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Abbreviations 34 

EC : electrical conductivity 35 

ECa : apparent electrical conductivity 36 

EMI : electromagnetic induction 37 

ERT : electrical resistivity tomography 38 

CS : cumulative sensitivity 39 

LIN : low induction number approximation 40 

FS : full solution, refers to the full solution of Maxwell’s equation 41 

Q : quadrature component (expressed as parts per thousand, ppt) 42 

VCP : vertical co-planar 43 

HCP : horizontal co-planar 44 

PRP : perpendicular co-planar 45 

 46 

Abstract 47 

Frequency domain electromagnetic induction (EMI) methods have had a long history of 48 
qualitative mapping for environmental applications. More recently, the development of multi-49 
coil and multi-frequency instruments is such that the focus has shifted to inverting data to 50 
obtain quantitative models of electrical conductivity. Whilst collection of EMI data is relatively 51 
straightforward, the inverse modeling is more complicated. Although several commercial and 52 
open-source inversion codes, exist, there is still a need for a user-friendly software that can 53 
bring EMI inversion to non-specialist audience. Here the open-source EMagPy software is 54 
presented as an intuitive approach to modeling EMI data. It comprises a graphical user (GUI) 55 
interface and a Python application programming interface (API). EMagPy implements both 56 
cumulative sensitivity and Maxwell based solution and can model/invert data for 1D and 57 
quasi-2D using either deterministic or probabilistic minimization methods. The EMagPy GUI 58 
has a logical ‘tab-based’ layout to lead the user through data importing, data filtering, 59 
inversion, and plotting of raw and inverted data. In addition, a dedicated forward modeling tab 60 
is presented to generate synthetic data. In this publication necessary considerations of EMI 61 
theory are described before its capabilities are presented through a series of environmental 62 
case studies. Specifically, the performance of cumulative sensitivity and Maxwell based 63 
forward models; the calibration of EMI data, a waterborne application and a time-lapse 64 
inversion are investigated. It is anticipated that despite the number of available EMI software, 65 
EMagPy offers a user-friendly tool suitable for novice and experienced practitioners alike, in 66 
addition to be useful for teaching purposes. 67 
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 68 

1 Introduction 69 

1.1 Applications of electromagnetic induction 70 

Ground-based frequency domain electromagnetic induction (EMI) methods use phenomena 71 
governed by Maxwell’s equations to infer information about the electrical conductivity (EC) of 72 
the subsurface. As EC is the reciprocal of electrical resistivity, EMI methods can provide 73 
comparable information to electrical resistivity methods. However, given that they do not 74 
require direct coupling with the ground, they can, consequently, be more productive than 75 
standard electrical resistivity tomography (ERT) methods, particularly for surveying large 76 
areas. EMI measurements are typically expressed in terms of apparent electrical conductivity 77 
(ECa) and have a long history of being used to reveal spatial patterns of a number of 78 
hydrogeologically and agriculturally important properties and states; e.g. salinity (Corwin, 79 
2008), water content (Corwin and Rhoades, 1984; Williams and Baker, 1982; Sherlock and 80 
McDonnell, 2003), soil texture (Triantafilis and Lesch, 2005) and soil organic matter (Huang et 81 
al., 2017). Furthermore, some studies have used repeated (i.e. time-lapse) measurements of 82 
ECa to also reveal temporal patterns, e.g. for soil water content estimation (Robinson et al., 83 
2012; Martini et al., 2017). 84 
 85 
In addition to ECa mapping, the development of multi-frequency and multi-coil instruments 86 
has enabled the possibility of inversion of EMI data to provide quantitative models of depth 87 
specific EC. For instance, by obtaining multiple EMI measurements with different sensitivity 88 
patterns, models of EC-ECa can be obtained. EMI inversions can be formulated as the 89 
minimization of the difference between measured and synthetic ECa values generated from a 90 
forward model. Most EMI inversion algorithms use a 1D forward model based on either the 91 
linear cumulative sensitivity (CS) forward model proposed by McNeill (1980) or non-linear full 92 
solution (FS) forward models based on Maxwell’s equations (e.g. Wait, 1982; Frischknecht et 93 
al., 1987). Moreover, some EMI inversion programs, such as EM4Soil (Monteiro Santos, 94 
2004) and the Aarhus Workbench (Auken et al., 2015), use lateral constraints to encourage 95 
laterally smoothed images using a 1D forward model; these methods are typically referred to 96 
as quasi-2D/3D inversion. 97 
 98 
As with ECa mapping, EMI inversion has also been used in a wide range of applications, see 99 
Table 1. It is important to note differences in how EMI data are collected, processed and 100 
modeled. For instance, whether the EMI device is operated at ground level or an elevated 101 
level has implications for its sensitivity patterns. Furthermore, despite the availability of 102 
inversion software using FS forward models the CS forward model is still commonly used 103 
(e.g. Huang et al., 2016; Saey et al., 2016), despite its inherent simplifications. Lastly, there 104 
has also been interest in calibrating EMI measurements to account for factors relating to 105 
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operation setup and permit the easier convergence of data. This is commonly done with either 106 
ERT or soil cores. Furthermore, it has been argued that calibration of EMI data is a 107 
prerequisite for inversion (e.g. Lavoue et al., 2011). 108 
 109 
Table 1: Non-exhaustive list of environmental studies using inverted EMI data. HCP refers to 110 
horizontal co-planar, VCP refers to vertical co-planar and PRP refers to perpendicular 111 
orientation (all of which are defined in the text). 112 
 113 
Reference Application Survey acquisition Inversion details 
Martinelli et 
al. (2008) 

Chemical 
pollution 

GEM-2 SLEM: 
six frequencies between 2575 and 47025 Hz 

EM1DFMFW 
(Farquharson, 2003) 
with FS 

Brosten et al. 
(2011) 

Hydraulic 
conductivity 

GEM-2, 
Height: 1 m 
HCP1.22 
At 15 frequencies between 10 and 60 kHz 

FEMIC with FS 

von Hebel et 
al. (2014) 

Structure CMD Mini-Explorer 
Height: 0 m, 
VCP0.32, VCP0.71, VCP1.18, HCP0.32, 
HCP0.71, HCP1.18 
At 30 kHz 

SCE-UA with FS and 
CS 

Davies et al. 
(2015) 

Coastal salinity DUALEM-421S 
Height: 0.2 m 
HCP1.0, PRP1.1, HCP2.0, PRP2.1, HCP4.0 
PRP4.1 
At 9 kHz 

EM4Soil with FS 

Jadoon et al. 
(2015) 

Soil salinity CMD Mini-Explorer 
Height: 0.05 m 
VCP0.32, VCP0.71, VCP1.18, HCP0.32, 
HCP0.71, HCP1.18 
At 30 kHz 

FS 

Pederson et 
al. (2015) 

Soil texture DUALEM-421S 
Height: unknown 
HCP1.0, PRP1.1, HCP2.0, PRP2.1, HCP4.0 
PRP4.1 
At 9 kHz 

Aarhus workbench 

Shanahan et 
al. (2015) 

Soil moisture CMD Mini-Explorer 
Height: 0 m, 
VCP0.32, VCP0.71, VCP1.18, HCP0.32, 
HCP0.71, HCP1.18 
At 30 kHz 

McMC inversion with 
CS 

Zare et al. 
(2015) 

Soil salinity DUALEM-421S 
Height: 0.2 m 
HCP1.0, PRP1.1, HCP2.0, PRP2.1, HCP4.0 
PRP4.1 
At 9kHz 

EM4Soil with CS and 
FS 

Christiansen 
et al. (2016) 

Archaeology/ 
stratigraphy 

DUALEM-421S, 
Height: ~0.2 m 
HCP1.0, HCP2.0, HCP4.0, 
PRP2.1, PRP1.1, PRP4.1 
At 9 kHz 

Aarhus Workbench 
with FS 

Huang et al. 
(2016) 

Soil moisture  DUALEM-421S 
Height: unknown 

EM4Soil with CS 
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HCP1.0, HCP2.0, HCP4.0, 
PRP2.1, PRP1.1, PRP4.1 
At 9 kHz 

Saey et al. 
(2016) 

Stratigraphy DUALEM-421S 
Height: 0.16 m 
HCP1.0, HCP2.0, HCP4.0, 
PRP2.1, PRP1.1, PRP4.1 
At 9 kHz 

CS function 

Frederiksen 
et al. (2017) 

Stratigraphy DUALEM-421S 
Height: ~0.285 m 
HCP1.0, HCP2.0, HCP4.0, 
PRP2.1, PRP1.1, PRP4.1 
At 9 kHz 

Aarhus Workbench  
with FS 

Huang et al. 
(2017) 

Soil organic 
carbon 

DUAELM-21S 
Height: 0.075 m 
HCP1.1, HCP2.1 
PRP1.1, PRP2.1 
At 9 kHz 

EM4Soil with FS and 
CS 

Whalley et al. 
(2017) 

Wheat root 
water uptake 

CMD Mini-Explorer 
Height: 0 m, 
HCP/VCP s=0.32, 0.71, 1.18 m 
At 30 kHz 

Gauss-Newton 
smoothed time-lapse 
with CS 

Koganti et al. 
(2018) 

Soil salinity DUALEM-21S 
Height: 0.45 m 
HCP1.0, HCP2.0, 
PRP2.1, PRP1.1 
At 9 kHz 

EM4Soil with CS and 
FS 

Von Hebel et 
al. (2019) 

Stratigraphy CMD Mini-Explorer 
Height: 0 m, 
VCP0.32, VCP0.71, VCP1.18, HCP0.32, 
HCP0.71, HCP1.18 
At 30 kHz 

SCE-UA with FS 

 114 
There are several established commercial programs for processing and inverting frequency 115 
domain EMI data. Commercial programs include the Aarhus workbench (Auken et al., 2015), 116 
or EM4Soil (Monteiro Santos, 2004). In addition, several open source software codes exist, 117 
such as the Matlab-based open-source GUI for EMI data, FEMIC (Elwaseif et al., 2017), or 118 
the Python-based open-source codes SimPEG (Heagy et al., 2017) and pyGIMLI (Rücker et 119 
al. 2017). Open-source software has several benefits over commercial software, for instance 120 
it has better reproducibility, it is free and allows the user to interrogate the source code and, 121 
where necessary, adapt and customize for their own application. However, despite their 122 
availability, there is still a need for a comprehensive open-source software capable of bringing 123 
EMI inversion to a non-specialist audience. Given the increasing application of geophysics in 124 
multi-disciplinary projects, the need of a flexible and intuitive software for EMI inversion is a 125 
necessity. 126 
 127 
In this work a Python-based open source EMI inversion software, EMagPy, is introduced. 128 
EmagPy has capabilities to generate synthetic data, filter and calibrate field data, and perform 129 
quasi-2D inversions. The inversion algorithms utilize either a Maxwell based FS forward 130 
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model or the CS forward model, and provide the capability of obtaining smoothly and sharply 131 
varying models of EC. EmagPy provides a tab-based, user-friendly interface to that makes it 132 
accessible for novice users, making it ideal for teaching and training purposes. This 133 
manuscript provides a summary of the theoretical background to the software and highlights 134 
its capabilities through several case studies. Specifically, the case studies investigated are: 135 
(1) the performance of CS and FS solutions, (2) the impact of noise on the inversion results, 136 
(3) the impact of EMI calibration on inversion results, (4) EMI inversion for waterborne 137 
applications, and (5) time-lapse inversion of EMI data. 138 

2 Material and methods 139 

2.1 Theoretical background around on EMI 140 

EMI devices operate by passing an alternating current through a transmitter coil to generate a 141 
primary electromagnetic field (HP). This time-varying primary electromagnetic field interacts 142 
with the subsurface to induce eddy currents which in turn generate a secondary 143 
electromagnetic field (HS). HP and HS are then recorded by the receiver coil, see Figure 1. 144 
The ratio of HS and HP is expressed as a complex number with an in-phase component (P) 145 
and an out-of-phase, or quadrature, component (Q). HS/HP is dependent on both the 146 
instrument set-up (e.g. operating frequency, coil separation and coil orientation) and 147 
subsurface conditions (e.g. magnetic, conductive and dielectric properties). At the frequencies 148 
used, dielectric properties can generally be ignored; furthermore, given that in most 149 
environments the subsurface can be considered as non-magnetic and the magnetic 150 
permeability of the subsurface is often assumed to be equal to that of free space (μ0 = 1.257 x 151 
10-8 H/m). 152 
 153 

 

Figure 1: (a) Schematic of an EMI device with one transmitter coil (Tx) and one receiver coil 
(Rx). The transmitter emits a transient primary magnetic field (Hp) that induces eddy currents 
in the ground. These eddy currents generate a secondary electromagnetic field (Hs). Both 
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primary and secondary electromagnetic field are sensed by the receiver coil (b). From the 
complex ratio of their signals, information about the subsurface can be inferred. 
 154 
For any given ground properties, the obtained HS/HP is dependent upon the separation 155 
distance between the transmitter and receiver coil, the operation frequency and the 156 
orientation of coils. The most used orientations are referred to as co-planar loops in which 157 
both the transmitter and receiver coils are orientated either horizontally (HCP) or vertically 158 
(VCP), with respect to ground. Another coil orientation is the perpendicular orientation (PRP) 159 
in which the transmitter and receiver loops are oriented at 90 degrees from each other. In 160 
addition, many devices are multi-coil or multi-frequency, meaning that measurements with 161 
different sensitivity patterns can be obtained by the same instrument, often simultaneously, 162 
and used for inverse modeling. 163 
 164 
Most EMI instruments express their measured HS/HP values as values of apparent electrical 165 
conductivity, Eca. This term was introduced by McNeill (1980) to provide a more 166 
comprehensible measurement with the same units as EC, i.e., S/m. McNeill (1980) derived a 167 
linear relationship describing the Q value expected from a homogeneous subsurface electrical 168 
conductivity. The relationship therefore links the Q value of an assumed homogeneous 169 
subsurface to an Eca (i.e. the EC of a corresponding homogeneous ground). It is important to 170 
therefore note that it may not be valid in heterogeneous environments (see Callegary et al., 171 
2007; Lavoue et al., 2010) and requires that (1) the device is operated on the ground, and (2) 172 
the induction number (β) is low (β << 1). The induction number is given by: 173 
 174 

ߚ = ටݏ ଶఠఓబா, (1) 

 175 
where σ is the conductivity of the ground, ω is the angular frequency (2πf) and s is the coil 176 
separation. The low induction number (LIN) approximation is described as: 177 ܥܧ = ସఠఓబ௦మ ܳ. (2) 
 178 
It can be clearly seen from the expression that large frequencies and higher conductivity 179 
ground will violate the β << 1 specification proposed by McNeill (1980). Moreover, other more 180 
conservative β values of < 0.3 (Wait, 1962) and < 0.02 (Frischknecht, 1987) have also been 181 
provided for LIN conditions to be valid. It is also important to reiterate that the reliance of the 182 
LIN number approximation on a homogeneous subsurface also creates problems for its 183 
usage in heterogeneous environments and in cases where the device is operated above the 184 
ground. Nonetheless, it has been essential in advancing the EMI method. 185 
 186 
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2.2 Cumulative sensitivity forward model 187 

In addition to the LIN approximation, McNeill (1980) provided functions to describe the relative 188 
contribution of materials below a specific depth to the overall Eca value when a device 189 
operates under LIN conditions. These CS functions assume that the sensitivity of the 190 
instrument is solely a function of the depth and coil separation and does not depend on the 191 
subsurface EC, or the device’s operating frequency. The CS responses for VCP, HCP and 192 
PRP orientations are as follows: 193 ܴ(ݖ) = ඥ(4ݖଶ + 1) − (ݖ)ுܴ (3) ,ݖ2 = ଵ√ସ௭మାଵ, (4) 

ܴோ(ݖ) = 1 − ଶ௭√ସ௭మାଵ, (5) 
 194 
Where z is the depth normalized by the coil separation, s. From equations 3 and 4 the 195 
sensitivities for different coil separations for the CMD Mini-Explorer and CMD Explorer (GF 196 
Instruments, Czech Republic), which can be operated in either VCP or HCP mode, can be 197 
calculated, see Figure 2. For instance, it can be seen that measurements made with coils in 198 
the VCP orientation are more sensitive to the shallow subsurface and measurements made in 199 
HCP orientation are sensitive to deeper depths. These functions are commonly used by 200 
manufacturers to provide information about the depth sensitivity of their instruments; i.e. the 201 
rule of thumb states VCP measurements have an effective depth of 0.75 times the coil 202 
separation and 1.5 times for HCP measurements. 203 
 204 
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Figure 2: Normalized local sensitivity pattern of the coil configurations of two multi-coils 
instruments: (a) CMD Mini-Explorer and (b) CMD Explorer. Each coil configuration is first 
determined by its orientation (VCP/HCP here) and the Tx-Rx coil separation with units of 
meters. The triangles on each curve corresponds to the effective depth range supplied by the 
manufacturer. 

 205 
As with the LIN approximation, the CS functions have been fundamental in advancing the EMI 206 
methods. Furthermore, despite the availability of inversion algorithms based on the FS 207 
forward model, the use of CS forward model in EMI applications is still common. This is 208 
largely due to their simplicity and speed in the inversion process compared to FS forward 209 
solutions. Furthermore, although, as with the LIN approximation, the CS forward model was 210 
developed for application when EMI devices are operated at ground level, several studies 211 
have used it to model the response of devices operated at some elevation by re-scaling the 212 
CS function (e.g. Andrade and Fisher, 2018). 213 

2.3 Full Maxwell solution 214 

In order to calculate a non-simplified response of the ground, in terms of HS/HP, a FS forward 215 
model must be used. The model used in EMagPy relies on the assumption that 216 
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electromagnetic fields propagate only due to conduction currents, which is valid at low 217 
frequencies (< 105 Hz). The Maxwell-based full solution is provided by Wait (1982) and can be 218 
used to determine the response of an EMI instrument over a 1D layered earth consisting of N 219 
layers: 220 ቀுೄுುቁ = 1 − ଶݏ ∫ ܴܬଵ(ߣݏ)ߣ݀ߣஶ , (6) 

ቀுೄுುቁு = 1 − ଷݏ ∫ ܴܬ(ߣݏ)ߣଶ݀ߣஶ , (7) 

ቀுೄுುቁோ = 0− ଷݏ ∫ ܴܬଵ(ߣݏ)ߣଶ݀ߣஶ , (8) 

 221 
where J0 and J1 are Bessel functions of zeroth and first orders, respectively, and R0 is the 222 
reflection factor, which is dependent on the thickness and EC of each layer. The reflection 223 
factor is calculated at the interface of each layer, including between the air and the first layer. 224 
It can be obtained recursively from the infinite Nth layer, given that beyond N can be assumed 225 
homogeneous and therefore RN+1 = 0, and the following: 226 
 227 

ܴ = ೨ష೨శభ೨శ೨శభାோశభషమ೨శభశభଵା೨ష೨శభ೨శ೨శభషమ೨శభశభ , (9) 

 228 
where  ߁ = ඥ(ߣଶ +  ), and hn and ECn are the thickness and the EC of the nth layer. 229ܥܧߤ߱݅
R0 is obtained by assuming the EC of layer 0 is 0 S/m to reflect the air. The integrals in 230 
equations 6, 7 and 8 represent the Hankel transform and can be calculated by linear filtering 231 
(Guptasarma and Singh 1997; Anderson 1979). As noted, most devices provide 232 
measurements as an ECa, therefore in order to use the FS forward model the obtained Q 233 
values from equations 6, 7 and 8 need to be converted to an ECa value. This translation is 234 
important, as discussed below. 235 

2.4 Comparing ECa values and forward models 236 

Although the LIN approximation (equation 2) offers a comprehensible unit to represent the 237 
subsurface EC, several authors have developed methods to provide more representative ECa 238 
values, especially when LIN assumptions are not met. For instance, although most 239 
manufactures state that their EMI devices operate under LIN conditions and use the LIN 240 
approximation to obtain ECa values, Beamish (2011) demonstrated that LIN assumptions are 241 
only valid at low EC values (< 12 mS/m). Hanssens et al. (2019) provide an overview of 242 
various methods; typically methods focus on just the Q component (e.g. Andrade et al., 2016; 243 
von Hebel et al., 2019) or use both the P and Q components (e.g. Huang and Won, 2000; 244 
Guillemoteau et al. (2015) to obtain ECa values more representative of the subsurface. 245 
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Because of the generally weakly magnetic subsurface in environmental cases, and the 246 
characteristic instability of P measurements (Lavoue et al., 2011), in EMagPy a method akin 247 
to van der Kruk et al. (2000), Andrade et al. (2016), and von Hebel et al. (2019) is used to 248 
compute a more representative ECa. This is done by minimizing the absolute difference 249 
between an observed Q value and a Q value for an equivalent homogeneous subsurface 250 
conductivity: 251 
 252 ݉݅݊൫หܳ௧௧ − ܳห൯. (10) 

 253 
The ECa value obtained from this method therefore closely matches the EC of a 254 
homogeneous subsurface. As this optimization can be subject to localized minima, in EMagPy 255 
it is initialized with the LIN approximation, and although this may be ambiguous at large 256 
conductivities (see Hanssens et al., 2019), in the majority of cases the ground EC is 257 
sufficiently low to not cause problems. 258 
 259 
Although this method provides a more representative ECa, the key importance of inverting 260 
EMI data using the FS forward model is that modeled ECa are obtained from Q using the 261 
same method used to convert Q to ECa in EMI devices. For instance, although in most cases 262 
devices use the LIN approximation, some EMI devices use a manufacturer calibration. For 263 
example, GF Instruments use a manufacturer calibration based on a linear fit through the Q 264 
values obtained at two sites of known subsurface EC. In addition, different calibrations exist 265 
for when their devices are operated at ground level and 1 m, such that measurements made 266 
at 1 m elevation are more representative of the true ground EC. This would mean, for 267 
instance, that if ECa values using the GF Instruments 1 m calibration were  converted to Q 268 
using the LIN approximation they would be significantly higher than actually measured. 269 
 270 
Furthermore, although the CS is also based on LIN assumptions, the ECa values obtained 271 
from the CS forward model differ, in some cases, from the ECa obtained from LIN 272 
approximation and Q values measured in the field. This means that under certain scenarios 273 
use of the CS forward model could result in erroneous inversion. In this work a distinction 274 
between an ECa value from equation 2 (LIN-ECa), an ECa value from equation 10 (FSEQ-275 
ECa) and from the CS forward models (equations 3, 4 and 5) (CS-ECa) is made, see Fig. 3. 276 
 277 
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Figure 3: The different routes for obtaining ECa values. For field cases all devices obtain a Q 
value which is typically transformed into an ECa using either the LIN-ECa or some other 
manufacturer calibration (e.g. the GF instruments linear calibration). Some authors (e.g. von 
Hebel et al. 2019) opt to convert their field obtained Q values using a minimizing approach 
(FSEQ-ECa). For modeled cases there are two principle routes to obtain ECa values from a 
model subsurface: (1) Q values may be calculated from the FS forward model, they would 
then typically be converted to LIN-ECa or FSEQ-ECa, and (2) CS-ECa values can be obtained 
directly using the CS forward model. 

 278 
To highlight the distinctions of ECa values defined here, and hence stress the importance of 279 
their difference, they can be computed for a variety of synthetic cases. In Figure 4, FSEQ-ECa, 280 
LIN-ECa and CS-ECa are calculated for the device specifications of the largest coil 281 
separation (4.49 m) of the CMD Explorer operated in VCP mode above homogeneous and 282 
heterogeneous subsurfaces, at ground level and at 1 m elevation. For the homogeneous 283 
case, data are generated for subsurface EC of 1 to 100 mS/m in 1 mS/m increments, the 284 
heterogeneous case data is generated for a two layer model with a layer 1 thickness of 0.5 m, 285 
an upper layer EC of 1 to 100 mS/m in 1 m/Sm increments and a constant lower layer EC of 286 
50 mS/m. 287 
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Figure 4: Differences between CS-ECa, FSEQ-ECa and LIN-ECa for a homogeneous and a 
heterogeneous case. (a) shows the differences over a homogeneous medium with increasing 
EC, (b) shows the differences over an increasing homogeneous medium when the device is 
operated at 1 m, (c) shows the differences over a heterogeneous medium with a fixed layer 1 
thickness of 0.5 m and a fixed EC of 50 mS/m, and (d) shows the differences over a 
heterogeneous medium with a fixed layer 1 thickness of 0.5 m and a fixed EC of 50 mS/m 
when the device is operated at 1 m elevation. In all figures h is the device height above 
ground level. 

 288 
Firstly, it can be seen from Fig. 4a that for a homogeneous subsurface EC when the device at 289 
ground level FSEQ-ECa and CS-ECa values lie on a 1:1 line, whereas the LIN-ECa deviates 290 
from this line at higher EC values. In comparison, when the device is operated at 1 m 291 
elevation (Fig. 4b) FSEQ-ECa, LIN-ECa CS-ECa all show increasing deviation at higher 292 
conductivities, with the FSEQ-ECa being intermediate between the higher CS-ECa and the 293 
lower LIN-ECa. Furthermore, these values are broadly comparable for low conductivities (< 294 
20 mS/m), for the ground level and 1 m elevation cases. When the device is operated at 295 
ground level (Fig. 4c), for the heterogeneous case, the LIN-ECa is significantly lower than the 296 
other two values. Furthermore, the FSEQ-ECa and CS-ECa match when the upper layer 297 
conductivity is 50 mS/m (i.e. homogeneous subsurface). When the device is operated at 1 m 298 
elevation (Fig. 4d) for the heterogeneous case all ECa values differ from each other across 299 
the layer 1 conductivity range. 300 
 301 
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These observations demonstrate that under certain conditions the CS function may be 302 
inappropriate to model with LIN-ECa values obtained from the field, e.g. when the subsurface 303 
is strongly heterogeneous. Furthermore, it can also be noted that FSEQ-ECa is perhaps better 304 
suited to modeling than the CS function and may perform reasonably in environments where 305 
subsurface EC is both low and of small variability. Moreover, if FSEQ-ECa is taken as the most 306 
accurate representation of the subsurface EC, it can be seen that LIN-ECa underestimates 307 
the subsurface EC in the case of higher EC values and heterogeneous environments. 308 
However, as noted above, so long as the translation between Q and ECa is consistent for the 309 
EMI device and FS forward model, the derivation of ECa using this method is not a requisite 310 
for accurate inversion. 311 

2.5 Calibration of EMI data 312 

In addition to considering ECa values, it is important to note that in many cases EMI devices 313 
are only seen to provide qualitative measurements of conductivity because of instrument 314 
calibration difficulties (Triantafilis et al. 2000; Sudduth et al. 2001; Abdu et al. 2007; Gebbers 315 
et al. 2009; Nüsch et al. 2010). For instance, external influences such as presence of the 316 
operator, zero-leveling procedures or field set up can influence the measurements 317 
significantly. Therefore, in order to permit quantitative modeling of EMI data several authors 318 
have advocated for the need of data calibration (e.g. Lavoue et al., 2009; von Hebel et al., 319 
2014). Proposed calibration methods have included collection of intrusive soil samples (e.g. 320 
Triantafilis et al. 2000; and Moghadas et al., 2012), use of ERT (e.g. Lavoue et al., 2010; von 321 
Hebel et al., 2014) or use of measurements made at multiple elevations (e.g. Tan et al., 322 
2019). 323 
 324 
In this work the method using ERT is implemented, whereby depth-specific models of 325 
electrical resistivity are used to calculate a forward EMI model response which is then paired 326 
with a set of EMI measurements made along the ERT transect. Although it is possible to invert 327 
ERT data with several inversion programs, the calibration implementation in EMagPy can 328 
directly use ERT models produced by the sister code, ResIPy (https://gitlab.com/hkex/pyr2; 329 
Blanchy et al., 2020). Clearly, there is an implicit assumption here that the ERT-derived 330 
electrical conductivities are true values, and that the footprint of EMI and ERT measurements 331 
does not differ significantly. 332 

2.6 Inversions routines 333 

2.6.1 Data and model misfit 334 

In EMagPy the inverse problem can be solved using the CS or FS forward model solutions, in 335 
addition the problem can be solved to produce both sharply and smoothly varying models of 336 
conductivity. The sharp inversion solves the inverse problem with both conductivities and 337 
depths as parameters, whereas the smooth inversion uses fixed depths and solves only for 338 
conductivities. In both cases the data misfit is defined as the difference between observed 339 
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values and predicted values from the forward model solutions. As the smooth inversion  340 
typically produces a model containing more EC values than measurements it requires a 341 
model misfit term, which determines the smoothness of neighboring layers. In comparison, 342 
the sharp inversion, although a model misfit term can be used, the inverse problem is 343 
generally set such that the problem is under-determined, i.e. the number of parameters 344 
(depths and conductivities) is less than the number of measurements. The total misfit is given 345 
by: 346 

ߔ = ௗߔ +  , (10)ߔߙ

where Φd is the data misfit, Φm is the model misfit and α is a smoothing parameter 347 
determining the influence of Φm on the total misfit, i.e. ordinarily this would be set to 0 for  348 
sharp cases. The inversion problem can be solved by minimizing either the L1 or the L2 norm 349 
cost functions for each 1D profile. The data misfit for both norms are obtained by: 350 

ௗߔ = ଵே ∑ |݀ − ݂(݉)|ேୀଵ , (11) 

 351 

ௗߔ = ଵே ∑ ൫݀ − ݂(݉)൯ଶேୀଵ , (12) 

where N is the number of coil configurations per profile, d is the observed values and f(m) is 352 
the predicted values from the forward model with parameter set, m. Similarly, the model 353 
misfits for L1 and L2 norms, respectively, are obtained by: 354 

ߔ = ଵெ∑ หܥܧ − ାଵหெିଵୀଵܥܧ , (13) 

ߔ 355  = ଵெ∑ ൫ܥܧ − ାଵ൯ଶெିଵୀଵܥܧ , 
(14) 

where M is the number of layers in the model and ECj is the conductivity of layer j. 356 

2.6.2 Optimization methods 357 

In EMagPy, the total misfit can be minimized using three groups of methods (see Table 2): 358 
using either (1) a Gauss-Newton method, (2) optimization from the scipy package (Virtanen et 359 
al., 2020), or (3) McMC optimization from the spotpy package (Houska et al., 2015). The 360 
Gauss-Newton implementation is straightforward; it is exclusively for the CS function as the 361 
Jacobian (sensitivity) matrix can be obtained easily. This implementation requires fixed depths 362 
and requires a large α value. As the Jacobian matrix for the CS function does not depend on 363 
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the layer conductivity, the solution is reached in one iteration. It is therefore well suited for 364 
quick inversions of smooth solutions and has the added benefit that it easily enables time-365 
lapse inversion (see Whalley et al., 2017). 366 

Table 2: Minimization methods employed within EMagPy. 367 

Minimization 
method 

Description Implemented features Package used 

Gauss-Newton Gradient based method. CS forward model, L2 
data and model misfit. 

- 

Nelder-Mead Simplex heuristic search 
method. 

CS and FS forward 
model, L1 and L2 data 

and model misfit. 

scipy 

L-BFGS-B Approximation of BFGS method, 
with bounds. This method uses 

an estimate of the inverse 
Hessian matrix. 

CS and FS forward 
model, L1 and L2 data 

and model misfit. 

scipy 

Conjugate 
Gradient 

Gradient method for non-linear 
problems. 

CS and FS forward 
model, L1 and L2 data 

and model misfit. 

scipy 

SCE-UA Shuffled Complex Evolution 
Algorithm McMC based method. 

CS and FS forward 
model, L1 and L2 data 

and model misfit. 

spotpy 

DREAM Differential Evolution Adaptive 
Metropolis Algorithm McMC 

based method. 

CS and FS forward 
model, L1 and L2 data 

and model misfit. 

spotpy 

ROPE Robust Parameter Estimation 
McMC method 

CS and FS forward 
model, L1 and L2 data 

and model misfit. 

spotpy 

 368 

Through the optimize function from scipy, EMagPy can minimise equation 10 using the 369 
Nelder-Mead (Nelder and Mead, 1965), L-BFGS-B (Byrd et al., 1995) or conjugate gradient 370 
(Fletcher and Reeves, 1964) algorithms. However, it is important to note that broader range of 371 
algorithms exist though the scipy package and can be implemented if needed. These 372 
methods can be used for both the CS and FS forward models and are adapted to both 373 
smooth and sharp inversions. Their implementation is based on the function 374 
scipy.optimize.minimize() from the scipy python package that is used to minimize the 375 
objective function. Each method has its own convergence criteria (see scipy documentation) 376 
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The McMC-based approach also minimizes an objective function but relies on different 377 
sampling approaches to find a solution. This implementation is based on the Python spotpy 378 
package (Houska et al., 2015) that provides several solvers for parameter optimization such 379 
as SCE-UA (Duan et al., 1994), DREAM (Vrugt and Ter Braak, 2011) or ROPE (Bardossy et 380 
al., 2008). One advantage of this approach is that it produces posterior distribution of the 381 
parameters from which a model uncertainty can be estimated (Figure 5). In EMagPy, this 382 
posterior distribution is based on the 10% best sample (i.e. the lowest total misfit) and the 383 
error for each parameter is estimated using the standard deviation of this posterior 384 
distribution. Although this method was primarily implemented to obtain sharp models of EC, it 385 
can also be used for smooth models. 386 

 387 

 
Figure 5: Example of a two layers, one varying depth model inverted using the McMC solver. 
Each subplot shows the posterior distribution of the parameters after sampling (3000 
samples, 1 chain) for (a) the depth, (b) the EC of layer 1 and (c) the EC of layer 2. m is the 
mean and std is the standard deviation of the distribution (meters for depth and mS/m for 
layer1 and layer2). The red dashed line represent the true value while the green dashed line 
represent the best estimate (the one with the lowest misfit). 

 388 
The quality of the inversion can be assessed visually by plotting the predicted ECa values 389 
from the inverted model and the observed ECa for each profile using either showMisfit() 390 
or showOne2one() methods. It is also possible to directly plot the root-mean-square error for 391 
each profile on top of the inverted section using showResults(rmse=True). This makes it 392 
easy to quickly identify how suitable models are for explaining the different EMI observations. 393 

2.7 EMagPy capabilities 394 

EMagPy has been designed to provide both a Python application programming interface (API) 395 
and a graphical user interface (GUI). The Python API can be used in Python scripts or in 396 
Jupyter notebooks and enables automated tasks. The GUI provides an intuitive interface for 397 
the inversion and modeling of multiple datasets. 398 
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In EMagPy, the code is structured around two main classes, a Survey and a Problem class. 399 
The Survey class that contains information related to the survey (such as the ECa values and 400 
their locations) and several display functions. Whereas the Problem class handles the 401 
forward and the inverse modeling and displays the results. Multiple surveys can be imported, 402 
to allow for time-lapse inversion. If geographical information (e.g. x and y coordinates) is 403 
available, map views can be used to show the apparent or inverted data. Figure 5 404 
summarizes the capabilities of EMagPy. A more exhaustive list of API methods can be found 405 
in Appendix A. 406 

 
Figure 6: Capabilities of EMagPy workflow. Given a defined depth-specific EC model (a), 
synthetic apparent ECa can be modeled (b). Alternatively, field measurements can be 
imported and displayed as line plot (c) or map (d). Range filtering (e) and rolling mean (f) are 
among the options available to filter the measurements. If an ERT transect has been 
collected, a quantitative calibration of the measurement can be done (g). If cross-over points 
were collected, an error model can be derived (h). (g) shows the inverted data and (j) how 
well the modeled ECa fits the observed ECa. 

 407 

Along with a pure Python API, EMagPy offers a graphical user interface (GUI) composed of 408 
several tabs exploiting the capabilities of the API (Figure 6). The purpose of the interface is to 409 
provide a standalone intuitive user-friendly tool. 410 
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Figure 7: EMagPy graphical user interface is composed of several tabs that guide the user 
through the EMI processing workflow. At first the measurements are imported and filtered or 
alternatively they can be synthetically generated in the ‘Forward’ tab. Then an ERT calibration 
(if available) can be performed and an error model can be fitted if there are cross-over points. 
Then in the “Inversion Settings” tab the number of layers and their depths is defined as well 
as other inversion options. The inversion results are displayed in the ‘Inversion’ tab and the 
‘Post-processing’ tab helps to assess the quality of the inversion. 

 411 

3 Case studies 412 

The following case studies presented here are included to demonstrate the ability of EMagPy 413 
for forward modeling and inversion. In addition, the Python code of the case studies 414 
presented below is available on the Gitlab repository of the project for anyone to reproduce 415 
(https://gitlab.com/hkex/emagpy/-/blob/master/jupyter-notebook/em-paper.ipynb). 416 

3.1 Impact of different forward models on inversion 417 

The first case demonstrates EMagPy’s forward modeling capabilities and investigates the 418 
difference between FS and CS forward models for a heterogeneous subsurface. Data were 419 
generated from the synthetic model displayed in Fig. 5, i.e. a two layer model comprising an 420 
upper layer with an EC of 20 mS/m and a lower layer with an EC of 100 mS/m. Data were 421 
generated in terms of LIN-ECa using the FS forward model for the instrument properties of 422 
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the CMD-Explorer operated at ground level and 1 m before being inverted using either the FS 423 
forward model or the CS forward model. It can be seen for both 0 m and 1 m elevations the 424 
FS results match the synthetic model in terms of depth and EC. In comparison, although the 425 
CS results pick up the depth reasonably well for the 0 m elevation case, the EC values of the 426 
second layer are not well resolved. 427 

# parameters for the synthetic model 
nlayer = 2 # number of layers 
npos = 20 # number of positions/sampling locations 
conds = np.ones((npos, nlayer))*[10, 50] # EC in mS/m 
x = np.linspace(0.1, 2, npos)[:,None] 
depths = 0 + 2/(1+np.exp(-4*(x-1))) # depth of model 
 
# defines coils configuration, frequency and height above the ground 
coils0 = ['VCP1.48f10000h0', 'VCP2.82f10000h0', 'VCP4.49f10000h0', 
          'HCP1.48f10000h0', 'HCP2.82f10000h0', 'HCP4.49f10000h0'] 
coils1 = ['VCP1.48f10000h1', 'VCP2.82f10000h1', 'VCP4.49f10000h1', 
          'HCP1.48f10000h1', 'HCP2.82f10000h1', 'HCP4.49f10000h1'] 
 
# forward modeling 
ks = [] 
for i, coils in enumerate([coils0, coils1, coils0, coils1]): 
    k = Problem() 
    k.setModels([depths], [conds]) 
    _ = k.forward(forwardModel='FSeq', coils=coils, noise=0) 
    ks.append(k) 
k.showResults() # display original model 
k.show() # display ECa computed from forward modeling 
 
for k, fm in zip(ks, ['FSeq','FSeq','CS','CS']): 
    k.setInit(depths0=[0.5], fixedDepths=[False], 
              conds0=[20, 20], fixedConds=[False, False]) # set initial values 
    # invert using ROPE solver (RObust Parameter Estimation) 
    k.invert(forwardModel=fm, method='ROPE', regularization='l1', 
             bnds=[(0.01, 3), (0, 80), (0, 80)], rep=1000, njobs=-1) 

 428 
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Figure 8: Inverted model with (a) FSEQ at 0 m, (b) FSEQ at 1 m, (c) CS at 0 m, (d) CS at 1 m. 
The red lines denote the true interface between the two layers of 20 and 100 mS/m from top 
to bottom. The error bars show the standard deviation of the posterior distribution (based on 
the 10% best sample). 

 429 

3.2 Impact of measurement noise on inversion 430 

To investigate the influence of measurement noise on the inversion when the device is 431 
operated at ground level and at 1 m, data were generated for a two layer model with an 432 
undulating interface. The upper layer EC was set at 20 mS/m and the lower layer EC was set 433 
at 100 mS/m, synthetic data were then generated using the FS forward model and corrupted 434 
with 2% Gaussian noise. Data with, and without noise, were then inverted. It was observed 435 
that in the noise-free cases, when the device is at 0 m and 1 m, the synthetic model is 436 
resolved relatively well (Figure 8). This is also true for the data containing noise when 437 
operated at ground level but when elevated at 1 m elevation the inversion performs much 438 
poorer. 439 

# parameters for the synthetic model 
nlayer = 2 # number of layers 
npos = 20 # number of sampling locations 
conds = np.ones((npos, nlayer))*[20, 100] 
x = np.linspace(0.1, 2, npos)[:,None] 
depths = 0.65 + 0.15* np.sin(x*np.pi*2) 
coils0 = ['VCP1.48f10000h0', 'VCP2.82f10000h0', 'VCP4.49f10000h0', 
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          'HCP1.48f10000h0', 'HCP2.82f10000h0', 'HCP4.49f10000h0'] 
coils1 = ['VCP1.48f10000h1', 'VCP2.82f10000h1', 'VCP4.49f10000h1', 
          'HCP1.48f10000h1', 'HCP2.82f10000h1', 'HCP4.49f10000h1'] 
coils = [coils0, coils0, coils1, coils1] 
noises = [0, 0.05, 0, 0.05] 
ks = [] 
# generate ECa using forward model 
for i in range(4): 
    k = Problem() 
    k.setModels([depths], [conds]) 
    _ = k.forward(forwardModel='FSeq', coils=coils[i], noise=noises[i]) 
    ks.append(k) 
 
# invert 
for k in ks: 
    k.setInit(depths0=np.array([0.5]), fixedDepths=[False]) 
    k.invert(forwardModel='FSeq', method='ROPE', regularization='l1', 
             bnds=[(0.05, 2.5), (5, 150), (5, 150)], rep=1000, njobs=-1) 

 440 

 
Figure 9: All inversions are performed with the ROPE solver on a two-layer model with a 
varying depth. (a) Inversion with 0% noise with device on the ground. (b) Inversion with 2% 
noise on the ground. (c) Inversion with 0% noise at 1 m above the ground (d) Inversion with 
2% noise at 1 m above the ground. The red line represents the true interface between the 
two layers. 

 441 

3.3 ERT Calibration of EMI data 442 

In this case study, data collected from a riparian wetland using the CMD-Explorer are used to 443 
highlight how calibration of data can improve inversion performance. The riparian wetland is 444 
characterized by peat and underlying gravel and revealing the depth of the peat is of interest 445 
in characterizing the hydrology of the site (see Newel et al., 2015). ERT data were collected 446 
with a Syscal Pro 96 (Iris Instruments, Orleans, France) with 96 electrodes spaced of 0.5 m 447 
using a dipole-dipole sequences comprising 2342 measurements. An inverted EC section was 448 
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obtained using ResIPy (Blanchy et al., 2020). It can clearly be seen that when not calibrated 449 
(Fig. 8a), the inversion fails to reveal the pattern of the peat, however when calibrated (Fig. 450 
8b) the peat depth and EC more closely resembles the ERT image (Fig. 8c). 451 

fnameEC = datadir + 'boxford-calib/eri_ec.csv' 
fnameECa = datadir + 'boxford-calib/eca_calibration2.csv' 
 
# non calibrated 
k1 = Problem() 
k1.createSurvey(fnameECa) 
k1.show() 
k1.setInit(depths0=np.arange(0.05, 3, 0.05)) 
k1.invert(alpha=0.001,njobs=-1) 
 
# ERT calibrated 
k2 = Problem() 
k2.createSurvey(fnameECa) 
k2.calibrate(fnameECa, fnameEC, forwardModel='FSeq') # plot calibration 
k2.calibrate(fnameECa, fnameEC, forwardModel='FSeq', apply=True) # apply the 
calibration 
k2.setInit(depths0=np.arange(0.05, 3, 0.05)) 
k2.invert(alpha=0.001,njobs=-1) 

 452 
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Figure 10: Smoothly inverted non-calibrated (a) and calibrated (b) EMI data with the 
corresponding ERT inversion (c). The red line shows the true depth of the peat intrusive 
penetration measurements. 

 453 

3.4 Including prior knowledge 454 

EMagPy also permits the fixing of initial model parameters within the inversion. This may be 455 
useful if a priori knowledge is available, i.e. structural information obtained from intrusive or 456 
geophysical methods. Moreover, in such cases, smoothing is automatically prevented 457 
between layers with fixed and non-fixed conductivities. Prior information is available in the 458 
case of aquatic surveys where the depth and EC of the river can easily be measured. In this 459 
case, data was collected from a site is characterized by zones of groundwater up-welling, 460 
which have been shown previously to be sites of nitrate loading from legacy agricultural 461 
pollution (Binley et al., 2013). EMI data were collected using a CMD-Explorer mounted on an 462 
inflatable kayak, 0.4 m above the surface of the water using both HCP and VCP orientations. 463 
River depths were determined from a pressure logger (see Binley et al., 2013) and river EC 464 
was determined with an EC meter. The river depth varied from 0.14 to 1.18 m along the 465 
survey and the river water EC was 48 mS/m. On Figure 10, ECa values from the river-borne 466 
survey are inverted with fixed river depth and fixed EC for the top layer corresponding to river 467 
water. It can be seen that the EC of the riverbed is higher on the upstream side; this is in 468 
broad agreement with hydraulic head data presented in Binley et al. (2013) and can 469 
interpreted to be a result of up-welling of the more conductive groundwater. 470 

 471 

k = Problem() 
k.createSurvey(datadir + 'leith/leith_dataset.csv') 
depths = k.surveys[0].df['depth'].values # measured water depths 
# setting initial model with top layer (the river) with fixed EC of 48 mS/m 
(measured) 
k.setInit(depths0=depths[:,None], conds0=[48, 20], fixedConds=[True, False]) 
k.invert(njobs=-1, beta=0.1) # beta > 0 will cause lateral smoothing 

 472 
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Figure 11: (a) ECa values measured from a CMD-Explorer on a boat along the river. (b) 
Inverted EC values given a fixed depth and a fixed EC of the top layer representing the river 
water (only the river bed conductivity is shown). (c) Hydraulic heads in the river bed from 
Binley et al. (2013). Upstream is at 0 m and downstream at 160 m distance. 

 473 

3.5 Time-lapse field application 474 

In the last case study, the capabilities to perform time-lapse EMI inversion are shown. EMI 475 
measurements can be used as a proxy for soil moisture (e.g., Whalley et al., 2017). Using a 476 
pedophysical relationship (Laloy et al, 2010), the change in inverted EC beneath different 477 
wheat varieties can be linked to change in soil moisture. This method provides to crop 478 
breeders high-throughput non-invasive below-ground information that can be important for 479 
selecting resilient varieties. In this scenario, EMagPy can invert for the change in conductivity 480 
using the Gauss-Newton solver using the method described in Appendix 1 of Whalley et al. 481 
(2017). In this experiment ECa measurements were collected using a CMD Mini-Explorer on 482 
different winter wheat plots during the growth season. At the same time, soil moisture 483 
measurements were taken using neutron probe as ground truth. Note that all ECa values 484 
were calibrated using an ERT array and temperature corrected. Figure 10a shows the 485 
inverted EC In March 2017 while Figure 10e shows the volumetric water content measured by 486 
neutron probe. Figures 10b, 10c and 10d show the change in EC, in mS/m, from this the EC 487 
of 10a, and Figures 10f, 10g and 10h show the changes in water content, in relation to Figure 488 
10d. Larger decreases in EC are observed at deeper depths through the growing season and 489 
can be attributed to crop growth and water uptake. 490 
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# inversion of change 
fnames = [ 
        datadir + 'timelapse-wheat/2017-03-16.csv', 
        datadir + 'timelapse-wheat/2017-04-03.csv', 
        datadir + 'timelapse-wheat/2017-04-27.csv', 
        datadir + 'timelapse-wheat/2017-05-16.csv'] 
k = Problem() 
k.createTimeLapseSurvey(fnames) # import all surveys 
k.setInit(depths0=np.linspace(0.1, 2, 10)) # smooth multiple fixed depths model 
k.computeApparentChange() # compute change in ECa compared to first survey 
k.invert(forwardModel='CSgn', alpha=0.07) # Gauss-Newton routine 

 491 

 
Figure 12: Evolution of the inverted change in electrical conductivity throughout the growth 
season (a to d) and of the measured soil moisture content (e to h). EC and WC changes 
are expressed as absolute difference relative to 2017-03-16 (models a and e). Deeper and 
larger decrease in EC is observed throughout the season mainly (b, c and d) following the 
change in soil moisture (f, g and h) mainly driven by root water uptake. Date format is 
YYYY-MM-DD (ISO 8601). 

 492 

4 Conclusions 493 

EMI has multiple applications to investigate the subsurface and is increasingly being used in 494 
multidisciplinary projects. EMagPy offers a user-friendly tool suitable for a broad range of 495 
applications. It was demonstrated that although the widely used CS forward model may 496 
perform well in low conductivity, homogeneous environments, the FS is often more 497 
appropriate. To help with the processing, modeling and inversion of EMI data, EMagPy has 498 
been developed. EMagPy is open-source software with an intuitive graphical user interface 499 
and Python API that enables flexible processing of EMI data. The use of EMagPy is 500 
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demonstrated through several case studies exploring the limitations of the different forward 501 
models, ERT calibration, interface detection, effect of noise with height above ground and 502 
time-lapse inversion. The open-source nature and great flexibility of EMagPy makes it well 503 
suited for reproducible research and ideal for educational and training purposes. 504 
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Appendix A 513 

Table A1. Main API methods used in EMagPy. 514 

Problem.show() Show apparent values as scatter plot 
Problem.showMap() Show spatial distribution of apparent values for given coil 
Problem.calibrate() Calibration of ECa value given depth-specific EC dataset 
Problem.invert() General inversion routine 
Problem.showResults() Show inversion results as a transect 
Problem.showSlice() Show the slice for the selected inverted layer 
Problem.showOne2one() Show 1:1 graph of modeled vs observed apparent EC 
Problem.showMisfit() Show the observed and the modeled ECa 
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