A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications

Wang, Xinjie and Bolan, Nanthi S and Tsang, Daniel C.W. and Sarkar, Binoy and Bradney, Lauren and Li, Yang (2021) A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. Journal of Hazardous Materials, 402. ISSN 0304-3894

[img]
Text (Wang_HAZMAT_MP aggregation)
Wang_HAZMAT_MP_aggregation.pdf - Accepted Version
Restricted to Repository staff only until 16 July 2021.
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.

Download (1MB)

Abstract

A large amount of plastic waste released into natural waters and their demonstrated toxicity have made the transformation of microplastics (MPs; < 5 mm) and nanoplastics (NPs; < 100 nm) an emerging environmental concern. Aggregation is one of the most important environmental behaviors of MPs, especially in aquatic environments, which determines the mobility, distribution and bioavailability of MPs. In this paper, the sources and inputs of MPs in aquatic environments were first summarized followed by the analytical methods for investigating MP aggregation, including the sampling, visualization, and quantification procedures of MP’ particle sizes. We critically evaluated the sampling methods that still remains a methodological gap. Identification and quantification of MPs were mostly carried out by visual, spectroscopic and spectrometric techniques, and modeling analysis. Important factors affecting MP aggregation in natural waters and environmental implications of the aggregation process were also reviewed. Finally, recommendations for future research were discussed, including (1) conducting more field studies; (2) using MPs in laboratory works representing those in the environment; and (3) standardizing methods of identification and quantification. The review gives a comprehensive overview of current knowledge for MP aggregation in natural waters, identifies knowledge gaps, and provides suggestions for future research.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Hazardous Materials
Additional Information:
This is the author’s version of a work that was accepted for publication in Journal of Hazardous Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Hazardous Materials, 402, 2020 DOI: 10.1016/j.jhazmat.2020.123496
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300/2311
Subjects:
ID Code:
146017
Deposited By:
Deposited On:
27 Jul 2020 08:45
Refereed?:
Yes
Published?:
Published
Last Modified:
27 Sep 2020 05:57