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Abstract

Functional linear regression is a widely used approach to model functional re-

sponses with respect to functional inputs. However, classical functional linear regres-

sion models can be severely affected by outliers. We therefore introduce a Fisher-

consistent robust functional linear regression model that is able to effectively fit data
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in the presence of outliers. The model is built using robust functional principal com-

ponent and least squares regression estimators. The performance of the functional

linear regression model depends on the number of principal components used. We

therefore introduce a consistent robust model selection procedure to choose the num-

ber of principal components. Our robust functional linear regression model can be

used alongside an outlier detection procedure to effectively identify abnormal func-

tional responses. A simulation study shows our method is able to effectively capture

the regression behaviour in the presence of outliers, and is able to find the outliers

with high accuracy. We demonstrate the usefulness of our method on jet engine sen-

sor data. We identify outliers that would not be found if the functional responses

were modelled independently of the functional input, or using non-robust methods.

Keywords:Robust Functional Data Analysis, Robust Model Selection, Outlier Detection.
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1 Introduction

Functional Linear Regression (FLR) in the function-on-function case (Ramsay and Dalzell,

1991) is a widely used technique for modelling functional responses with respect to func-

tional inputs. However classical FLR models can be severely affected by outliers as we

will demonstrate via a simulation study in Section 6. We therefore develop a Robust FLR

(RFLR) model, which is able to effectively fit the data in the presence of outliers. The

model is built using the robust functional principal component model by Bali et al. (2011)

and the Multivariate Least Trimmed Squares (MLTS) estimator by Agulló et al. (2008).

Our study of FLR is motivated by the need to identify unusual jet engine behaviour

using sensor data captured during a pass-off test (the last test prior to the deployment

of a jet engine). Jet engines are highly complex machines consisting of tens of thousands

of parts, and although the physical behaviour of individual components can be modelled

by systems of partial or ordinary differential equations, such a description is far from

adequate to model the entire engine (Houstis et al., 2002). During a pass-off test an

engineer that controls the speed of the engine performs a number of manoeuvres, which

can be defined as different accelerations and decelerations starting and ending at a set

idle speed. Although each manoeuvre is characterised by a distinct engine speed profile,

its execution differs each time it is performed. Throughout the duration of the test sensor

measurements for numerous engine parameters, including speed, pressure, temperature and

vibration at different parts on the engine, are recorded at very high frequency. The volume

of data generated in each test is very large and only a small proportion of this is manually

inspected to identify potential engine issues. Currently there exists no engine simulation

model to predict the evolution of these parameters during the manoeuvres performed by

the controller. Instead engineers use their judgement to determine whether the sensor

measurements deviate sufficiently from their expectations to indicate a potential engine

issue.
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An automated approach to identifying pass-off test segments that require closer inspec-

tion will enable a larger proportion of the pass-off data to be processed, and can thus

improve the early identification of engine issues. However, to achieve this goal it is first

necessary to develop accurate models of the expected behaviour of a healthy engine during

different manoeuvres. The available data consist of sensor measurements captured during

pass-off tests. For each individual engine we do not know whether it had issues or not, but

we do know that the dataset contains tests for engines that had issues.

In this work we develop RFLR to model engine temperature parameters during the

Vibration Survey (VS), a key pass-off test manoeuvre during which the engine is gradually

accelerated to a certain speed and then slowly decelerated. Both engine speed and tem-

perature are continuous quantities that are recorded at very high-frequencies. Therefore

the central assumption underlying functional data analysis, namely that the observed time

series constitute discrete measurements from a smooth functional process is realistic in our

application. We use FLR due to the documented ability of this methodology to capture

complex dependency structures (Morris, 2015). Ramsay and Silverman (2005) have illus-

trated that the FLR model simultaneously uses information across functions to identify

their commonalities (called replication), and information about the expected underlying

structural relationships within each function (called regularisation). However, the flexibil-

ity to use information from “future” time points implies that the models developed do not

truly approximate the underlying mechanical process.

For our analysis we will use 199 VS datasets, which include information about the Tur-

bine Pressure Ratio (TPR) (the human controlled parameter that measures engine speed)

and various temperature features including the Turbine Gas Temperature (TGT). Figure 1

provides envelope plots of TPR and TGT for all the VS manoeuvres. To anonymise the

data we have transformed the time index onto the interval [0, 1] and the sensor measure-

ments to the range [0, 100]. The VS manoeuvres are performed by a human controller,

which causes variability in TPR as depicted in Figure 1(a). This naturally affects the
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TGT curves and can mask unusual behaviour arising from an engine issue. In fact outlier

detection methods applied directly on the TGT curves (as shown in Figure 1(b)) fail to

identify meaningful outliers, and instead identify exclusively curves produced by unusual

TPR profiles. The green TGT curve in Figure 1(b) is such an example. Direct outlier

detection methods identify this curve as an outlier but there are no issues with this engine.

This curve only appears to be an outlier due to the relatively uncommon TPR schedule

during this manoeuvre (see Figure 1(a)).

We therefore require a method of detecting outliers in the presence of the controller

induced variability. In particular, we expect that the relationship between engine speed

(TPR) and engine temperature for different VS manoeuvres should be the same irrespective

of the way the manoeuvre is performed. For example given a certain engine acceleration we

would expect a certain temperature response. If however the response differs from expec-

tation this could be indicative of an engine issue. In Section 6 we show that classical FLR

can be severely affected when the dataset contains outliers, which in our case correspond

to data from VS manoeuvres of engines with issues. The RFLR model we propose aims to

overcome this limitation. Applied on the data in Figure 1, our model identifies the TGT

curves with purple and red colour as outliers. Notice that both curves do not appear to

diverge from the general pattern in the envelope plot in Figure 1(b), and are only identified

as outliers when the functional input from the corresponding TPR curves is taken into ac-

count. Both VS manoeuvres correspond to engines for which issues were identified during

the test.

The paper is organised as follows. In Section 2 we outline the classical FLR model. In

Section 3, we will outline robust Functional Data Analysis (FDA) techniques to obtain a

robust FLR model. We also introduce a robust model selection procedure. In Section 4 we

prove consistency results for the robust FLR model and the robust model selection proce-

dure. In Section 5, we describe an outlier detection method, which acts on the residuals

of the robust FLR model. In Section 6 we perform a simulation study to illustrate the
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(a) Turbine Pressure Ratio (b) Turbine Gas Temperature

Figure 1: Envelope plots of Turbine Pressure Ratio (TPR) and Turbine Gas Temperature
(TGT) time series in grey. Sample 33 (green) is identified as an outlier when the relationship
between TPR and TGT is not accounted for, but is not associated with an engine issue.
Samples 106 (purple) and 77 (red) are not identified as outliers by direct outlier detection
methods, but are linked with engine faults. These are correctly identified using RFLR.

model fitting and outlier detection capabilities of the robust model. In Section 7 we apply

the robust model on the engine data and highlight unusual observations that can not be

detected by using outlier detection methods directly on the temperature curves. The paper

ends with concluding remarks in Section 8.

2 Classical Functional Data Analysis

In this section we give a brief summary of the FDA tools that we will later apply in our

model. In the following sections we will use the vector space L2(I) which is the Hilbert

space of square integrable functions on the compact interval I with the inner product

〈f, g〉 =
∫
I
f(t)g(t)dt for functions f, g ∈ L2(I).

We will define X(t), Y (t) to be univariate stochastic processes defined on I, with

mean functions µX(t) and µY (t), and covariance functions CX(s, t) = cov{X(s), X(t)}

and CY (s, t) = cov{Y (s), Y (t)} for all s, t ∈ I. We shall define x(t) = [x1(t), ..., xn(t)] and

y(t) = [y1(t), ..., yn(t)] to be n independent and identically distributed realisations of X(t)
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and Y (t) respectively.

In practice we observe xi(t) and yi(t) at discrete time points. We shall assume for

simplicity of exposition that observations are made at equally spaced time points t1, ..., tT .

We will outline Functional Linear Regression and Functional Principal Component Analysis

with respect to the underlying functions x(t), y(t). In Section 2.3 we need to use the

discretely observed data to define a suitable model selection criterion.

2.1 Functional Linear Regression

In this section we will introduce the classical FLR model (Ramsay and Dalzell, 1991). In

FLR we model the relationship between predictor xi(t) and response yi(t) as:

yi(t) = α(t) +

∫
I

xi(s)β(s, t)ds+ εi(t), (2.1)

where α(t) is the intercept function, β(s, t) is the regression function and εi(t) is the error

process. For a fixed t, we can think of β(s, t) as the relative weight placed on xi(s) to

predict yi(t). As in Chiou et al. (2016) we will assume the mean functions µX(t) = 0 and

µY (t) = 0 which thereby means α(t) = 0. This is a reasonable assumption as in practice

we can calculate the mean functions µX(t) and µY (t) efficiently for dense data and then

pre-process the data by subtracting µX(t) and µY (t) from the observed curves.

FLR in the function-on-function case can be modelled parametrically (Yao et al., 2005;

Chiou et al., 2016) or nonparametrically (Ferraty et al., 2012; Ivanescu et al., 2015; Scheipl

et al., 2015). We use a parametric approach which models the regression matrix in terms

of pre-defined basis functions. We obtain the approximations x̂i(t) and ŷi(t) in terms of

(M,K) pre-chosen orthonormal basis functions φXm(t), φYk (t) respectively:

x̂i(t) =
M∑
m=1

zimφ
X
m(t) and ŷi(t) =

K∑
k=1

wikφ
Y
k (t).
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where zim, wik ∈ R. We define φX(t) = [φX1 (t), ..., φXM(t)], φY (s) = [φY1 (s), ..., φYK(s)],

zi = [zi1, ..., ziM ] and wi = [wi1, ..., wiK ]. We then model the regression surface using a

double basis expansion (Ramsay and Silverman, 2005):

β(s, t) =
M∑
m=1

K∑
k=1

bmkφ
X
m(s)φYk (t) = φX(s)TBφY (t), (2.2)

for anM×K regression matrixB. Using the above in Eq. (2.1); expressing εi(t) = qTi φ
Y (t),

and using the orthonormality of φX(t) and φY (t), gives:

ŷi(t) =

∫
I

x̂i(s)β(s, t)ds+ εi(t),

ŷi(t) =

∫
I

[zTi φ
X(s)][φX(s)TBφY (t)]ds+ εi(t),

ŷi(t) = zTi

{∫
I

φX(s)φX(s)Tds

}
BφY (t) + εi(t),

ŷi(t) = zTi Bφ
Y (t) + εi(t),

wT
i φ

Y (t) = zTi Bφ
Y (t) + qTi φ

Y (t),

wT
i

∫
I

φY (t)φY (t)Tdt = zTi B

∫
I

φY (t)φY (t)Tdt+ qTi

∫
I

φY (t)φY (t)Tdt,

wi = zTi B + qTi . (2.3)

This parametrisation of the residual function is also used by Chiou et al. (2016). We

can then estimate B using standard multivariate regression methods typically assuming

Gaussian qi.

2.2 Functional Principal Component Analysis

In this section we describe Functional Principal Component Analysis (FPCA), which we

will use to estimate the basis functions φX(t) and φY (t) for xi(t) and yi(t), respectively.

These basis functions give effective, low-dimensional representations and will be used in

the Functional Linear Regression model described in Section 2.1.
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Functional Principal Component Analysis (FPCA) is a method of finding dominant

modes of variance for functional data. These dominant modes of variance are called the

Functional Principal Components (FPCs). FPCA is also used as a dimensionality reduction

tool, as a set of observed curves can be effectively approximated by a linear combination

of a small set of FPCs.

Let X(t) be a mean-centred stochastic process with covariance function CX(s, t), with

eigenfunctions φXm(t) and eigenvalues λXm with m ∈ N, where the eigenfunctions are ordered

in decreasing order of the corresponding eigenvalues. The Karhunen-Loéve theorem (Shang,

2014) states

X(t) =
∞∑
m=1

ξXmφ
X
m(t),

where each ξXm is a random variable. Let xi(t), i = 1, . . . , n be n independent realisations

of X(t). We can write xi(t) =
∑∞

m=1 zimφ
X
m(t) where the principal component scores, zim,

constitute realisations of ξXm . Since the eigenfunctions are orthonormal the scores can be

defined as zim =
∫
I
xi(t)φ

X
m(t)dt. In practise a large proportion of the variability in xi(t)

can be captured by using a finite number M , of the first eigenfunctions. We can define the

M -truncation as

x̂Mi (t) =
M∑
m=1

zimφ
X
m(t). (2.4)

This minimises the reconstruction error, subject to the constraint that M basis functions

are used:

1

n

n∑
i=1

‖xi − x̂Mi ‖2 =
1

n

n∑
i=1

∫
I

[xi(t)− x̂Mi (t)]2dt. (2.5)

To choose M we will use an information criterion discussed in the next subsection. An

analogous procedure is used to determine the K eigenfunctions φYk (t) for y(t).

In Figure 2(a) we depict the first four eigenfunctions for the TGT curves shown in

Figure 1(b). Note that the eigenfunctions do not resemble the shape of the TGT curves

because, as described above, they are estimated after the data is preprocessed by subtract-
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(a) Functional Principal Components (b) Reconstruction

Figure 2: Plot of the first four eigenfunctions for Turbine Gas Temperature (TGT) data
and a plot of a TGT curve (black) and its reconstruction using the first four eigenfunctions
(red).

ing the mean function, α(t) in Eq. (2.1). In Figure 2(b) we depict the reconstruction of a

single TGT curve using the first four eigenfunctions (four-truncation). The reconstruction

is formed by taking the mean function plus a weighted sum of the eigenfunctions. We can

see that using only four eigenfunctions produces an accurate approximation of the shape

of this TGT curve except at the start where the discrepancy is noticeable.

2.3 Bayesian Information Criterion for FLR

In the FLR model described in Section 2.1 we need to choose terms M and K. Typically

M and K are chosen independently (Yao et al., 2005), however the estimation of β(s, t)

also depends on M and K and this should be incorporated into the estimation of these

terms. In this section we formulate a Bayesian Information Criterion (BIC) to determine

the basis size M and K, similarly to Matsui (2020).

A component of the BIC is the log likelihood, often expressed as a squared error term.

It is tempting to use the squared error resulting from Equation (2.3). However the objective

is to fit the data yi so we should use a likelihood of this data instead of a squared error

term of basis coefficients.
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We have a set of models J = {(M,K) |M = 1, . . . ,Mmax, K = 1, . . . , Kmax}, where

Mmax and Kmax are pre-set maximum number of FPCs that will be considered in the model.

Let vector ~yi be the values of yi(t) evaluated at discrete time points: ~yi = [yi(t1), . . . , yi(tT )].

Let z
(M)
i be the first M principal scores of xi(t) with respect to the FPCs φX(t) and let

φ(K) be the matrix with (k, i) entry φYk (ti). We assume there exists a true model (M0, K0)

with associated M0 ×K0 matrix BM0,K0 such that

~yi = (z
(M0)
i )TBM0,K0φ(K0) + εi, (2.6)

where the error εi = [εi(t1), . . . , εi(tT )] is assumed for simplicity to be sampled from

N(0, v2IT ), where IT is the identity matrix of size T . The assumption of independent

observations in Eq. (2.8) is not tenable in the general case. However in our application

this simplification is realistic because in accord with the practice followed by engineers, we

subsample the high frequency sensor data at every 200 time points.

For Model (M,K) we define the parameters θM,K = (BM,K , vM,K) and the prediction

ŷM,K
i = (z

(M)
i )TBM,Kφ(K). We want to identify this true model (M0, K0), which we

can use to obtain consistent estimates of θM0,K0 . For each Model (M,K) we define the

likelihood for sample i as

f(~yi|θM,K) =
1

(2π)
T
2 (vM,K)T

exp

{
− [~yi − ŷM,K

i ]T [~yi − ŷM,K
i ]

2(vM,K)2

}
, (2.7)

and the log-likelihood l(θM,K) =
∑n

i=1 log(f(~yi|θM,K)). As in Eilers and Marx (1996)

BICn(M,K) = −2l(θ̂M,K) + ω(M,K) log(n), (2.8)

where θ̂M,K is the maximum likelihood estimator and the penalty ω(M,K) = MK + 1, in

which MK is the number of free parameters in the model and the 1 comes from v. We will

denote (M∗, K∗)n = arg min(M,K)∈J BICn(M,K), which depends on the sample size n.
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To summarise, we estimate the FPCs for X and Y and solve the FLR model for different

models (M,K). We then choose model (M∗, K∗)n that minimises the BIC criterion. The

robust equivalent of this procedure is given in Algorithm 1.

3 Robust Functional Linear Regression

In Section 2 we have defined the FLR model and have outlined the use of FPCA bases

to estimate parameters of the model. In this section we will introduce robust versions of

the FDA techniques outlined in Section 2. This will allow us to fit a model that captures

the expected relationship of the predictor and response functions even in the presence of

outliers. We shall also propose a robust BIC procedure for model selection.

We will replace classical FPCA with robust FPCA estimates by Bali et al. (2011) which

ensure that outliers do not unduly affect the FPCA estimates. Note that FPCA minimises

the residual error given in (2.5). To obtain robust FPCA estimates Bali et al. (2011)

minimise a robust scale estimator, using a projection pursuit approach, which iteratively

performs a weighted least squares till the estimators stabilise.

Analogous to (2.4), the robust FPCs φ̃Xm(t), with m = 1, ...,M , and φ̃Yk (t) with k =

1, ..., K, are orthonormal functions such that

x̃i(t) =
M∑
m=1

z̃imφ̃
X
m(t), ỹi(t) =

K∑
k=1

w̃ikφ̃
Y
k (t), (3.1)

are good approximations for xi(t) and yi(t). We define ỹi(t) = w̃T
i φ̃

Y (t) and assume as in

(2.3) that εi = q̃Ti φ̃
Y (s). We can now write the robust counterpart of (2.3) as

w̃T
i = z̃Ti B̃ + q̃Ti . (3.2)

To obtain a robust estimate of the regression matrix B̃, we will use the Multivariate

Least Trimmed Squares (MLTS) estimator by Agulló et al. (2008), to mitigate the affect
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of outliers with respect to the regression relationship.

Let [·] : R→ Z denote the function that rounds its input to the nearest integer. Then,

for α ∈ [0, 1] we define the set S = {S ⊂ {1, ..., n}, |S| = [αn]}. The objective of MLTS is

to find a subset S such that

S = arg min
S∈S

∑
i∈S

‖w̃T
i − z̃Ti B̃‖2.

This is robust as outliers will not be in the subset by definition so shall not affect the

model estimation. According to the engineers’ assessment between 1 and 5% of the data

correspond to engines with issues. To ensure that no data from such engines are included

in the calculation of the robust estimators we used a subset of size [0.8n].

3.1 Robust Bayesian Information Criterion for FLR

The BIC model selection method is known to be non-robust (Machado, 1993). In particular

outliers can significantly affect the loglikelihood estimation. We therefore outline a robust

BIC (RBIC) model, which, similar to MLTS, maximises over a subset of samples S. RBIC

can therefore give good model selection performance in the presence of outliers.

Denote as θ̃M,K = (B̃M,K , ṽM,K) the robust estimated parameters for model (M,K),

where B̃M,K is the robust estimator of the regression matrix, obtained by solving Eq. (3.2);

and ṽM,K is a robust trimmed estimator of the variance in Eq. (2.7). The robust pre-

diction of yi by model (M,K) is given by ỹM,K
i = (z̃

(M)
i )T B̃M,KΦ̃(K), where Φ̃(K) =

[φ̃Y
1 , . . . , φ̃

Y
K ] are the first K robust FPCs used in Eq. (3.1), and estimated through the

method of Bali et al. (2011). We define the trimmed log-likelihood for model (M,K) and

set S as

l̃(θ̃M,K , S) =
∑
i∈S

(
[~yi − ỹM,K

i ]T [~yi − ỹM,K
i ]

(ṽM,K)2

)
+ rT log(2π) + 2rT log(ṽM,K). (3.3)
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We will define SM,K = arg minS∈S l̃(θ̃
M,K , S), where S = {S ⊂ {1, ..., n}, |S| = [αn]}

where α = 0.8. Then

RBICn(M,K) = −2 min
S∈S

l̃(θ̃M,K , S) + ω(M,K) log([αn])

= −2 l̃(θ̃M,K , SM,K) + ω(M,K) log([αn]) (3.4)

We will denote (M̃, K̃)n = arg min(M,K)∈J RBICn(M,K), and assume that there is a unique

minimiser, as is standard in the BIC literature (Schwarz, 1978).

In Algorithm 1 we outline the calculation of the RFLR model, which incorporates the

RBIC procedure. In the algorithm we estimate the model for different values of (M,K)

and choose the model with the minimum RBIC value. We consider M = 1, . . . ,Mmax and

l = 1, ..., Kmax where Mmax, Kmax are chosen to ensure that 99.99% of the variance in the

raw data is captured.

Data: Let (xi,yi) be mean-corrected time series of length T for i = 1, ..., n.
1. Estimate {φ̃X1 (t), ..., φ̃XMmax

(t)}, {φ̃Y1 (t), ..., φ̃YKmax
(t)} (Bali et al., 2011).

for M = 1, ...,Mmax do
for K = 1, ..., Kmax do

Estimate the regression matrix BM,K using MLTS (Agulló et al., 2008).
Obtain the RBICn(M,K) value using (3.4)

end for
end for
2. Select model (M̃, K̃)n.
return Regression matrix B̃ from model (M̃, K̃)n and {φ̃X1 (t), ..., φ̃X

M̃
(t)},

{φ̃Y1 (t), ..., φ̃Y
K̃

(t)}.
Algorithm 1: Robust FLR procedure

4 Consistency Results

In Section 3 we proposed a Robust FLR model for the function-on-function problem. In

this section we outline our asymptotic consistency results. The proofs are contained in

the Supplementary Material. Asymptotic consistency is a minimum requirement for a
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good model. As Silverman (1996) argues asymptotic consistency results should be seen

as large-sample approximation results, which can aid our intuition about a method and

are practically relevant when reasonably large amounts of data are available. Silverman

(1996) also argues that such results are particularly important for functional data analysis

because in certain contexts “obvious” procedures are not consistent and may therefore

produce misleading insights.

Definition 1. Let X1, X2, ..., Xn be a sequence of real-valued random variables. An esti-

mator Tn := T (X1, X2, ..., Xn) of a parameter θ is said to be (asymptotically) consistent

if for all ε > 0

lim
n→∞

P (|Tn − θ| > ε) = 0.

Definition 2. Let X1, X2, ..., Xn be a sequence of real-valued random variables with an

associated cumulative distribution function Fθ, which depends on an unknown parameter θ.

Let the estimator Tn := T (Fn) of a parameter θ, be a function of the empirical distribution

function Fn. We say this estimator is Fisher-consistent for the parameter θ if

T (Fθ) = θ

Remark 1. Fisher consistency is equivalent to (asymptotic) consistency if the empirical

distribution function Fn converges pointwise to the true distribution function Fθ. This can

be shown to be the case for iid real multivariate random variables using the Glivenko-Cantelli

theorem (Pollard, 2012).

Lemma 4.1. Assume C1-C6 (given in Section 1 of the supplemental material) hold then

the robust regression function β̃(s, t) is Fisher-consistent.

Corollary 4.1. If {x1(t), y1(t)}, ..., {xn(t), yn(t)} are iid samples with cumulative distri-

bution function (FX , FY ). Then, assuming C1-C6 (given in Section 1 of the supplemental

15



material) hold, β̃(s, t) is consistent.

Note that xi(t) and yi(t) are defined on a finite number of eigenfunctions, so are de-

fined by finite score vectors. Therefore Corollary 4.1 follows from Lemma 4.1 and Remark

1, which states almost sure convergence of the empirical distribution for iid multivariate

random variables. In this case Fisher-consistency is equivalent to consistency.

Theorem 4.1. Given Assumptions 1 and 2 (given in Section 1 of the supplemental mate-

rial) hold, and there exists a true model (M0, K0), then (M̃, K̃)n is a consistent estimator

of (M0, K0).

5 Outlier Detection

There is a rich literature on outlier detection methods for functional data. This includes

methods based on outlyingness measures such as Arribas-Gil and Romo (2014), and Dai

and Genton (2018), and methods relying on functional depth such as the thresholding

approach by Febrero-Bande et al. (2008) and the functional boxplot by Sun and Genton

(2011). These methods are typically applied directly to functional representations of the

response time-series, which in our case would be those of the engine temperature param-

eters. As the discussion around Figure 1 in the introduction indicated outliers identified

through this approach can be meaningless, because the dependency between engine speed

and temperature is ignored. Our approach relies on the premise that once this dependency

is accounted for through an RFLR model the residual curve ri(t) = yi(t) − ỹi(t) of an

engine that has issues will differ from other residual curves, and thus constitute an outlier.

We therefore apply the outlier detection method of Febrero-Bande et al. (2008) to residual

curves from RFLR. We next outline the notion of depth and the motivation for selecting

this approach.

To order univariate data one can directly use order statistics, however ordering multi-

variate data is not trivial. This motivates depth functions, defined as D : Rd → R, that
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map a multivariate point to a univariate depth value (Tukey, 1975). A key property of

a depth function is that a point x1 that is closer to the “centre” of a data cloud than a

point x2 will be assigned a larger depth value. Points sufficiently far from the centre can be

considered as outliers, and can be identified by their low depth values. The notion of depth

has been extended to functional data (Nieto-Reyes and Battey, 2016) and is referred to as

functional depth. The functional depth based outlier detection method of Febrero-Bande

et al. (2008) allows us to detect not only residual curves with large integrated squared er-

ror, but also shape outliers (Hubert et al., 2015). The latter are curves that do not appear

unusual if viewed at each time point but are abnormal across the entire trajectory. Shape

outliers can be missed if we use methods that rely solely on integrated square error.

There are a number of depth functions for functional data that can be chosen. We will

use the h-modal depth (Cuevas et al., 2007) to rank samples ri, as it works well in practice.

For a given kernel Gh (typically Gaussian with bandwidth h), the h-modal depth of ri with

respect to r = (r1, ..., rn) is given by:

D(ri|r, h) =
1

n

n∑
j=1

G

(
‖ri − rj‖

h

)
. (5.1)

The h-modal depth has two useful properties. First, it uses a distance metric therefore

the depth values will be proportional to the distance from the “centre”. Second, it doesn’t

assume a unique centre and therefore it is appropriate when there are more than one

“mode” in the data cloud.

In the algorithm we need to choose the bandwidth h and a threshold C to identify

outliers. The bandwidth h is taken to be the 15th percentile of the empirical distribution

of {‖ri − rj‖, i, j = 1, ..., n} (Febrero-Bande et al., 2008). The threshold C is chosen such

that P (D(ri|r, h) ≤ C) = δ, where δ is a pre-chosen percentile. To estimate the threshold

C they use a bootstrapping approach, which estimates a value of C for different random

sets of samples and then aggregates these estimates. We describe the outlier detection
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algorithm in Algorithm 2.

Data: Centred curves {xi(t), yi(t)} for i = 1, ..., n and percentile δ.
1. Use Algorithm 1 to obtain φ̃Yk (t), z̃m and B̃.
2. Calculate residual curves ri(t).
3. Estimate bandwidth h.
4. For each ri(t) calculate D(ri|r, h).
5. Estimate C for given percentile δ.
6. If D(ri|r, h) < C sample i is an outlier.

Algorithm 2: Outlier Detection using robust FLR.

6 Simulation Study

In this section we will provide a simulation study to investigate the finite sample properties

of RBIC and robust FLR (RFLR) in comparison to BIC and classical FLR (CFLR). Code

to reproduce the experimental results reported in this section can be found at the GitHub

repository https://github.com/hullait/RobustFLR. In the simulation study we will

generate data using a FLR process and corrupt a certain number of samples, which will

be the outliers. The outliers have been designed to be undetectable, if the response curves

are considered independently of the predictor curves. Therefore standard functional data

outlier detection algorithms such as those discussed in Section 5 will perform poorly.

The main motivation for the RFLR model is to obtain good model fitting in the presence

of outliers. In this simulation study we compare the fitting error (FE) given in (6.1), for

the non-outlier samples using the robust model, which uses RFLR and RBIC with the

classical approach using CFLR and BIC. We define the indicator variable ui = 1 if sample

i is an outlier and zero otherwise. Letting ŷi(t) be the estimation of yi(t) and given that

proportion a of the samples have been contaminated then FE is given by:

FE =
1

(1− a)n

n∑
i=1

(1− ui)||yi − ŷi||2. (6.1)

Next we compare the outlier detection capabilities of robust and classical approaches us-
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ing the receiver operating characteristic (ROC) curve to determine the sensitivity/specificity

trade-off for different thresholds. If we have perfect outlier detection for all thresholds then

the area under the curve (AUC) of the ROC curve would be one. We can therefore use the

AUC value as a measure of outlier detection accuracy regardless of threshold.

FPCA is performed by taking the principal components of a cubic B-spline represen-

tation of each of the predictor and response curves (Ramsay and Silverman, 2005). The

robust FPCA approach outlined in Section 3 is performed using the CR algorithm proposed

by Croux and Ruiz-Gazen (1996) on the same B-spline coefficients. The MLTS estimator

is calculated using the heuristic given by Agulló et al. (2008) using different trimming

proportions (1− α) for α ∈ [0, 1].

6.1 Scenarios

We will generate samples x(t) using a FPCA based model with mean function µX(t) =

−10(t− 0.5)2 + 2 for t ∈ [0, 1] and eigenfunctions:

φX1 =
√

2 sin(πt), φX2 =
√

2 sin(7πt), φX3 =
√

2 cos(7πt).

The principal scores are sampled from Gaussian distributions with mean 0 and variances

40, 10 and 1 for the eigenfunctions respectively. Note that we do not create any outliers

in the FPCA decompositions of the predictor curves. We generate 400 predictor curves

x1(t), ..., x400(t), which are observed at T = 500 equidistant points in the interval [0, 1].

The samples y(t) will have eigenfunctions:

φY1 =
√

2 sin(12πt), φY2 =
√

2 sin(5πt), φY3 =
√

2 cos(2πt),

and mean function µY (t) = 60 exp(−(t − 1)2). We will generate β(s, t) = φX(s)TBφY (t)

where B will have random entries between [−3, 3]. We generate non-outlier curves:
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yi(t) = µY (t) +

∫
I

β(s, t)(xi(s)− µX(s))ds+ εi(t),

where the residual function εi(t) = qTi φ
Y (t) + di where qTi and di are sampled iid from

N(0, 0.1). We will consider three cases when the proportion of outliers are a = 0.1, 0.2 and

0.3.

In Scenario 1 outliers will be generated by replacing B with B1 = B+R where R has

random entries sampled from N(0, 0.5) giving β1(s, t) = φX(s)TB1φ
Y (t). Outliers y′i(t)

are given by

y′i(t) = µY (t) +

∫
I

β1(s, t)(xi(s)− µX(s))ds+ εi(t).

In Scenario 2 we generate outliers by adding a random B-spline function p(t) defined

on an interval of length 1/10. Letting β2(s, t) = φX(s)TB2[φ
Y (t), p(t)], for 3 × 4 matrix

B2 = [B, l] for l ∼ N(2, 1), then the outliers y′′i (t) are given by

y′′i (t) = µY (t) +

∫
I

β2(s, t)(xi(s)− µX(s))ds+ εi(t).

Note that the outliers in Scenario 1 affect the regression function across the entire interval

whereas the outliers in Scenario 2 only affect a small interval of the curves.

In Figure 3 we have a plot of the predictor curves xi(t) and response curves yi(t) with

outliers from Scenario 1 and Scenario 2. The figure shows the outliers are masked by the

variability in the curves and therefore cannot by identified using standard outlier detection

algorithms. To make the outliers clearer we have plotted the residuals of the response

curves using the true regression function and mean functions. In the bottom row of Figure

3 we can see that the outliers in Scenario 2 are localised to a fixed interval whereas in

Scenario 1 the outliers affect the response curve at all time points.

The RFLR model depends on the proportion of trimming α. To investigate the effect
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of the trimming we will consider trimming proportions α = 0.1, 0.2 and 0.3. We shall

also investigate the performance using BIC and RBIC with fixed trimmed sample size of

r = [0.8n].

We sample 400 predictor and response curve datasets and generate classical and robust

models to calculate the average FE (6.1). In Tables 1 and 2 we present the results for

Scenario 1 and 2 respectively. The CFLR model gives a smaller FE value in the case of

no-outliers a = 0, however the robust model still gives good model fits. If we compare the

FE using BIC and RBIC, we can see that BIC gives better model choices when a = 0.

This is due to BIC using all the data and in particular using samples in the tails of the

distribution. In the presence of outliers the robust model outperforms the classical model,

and as expected the difference in FE increases as the number of outliers increases. We

should also note that RBIC is giving better model choices than BIC when outliers are

present. Next, we can see using trimming proportion α = 0.1 we obtain significantly large

FE values when a = 0.3. However the FE values for α = 0.2 and 0.3 are very similar in the

case of a = 0.3. The outliers generated can have different sizes, therefore in the α = 0.2

robust model only small outliers are present, which only affect the model fitting slightly .

In Figure 4 we have two ROC curves generated for one of the repetitions in Scenario

1 and 2 in which we have contaminated 20% of the samples. In both scenarios the robust

model outperforms the classical model. We also deploy the approach of Febrero-Bande

et al. (2008) to the response curves, disregarding the predictor curves (henceforth called

the Direct approach). The ROC curves show that the robust and classical models are more

effective than the Direct method in identifying the outliers in Scenario 1 and 2. By only

using the specificity and sensitivity for a fixed threshold a lot of information is being lost,

therefore a better comparison would be the area under the curve (AUC). Using the AUC

metric we can understand the model outlier detection capabilities overall, in particular

how well are the outliers separated from the other samples. We have taken the average

AUC values over the 100 iterations performed for Scenario 1, which are shown in Table
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Table 1: Average fitting errors (FE) for 100 replications for Scenario 1, using classic
FPCA and robust FPCA with different amount of trimming in the MLTS estimator and
using models selected by BIC and RBIC.

Trim Model a=0 a=0.1 a=0.2 a=0.3

Classic α = 0.0 BIC 5.326 18.441 48.771 101.320

Robust α = 0.1 BIC 8.283 14.166 21.118 33.907
α = 0.1 RBIC 9.285 9.179 10.674 28.393
α = 0.2 BIC 8.288 14.178 15.750 16.623
α = 0.2 RBIC 9.292 9.207 9.535 13.436
α = 0.3 BIC 8.294 14.199 15.815 16.518
α = 0.3 RBIC 9.301 9.214 9.544 12.334

Table 2: Average fitting errors (FE) for 100 replications for Scenario 2, using classic
FPCA and robust FPCA with different amount of trimming in the MLTS estimator and
using models selected by BIC and RBIC.

Trim Model a=0 a=0.1 a=0.2 a=0.3

Classic α = 0.0 BIC 5.326 17.252 48.906 85.063

Robust α = 0.1 BIC 8.283 15.242 21.524 28.758
α = 0.1 RBIC 9.285 9.074 9.919 18.546
α = 0.2 BIC 8.288 16.745 20.652 21.928
α = 0.2 RBIC 9.292 9.191 8.997 13.628
α = 0.3 BIC 8.294 16.808 20.695 21.750
α = 0.3 RBIC 9.301 9.233 9.018 11.439

3. We have considered the average AUC values for trimming levels α = 0.1, 0.2 and 0.3.

The robust models give larger AUC values than the classical model. However the different

trimming levels do not seem to have a significant effect on the AUC values. In Scenario

2 we have the results in Table 4. The same patterns appear as in Scenario 1 except the

AUC values are notably smaller. This is to be expected given the outliers in Scenario 2 are

defined on a small time interval.
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(a) xi(t) (b) xi(t)

(c) y
(1)
i (t) (d) y

(2)
i (t)

(e) r
(1)
i (t) (f) r

(2)
i (t)

Figure 3: Left: Plots of the predictor curves xi(t), response curves y
(1)
i (t) and residuals

curves r
(1)
i (t) for Scenario 1. Right: Plots of the predictor curves xi(t), response curves

y
(2)
i (t) and residuals curves r

(2)
i (t) for Scenario 2. The residual curves are generated using

the true regression function and mean functions. In each scenario there are 5 outliers each
in a distinctive colour. The predictors curves xi(t) are identical for both scenarios, and
the response curves look very similar due to mean and functional components masking the
outliers. However the residuals are clearly distinctive.
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(a) Scenario 1 (b) Scenario 2

Figure 4: ROC curve for one instance of Scenario 1 and 2 with the proportion of outlier
a= 0.2 and proportion trimmed α = 0.2.

Table 3: Average AUC values over 100 replications for Scenario 1, using proportion of
outliers a= 0.1, 0.2 and 0.3. Using Direct compared to classic FPCA with BIC, and using
robust FPCA with RBIC and trimming levels α = 0.1, 0.2 and 0.3.

a=0.1 a=0.2 a=0.3

Direct - 0.532 0.538 0.550

Classic α = 0.0 0.960 0.898 0.797

Robust α = 0.1 0.995 0.991 0.953
α = 0.2 0.996 0.996 0.987
α = 0.3 0.996 0.996 0.990

Table 4: Average AUC values over 100 replications for Scenario 2, using proportion of
outliers a= 0.1, 0.2 and 0.3. Using Direct compared to classic FPCA with BIC, and using
robust FPCA with RBIC and trimming levels α = 0.1, 0.2 and 0.3.

a=0.1 a=0.2 a=0.3

Direct - 0.512 0.548 0.554

Classic α = 0.0 0.922 0.838 0.734

Robust α = 0.1 0.985 0.964 0.932
α = 0.2 0.980 0.980 0.966
α = 0.3 0.980 0.980 0.968
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7 Jet Engine data

The jet engine dataset contains sensor measurements taken during 199 Vibration Survey

(VS) manoeuvres. These manoeuvres have been taken from multiple engine tests. To

minimise the variability in the data we have ensured that the tests were performed on the

same engine type and at the same test facility as environmental factors can affect engine

parameters during the test. The VS manoeuvre has a distinctive engine speed profile with

a slow acceleration followed by a slow deceleration, as shown in Figure 1(a). The TPR is

the engineer-controlled measure of engine thrust. As shown in Figure 1 engine temperature

parameters like the TGT follow a broadly similar pattern to TPR, during the acceleration

phase. As expected, the temperature parameters reach their maximum value with some

delay compared to TPR and although they decrease during the deceleration phase they are

considerably higher than their initial values at the end of the manoeuvre. This highlights

the trajectory-dependent behaviour that we seek to model.

We do not have labels for whether any of the individual engines have outliers but we do

have log books from the engine test, from which we can obtain insights into the Vibration

Survey manoeuvres which our method flags as outliers. There are a number of temperature

features measured within an engine including the TGT, discussed previously. In addition

we have four other temperature readings T25 (the temperature reading at sensor station

25), T30 (the temperature reading at sensor station 30), TCAR (Temperature of Casing

at Rear) and TCAF (Temperature of Casing at Front). All the temperature features are

shown in Figure 7. The TCAR is particularly interesting as it has two distinct curve

behaviours. The VS manoeuvres time series are of similar length. To standardise we have

fitted a B-spline basis of 400 basis functions (with equally spaced knots) to each to ensure

the time series are well approximated. We have experimented with different number of

basis functions in the range between 200 and 500 and our results were not affected by this

choice. A lower dimensional fit can be achieved with a smarter placement of knots, but
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we avoided this option to minimise the degree of manual tuning required. We have taken

1000 equally spaced points on the B-spline representations to be our inputs xi(t) and yi(t).

Note that if all time series are of equal length we could use standard PCA. However, as

shown by Ramsay and Silverman (2005) this can lead to noisy estimates of the principal

components, which can negatively affect the subsequent model fitting.

We first estimate an RFLR model for each temperature parameter, through the proce-

dure outlined in Algorithm 1. As specified in this algorithm, the number of eigenfunctions to

represent the predictor and response curves, M and K respectively, is determined through

RBIC. In all cases M and K range between three and five.

We can then apply the outlier detection algorithm described in Algorithm 2. We com-

pare these outliers with those detected on the temperature curves directly and using CFLR

and BIC in Algorithm 2. We can look at the residuals curves to verify whether the outliers

appear to be abnormal. In particular we want to show that using functional regression

we are able to determine outliers that would otherwise be missed by investigating the

temperature curves directly.

Using the depth based outlier detection (Direct) (Febrero-Bande et al., 2008) directly

on the temperature curves (with a default threshold of δ = 0.01), we obtain the outliers

in Table 5. We can see that the outliers in the TPR are the same as the outliers in

the temperature features. This suggests the outliers being identified are arising from the

controller induced variability. We therefore need to model the dependency between the

control feature (TPR) and the temperature features.

We applied the outlier detection algorithm given in Algorithm 2 using CFLR and BIC

with threshold δ = 0.01. The outliers identified are given in Table 5. The residuals curves

are shown in Figures 5 and 6, with the outliers coloured in blue. It is not clear from this

plot that the outliers are truly different from the other data.

Lastly we applied Algorithm 2 using RFLR and RBIC with threshold δ = 0.01. The

outlier samples are given in Table 5 for each temperature feature. In Figures 5 and 6 we
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Temp Direct CFLR RFLR
TPR 33, 106, 167 - -
T25 33, 106, 167 24, 182 24, 70, 106
T30 33, 106, 167 24, 182, 192 24, 44, 70, 106, 196
TGT 33, 106, 167 119, 153 44, 70, 106, 117
TCAR 33, 106 36, 91, 106 70, 106
TCAF 33, 167 65, 167, 170, 171 24, 70, 106

Table 5: Outliers detected for temperature features (Temp) using outlier detection on the
temperature features directly (Direct), and the outliers found using CFLR and RFLR.

have the residual curves using RFLR. We can see that the RFLR model fits the majority

of the temperature curves well. The outliers that are picked up clearly look abnormal,

with significant deviations from the general behaviour. The RFLR model is therefore able

to identify interesting behaviour, which may otherwise have been undetected. Engineers

have informed us that Sample 24 comes from an engine in which they detected damaged

hardware. All the other outliers in the RFLR column of Table 5 were also noted to come

from engines that displayed odd behaviour during the Pass-Off test. This is not the case

for the outliers reported in the CFLR column.

In Figure 7 we have a plot of the temperature parameters with the outliers identified

using the curves directly in green, those using the RFLR model in red and those detected

by both in purple. We can see that the outliers from the RFLR model do not necessarily

appear as abnormal if we look at the temperature curves directly. Sample 106 is identified

as an outlier by multiple temperature features and also when the depth based outlier

detection is used on the temperature curves directly. Comparing the outliers identified

using a classical approach, we can see Sample 24 is identified as an outlier multiple times

using the classical and robust approaches. However most of the outliers from the classical

approaches differ with the outliers identified using the robust approach. We can also see

that the outliers using the RFLR are significantly more distinctive than the outliers using

CFLR.
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(a) Residuals of T25 through CFLR (b) Residuals of T25 through RFLR

(c) Residuals of T30 through CFLR (d) Residuals of T30 through RFLR

(e) Residuals of TGT through of CFLR (f) Residuals of TGT through RFLR

Figure 5: Plots of the residual curves for temperature at stations 25 and 30, T25 and T30,
respectively, and turbine gas temperature (TGT). Non-outliers are in the grey region while
outliers are depicted in blue and red for the CFLR and RFLR models respectively. Figures
on the left column are obtained through CFLR while those on the right through RFLR.
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(a) Residuals of TCAR through CFLR (b) Residuals of TCAR through RFLR

(c) Residuals of TCAF through CFLR (d) Residuals of TCAF through RFLR

Figure 6: Plots of residuals curves for temperature of casing at rear and at Front, TCAR
and TCAF respectively. Non-outliers are in the grey region and outliers are depicted in
blue and red for the CFLR and RFLR models respectively. Figures on the left column are
obtained through CFLR while those on the right through RFLR.
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(a) Turbine Pressure Ratio (b) Temperature at station 25

(c) Temperature at station 30 (d) Turbine Gas Temperature

(e) Temperature of Casing at Rear (f) Temperature of Casing At Front

Figure 7: Plots of temperature time series with with non-outliers in grey region and outliers
using robust FLR in red; those using the curves directly in green and those for both in
purple.

30



(a) T25 (b) TGT

Figure 8: Plot of the regression functions β̃(s, t) for T25 and TGT parameters.

The RFLR model produces a regression function β̃(s, t), which models the relationship

between the engine speed and engine temperature. In Figure 8 we depict two indicative

regression surfaces for the temperature parameters T25 and TGT. Note that the number

of eigenfunctions used to represent the response and the predictor curves, K and M re-

spectively, affects the estimated β̃(s, t). For both regression functions in Figure 8 large

in absolute value entries appear on or close to the diagonal, which corresponds to s = t.

However, not all the weight is on the diagonal, and in particular it is commonly the case

that β̃(s, t) is non-zero for s > t. This suggests that using information from the current

and past time-points only (s 6 t) can substantially limit the accuracy of an FLR model.

FLR models that are restricted to not use information from future time-points are called

historical FLR models (Malfait and Ramsay, 2003). We developed such models and indeed

found that they fit the data less well. A further limitation of this approach is that no robust

historical FLR models exist and developing one is challenging. One major difficultly is that

the basis functions required for the historical FLR model are not necessarily orthogonal.
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8 Conclusion

There exist a number of functional regression models for functional inputs and responses,

however these methods are not robust to outliers. We have introduced a robust FLR model

that is able to produce good model fits in the presence of outliers. Alongside the robust

FLR model we have also introduced a robust model selection procedure and proven the

consistency of the robust FLR and model selection procedure. Using a simulation study

we have shown the need for a robust approach to obtain good models in the presence of

outliers. The robust FLR model is also effective in identifying global and localised outliers.

Finally using jet engine sensor data as a motivating application for robust FLR we have

identified unusual temperature behaviour. In particular the outliers identified in the jet

engine sensor data would not have been detected if we modelled the response variables

independently of human controlled driving variable.

SUPPLEMENTARY MATERIAL

Supplementary paper: A PDF containing proofs of the results in Section 4.

RobFLR: R code used for simulation study available at github/hullait/RobFLR
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