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Abstract

In this paper, we propose an elegant solution that is directly addressing the1

bottlenecks of the traditional deep learning approaches and offers an explainable2

internal architecture that can outperform the existing methods, requires very3

little computational resources (no need for GPUs) and short training times4

(in the order of seconds). The proposed approach, xDNN is using prototypes.5

Prototypes are actual training data samples (images), which are local peaks of6

the empirical data distribution called typicality as well as of the data density.7

This generative model is identified in a closed form and equates to the pdf but8

is derived automatically and entirely from the training data with no user- or9

problem-specific thresholds, parameters or intervention. The proposed xDNN10

offers a new deep learning architecture that combines reasoning and learning in11

a synergy. It is non-iterative and non-parametric, which explains its efficiency12

in terms of time and computational resources. From the user perspective, the13

proposed approach is clearly understandable to human users. We tested it14

on challenging problems as the classification of different lighting conditions for15

driving scenes (iROADS), object detection (Caltech-256, and Caltech-101), and16

SARS-CoV-2 identification via computed tomography scan (COVID CT-scans17

dataset). xDNN outperforms the other methods including deep learning in18

terms of accuracy, time to train and offers an explainable classifier.19
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1. Introduction20

Deep learning has demonstrated ability to achieve highly accurate results in21

different application domains such as speech recognition (Xiong et al., 2018),22

image recognition (He et al., 2016), and language translation (LeCun et al.,23

2015) and other complex problems (Goodfellow et al., 2016). It attracted24

the attention of media and the wider public (Sejnowski, 2018). It has also25

proven to be very valuable and efficient in automating the usually laborious26

and sometimes controversial pre-processing stage of feature extraction. The27

main criticism towards deep learning is usually related to its ‘black-box’ nature28

and requirements for huge amount of labeled data, computational resources29

(GPU accelerators as a standard), long times (hours) of training, high power30

and energy requirements (Rudin, 2019). Indeed, a traditional deep learning31

(e.g. convolutional neural network) algorithm involves hundreds of millions of32

weights/coefficients/parameters that require iterative optimization procedures.33

In addition, these hundreds of millions of parameters are abstract and detached34

from the physical nature of the problem being modelled. However, the auto-35

mated way to extract them is very attractive in high throughput applications of36

complex problems like image processing where the human expertise may simply37

be not available or very expensive.38

Feature extraction is an important pre-processing stage, which defines the39

data space and may influence the level of accuracy the end result provides.40

Therefore, we consider this very useful property of the traditional deep learn-41

ing and step on it combined with another important recent result in the deep42

learning domain, namely, the transfer learning. This concept postulates that43

knowledge in the form of a model architecture learned in one context can be44

re-used and useful in another context (Hu et al., 2015). Transfer learning helps45

to considerably reduce the amount of time used for training. Moreover, it also46

may help to improve the accuracy of the models (Zhuang et al., 2015).47

Stepping on the two main achievements of the deep learning - top accuracy48

combined with an automatic approach for feature extraction for complex prob-49
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lems, such as image classification, we try to address its deficiencies such as the50

lack of explainability (Rudin, 2019), computational burden, power and energy51

resources required, ability to self-adapt and evolve (Soares and Angelov, 2019).52

Interpretability and explainability are extremely important for high stake appli-53

cations, such as autonomous cars, medical or court decisions, etc. For example,54

it is extremely important to know the reasons why a car took some action,55

especially if this car is involved in an accident (Doshi-Velez and Kim, 2017).56

The state-of-the-art classifiers offer a choice between higher explainability57

for the price of lower accuracy or vice versa (Figure 1). Before deep learning58

(Schmidhuber, 2015), machine-learning and pattern-recognition required sub-59

stantial domain expertise to model a feature extractor that could transform60

the raw data into a feature vector which defines the data space within which61

the learning subsystem could detect or classify data patterns (LeCun et al.,62

2015). Deep learning offers new way to extract abstract features automatically.63

Moreover, pre-trained structures can be reused for different tasks through the64

transfer learning technique (Hu et al., 2015). Transfer learning helps to consid-65

erably reduce the amount of time used for training, moreover, it also may help66

to improve the accuracy of the models (Zhuang et al., 2015). In this paper,67

we propose a new approach, xDNN that offers both, high level of explainability68

combined with the top accuracy.69

The proposed approach, xDNN offers a new deep learning architecture that70

combines reasoning and learning in a synergy. It is based on prototypes and71

the data density (Angelov and Gu, 2019) as well as typicality - an empirically72

derived pdf (Angelov et al., 2017). It is non-iterative and non-parametric, which73

explains its efficiency in terms of time and computational resources. From the74

user perspective, the proposed approach is clearly understandable to human75

users. We tested it on some well-known benchmark data sets such as iRoads76

(Rezaei and Terauchi, 2013) and Caltech-256 (Griffin et al., 2007) and xDNN77

outperforms the other methods including deep learning in terms of accuracy,78

time to train, moreover, offers an explainable classifier. In fact, the result on79

the very hard Caltech-256 problem (which has 257 classes) represents a world80
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Figure 1: Trade-off between accuracy and explainability.

record (He et al., 2015).81

The remainder of this paper is organized as follows: The next section intro-82

duces a brief literature review. The proposed explainable deep learning approach83

is presented in Section III. The data employed in the analysis is presented in Sec-84

tion IV, and the results are presented in Section V. The discussion is presented85

in the last section of this paper.86

2. Brief Literature Review87

Deep Neural Networks have often been designed purely for accuracy. The88

decisions made by these networks are at best interpreted by post hoc techniques89

(Li et al., 2018) or not interpreted at all. That is, the first step is the selection90

of the network architecture by the human and the attempt to interpret the91

trained model and the learned high-level features follows. Therefore, the post92

hoc interpretability analysis requires a separate modeling effort (Saralajew et al.,93

2018) and is an approximation rather than a deep explanation of the cause-effect94

relations and reasoning. One of the problems with post hoc approach is that95
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the explanations can change for different models used. In other words, it is easy96

to create multiple conflicting yet convincing explanations for how the network97

would classify a single object.98

Prototypes-based classifiers are a reasoning process that do not consider post99

hoc analysis (Biehl et al., 2016). They rely on the similarity (proximity in the100

feature space) of a data sample to a given prototype (Biehl et al., 2016, 2013).101

Different works have different meanings for the word ”prototype” (Biehl et al.,102

2016, 2013, Saralajew et al., 2018), in our case we consider prototypes to be the103

most representative data samples of the training set (the data samples which104

have local peaks of the density (Angelov and Gu, 2019)). In other cases, a105

prototype can be considered as a convex combination of several observations,106

and not necessarily required to be close to any data sample of the training set107

or even to be feasible (Oyedotun and Khashman, 2017, Liu et al., 2018).108

Our work is closely aligned with other prototype classification techniques109

in machine learning. Prototype classification is a classical form of case-based110

reasoning (Li et al., 2018); however, as (Li et al., 2018) uses neural networks,111

the distance measure between prototypes and observations is measured in a112

latent space. (Li et al., 2018) uses an auto encoder to create a latent low-113

dimensional space, and distances to prototypes are computed in that latent114

space. Other works also use Euclidean distance calculation can be expressed in115

terms of convolution operations in the neural network sense (Nebel et al., 2017,116

Biehl et al., 2013). This and the computation of the Euclidean distance in terms117

of a dot product are essential steps towards efficient computational schemes for118

prototype-based neural network layers.119

In contrast, the proposed method uses local densities and global multivari-120

ate generative distributions based on an empirically derived form of the prob-121

ability distribution function (Angelov and Gu, 2019). Furthermore, differently122

from other prototype-based classifiers, the presented method is non-iterative123

and non-parametric as it is using recursive calculations and no search proce-124

dures. Moreover, the proposed algorithm can learn continuously without full125

re-training.126
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3. Explainable Deep Neural Network127

3.1. Architecture and Training of the proposed xDNN128

The proposed explainable deep neural network (xDNN) classifier is formed129

of several layers with a very clear semantic and functional meaning. In addition130

to the internal clarity and transparency it also offers a very clear from the user131

point of view set of prototype-based IF...THEN rules. Prototypes are selected132

data samples (images) that the user can easily view, understand and appreciate133

the similarity to other validation images. xDNN offers a synergy between the134

statistical learning and reasoning bringing both together. In most of the other135

approaches there is a dichotomy and preference of one over the other. We136

advocate and demonstrate that both, learning and reasoning can work together137

in a synergy and produce very impressive results. Indeed, the proposed xDNN138

method outperforms all published results (Rezaei and Terauchi, 2013, He et al.,139

2015, Angelov and Gu, 2018) in terms of accuracy. Moreover, in terms of time140

for training, computational simplicity, low power and energy required it is also141

far ahead. The proposed approach can be described as a feedforward neural142

network which has an incremental learning algorithm that autonomously self-143

develops and evolves its structure adding new prototypes to reflect the possibly144

changing (dynamically evolving) data pattern (Soares and Angelov, 2019). As145

shown in Figure 3, xDNN is composed of the following layers–146

1. Features layer;147

2. Density layer;148

3. Typicality layer;149

4. Prototypes layer;150

5. MegaClouds layer;151
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Figure 2: Pre-training a traditional deep neural network (weights of the network are being

optimized/trained). Using the transfer learning concept this architecture with the weights

are used as feature extractor (the last fully connected layer is considered as a feature vector).

Adapted from (Simonyan and Zisserman, 2014).

Figure 3: xDNN training architecture (per class).

1. Features layer: (Defines the data space)152

The Feature Layer is the first phase of the proposed xDNN method. This153

layer is in charge of extracting global features vector from the images.154

This first layer can be formed by more traditional ‘handcrafted’ meth-155
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ods such as GIST (Solmaz et al., 2013) or HoG (Mizuno et al., 2012).156

Alternatively, it can be formed by the fully connected layer (FCL) of157

the pre-trained convolutional neural network approaches such as AlexNet158

(Krizhevsky et al., 2012), VGG–VD–16 (Simonyan and Zisserman, 2014),159

and Inception (Szegedy et al., 2015), residual neural networks such as160

Resnet (He et al., 2016) or Inception-Resnet (Szegedy et al., 2017), etc.161

Using pre-trained deep neural network approach allows automatic extrac-162

tion of more abstract and discriminative high-level features. In this paper,163

pre-trained VGG–VD–16 DCNN is employed for feature extraction. Ac-164

cording to (Ren et al., 2016), VGG–VD–16 has a simple structure and165

it can achieve a better performance in comparison with other pre-trained166

deep neural networks. The first fully connected layer from VGG–VD–16167

provides a 1× 4096 dimensional vector.168

a) The values are then standardized using the following equation (1):169

x̂i,j =
xi,j − µ(xi,j)

σ(xi,j)
(1)

where x̂ denotes a standardized features vector x of the image I (x are170

the values provided by the FCL), i = 1, 2, ..., N denotes the time stamp171

or the ID of the image, j = 1, 2, ..., n refers to the number of features of172

the given x in our case n = 4096.173

b) The standardized values are normalised to bring them to the range174

[0;1]:175

x̄i,j =
x̂i,j −min

i
(x̂i,j)

max
i

(x̂i,j)−min
i

(x̂i,j)
(2)

where x̄ denotes the normalized value of the features vector. For clarity176

in the rest of the paper we will use x instead of x̄.177

Initialization:178

Meta-parameters for the xDNN are initialized with the first observed data179

sample (image). The proposed algorithm works per class; therefore, all180
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the calculations are done for each class separately.181

P ← 1; µ← xi; (3)

where µ denotes the global mean of data samples of the given class. P182

is the total number of the identified prototypes from the observed data183

samples (images).184

Each class C is initialized by the first data sample of that class:

C1 ← x1; p1 ← x1;

Support1 ← 1; r1 ← r∗; Î1 ← I1

(4)

where, p1 is the vector of features that describe the prototype Î of the C1; Î185

is the identified prototype; Support1 is the corresponding support (number186

of members) associated with this prototype; r1 is the corresponding radius187

of the area of influence of C1.188

In this paper, we use r∗ =
√

2− 2cos(30o) same as (Angelov and Gu,189

2019); the rationale is that two vectors for which the angle between them190

is less than π/6 or 30o are pointing in close/similar directions d. That191

is, we consider that two feature vectors can be considered to be similar if192

the angle between them is smaller than 30 degrees. Note that r∗ is data193

derived, not a problem- or user- specific parameter. In fact, it can be194

defined without prior knowledge of the specific problem or data through195

the following equation (5).196

d(xi, pi) =

∥∥∥∥ xi
‖xi‖

− pi
‖pi‖

∥∥∥∥ . (5)

2. Density layer:197

The density layer defines the mutual proximity of the images in the data198

space defined by the features from the previous layer. The data density,199

if use Euclidean form of distance, has a Cauchy form (15) (Angelov and200

Gu, 2019):201
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D(xi) =
1

1 + ||xi−µN ||2
||σ||2N

, (6)

where D is the density, µ is the global mean, and σ is the variance. The202

reason it is Cauchy is not arbitrary (Angelov and Gu, 2019). It can be203

demonstrated theoretically that if Euclidean or Mahalanobis type of dis-204

tances in the feature space are considered, the data density reduces to205

Cauchy type as referred in equation (15). Density can also be updated206

online (Angelov, 2012):207

D(xi) =
1

1 + ||xi − µi||2 +
∑
i−||µi||2

. (7)

where µi and the scalar product,
∑
i can be updated recursively as follows:208

µi =
i− 1

i
µi−1 +

1

i
xi, (8)

∑
i

=
i− 1

i

∑
i−1

+
1

i
||xi||2

∑
1

= ||x1||2. (9)

Data samples (images) that are closer to the global mean have higher209

density values. Therefore, the value of the data density indicates how210

strongly a particular data sample is influenced by other data samples in211

the data space due to their mutual proximity.212

3. Typicality layer:213

Typicality is is an empirically derived form of probability distribution func-

tion (pdf). Typicality τ is given by the equation (10). The value of τ even

at the point x = pi is much less than 1; the integral of
∫∞
−∞ τdx = 1

(Angelov and Gu, 2019).

τ(xi) =

∑c
i=1 SupportiD(xi)∑c

i=1 Supporti
∫∞
−∞D(xi)dx

(10)

4. Prototypes layer:214

The prototypes identification layer is the core of the proposed xDNN clas-215

sifier. This layer is responsible to provide the clearly explainable model.216
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The xDNN classifier is free from prior assumptions about the data dis-217

tribution type, as well as the random or deterministic nature of the data.218

In contrast, it empirically extracts the distribution from the data sam-219

ples (images) bottom up (Angelov and Gu, 2019). The prototypes are220

independent from each other. Therefore, one can change the structure221

by adding a new prototype without influencing the other already existing222

prototypes. In other words, the proposed xDNN is highly parallelizable223

and suitable for evolving form of application where new prototypes may224

be added (if the data pattern requires this). The proposed xDNN method225

is trained per class forming a set of prototypes per class. Therefore, all the226

calculations are done for each class separately. Prototypes are the local227

peaks of the data density (and typicality) identified in the previous layers/228

stages of the algorithm from the images of the corresponding class based229

on their feature vectors. The prototypes can be used to form linguistic230

logical IF...THEN rules of the following form:231

Rc: IF (I ∼ ÎP ) THEN (class c)232

where ∼ stands for similarity, it also can be seen as a fuzzy degree of233

membership; p is the identified prototype; P is the number of identified234

prototypes; c is the class c = 1, 2, ..., C, I denotes an image.235

One rule per prototype can be formed. All rules per class can be combined236

together using logical OR, also known as disjunction or S-norm:237

Rc: IF (I ∼ Î1) OR (I ∼ Î2) OR ... OR (I ∼ ÎP ) THEN (class c)238

Figure 4 illustrates the area of influence of the identified prototypes. These239

areas around the identified prototypes are called data clouds (Angelov and240

Gu, 2019). Thus, each prototype defines a data cloud.241
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Figure 4: Identified prototypes – Voronoi Tesselation.

We call all data points associated with a prototype data clouds, because242

their shape is not regular (e.g., hyper-spherical, hyper-ellipsoidal, etc.)243

and the prototype is not necessarily the statistical and geometric mean ,244

but actual image (Angelov and Gu, 2019). The algorithm absorbs the new245

data samples one by one by assigning then to the nearest (in the feature246

space) prototype:247

j∗ = argmin
j=1,2,...,P

(||xi − pj ||2) (11)

In case, the following condition (Angelov and Gu, 2019) is met:

IF (D(xi) ≥ max
j=1,2,...,P

D(pj))

OR (D(xi) ≤ min
j=1,2,...,P

D(pj))

THEN (add a new data cloud (P ← P + 1))

(12)

It means that xi is out of the influence area of pj . Therefore, the vector

of features xi becomes a new prototype of a new data cloud with meta-
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parameters initialized by equation (13). Add a new data cloud :

P ← P + 1; CP ← xi; pP ← Ii; SupportP ← 1;

rP ← ro; ÎP ← Ii;
(13)

Otherwise, data cloud parameters are updated online by equation (14). It248

has to be stressed that all calculations per data cloud are performed on249

the basis of data points associated with a certain data cloud only (i. e.250

locally, not globally, on the basis of all data points).251

Cj∗ ← Cj∗ + 1;

pj∗ ←
Supportj∗

Supportj∗ + 1
pj∗ +

Supportj∗

Supportj∗ + 1
xi;

Supportj∗ ← Supportj∗ + 1;

r2j∗ ←
r2j∗ + (1− ||pj∗ ||2)

2
.

(14)

The xDNN learning procedure can be summarized by the following algo-252

rithm.253

xDNN: Learning Procedure254

1: Read the first feature vector sample xi representing the image Ii of255

the class c;256

2: Set i ← 1;n ← 1;P1 ← 1; p1 ← xi;µ ← x1;Support ← 1; r1 ←257

r0; Î1 ← I1;258

3: FOR i = 2, ...259

4: Read xi;260

5: Calculate D(xi) and D(pj) (j = 1, 2, ..., P ) according to equation261

(9);262

6: IF equation (12) holds263

7: Create rule according to equation (13);264

8: ELSE265

9: Search for pj according to equation (11);266

10: Update rule according to equation (14);267
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11: END268

12: END269

5. MegaClouds layer:270

In the MegaClouds layer the clouds formed by the prototypes in the pre-271

vious layer are merged if the neighbouring prototypes have the same class272

label. In other words, they are merged if they belong to the same class.273

MegaClouds are used to facilitate the human interpretability. Figure 5274

illustrates the formation of the MegaClouds.275

Figure 5: MegaClouds – Voronoi Tesselation.

Rules in the MegaClouds layer have the following format:276

Rc: IF (x ∼MC1) OR (x ∼MC2) OR ... OR (x ∼MCmc) THEN (class277

c)278

where MC are the MegaClouds, or the areas formed from the merging of279

the clouds, and mc is the number of identified MegaClouds. Multimodal280

typicality, τ , can also be used to illustrate the MegaClouds as illustrated281

by Figure 6.282
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Figure 6: Typicality for the iRoads dataset.

3.2. Architecture and Validation of the proposed xDNN283

Architecture for the validation process of the proposed xDNN method is284

illustrated by Figure 7.

Figure 7: Architecture for the validation process of the proposed xDNN.

285

The validation process of xDNN is composed of the following layers:286
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1. Features layer;287

2. Similarity layer (density);288

3. Local decision-making.289

4. Global decision-making.290

Which is detailed described as following:291

1. Features layer:292

Similarly to the features layer described in the training process.293

2. Prototypes layer:294

In this layer the degrees of similarity to the nearest prototypes (per class)295

are extracted for each unlabeled (new/validation) data sample/image Ii296

defined as follows:297

S(x, pi) =
1

1 + ||x−pi||2
||σ||2N

, (15)

where S denotes the similarity degree.298

3. Local (per class) decision-making layer:299

Local (per class) decision-making is calculated based on the ‘winner-takes-300

all’ principle and can be obtained by:301

λc = max
j=1,2,...,P

(Sj), (16)

4. Global decision-making layer: The global decision-making layer is302

in charge of forming the decision by assigning labels to the validation303

images based on the degree of similarity of the prototypes obtained by the304

prototype identification layer as illustrated by Figure 7 and determining305

the winning class.306

λ∗c = max
c=1,2,...,C

(λc), (17)

In order to determine the overall degree of satisfaction, the maximum of307

the local, per class winners is applied.308
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The label is obtained by the following equation (18):309

label = argmax
c=1,2,...,C

(λ∗c), (18)

4. Experimental Data310

We validated our proposed approach, xDNN using several complex, well-311

known image classification benchmark datasets (iRoads, Calltech-256, Calltech-312

101) as well as we propose our own dataset for SARS-CoV-2 identification.313

4.1. iRoads dataset314

The iROADS dataset (Rezaei and Terauchi, 2013) was considered in the315

analysis first. The dataset contains 4,656 image frames recorded from moving316

vehicles on a diverse set of road scenes, recorded in day, night, under various317

weather and lighting conditions, as described below:318

• Daylight - 903 images319

• Night - 1050 images320

• Rainy day - 1049 images321

• Rainy night - 431 images322

• Snowy - 569 images323

• Sun strokes - 307 images324

• Tunnel - 347 images325

4.2. Caltech-256326

Caletch-256 has 30,607 images divided into 257 object categories (one of327

which is the background) (Griffin et al., 2007).328
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4.3. Caltech-101329

Caletch-101 is divided into 102 object categories (one of which is the back-330

ground) (Fei-Fei et al., 2004).331

4.4. COVID-CT dataset332

COVID-CT dataset contains 275 computed tomography scans positive for333

COVID-19 (Zhao et al., 2020).334

4.5. Performance Evaluation335

We used the following metrics for classification evaluation:336

ACC(%) =
TP + TN

TP + FP + TN + FN
× 100, (19)

Precision:337

Precision(%) =
TP

TP + FP
× 100, (20)

Recall:338

Recall(%) =
TP

TP + FN
× 100, (21)

F1 Score:339

F1 Score(%) = 2× Precision×Recall
Precision+Recall

× 100, (22)

where TP, FP, TN, FN denote true and false, negative and positive respectively.340

The area under the curve, AUC, is defined through the TP rate and FN341

rate.342

All the experiments were conducted with MATLAB 2018a using a personal343

computer with a 1.8 GHz Intel Core i5 processor, 8-GB RAM, and MacOS344

operating system. The classification experiments were executed using 10-fold345

cross validation under the same ratio of training-to-testing (90% to 10%) sample346

sets.347
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5. Results and Analysis348

Computational simulations were performed to assess the accuracy of the349

proposed explainable deep learning method, xDNN against other state-of-the-350

art approaches.351

5.1. iRoads Dataset352

Table 1 shows that the proposed xDNN method provides the best result353

in terms of classification accuracy as well as time/complexity and simplicity354

of the model structure (number of parameters/prototypes). The number of355

model parameters for xDNN (and DRB) is, strictly speaking, zero, because the356

2 parameters (mean, µ and standard deviation, σ) per prototype (data cloud)357

are derived from the data and are not algorithmic parameters or user-defined358

parameters. For kNN method one can argue that the number of parameters359

is the number of data samples, N . The proposed explainable DNN surpasses360

in terms of accuracy the state-of-the-art VGG–16 algorithm which is a well-361

established convolutional deep neural network. Moreover, the proposed xDNN362

has at its top layer a set of a very small number of MegaClouds (27 or, on average,363

4 MegaClouds per class) which makes it very easy to explain and visualize. For364

comparison, our earlier version of deep rule-based models, called DRB (Angelov365

and Gu, 2018) also produced a high accuracy and was trained a bit faster,366

but ended up with 521 prototypes (on average 75 prototypes per class) (Soares367

et al., 2019). With xDNN we do generate meaningful IF...THEN rules as well368

as generate an analytical description of the typicality which is the empirically369

derived pdf in a closed form which lends itself for further analysis and processing.370
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Table 1: Performance Comparasion: iRoads Dataset

Method Accuracy Time(s) # Parameters

xDNN 99.59% 4.32 27

VGG–16 (He et al., 2016) 99.51 % 836.28 Not reported

DRB (Angelov and Gu, 2019) 99.02% 2.95 521

SVM (Suykens and Vandewalle, 1999) 94.17% 5.67 Not reported

KNN (Bishop, 2006) 93.49% 4.43 4656

Naive Bayes (Bishop, 2006) 88.35% 5.31 Not reported

MegaClouds generated by the proposed xDNN model can be visualized in371

terms of rules as illustrated by the Fig. 10.372

IF (I ∼ ) OR

(I ∼ ) OR

OR (I ∼ )

THEN ‘Daylight scene’

Figure 8: xDNN rule generated for the ‘Daylight scene’.
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Voronoi tesselation can also be used to visualize the resulting MegaClouds373

as illustrated by Figure 9.374

Figure 9: MegaClouds for the iRoads dataset.

5.2. Caltech-256 and Caltech-101 Dataset375

Results for Caltech-256 are presented in Table 2.376

Table 2: Performance Comparasion: Caltech-256 Dataset

Method Accuracy

xDNN 75.41%

MSVM (Cao et al., 2019) 70.18%

VGG–16 (He et al., 2016) 73.2%

VGG–19 (He et al., 2016) 70.62 %

ResNet–101 (Simonyan and Zisserman, 2014) 75.14 %

GoogLeNet (Szegedy et al., 2015) 72.42 %

Softmax(7) (Zeiler and Fergus, 2014) 74.2%
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Results presented in Table 2 demonstrate that the proposed xDNN approach377

can obtain highly accurate results compared to state-of-the-art approaches for378

this complex problem, it is important to highlight that we just compared the379

proposed approach with DNNs that do not use any trick for image augmentation.380

The proposed approach offers explainable models which can be visualized in381

terms of IF...THEN rules. xDNN produced on average 3 MegaClouds per382

class (a total of 721) which are clearly explainable. Rules have the following383

format:384

IF (x ∼ ) OR (x ∼ ) OR (x ∼ )

THEN ‘CD’

We also tested the proposed xDNN approach on the Caltech-101 dataset.385

Results for the Caltech-101 dataset demonstrated on Table 3 showed that the386

proposed approach could surpass other state-of-the-art approaches in terms of387

accuracy.388

Table 3: Performance Comparison: Caltech-101 Dataset

Method Accuracy

xDNN 94.31%

SPP–net (He et al., 2015) 91.44%

ResNet–50 (He et al., 2016) 90.39%

CNN S TUNE-CLS (Chatfield et al., 2014) 88.35%

(Zeiler and Fergus, 2014) 86.5%

VGG–16 (He et al., 2016) 90.32%

KNN (Bishop, 2006) 85.65%

DT (Quinlan, 1986) 54.42%

We compared the proposed xDNN approach with the best published single-389

label classifiers methods and achieved better result. There are couple of alter-390
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native methods that report higher results on Caltech problems, but they use391

additional information such as the context (Leng et al., 2019) or multiple labels392

(Qian et al., 2019) processes in order to enhance the classification performance,393

include extra features (labels and descriptions) and this makes the underlying394

problem different even if the name is still the same (Caltech-101 or Caltech-395

256). We believe that the comparison has to be in the same playing field using396

the same amount of information and therefore, we do not report these meth-397

ods. Apart from them, to the best of our knowledge, there is no better result398

achieved on Caltech data sets.399

5.3. COVID CT-scan dataset400

In this section we report the results obtained by the proposed xDNN clas-401

sification approach when applied to the COVID CT-scan dataset (Zhao et al.,402

2020). Results presented in Table 4 compare the proposed algorithm with other403

state-of-the-art approaches, including traditional ”black-box” Deep Neural Net-404

work, Support Vector Machines, etc.405

Table 4: Performance Comparison: COVID CT-scan Dataset

PPPPPPPPPPMethod

Metric
Accuracy Precision Recall F1 Score AUC

xDNN 88.6% 89.7% 88.6% 89.2% 88.6%

Baseline (Zhao et al., 2020) 84.7% 97.0% 76.2% 85.3% 82.4%

SVM (Suykens and Vandewalle, 1999) 80.5% 84.4% 83.5% 84% 79.7%

KNN (Bishop, 2006) 83.9% 90.4% 82.4% 86.2% 84.3%

AdaBoost (Hastie et al., 2009) 83.9% 87.7% 83.5% 85.5% 84%

Naive Bayes (Bishop, 2006) 70.5% 77% 73.6% 75.3% 69.6%

The proposed xDNN classifier provided better results in terms of accuracy,406

recall, F1 score, and AUC. Moreover, the proposed approach also provided407

highly interpretable results that may be helpful for specialists (in this case, med-408
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ical doctors). The proposed classifier identified 30 prototypes for non-COVID409

and 33 prototypes for COVID partients. Rules generated by the identified pro-410

totypes for COVID and non-COVID patients are illustrated by Figures 10 and411

11 respectively. The baseline approach Zhao et al. (2020) is a Deep Neural412

Network approach which is ‘black box’ (offers no interpretability).413

Using the proposed method we extracted form the data linguistic IF...THEN414

rules which involve actual images of both cases (COVID-19 and non-COVID)415

as illustrated in Figures 10 and 11. Such transparent rules can be used in the416

decision-making process for early diagnostics for COVID-19 infection. Rapid417

detection with high sensitivity of viral infection may allow better control of the418

viral spread. Early diagnosis of COVID-19 is crucial for the disease treatment419

and control.420

R: IF (Image ∼ ) OR (Image ∼ )

OR (Image ∼ ) OR (Image ∼ )

... OR (Image ∼ ) THEN ‘Infection by COVID-19’

Figure 10: Final rule given by the proposed xDNN classifier for the COVID-19 identification.

Differently from ‘black box’ approaches as deep neural networks, the proposed approach pro-

vides highly interpretable rules which can be used by human experts for the early evaluation

of patients suspected of SARS-Cov-2 infection.
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R: IF (Image ∼ ) OR (Image ∼ )

OR (Image ∼ ) OR (Image ∼ )

... OR (Image ∼ ) THEN ‘Non-COVID’

Figure 11: Non-Covid final rule given by the proposed eXplainable Deep Learning classifier.

Figure 12 illustrates the evolving nature of the proposed approach. xDNN421

is able to continuously learn as new data is presented to it. Therefore, no full422

re-training is required due to its life-long learning architecture. On the contrary,423

the baseline approach Zhao et al. (2020) is based on a Deep Neural Network424

that requires full re-training for any new data sample, which can be very costly425

in terms of time, computational complexity and requirements for hardware and426

computer experts. xDNN continuously learns as new training data arrives to the427

system. It can be observed that with 478 training data samples the proposed428

approach could obtain better results in terms of accuracy (84.56%) than the429

baseline approach (84.0%) with 537 training data samplesZhao et al. (2020).430

The baseline approach is a Deep Neural Network that needs a large number of431

training data to obtain a high performance in terms of classification accuracy432

and once trained can not be further improved unless fully re-trained. In contrast,433

the proposed approach can obtain higher performance using less training data434

due to its prototype-based nature.435

Experiments have demonstrated that the proposed xDNN approach is able436

to produce highly accurate results surpassing state-of-the-art methods for differ-437

ent challenging datasets. Moreover, xDNN presents highly interpretable results438

that can be presented in the form of IF...THEN logical rules, Voronoi tessella-439
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Figure 12: The figure illustrates the evolving nature of the proposed xDNN approach

tions, and/or typicality (empirically derived form of pdf) in a closed analytical440

form allowing further analysis. Because of its recursive, non-iterative and non-441

parametric form it allows computationally very efficient implementations to be442

realized.443

6. Conclusion444

In this paper we propose a new method, explainable deep neural network445

(xDNN), that is directly addressing the bottlenecks of the traditional deep learn-446

ing approaches and offers an explainable internal architecture that can outper-447

form the existing methods. The proposed xDNN approach requires very little448

computational resources (no need for GPUs) and short training times (in the449

order of seconds). The proposed approach, xDNN is prototype-based. Pro-450

totypes are actual training data samples (images), which have local peaks of451

the empirical data distribution called typicality as well as of the data density.452

This generative model is identified in a closed form and equates to the pdf but453

is derived automatically and entirely from the training data with no user- or454

problem-specific thresholds, parameters or intervention. The proposed xDNN455

offers a new deep learning architecture that combines reasoning and learning in456
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a synergy. It is non-iterative and non-parametric, which explains its efficiency457

in terms of time and computational resources. From the user perspective, the458

proposed approach is clearly understandable to human users. Results for some459

well-known benchmark data sets such as iRoads, Caltech-256, Caltech-101, and460

COVID CT-scan show that xDNN outperforms the other methods including461

state-of-the-art deep learning approaches in terms of accuracy, time to train462

and offers an explainable classifier. Future research will concentrate on the463

development of a tree-based architecture, synthetic data generation, and local464

optimization in order to improve the proposed deep explainable approach.465
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