-based InVEST model further by assuming that pollinators are64

optimal foragers (Olsson et al., 2015), accounting for temporal variation in floral resources and using expert-65

derived floral attractiveness scores (Häussler et al., 2017). If models are to be capable of predicting the impact66

of future land-use change on pollinators and reliably informing conservation management, such sophisticated and67

realistic simulation of pollinator requirements and resource use is essential. The most advanced social bee models68

currently available — BEEHAVE and Bumble-BEEHAVE (Becher et al., 2014; Becher et al., 2018) — adopt69

an agent-based approach, simulating the behaviour of individual bees. However, such agent-based modelling is70

computationally intensive, such that process-based models remain the most viable option for predicting pollinator71

visitation across large spatial scales, while still accounting for fine-grained differences in land-use.72

Structural realism alone is not sufficient, however, and any model used to inform land management and policy73

must also be validated against observational data to ensure its predictions reflect current observed reality. Several74

studies have compared predictions from process-based pollinator models with field data (e.g. Lonsdorf et al.,75

2009; Kennedy et al., 2013; Ricketts and Lonsdorf, 2013; Groff et al., 2016; Nicholson et al., 2019), but these have76

primarily focused on predicting pollinator abundance within specific crops. Such models have yet to be validated77

more widely using pollinator abundance measurements in both crop and non-crop landcovers.78

Here, we take the most advanced process-based pollinator abundance model available (ScaLE-poll; Häussler79

et al., 2017), which simulates both solitary and social bees (the main UK pollinators of crops and wild flowers),80

and we compare its predictions to abundance data collected at 239 sites across Great Britain, including crop,81

non-crop and urban sites. Our aim is to identify an optimum set of parameters for the model that produce the82

best agreement with the observed survey data and enable the model to be used with confidence to predict the83

consequences of land-use change on UK pollinator populations and pollination service. We first parameterise the84

model using nesting and floral attractiveness scores derived from expert opinion and assess the level of model-data85
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Figure 1: Locations of survey sites colour coded by type of survey site (see Table S1 for type definitions).

agreement. We then use the observed abundance data to calibrate these nesting and floral attractiveness scores86

and improve the model-data agreement, using an Approximate Bayesian Computation-like approach. We test two87

calibration methods: a free data-driven calibration and an expert-informed prioritised calibration. We discuss the88

implications of these three different model parameterisations, the realism of their derived parameter values and89

their implications for reliably modelling pollination service at large spatial scales.90

2 Materials and Methods91

2.1 Pollinator Abundance Data92

We collated transect data from surveys conducted between 2011 and 2016 at 239 sites across Great Britain (Fig.93

1; Table S1), including 84 crop sites, 12 urban sites and 143 non-crop sites (i.e. nature reserves and semi-natural94

habitat). Number of surveys per site ranged from 1–14 (mean = 4.5± 0.1 surveys per site).95

For each survey, we sum up the total number of individuals observed within each of four guilds, which we96

can then compare to the model predictions, controlling for total transect length and survey date. The guilds are97

ground nesting bumblebees (GNBB), tree nesting bumblebees (TNBB), ground nesting solitary bees (GNSB) and98

cavity nesting solitary bees (CNSB), with species allocated to guilds following the nesting preferences given in99

Falk (2015). Where observations were not recorded to species level but instead recorded as ‘Bombus unknown’ or100

‘solitary unknown’, we divide these unknown individuals between the nesting guilds according to the proportions101
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of known individuals assigned to each guild on that particular survey. In practice, unknown Bombus and unknown102

solitary bees were predominantly assigned to ground nesting guilds due to observations of ground nesting species103

significantly outnumbering other guilds.104

2.2 Model Description105

ScaLE-poll is a process-based model that predicts spatially explicit abundance and flower visitation rates by106

wild central-place-foraging pollinators in a given landscape. It accounts for population growth over time, allows107

different dispersal distances for workers and reproductives, includes preferential use of more rewarding floral and108

nesting resources, and can incorporate fine-scale edge features in the landscape. We summarise the model below.109

For a detailed description of the model see Häussler et al. (2017).110

The model requires a rasterised landcover map detailing the landcover class (e.g. cereal, woodland, etc.) of111

each pixel, as well rasters containing the area within each pixel that is covered by specific edge features (e.g.112

hedgerows, flower margins). Each landclass is scored according to the amount of floral cover it provides during113

each season (spring, summer and autumn), the attractiveness of those floral resources to each pollinator guild114

(floral attractiveness) and the attractiveness of the nesting opportunities the landclass provides to each pollinator115

guild (nesting attractiveness). For each guild, the model then generates a nesting resources map (i.e. nesting116

attractiveness score for each pixel multiplied by the pixel area and maximum nest density input into the model),117

plus floral resource maps for each season (i.e. floral attractiveness multiplied by seasonal floral cover score for118

each pixel).119

Nests are then randomly allocated across the landscape, with the number of nests in a pixel drawn randomly120

from a Poisson distribution around the expected number predicted by the nesting resources map. For each nest,121

the model uses the foraging distance of the pollinator to calculate the resources gathered by the nest from its122

surroundings, which in turn determines how many workers (if social) and new queens the nest produces using123

the input growth parameters for that pollinator. New queens then disperse according to the dispersal kernel of124

the pollinator. In any given pixel, the number of new queens that survive to the following year is limited by the125

expected number of nests in that pixel according to the nesting resources map.126

The model outputs visitation rate to each pixel in each season (based on the amount of time pollinators from127

all nests spend foraging in each pixel). Solitary bees are assumed to be active only during one season, with new128

bees produced at the end of this season. Social bees (e.g. bumblebees) are assumed to be active in all three129

seasons, with queens foraging during season 1, workers foraging during seasons 2 and 3, and new queens produced130

at the end of season 3.131

2.3 Model Inputs132

2.3.1 Landcover/Edgecover Rasters133

Landcover rasters are generated from the CEH Land Cover Map 2015 (LCM2015) with Ordnance Survey orchard134

polygons added on top of this. Where a land parcel is classed as ‘Arable and Horticulture’ in LCM2015, we obtain135

crop information for the year 2016 from rural payments agency databases.136
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For each landcover raster, we also generate edgecover rasters for six edge features (ditches, fallow field margins,137

grassy field margins, flower-rich margins, hedgerows and woodland edges) using information from rural payments138

agency databases and the CEH Woody Linear Features Database (Scholefield et al., 2016). See Supplementary139

Material for full details of landcover/edgecover raster generation.140

For each survey site, we generate 10x10km landcover/edgecover rasters with 10x10m pixels centred on the sur-141

vey site, which are used to obtain model predictions for calibration and validation. To obtain upscaled calibrated142

model predictions for Great Britain, we also generate 512 35x35km landcover/edgecover rasters with 10x10m143

pixels, which cover the entire geographical area with a 5km overlap between rasters (later removed from output144

rasters to eliminate edge effects).145

2.3.2 Expert Opinion Data: Floral cover, floral attractiveness and nesting attractiveness146

Ten UK pollinator experts were asked to score 35 common European landclasses (Table S2) for abundance and147

duration of floral resources per season (later multiplied to obtain floral cover). They were also asked to assign148

floral and nesting attractiveness scores to each landclass for the pollinator guilds they had experience of. Scores149

were collected on a six point scale, along with corresponding ‘certainty scores’. We then calculated the mean scores150

across all experts and their variance, weighted by the experts’ certainty scores. See Supplementary Material for151

full details.152

2.3.3 Literature Data: Maximum nest density, foraging distances, dispersal distances and153

growth parameters154

We use the maximum nest density, foraging distance, dispersal distance and growth parameters supplied with the155

ScaLE-poll model for bumblebees and solitary bees and used in Häussler et al. (2017) (Table 1). For simplicity,156

we assume both bumblebee nesting guilds have the same values for these parameters. Similarly, we assume both157

solitary bee nesting guilds have the same values for these parameters. This is unlikely to be true. However,158

the identical maximum nest density assumption is unimportant for our results, since we never compare the159

relative abundance of guilds and are concerned only with calibrating relative attractiveness of landclasses within160

guilds. Similarly, we consider the uniform foraging and dispersal distances for bumblebees and solitary bees an161

appropriate simplification, since foraging and dispersal distances are poorly known and vary between species (even162

within guilds) and we compare our model predictions to observed guild totals of varying species composition.163

2.4 Comparison of Model Predictions with Pollinator Abundance Data164

To obtain a model prediction for a given survey site, we input the site’s 10x10km landcover/edgecover rasters165

and calculate the predicted spring visitation rate per m2 within the survey area (V1) by summing up the season166

1 visitation rate to all pixels inside the survey area and dividing by the total survey area. We compare this to167

the observed number of bees on each survey (Nobs) by fitting the model:168
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log

(
Nobs + 1

L

)
= β log V1 + γ logW +


α2011

...

α2016


Y (1)

where L is the total transect length (i.e. we implicitly assume bees are detected within some unknown width169

either side of the transect which is constant across sites), W is the week of the year that the survey was carried170

out, Y is the year the survey was carried out and we fit to (Nobs + 1) to avoid taking the logarithm of zero when171

no pollinators were recorded. The co-variable W allows us to account for the fact that pollinator population size172

changes during the survey season, e.g. as bumblebee nests produce workers over time and solitary bees’ active173

periods pass. The co-variable Y allows us to account for the fact that pollinator abundance nationally shows174

between-year variability due to year-year variation in weather suitability impacting pollinator growth directly175

(e.g. through poor weather reducing foraging time) and indirectly (e.g. by reducing floral cover).176

Although the survey data represent counts, we fit the linear model assuming a Gaussian error distribution177

rather than Poisson, because the count data are over-dispersed with variance much larger than the mean. We178

choose a Gaussian error distribution with logged variables rather than any other method to deal with over-179

dispersion, such as quasi-Poisson distribution, because this approach produces the smallest and most uniform180

residuals across the data range.181

We fit the linear model using R version 3.5.1 (R Core Team, 2018). A positive value of β that is significantly182

different from zero indicates significant model-data agreement.183

2.5 Sensitivity Analysis184

We conduct a sensitivity analysis to determine how sensitive the model-data agreement is to changes in the input185

nesting and floral attractiveness scores. For each guild, we calculate the change (∆) in model-data agreement186

slope (β; obtained from fitting Equation 1) when each attractiveness parameter is adjusted by ±50%. This is done187

by running the ScaLE-poll model twice for each attractiveness parameter — once with that parameter increased188

by 50% and once with it decreased by 50%, whilst holding all other parameters constant at their original expert189

opinion values. For attractiveness parameters that are zero, we vary the parameter by ±50% around a value190

of 0.1. For each attractiveness parameter, we obtain model predictions across all the survey sites for these two191

scenarios (parameter ±50%) and fit Equation 1 to obtain the model-data agreement slope in each scenario (β+192

and β−). We then calculate the percentage change in the model-data agreement slope as:193

∆ = 100
|β+ − β−|

β
(2)

where β is the model-data agreement slope when all attractiveness parameters are set to their original expert194

opinion values.195

We calculate the uncertainty in ∆ by propagating the standard errors on the individual slopes (αβ+ , αβ− and196

αβ), following Hughes and Hase (2010), as:197
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α∆ = ∆

[(
α2
β+

+ α2
β−

β+ − β−

)2

+

(
αβ
β

)2
]1/2

(3)

2.6 Model Calibration198

We separate the survey sites into 120 calibration sites and 119 validation sites, using stratified random sampling199

to ensure both subsets contain equal proportions of crop/non-crop sites and zero/non-zero surveys per guild. The200

validation sites are not used for calibration but reserved for assessing improvement in model-data agreement.201

For each guild, we focus on calibrating the nesting and floral attractiveness scores for each landclass, excluding202

the landclasses buckwheat (which does not occur in any of our survey site rasters) and ‘unsuitable’ (which is used203

for water/bare rock e.t.c. and is fixed at zero attractiveness). We keep the floral cover scores fixed at their204

original expert opinion values, to allow us to decouple the guilds and calibrate each guild separately, and all other205

parameters remain fixed at their literature values.206

We test two different methods of calibration. Method 1 involves searching the parameter space of all eligible207

parameters simultaneously (free data-driven calibration). Method 2 (expert-informed prioritised calibration)208

involves first prioritising parameters for calibration according to the results of the sensitivity analysis and searching209

the parameter space of parameters which the model is most sensitive to first, while less sensitive parameters remain210

fixed at their original expert opinion values. The parameter space of these less sensitive parameters is only searched211

once the more sensitive parameters have been calibrated. We define three sensitivity thresholds for Method 2:212

parameters which produce ∆ ≥ 5% are calibrated first, followed by parameters which produce 5% > ∆ ≥ 0.5%,213

with the remaining parameters producing ∆ < 0.5% calibrated last.214

The calibration process itself follows an Approximate Bayesian Computation-like approach (Fearnhead and215

Prangle, 2012) and involves running ScaLE-poll 1000 times across all of our calibration sites. Each run uses216

a unique set of attractiveness parameters where each eligible attractiveness parameter is assigned a random217

value drawn from a uniform distribution between the allowable limits for that parameter, while any ineligible218

attractiveness parameters remain fixed at their original expert opinion scores. For each run, we fit Equation 1 to219

assess the model-data agreement between the calibration site survey data and model predictions and select the 100220

runs which produce (β,R2) closest to (1,1). We then calculate the density distributions of the eligible parameters221

across these 100 best runs. While the density distributions of the eligible parameters across all 1000 runs are222

flat, the density distributions corresponding to the 100 best runs should be biased towards parameter values that223

produce the best fit to the data and show a peak around this value. If the full width half maximum (FWHM)224

of the density distribution peak is ≤ 60% of the parameter’s allowable range, then we assume the parameter225

has been sufficiently constrained and we define the parameter’s calibrated score as the score that corresponds226

to the density distribution peak. The FWHM limit of ≤ 60% was set after careful consideration of the density227

distribution widths the calibration process and data quality are capable of producing.228

Typically only a few (∼1 – 5) parameters will be constrained from analysing a single batch of 1000 runs, due229

to the large number of parameters being varied simultaneously broadening the density distributions of individual230

parameters. After a single batch of 1000 runs, any calibrated parameters are set to their calibrated values and the231

process is repeated until all parameters have been calibrated or the remaining parameters to do not yield FWHM232
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≤ 60% due to their minimal leverage on the model-data agreement.233

2.7 Predicting Visitation Rates across Great Britain234

We generate two model predictions per guild for spring visitation rate across Great Britain: one prediction using235

the calibrated attractiveness scores obtained using Method 1 (Vcal) and one using the original expert opinion236

attractiveness scores (Vexp). We compare the ratio of these two predictions by calculating Vcal/Vexp to identify237

regions of the country where these two predictions differ.238

We quantify the uncertainty on Vcal by running 100 simulations, where the score of each attractiveness239

parameter is randomly selected from the density distribution of that calibrated parameter. The uncertainty on240

the model prediction in each pixel is then represented by the standard deviation of these 100 simulations.241

We quantify the uncertainty on Vexp by running 100 simulations, where the score of each attractiveness242

parameter is randomly selected from a beta distribution (B(a, b)) with mean (µ = a/(a + b)) and variance243

(σ2 = µ(1 − µ)/(a + b + 1)) equal to the mean and variance of the expert opinion score for that parameter.244

Since B(a, b) is only defined on the interval (0,1), we rescale the floral attractiveness parameter means (originally245

scored from 0–20) and variances onto the interval (0,1), draw randomly from the appropriate beta distribution246

and multiply the randomly selected scores by 20 to return them to the appropriate scale.247

The uncertainty on the ratio Vcal/Vexp is taken as the standard deviation of the ratios calculated from dividing248

one Vcal simulation by the corresponding Vexp simulation. We assess the significance of the ratio Vcal/Vexp in249

each pixel by calculating the number of standard deviations the ratio is away from a ratio of 1:1 in that pixel,250

i.e. by expressing (Vcal/Vexp − 1) in units of the standard deviation of Vcal/Vexp within that pixel. Pixels with251

(Vcal/Vexp−1) ≥ 3 standard deviations are considered to show a significant difference between the calibrated and252

expert opinion model predictions.253

3 Results254

3.1 Initial Model-Data Comparison255

All four guilds show significant model-data agreement (i.e. statistically significant β > 0) between the initial256

model predictions for each survey site, calculated using the expert opinion attractiveness scores, and the observed257

survey data (Table 2). However, the agreement is non-linear with β � 1 for all guilds, implying a doubling258

of predicted visitation is not reflected by a doubling in observed abundance. R2 values for the fits range from259

0.285–0.467, with ground nesting guilds showing lower R2 values than the other guilds.260

3.2 Sensitivity Analysis261

For each guild, only a small number of parameters produce a significant change in model-data agreement slope262

when adjusted (Fig. 2). For GNBB, only the nesting attractiveness of unimproved permanent grassland and263

cereal and the floral attractiveness of coniferous woodland, unimproved permanent grassland, cereal and oilseed264

produce a percentage change in slope with uncertainty bounds that do not overlap zero. This is due to the large265
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Figure 2: Sensitivity analysis results for each guild. Bar heights show percentage change in model-data
agreement slope when landclass attractiveness scores are adjusted by ±50 %. Errorbars show propagated
uncertainty using Eqn.3. See Table S2 for abbreviations.

10



scatter in the model-data agreement producing ∼ 10% uncertainty on individual model-data slopes and the small266

geographic area covered by many landclasses (e.g. vegetables).267

The model-data agreement sensitivity is influenced by landscape composition and data collection location, as268

well as incorporating expert opinion as to which landclasses should be important to each guild. It is most sensitive269

to: 1. landclasses that occur within many survey areas (e.g. orchards; Fig. 2 GNSB panel), 2. landclasses that270

occur close to survey areas and/or cover a large area within the surrounding landscape (e.g. cereal; Fig. 2 GNBB271

panel), 3. landclasses that have floral attractiveness scores similar to adjacent landclasses (such that flipping272

the score above/below that of an adjacent landclass produces a big change in where bees are foraging), and 4.273

landclasses that have high floral/nesting expert opinion attractiveness scores, since +/-50% of a high score results274

in a bigger absolute change in input attractiveness score than +/-50% of a low score (e.g. suburbs, Fig. 2 TNBB275

panel).276

3.3 Model Calibration277

3.3.1 Improvement in Model-Data Agreement278

All four guilds show β closer to 1 and improved R2 values after calibration (except Method 2 for TNBB), with R2
279

values for all guilds now ranging from 0.358–0.482 (Table 2). Calibration Method 1 generally produces a slightly280

higher R2 than Method 2, but there is typically no significant difference between the model-data agreement slopes281

obtained by the two methods, with TNBB the only guild for which the standard errors on the two slopes do not282

overlap.283

The results in Table 2 represent the model-data fit agreement using all survey sites. Fig. 3 (and the corre-284

sponding Fig. S1, S2 and S3 in the Supplementary Material) show the improvement in β and R2 as successive285

batches of parameters are calibrated for the calibration and validation sites separately. The validation sites,286

which were not used to calibrate the model, generally show a similar improvement in model-data agreement to287

the calibration sites, with the exception of TNBB R2 using Method 1 (Fig. S1). In this case, the calibration288

subset began with a lower R2 than the validation subset and selecting for (β,R2) close to (1, 1) in the calibration289

subset produces a slight reduction in R2 for the validation subset.290

Across all four guilds, the biggest improvements in model-data agreement occur at the beginning of both291

calibration processes, when the most influential parameters are calibrated (despite these not being forcibly priori-292

tised by Method 1). GNBB show no further significant improvement in model-data agreement slope via Method293

1 after the first six batches of parameters have been calibrated (18 out of 66 parameters). The optimal β value294

is typically achieved faster via Method 2 than Method 1. Method 2’s prioritising of slope-influencing parameters295

means that improvements in R2 often take longer to achieve than improvements in β, whereas β and R2 improve296

at roughly the same rate using Method 1 (Fig. 3). For TNBB, this prioritisation of slope-influencing parameters297

actually results in an overall reduction in R2 by the end of the Method 2 calibration process (Fig. S1). This298

may be due to TNBB being most restricted by the Method 2 calibration process, with just 11 parameters falling299

below the first sensitivity threshold for calibration, compared to 23, 15 and 19 parameters for GNBB, GNSB and300

CNSB guilds, respectively.301
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Figure 3: Change in model-data agreement slope and R2 after each successive round of calibration using
Methods 1 and 2 for Ground Nesting Bumblebees. Solid line shows results from fitting all survey sites,
dashed and dotted lines show results for calibration and validation sites, respectively. Errorbars show
slope standard error. Fig. S1, S2 and S3 in the Supplementary Material show corresponding plots for
the other pollinator guilds.
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Figure 4: Comparison of rates at which parameters are fixed by successive rounds of calibration using
Methods 1 and 2 for each guild.

3.3.2 Calibration Rates302

For GNBB and TNBB (Fig. 4, left panel) the cumulative number of parameters fixed per patch is initially higher303

using Method 2 but drops below Method 1 for later batches, such that both calibration methods require the304

same total number of batches. However, the Method 2 calibration rate remains higher than Method 1 while the305

calibration process is still producing significant improvements in model-data agreement (cf. Fig. 3 and S1), only306

dropping below Method 1 after the overall change in model-data agreement becomes negligible. This suggests307

adopting Method 2 may be advantageous for these guilds, although TNBB may benefit from lower ∆ thresholds308

to avoid the over-prioritisation of slope improvement at the expense of improvements in R2.309

For GNSB, the cumulative number of parameters fixed by Method 2 is always comparable to or less than310

Method 1, such that adopting Method 2 offers no advantage for this guild (circles, Fig. 4). In contrast, for CNSB,311

the calibration rate by Method 2 is always substantially higher than using Method 1 (diamonds, Fig. 4). Method312

2 fixes a lower total number of parameters for CNSB than Method 1 (51 versus 58, respectively). However, Fig.313

S3 shows that significant improvements in model-data agreement ceased around batch 16 for both methods for314

this guild, at which point Method 2 had calibrated a greater number of parameters than Method 1.315

3.3.3 Calibrated Attractiveness Scores versus Original Expert Opinion Scores316

For individual attractiveness parameters, there can be large differences between the original expert opinion scores317

and the calibrated scores. For bumblebees, where both calibrated nesting scores for a landclass disagree with the318

original expert opinion score (i.e. neither FWHM overlap the expert opinion score uncertainty), the calibrated319

nesting scores are typically higher than the experts’ nesting scores, and this is especially noticeable for crops (Fig.320

5). In contrast, where both calibrated floral scores for a landclass disagree with the expert opinion scores, the321
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Figure 5: Comparison of expert opinion attractiveness scores (black) with calibrated attractiveness scores
obtained by Method 1 (blue) and Method 2 (red) for Ground Nesting Bumblebees and Tree Nesting
Bumblebees. Error bars show standard error on expert opinion scores (or zero when only one expert
contributed a score or all experts volunteered the same score) and density distribution FWHM for cali-
brated scores. The absence of a black point for a parameter indicates no experts contributed a score. The
absence of a blue (or red) point indicates Method 1 (or Method 2) could not calibrate this parameter.
See Table S2 for abbreviations.
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Figure 6: Same as Fig.5 but comparing expert opinion attractiveness scores (black) with calibrated
attractiveness scores obtained by Method 1 (blue) and Method 2 (red) for Ground Nesting Solitary Bees
and Cavity Nesting Solitary Bees.
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calibrated floral scores for bumblebees and GNSB are typically lower than the original expert scores. The solitary322

bee nesting scores show the greatest level of agreement between the expert opinion scores and calibrated scores323

(Fig. 6), with 52% of landclasses showing overlapping uncertainties for all three scores compared to 33% and 27%324

for GNBB and TNBB, respectively.325

For individual attractiveness parameters, there can also be large differences between the scores obtained by326

the two calibration methods. All guilds have instances where the Method 1 calibrated score agrees with the327

original expert opinion score, while the Method 2 score disagrees, and vice versa. Even though the two calibrated328

versions of the model produce similar β and R2 values when compared to the data, Fig. 5 and 6 show that they329

achieve this sometimes with very different input attractiveness parameters.330

Examining the scores for a particular landclass across all guilds reveals some notable trends. The calibrated331

floral scores for suburbs are far lower than the expert floral scores across all guilds (Fig. 5 and 6). The calibrated332

floral scores for cereal and maize are significantly higher than the expert floral scores for solitary bees. Finally,333

the calibrated nesting scores for maize are significantly higher than the expert scores for both ground nesting334

guilds.335

3.4 Calibrated vs Uncalibrated Model Predictions for Great Britain336

Fig. 7, and the corresponding Fig. S4, S5 and S6 in the Supplementary Material, show the predicted spring337

visitation rate across Great Britain for GNBB, TNBB, GNSB and CNSB, respectively, using the nesting and338

floral attractiveness scores obtained via calibration Method 1. The most extensive regions of predicted high339

visitation for bumblebees occur in northern Scotland due to large continuous tracts of moorland and wetland (i.e.340

upland bog in LCM2015) in these areas, which have high floral and nesting calibrated scores for these guilds (Fig.341

5). Both bumblebee guilds show lower visitation rates in lowland arable areas of eastern England, due to the342

predominance of (low calibrated floral score) cereals in these areas (Fig. 7 and S4). However, for GNBB, this343

low visitation cereal matrix is interspersed with highly visited hedges, fallow and mass flowering crop fields, while344

TNBB show visitation rate hotspots in East Anglia, where highly scored nesting habitats (deciduous woodland345

and suburbs) are embedded in highly scored foraging habitats (permanent grassland). The solitary bees show an346

opposite geographical trend, with higher visitation rates in lowland arable areas (driven by high nesting and floral347

calibrated scores for maize and cereals; Fig. 6) and lower visitation rates in upland areas of permanent grassland348

(Fig. S5 and S6).349

For all guilds, the spatially resolved uncertainty on the spring visitation rate predictions (top right panels;350

Fig. 7, S4, S5 and S6) is highest in landclasses where the calibrated attractiveness scores have large FWHM and351

in landclasses with high floral scores but low nesting scores. Such areas have very little nesting within them, so352

their visitation rate is dominated by bees nesting in surrounding landclasses. Varying their floral attractiveness353

therefore has a large effect on how many bees travel in to forage in these areas.354

Across all guilds, the calibrated model typically predicts higher visitation rates than the expert model in arable355

areas of southern, central and eastern England and lower visitation rates than the expert model in upland areas356

of permanent grassland and suburban areas (bottom left panels; Fig. 7, S4, S5 and S6). TNBB show the most357

extreme differences between the two models, producing in some upland wetland areas a factor of 107 difference in358
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Figure 7: a) Model predictions for Ground Nesting Bumblebee spring visitation rate across Great Britain
using attractiveness scores obtained via calibration Method 1. b). Standard deviation of model predic-
tions shown in a., c). Ratio between a. and model predictions using original expert opinion attractiveness
scores, d) Number of standard deviations of ratio away from 1:1. Fig. S4, S5 and S6 in the Supplementary
Material show corresponding maps for the other pollinator guilds.
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predicted visitation rate, due to the calibrated model obtaining non-zero nesting scores for many landclasses for359

which the experts assigned zero attractiveness (Fig. 5). Once the uncertainties on the attractiveness scores are360

taken into account, there are generally no significant differences between the two model predictions for solitary361

bees, with the largest discrepancies (between 1–2 sd away from 1:1 ratio) occurring in suburban areas and at362

the interface between suburban areas and woodlands (bottom right panels; Fig. S5 and S6). In contrast, both363

bumblebee guilds show significant differences between the two model predictions in arable areas (> 3sd away364

from 1:1 ratio; Fig. 7 and S4). See the Supplementary Material for a full discussion of the national-level model365

predictions for each guild.366

4 Discussion367

We have compared the most advanced spatially-explicit process-based pollinator abundance model currently avail-368

able to bee abundance data collected at 239 sites across Great Britain. Our initial model version, parameterised369

using expert opinion nesting and floral attractiveness scores, showed significant (but non-linear) model-data agree-370

ment for all four guilds. We then tested two different methods to calibrate the nesting and floral attractiveness371

scores for each guild and improve the model-data agreement — 1. a free purely data-driven calibration and 2.372

an expert-informed prioritised calibration. Method 2 calibrated parameters at a faster rate (initially) for three of373

the four guilds, but not for GNSB.374

Although our calibrated models both showed improvements in model-data agreement, there were significant375

differences between the calibrated attractiveness scores obtained by the two methods, reflecting the fact that, in376

complex interacting process-based models, the order in which parameters are calibrated matters. Another factor377

may be ‘over-adjustment’ of parameters by the prioritised calibration method to compensate for the fact that the378

process couldn’t always simultaneously adjust other parameters which, if allowed to vary, might have enabled a379

better combined fit to the data. It may also simply be a consequence of our low model-data sensitivity to small380

area landclasses (Yapo et al., 1996).381

Both calibration processes selected attractiveness scores that improved the fit to our observed abundance data.382

However, closer examination of the calibrated scores reveals instances where the calibration process identified383

ecologically unrealistic values, e.g. high floral attractiveness scores for solitary bees for cereals, which are wind384

pollinated and do not provide significant nectar resources (except potentially in organic systems with higher in-385

crop wild floral cover; Holzschuh et al., 2007). There are many reasons why our calibration processes might find386

erroneous/unrealistic attractiveness values:387

� Detectability biases in survey data. Erroneous calibrated scores may arise if species detectability varies388

systematically with landcover, e.g. reduced sight lines/fewer individuals in flight. Our guild-level approach389

may further exacerbate this if guild species composition systematically alters across landcover such that390

more readily detectable species are replaced with less detectable species in some habitats, so causing an391

apparent reduction in measured guild abundance unrelated to actual guild abundance. Solitary bees are392

typically under-recorded on transects due to their smaller size (O’Connor et al., 2019), and their short flight393

periods also reduces data availability for these guilds.394
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� Use of survey totals. We necessarily compared mean model visitation rate within the survey area395

with summed abundance along all surveyed transects. This may produce erroneous calibrated scores in396

heterogeneous survey areas containing multiple landclasses.397

� Timing of crop surveys. All crop surveys were conducted during the (relatively short) peak flowering398

period of the crop when temporarily high foraging abundances occur within the crop relative to the wider399

countryside. However, the model predicts total visitation rate per season. Two adjacent parcels containing400

equally attractive resources for short durations will receive the same predicted seasonal visitation rate, i.e.401

half the bees forage in each. If, in reality, these two parcels flower sequentially within one season, such that402

all the bees forage in one and then in the other, the model cannot capture this unless we subdivide the403

season and increase the temporal resolution at which we run the model. This temporal limitation may be404

driving the unusually high calibrated nesting/floral scores obtained for some crops.405

� Geographical distribution of survey sites. Biases in geographical coverage can produce spurious406

calibration results if these correlate with systematic changes in landcover or data collection conditions.407

Despite wide geographical coverage, there were more lowland intensive arable sites than upland sites and408

often better survey conditions at lowland sites. Wide variation in survey weather condition recording/lack409

of recording for some sites prevented us controlling for this.410

� Geographical differences in total abundance unrelated to floral/nesting attractiveness. Cli-411

matic gradients and current range limitations (relevant to TNBB Bombus hypnorum) can also cause vari-412

ation in pollinator population size and produce spurious calibration results where these gradients correlate413

with systematic geographical changes in landcover.414

� Limitations of mapping data: miss-classifications. Inaccuracies in mapping data can lead to spurious415

calibration results if mapping data indicate a landclass is present when in reality it is not.416

� Limitations of mapping data: omissions. Lack of fine-scale feature mapping (Potts et al., 2016)417

prevents many important pollinator habitats from being included in our input model landscapes. We418

also only mapped obviously pollinator relevant agri-environment features and used a simplistic approach419

of placing boundary features around the entire perimeter of the containing land parcel, due to lack of420

information on feature placement.421

� Limitations of mapping data: No accounting for within-habitat heterogeneity. Large-scale422

systematic differences in habitat quality between regions (e.g. due to management) could influence the cal-423

ibrated attractiveness scores, while small-scale within-habitat heterogeneity will influence measured abun-424

dances in the field but won’t be present in the mapping data, which is predominantly derived from the425

25x25m resolution LCM2015 dataset.426

� Dataset asynchrony and dynamic landscapes. Crop rotation means that our study landscapes are427

likely to contain roughly the right proportions of crops but not necessarily in exactly the right places due428

to asynchrony of our mapping and survey data. Although we forced the surveyed crop fields to contain the429

correct crop, erroneous attractiveness scores may be obtained for crops that are adjacent in our mapped430

landscapes but were not adjacent in reality at the time of the survey. Lack of crop rotation information431
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also means we cannot account for the legacy of past flowering crop distributions on current year pollinator432

population size/distribution.433

� Non-stationary populations and flight seasons. We compared the observed data to the predicted434

spring visitation rates using a survey date co-variable. For bumblebees, this reflects the fact that numbers435

increase as spring-foraging queens produce summer-foraging workers. The model only permits solitary bees436

to fly in one season (with no allowance for primitive eusocial or multi-voltine behaviour) and so in order to437

compare spring visitation rates, we simulated only spring-flying solitaries. By comparing spring solitary bee438

and bumblebee numbers to survey data collected throughout spring–summer with a date co-variable, we are439

assuming that spring and summer abundance obey the same correlation over time in different landscapes,440

which is unlikely to be true if some landscapes contain a high proportion of landclasses with very temporally441

restricted floral cover scores (Persson and Smith, 2013). An improvement would therefore be to explicitly442

model both spring- and summer–flying solitary bees and to match surveys to the appropriate seasonal443

visitation rate. However, this adds an extra layer of complexity to an already complex process and can444

produce very different results depending on where the (arbitrary and latitude-dependent) cut-off between445

spring and summer is placed.446

� Choice of parameters to calibrate. We did not calibrate the floral cover scores, leaving these fixed447

at their expert opinion estimates to enable decoupling of the guilds. However, experts can struggle to448

accurately assess floral cover (Baey et al., 2017) and quantitative sampling (e.g. Baude et al., 2016; Hicks449

et al., 2016) can provide more accurate estimates. Under/over-estimated floral cover scores could cause450

higher/lower floral attractiveness scores, respectively.451

� Parameter degeneracy. Crop sites consisted of observational data collected within a single landclass,452

however, without multiple simultaneous observations in adjacent landclasses with different nesting/floral453

properties, the calibration process will struggle to disentangle which (i.e. nesting/floral/both) attractiveness454

scores for the landclasses should be altered to match the data. Measurements in multiple nearby landclasses455

are needed to capture the movement of bees from good nesting to good foraging areas and so break this456

degeneracy. This is another certain cause of unrealistic calibrated scores for agricultural landclasses in457

particular.458

� Structural limitations of model. The model does not account for density dependent competition for459

floral resources, land-use factors such as pesticide risk, or flexibility in foraging range. Changes in guild460

species composition with habitat may cause a change in the typical foraging range for that guild, which461

may impact calibrated attractiveness scores.462

The fact that our expert-informed prioritised calibration process also produced some unrealistic scores raises463

the question of whether this expert-informed calibration was informed enough. Perhaps we should have gone464

further and restricted the parameter space searched, e.g. by using the expert opinion scores as Bayesian priors465

(e.g. Choy et al., 2009). However, the suburban floral attractiveness scores highlight why we might be cautious466

about taking such a strongly expert-influenced a priori approach; this would potentially have prevented the467

calibration from even exploring the preferred range identified by both tested calibration methods for all guilds.468
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There are good reasons why expert opinion scores may be inaccurate or not yield the most appropriate values469

within our modelling scenario:470

� Expert elicitation method. Experts scored landclasses independently. A more sophisticated elicitation471

method, such as the Delphi process (O’Hagan, 2019), may have provided more reliable final scores with472

lower variance, by allowing the experts to collectively review all opinions and iteratively refine and discuss473

their scores. In addition, we calculated the certainty-weighted mean score and variance across all experts474

and used these to parameterise a beta distribution uncertainty profile for each score. Other studies (e.g.475

Koh et al., 2016) assign beta uncertainty distributions to the individual expert scores and average these,476

which may yield a broader mean uncertainty distribution and a slightly different weighted mean.477

� Semantic uncertainties. Each landclass that occurred in the mapping data had to be matched to one of478

the 35 expert opinion landclasses, generating semantic uncertainties. For example, experts scored ‘garden’479

attractiveness and this was applied to all ‘suburbs’ in LCM2015, where gardens are diluted by less attrac-480

tive landclasses e.g. buildings/roads. This could explain the calibrated/expert discrepancy for suburbs.481

Semantic uncertainties also arise where different experts assign different scores to the same landclass due to482

different interpretations of a landcover term, e.g. based on field experience in different geographical regions.483

� Knowledge gaps. There was a trend for the calibrated nesting scores to be higher than the experts484

predicted. It is difficult to find nests in the field and so plausible that experts in general may be less reliable485

at assessing nesting quality.486

Clearly, we can improve on expert opinion estimates by including data-driven calibration, which relates ob-487

servational data more directly to the modelling environment (e.g. Groff et al., 2016). However, ecological survey488

data cannot be treated as ‘true’ due to its own inherent observational biases. Ideally, expert opinion data would489

be entirely supplanted with field data on nesting and floral attractiveness, but these require specialised efforts to490

obtain, are hard to determine (e.g. Osborne et al., 2008; Bahlai and Landis, 2016; Baey et al., 2017) and can491

vary strongly between species even within guilds (Falk, 2015). The collection of large scale systematic pollinator492

monitoring data (as proposed by Carvell et al., 2016) could help our data-driven calibration to derive more re-493

alistic, consistent estimates with lower temporal/regional biases, but no such data are currently available for the494

UK. This means some expert moderation is essential to identify unrealistic parameter values, which may reflect495

the limitations and biases of our current datasets and the insensitivities of our model more than the preferences496

of the species we are modelling.497

Our results show a totally expert opinion parameterisation and a purely data-driven calibration both have498

limitations in their ability to yield accurate parameter estimates. Our maps of pollinator visitation illustrate how499

differences in the parameter values obtained by these two approaches can produce enormous differences in model500

outputs (e.g. factor of 107 increase in TNBB visitation in some locations) when used to predict abundance on a501

landscape scale. This emphasises the need to reconcile these two approaches and obtain the most reliable/realistic502

estimate for each parameter and, crucially, the approach which yields the most reliable estimate may be different503

for each parameter. The fact that our expert-informed prioritised calibration also yielded unrealistic parameter504

values suggests that a more integrated, iterative approach may be better.505
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We propose a solution is to integrate data-driven calibration results within a Delphi-like process, so adding506

a data-driven ‘expert’ to the human members of the panel. Expert opinion is not imposed a priori, but an507

initial independent data-driven calibration is conducted for comparison with expert opinion. Each calibrated508

parameter can then be discussed, examining reasons why the data-driven calibration may be preferred over the509

expert estimate and vice versa. Unrealistic parameter values can be identified, appropriate limits (priors) set if510

over-adjustment is suspected and the calibration process repeated. Model predictions generated using the final511

hybrid parameter values can then be compared to the original survey data, to ensure significant agreement is still512

maintained.513

5 Conclusions514

Reliably modelling pollinator abundance is essential if we are to identify areas of pollination service deficit and515

effectively target resources to support pollinator populations. The central place foraging behaviour of many516

pollinators favours a process-based model in order to accurately reflect how the distribution of nesting/floral517

resources affects landscape-level pollinator abundance. We selected the most advanced process-based pollinator518

abundance model available and calibrated it against observational data collected across Great Britain, to assess519

its suitability for generating spatially-explicit estimates of national pollinator abundance.520

In its initial expert-parameterised version, the model showed significant agreement with the survey data,521

which further improved with calibration for three out of four modelled pollinator guilds. This demonstrates the522

model’s potential to reliably map pollination service/natural capital, identify target areas for interventions and523

form the basis of novel tools to inform land-use decision-making. Our aim was to identify the parameter set524

that produced the best fit to the survey data and could be used with confidence to predict the consequences525

of land-use change on UK pollinator populations. Although the calibrated parameterisations satisfy the former,526

their inclusion of unrealistic parameter values means they fail at the latter; adopting the calibrated parameters527

for the sake of a small increase in R2 would (far more seriously) cause the model to predict that increasing528

cereal cover is beneficial for many pollinators, which is generally not the case. This demonstrates that our529

concept of model accuracy must include both accurate prediction within the calibration/validation environment530

and ecological realism of underlying parameters (given our wider knowledge base) to enable meaningful model531

application outside it.532

Our work highlights the universal challenges faced when calibrating any spatially-explicit, process-based eco-533

logical model. The desire to realistically represent complex ecological processes in finely mapped landscapes534

necessarily generates models with large numbers of parameters. Computational limitations and model insensitiv-535

ities may preclude calibration of all parameters making some use of expert estimates a necessity. This, combined536

with survey and geographical data biases, may lead purely data-driven calibration to easily identify spurious pa-537

rameter values. We suggest that treating expert elicitation and data-driven calibration as complementary parts of538

one single iterative process, which integrates model calibration and credibility assessment, may provide the best539

opportunity to obtain realistic parameter estimates for process-based models, in ecological systems with expert540

knowledge gaps and patchy/biased ecological data.541
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Table 1: ScaLE-poll model parameters taken from literature data showing values adopted for bumblebees
(BB; from Häussler et al. 2017), and solitary bees (SB; see Table S3).
Parameter Description Unit BB SB
nmax Number of nests in a cell of maximum nesting quality nests/ha 19 20
β Mean dispersal distance for foraging m 530 191
β̄ Mean dispersal distance to new nesting sites m 1000 100
aw Median of the growth rate for workers - 100 -
bw Steepness of the growth rate for workers - 200 -
aq Median of the growth rate for reproductive females - 15000 42
bq Steepness of the growth rate for reproductive females - 30000 12
wmax Max. number of workers produced by a reproductive female - 600 -
qmax Maximum number of new reproductive females produced - 160 2
pw Fraction of foraging workers - 0.5 -
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Table 2: Results from fitting equation log
(
Nobs+1

L

)
= β log V1 + γ logW +

(
α2011, ..., α2016

)
Y to assess

model-data agreement for initial model predictions using expert opinion attractiveness scores and model
predictions using calibrated attractiveness scores obtained via Methods 1 and 2. Statistically significant
coefficients are marked with asterisks (*** = P < 0.001). Guild abbreviations GNBB, TNBB, GNSB
and CNSB refer to ground nesting bumblebees, tree nesting bumblebees, ground nesting solitary bees
and cavity nesting solitary bees, respectively.

GNBB TNBB GNSB CNSB
Expert Opinion β 0.23 ± 0.07 *** 0.16 ± 0.02 *** 0.50 ± 0.05 *** 0.44 ± 0.04 ***

γ −0.2 ± 0.2 −0.62 ± 0.09 *** −0.8 ± 0.1 *** −0.62 ± 0.08 ***
R2 0.298 0.448 0.285 0.467

Calibrated Method 1 β 0.91 ± 0.06 *** 0.75 ± 0.05 *** 0.99 ± 0.06 *** 0.89 ± 0.05 ***
(free data-driven) γ 0.1 ± 0.1 −0.35 ± 0.09 *** −0.7 ± 0.1 *** −0.49 ± 0.07 ***

R2 0.358 0.460 0.382 0.482
Calibrated Method 2 β 0.83 ± 0.06 *** 0.84 ± 0.03 *** 0.90 ± 0.06 *** 0.83 ± 0.05 ***
(expert-informed γ 0.1 ± 0.1 −0.09 ± 0.08 −0.8 ± 0.1 *** −0.58 ± 0.08 ***
prioritised) R2 0.342 0.433 0.377 0.486
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