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Abstract: Using remote sensing to estimate evapotranspiration minute frequency is the basis for 14 
accurately calculating hourly and daily evapotranspiration from the regional scale. However, from 15 
the existing research, it is difficult to use remote sensing data to estimate evapotranspiration 16 
minute frequency. This paper uses GF-4 and moderate-resolution imaging spectroradiometer 17 
(MODIS)data in conjunction with the Surface Energy Balance Algorithm for Land (SEBAL) model 18 
to estimate ET at a 3-minute time interval in part of China and South Korea, and compares those 19 
simulation results with that from field measured data. According to the spatial distribution of ET 20 
derived from GF-4 and MODIS, the texture of ET derived from GF-4 is more obvious than that of 21 
MODIS, and GF-4 is able to express the variability of the spatial distribution of ET. Meanwhile, 22 
according to the value of ET derived from both GF-4 and MODIS, results from these two satellites 23 
have significant linear correlation, and ET derived from GF-4 is higher than that from MODIS. 24 
Since the temporal resolution of GF-4 is 3 minutes, the land surface ET at a 3-minute time interval 25 
could be obtained by utilizing all available meteorological and remote sensing data, which avoids 26 

error associated with extrapolating instantaneously from a single image.  27 

 28 
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 30 

1. Introduction 31 

Evapotranspiration (ET) is an important climatic factor besides solar radiation and atmospheric 32 
circulation, which controls the energy and mass exchange between the earth's ecosystem and the 33 
atmosphere, thus affecting the water balance of the ecosystem[1-3]. The accurate estimation of ET 34 
minute frequency at a regional scale is crucial to better understand detailed surface hydrological 35 
processes and provide more efficient catchment water management [4,5]. Traditionally ET is 36 
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estimated for points or patches on the land surface but spatial heterogeneity in land surface 37 
characteristics precludes robust upscaling to the regional scale[6-8]. However, surface energy 38 
balance models using remote sensing data (specifically terrain, soil humidity, air and land surface 39 
temperature) enables accurate ET estimates at the regional scale [6,9-11]. For example, in the Haihe 40 
River Basin of China, ground verification studies suggested the root mean square error associated 41 
with estimates of ET was approximately 0.32mm/3h [12]. Further, land-atmosphere interactions in 42 
California Delta of USA, showed that the root mean square error was within 0.98mm/day when 43 
calculating the one-day ET value [13].   44 

Accurate estimation of evapotranspiration in irrigation areas is the basis for optimal 45 
management of water resources and water-saving irrigation. Remote sensing evapotranspiration 46 
model is of great significance for improving irrigation water use efficiency and simulating crop yield 47 
[14,15]. At present, remote sensing evapotranspiration model is mainly combined with 48 
meteorological data to evaluate irrigation water demand, irrigation efficiency and crop water 49 
monitoring in water resources management in irrigation areas [16-18].  In the above research, the 50 
input data with high temporal resolution played a very important role in the fine description of the 51 
above process. At present, the precipitation and temperature at minute frequency can already be 52 
obtained through the measured data of meteorological stations, and then the spatial distribution of 53 
temperature and precipitation in the irrigation area can be obtained through spatial interpolation, 54 
but the evapotranspiration is "cumulative data", which is different from "instantaneous data" such as 55 
temperature and precipitation, and the change at minute frequency is difficult to measure[19-22]. At 56 
present, most of the data measured by meteorological stations are the evaporation measured by the 57 
evaporation pan, not the evapotranspiration. Although lysimeter, scintillometer, flux tower and 58 
other methods can be used to measure the evapotranspiration with time interval of minutes, the cost 59 
of measuring instruments is huge and it is difficult to realize widespread arrangement like 60 
meteorological stations [21,23]. Therefore, using remote sensing data to simulate evapotranspiration 61 
at minute frequency has very significant potential applications. 62 

However, limited by the current temporal resolution of satellites, the minimum time interval 63 
for simulating evapotranspiration using remote sensing data is hourly. Moreover, estimating ET 64 
with 1 hour interval is at the expense of expanding the spatial resolution of ET, for example (Liu etal, 65 
2015) using FY meteorological satellite images simulated the evapotranspiration of Tibetan Plateau 66 
at 1 hour interval, but the spatial resolution of ET was 1000 m, and the result could not accurately 67 
reflect the spatial diversity of ET[24]. Ideally, to obtain accurate ET at a regional scale, satellite data 68 
with both high temporal (i.e. hourly) and spatial (i.e. <100 m) resolution would be used. However, 69 
current satellite imagery either has a high temporal resolution and low spatial resolution (e.g. The 70 
time resolution of moderate-resolution imaging spectroradiometer is less than half a day, but its 71 
spatial resolution is 250 m to 1000 m.) or has a low temporal resolution and high spatial resolution 72 
(e.g. The spatial resolution of Landsat-8 is 15 m to 100 m, but its time resolution is 16 days). 73 
Consequently, it’s almost impossible to use remote sensing data to obtain ET within 100m spatial 74 

resolution with a temporal resolution of less than 1 hour. 75 

The high temporal and spatial resolution, and large width of the GF-4 data, offers significant 76 
potential to advance understanding of ET on a regional scale, in addition to more accurate 77 
understanding of land surface energy balances and exchanges. However, due to the lack of thermal 78 
infrared band of GF-4, we cannot obtain the land surface temperature at the coincidence time with 79 
the visible bands of GF-4. In addition, we find that because there was no remote sensing data with 80 
time resolution of minutes, the existing evapotranspiration models do not consider using these 81 
remote sensing data, and the existing evapotranspiration models are not suitable for simulating ET 82 
with time interval of minutes. Researchers have been unable to take advantage of GF-4 application 83 
in simulating ET, and most of the papers were focused on weather monitoring and land target 84 
recognition[25,26]. Consequently, the aim of this research was to simulate ET based on GF-4, MODIS 85 
data and SEBAL (Surface Energy Balance Algorithm for Land) model, and compared the ET 86 
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estimates derived from both MODIS and GF-4 imagery. The objectives are: (1) to characterize the 87 
variation at 3-minute interval in ET estimated based on GF-4, MODIS and meteorological data across 88 
different land covers. (2)To compare ET estimates derived from MODIS and GF-4 captured at 89 
approximately the same time. (3)To verify MODIS and GF-4 simulated ET using field measured 90 

data. 91 

2. Materials and Methods  92 

2.1 Materials 93 

2.1.1 Remote sensing data 94 

The GF-4 satellite (launched on 29 December 2015) has a geosynchronous orbit fixed at 105.6°E, 95 
altitude of 36,000 km and swath width of 400 km [27] . GF-4 can acquire remote sensing images in 96 
the extent of 2ºs -68ºN and 20ºE-180ºE. The GF-4 satellite is an important addition to the civil series 97 
of Chinese high-resolution earth observing satellites, as it provides both high spatial resolution (<100 98 
m) and temporal (20 seconds) resolution visible, and near and medium wave infrared imagery with 99 
a pixel resolution of down to 50m (table 1). 100 

Table 1.Primary characteristics of each payload of GF-4 101 

 Band 

 

Spectral range 

(μm) 

 

Spatial 

resolution(m) 

 

Visible and 

near 

infrared(VNIR) 

1 0.45~0.90(pan) 

50 

2 0.45~0.52(blue) 

3 0.52~0.60(green) 

4 0.63~0.69(red) 

5 
0.76~0.90(near-infrared

) 

Medium-wave 

infrared 

(MWIR) 

6 3.5~4.1 400 

GF-4 images were obtained from (http://data.cma.cn/). Land surface temperature (LST) 102 
products and surface reflectance products of MODIS were obtained from 103 
(https://ladsweb.modaps.eosdis.nasa.gov). Digital elevation model (DEM) was obtained from 104 
(https://search.earthdata.nasa.gov/). Considering that weather should be sunny or cloudless at the 105 
imaging time, the imaging time should be close enough, and the imaging area of two images should 106 
be overlapped as much as possible. The imaging time of MODIS and GF-4 were shown in table 2. 107 
LST and DEM data were resized or resampled, using the nearest neighbor method, to either 50 or 108 
250 m to match the spatial resolution of the GF-4 and MODIS imagery, respectively.  109 

Table 2. Imaging time of MODIS and GF-41 110 

Region CB,CG,CF KB,KE,KD 

Imaging time of MODIS 

（Local solar time） 

2016-12-02 

11:35 (MT0) 

13:10(MT1) 

2017-04-29 

12:10(MT0
′) 

13:45 (MT1
′) 

Imaging time of GF-4 

（Local solar time） 

2016-12-02 

11:14 (T1)/11:17 (T2)/11:20 (T3) 

/11:23 (T4)/11:26 (T5)/11:29 (T6) 

/11:32(T7)/11:36(T8)/11:39(T9) 

/11:42(T10)/11:45(T11)/11:48(T12) 

2017-04-29 

11:14 (T1
′)/11:16(T2

′)/11:19(T3
′) 

/11:22(T4
′)/13:50(T5

′)/13:55(T6
′) 

/13:58(T7
′) 
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/11:51(T13)/11:54(T14)/11:57(T15) 

1 Although the temporal resolution of GF-4 is 20 seconds, these data are only provided to specific institutions. 111 

The GF-4 data for the 3-minute time interval used in this paper is open to all researchers, but the number of 112 

images and imaging time in each region will not be the same. Therefore, the number of GF-4 images in Table 2 is 113 

different between China and South Korea. 114 

2.1.2 Meteorological and Flux data 115 

The time of sunrise, sunset was obtained from (http://www.sunrisesunset.com/). Daily 116 
maximum LST, maximum wind speed, mean wind speed, minimum air temperature, and maximum 117 
air temperature at 6 km resolution were obtained from the China Meteorological Administration 118 
(http://new-cdc.cma.gov.cn). Meteorological data were resized, using the nearest neighbor method, 119 
to either 50 or 250 m to match the spatial resolution of the GF-4 and MODIS imagery, respectively. 120 
The flux data of GDK and GCK sites were provided by Korea Flux Monitoring Network (KoFlux), 121 
they were used to verify simulated ET, with  a 30 minutes measuring interval. The position of GDK 122 
is 37º 44' 56" N, 127º 08' 57" E, and the position of GCK is 37º 44'54" N, 127º09'44" E (Figure 1). More 123 

details about GDK and GCK sites can be obtained from  Asia Flux website (http://asiaflux.net/). 124 

2.1.3 Location and study area 125 

The study area is located in China and South Korea (Figure 1). The study area ranges from an 126 
altitude of 100-1100 m, comprising a hilly area and regions of flat terrain. Climatologically, it belongs 127 
to the north temperate continental monsoon climate, and experiences distinct seasonal variation as 128 
well as impacts from the monsoon advancing and retreating. To minimize the influences of 129 
undulating terrain and hill shade, six study areas were selected: (CB) mainly cultivated land and 130 
built-up areas, (CG) mainly of garden and urban construction land, (CF) mainly cultivated land and 131 
forest land, (KB) mainly cultivated land and village construction land, (KE) mainly forest land and 132 
river wetland (GDK and GCK Flux sites were in KE region), and (KD) mainly cultivated land and 133 

forest land (Figure 1).  134 

 135 

Figure1. Location of the study area 136 

2.2 Methods 137 

2.2.1 SEBAL Model 138 

http://asiaflux.net/
http://asiaflux.net/
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The SEBAL model is a physically based land surface energy balance model that uses remotely 139 
sensed input and has been widely used to calculate ET [28-32]. Input data to the SEBAL model 140 
include: ground elevation, visible light and near infrared bands from remote sensing images (used to 141 
calculate the Normalized Difference Vegetation Index, NDVI value), the thermal infrared band 142 
(used to calculate the land surface temperature, LST), and temperature and wind speed at the 143 
imaging time. The two papers were referred for the sensible heat calculation, hot and cold pixel 144 
selection, net radiation and soil head flux calculation[33,34]. Then we calculated the ET of MODIS 145 

and GF-4 at imaging time in Table 2 using SEBAL model. 146 

2.2.2 Calculation of NDVI  147 

The MODIS NDVI was calculated by[35]: 148 

𝑁𝐷𝑉𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑 
, (1) 

in Equation (1), the NDVI denotes the normalized vegetation index, and ρnir and ρred denote 149 

surface reflectance in the near infrared band and the red band, respectively. 150 

The GF-4 NDVI was calculated as for the MODIS NDVI, shown in Equation (1), but the 151 

apparent reflectance of the near infrared (the red band) was derived by[36]: 152 

, 
(2) 

in Equation (2), where 𝜌λ is the at-satellite reflectance, 𝐸𝑆𝑈𝑁λis the mean solar exoatmospheric 153 
irradiance in W·(m2·ster·μm)-1, θs is the solar zenith angle in degrees, and d is the earth-sun distance 154 
in astronomical units. 𝐿λ is the at-satellite spectral radiance in W·(m2·ster·μm)-1. θs can be obtained 155 
from the head file. The ESUN value for each GF-4 band has not been published yet, but can be 156 
calculated using the spectral response function of the solar spectrum curve and the sensor, as shown 157 
in Equation (3) [37]. 158 

𝐸𝑆𝑈𝑁 =
∫ 𝐸(𝜆)𝑆(𝜆)

𝜆2
𝜆1

𝑑𝜆

∫ 𝑆(𝜆)
𝜆2

𝜆1
𝑑𝜆

, (3) 

In Equation (3), ESUN denotes the band average solar radiation outside of the atmosphere; λ1 159 
and λ2 denote the upper and the lower integration limit of wavelength of band range; E(λ) denotes 160 
the solar spectrum radiation of the remote sensor out of the atmosphere at band λ, where different 161 
solar spectrum curves have different E(λ) values. Current studies show that the World Radiation 162 
Center (WRC) solar spectrum curve is the most favorable for the calculation of the ESUN using this 163 
sensor at a medium resolution in China [38]. According to the WRC solar spectrum curve, the E(λ) 164 
value could be in the range of λ1 and λ2; and S(λ) denotes the spectral response function of the 165 
remote sensor at band λ. The ESUN values for all GF-4 bands calculated using Equation (3) are 166 
shown in table 3. 167 

Table 3. Calculated ESUN values for all GF-4 bands 168 

Bands B1 B2 B3 B4 B5 

ESUN 

W·(m2·ster·  m)-1 
1609.81 1634.44 1839.33 1578.12 1104.77 

 169 

The equation converting the DN value of satellite images to radiance images using the absolute 170 
calibration coefficient is[39]: 171 

2

cos s

L d

ESUN










=
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 𝐿𝜆 = 𝐴×𝐷𝑁, (4) 

where GF-4 provides gain values (A) under 5 statuses, for example, status 2-6-4-6-6 denotes an 172 
integration time for full color, blue, green, red, and near infrared of 2, 6, 4, 6, and 6 ms, respectively, 173 
the other statuses please see table 4. Users need to determine the status of image bands according to 174 
the appropriate XML file parameters of GF-4 images, and then select the corresponding calibration 175 
coefficient. 176 

Table 4. Gain values of all GF-4 bands under different statuses 177 

Status 
Gain Values (A) 

B1 B2 B3 B4 B5 

2-6-4-6-6 0.5215 0.9400 0.9885 0.7847 0.5641 

4-16-12-16-16 0.3100 0.3484 0.3484 0.3095 0.2257 

6-20-16-20-20 0.1681 0.3263 0.2472 0.2806 0.1997 

6-40-30-40-40 0.1681 0.1252 0.1226 0.1102 0.0796 

6-30-20-30-30 0.1235 0.1784 0.1878 0.1515 0.1080 

 178 

2.2.3 Calculation of Land Surface Temperature 179 

Unlike MODIS, GF-4 has no thermal infrared band to directly obtain LST at imaging time. Thus, 180 
in order to attain the LST of GF-4 at imaging time, it is necessary to utilize two daily LST images to 181 
simulate LST at any time using following equations [40-42]. In this paper, two daily LST images after 182 

sunrise were as input from MODIS (table 1). 183 

Daytime LST variation after sunrise was derived by:  184 

 T(t)=TB,set+(TB,max-TB,set)×sin(𝑊2t+φ
2
), (5) 

in which: T(t) denotes the LST at the time t; TB,set denotes the LST at sunset; TB,max denotes the 185 
daily maximum LST; W2=π/(DL-2p) denotes the angular frequency of the sinusoid in the second 186 
stage; DL denotes the daytime length; p=TIMEx-NOON, TIMEx denotes the time when the 187 
maximum LST appears, TIMEx can be attained from meteorological stations, NOON denotes the 188 
time when the largest solar altitude appears, which is usually selected as 12.0; and 189 
φ2=π/2-W2×TIMEx denotes the phase angle. 190 

 TB,set=
4p×TB,max+(DL-2p)×TB,min

DL+2p
, (6) 

This paper used the MODIS LST at the overpass time as inputs to calculate TB,max, TB,min, and 191 

TB,set, and then calculated the LST at GF-4 imaging time using Equations (5) and (6).  192 

2.2.4 Calculation of Daytime Air Temperature 193 

Since GF-4 do not take images at night, the general formula to calculate daytime air temperature 194 

is [42]: 195 

 𝑇𝑎=𝑇𝑚𝑖𝑛 +(𝑇𝑚𝑎𝑥-𝑇𝑚𝑖𝑛) ×S(t), (7) 

in which, Ta denotes daytime air temperature, and Tmin and Tmax denote daily minimum and 196 
daily maximum air temperature. In Equation (11), S(t) is a function of time (t) with data range of 197 

0-1, represented as: 198 
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 S(t)=sin(π×
t-NOON-

DL

2

DL+2P
), (8) 

in which, t denotes any time, NOON denotes the time when the largest solar altitude appears, 199 
DL denotes the daytime length, and P denotes the time difference between the highest air 200 
temperature and the largest solar altitude. The time difference results from the intrinsic difference 201 
in heat storage of soil and air. When air temperature rises, Tmin denotes the lowest air temperature 202 
at present day in Equation (11); when air temperature decreases, Tmin denotes the lowest air 203 

temperature on the next day. 204 

2.2.5 Calculation of Wind Speed 205 

Daily variation in wind speed has the following features: the wind speed is low from nighttime 206 
to a time (t1) in the morning, at which point the wind speed gradually increases to the maximum 207 
value until a time (t2) in the afternoon, then gradually decreases to the minimum value until a time 208 
(t3) at night. The t1, t2, and t3 vary with location: in the study area, t1=1.0, t2=14.0, and t3=0.0, and the 209 
variation of wind speed with time is expressed by the following equation [42]: 210 

 𝑊𝑎=𝑊𝑚𝑖𝑛+𝑊𝑚𝑎𝑥×sin(2π×
𝑡𝑎 -tw1,2

SF 1,2
) , (9) 

in which: Wa denotes wind speed at any time (m/s), Wmax and Wmin denote daily maximum and 211 
daily minimum wind speed (m/s), respectively, ta denotes any time, tw1 =t1, tw2 =2(t2 -t3), SF1 =4 (t2 212 
-t1), and SF2 =4(t3 -t2). 213 

The daily minimum wind speed can be calculated by using the daily air movement distance 214 
and the daily maximum wind speed as input data: 215 

 Wmin=
1000×[TOT𝑤−Wmax×(SF1+SF2)×3600/2000/3.1415926]

24.0×3600.0
 , (10) 

in Equation (10): TOTw denotes daily air movement distance (km/d), which can be calculated 216 
from the daily average wind speed (m/s) available from meteorological stations and the length of a 217 

day (24 h×3600 s/h).  218 

2.2.6 Verification and evaluation of simulation results 219 

We estimated ET from SEBAL model using MODIS and GF-4 at imaging time in table 2 per 220 
minute by using the methods in section 2.2.  The following methods were used for verifying ET: (1) 221 
Cross-validation ET obtained from different remote sensing data; (2) Verify with ET data measured 222 
in field. In this paper, we first cross-verified ET of GF-4at 11:36(T8) using ET of MODIS at 11:35 (MT0). 223 
Then ET at 13:50(T5

′ ) of GF-4 and 13:45(MT1
′ ) of MODIS were cross-verified. Finally, we used the field 224 

measured ET data to verify them from the Flux sites in South Korea, which was close to the imaging 225 
time of remote sensing images. Since the measuring time interval at KoFlux sites was 30 minutes, we 226 
chose the measured ET at 11:30 and 14:00 to verify the simulated ET at 11:22(T4

′) and 13:58(T7
′) of 227 

GF-4 respectively. Then the field measure ET at 12:00(MT0
′) was used to verify the simulated ET of 228 

MODIS at 12:10(MT0
′). 229 

In order to evaluate the difference between measured ET and remote sensing data, we use root 230 

mean square error (RMSE) and mean relative error (MRE) to analyze the error. 231 

 RMSE=√
∑(𝑌𝑖−𝑌𝑖

′)2

𝑁
 , (11) 

  MRE=√
∑[(𝑌𝑖−𝑌𝑖

′)/𝑌𝑖
′]2

𝑁
 , (12) 
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In equations (11) and (12), Yi is the measured value, Yi' is the simulated value obtained from 232 
the model, and n is the number of sample points [43,44]. The smaller the values of RMSE and MRE, 233 

the higher the simulation accuracy of the model [43,44].   234 

3. Results 235 

When NDVI of GF-4 is taken as the input of SEBAL model, the spatial resolution of ET is 50 m, 236 
while when NDVI of MODIS is taken as the input of SEBAL model, the spatial resolution of ET is 250 237 
m. Figure 2, figure 3 and figure 4 were the comparison of ET at 11:36(T8) of GF-4 and ET at 11:35 (MT0) 238 
of MODIS in CB, CF and CG regions respectively. 239 

 240 

a                                    b 241 

Figure 2. ET of GF-4 at 11:36(a) and ET of MODIS at 11:35 (b) in area CB 242 

 243 

a                                    b 244 

Min:0.001 Max:0.015

ET(mm/min)

Min:0 Max:0.007

ET(mm/min)0 1,500 3,000750
Meters

0 1,500 3,000750
Meters

GF4 MODIS

0 1,500 3,000750
Meters

0 1,500 3,000750
Meters

Min:0 Max:0.013
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Min:0 Max:0.009

ET(mm/min)

GF4
MODIS
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Figure 3. ET of GF-4 at 11:36(a) and ET of  MODIS at 11:35 (b) in area CF 245 

 246 

a                                    b 247 

Figure 4. ET of GF-4 at 11:36 (a) and ET of  MODIS at 11:35(b)in area CG 248 

As seen in Figure 2,Figure 3 and Figure 4, since the spatial resolution of NDVI of GF-4 is higher 249 
than that of MODIS, the derived texture of ET is more obvious than that from MODIS. In order to 250 
cross-verify ET obtained from MODIS and GF-4, the bilinear method was used and GF-4 ET data 251 
was resampled to 250 m, which was identical to the spatial resolution of MODIS. As shown in Figure 252 
5, 420 total sampling points were randomly selected in areas CB, CG and CF (Figure 5a.) and 870 253 
total sampling points were randomly selected in areas KB, KE and KD (Figure 5b.) to find variability 254 
between the two ETs. Meanwhile we verified the simulated ET with the measured ET data of KoFlux 255 

as shown in figure 6. 256 

  257 

Figure 5. Cross-validation of Simulated ET of GF-4 and MODIS; (a) ET at 11:35 of MODIS and 11:36 of GF-4 in 258 

areas CB,CG and CF；(b) ET at 13:45 of MODIS and 13:50 of GF-4 in areas KB, KE and KD)   259 
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 260 

Figure 6.Comparison of Simulated and Measured ET at KoFlux Sites 261 

(Black squares are ET values simulated by GF4, while black triangles are ET values simulated by MODIS). 262 

As can be seen from figure 5, most ET simulation values of MODIS are less than that of GF-4's, 263 
but there is a strong correlation between the ET derived from GF-4 and MODIS, R = 0.581 (p<0.001) 264 
in areas CB, CG and CF, and R=0.810 (p<0.001) in areas KB, KE and KD. While the difference in 265 
imaging time of MODIS and that of GF-4 is 1 to 5 minutes, it is certain that the ETs derived from 266 
both satellites have a significant linear correlation at the same imaging time. In addition, as can be 267 
seen from figure 6, the difference between the simulated and measured values of ET was not 268 
obvious.  269 

The following two methods were used to verify the simulated ET. Firstly, we used the field 270 
measured data of KoFlux to verify the simulated ET of MODIS and GF-4. Then we took the ET 271 
calculated by MODIS as the measured value, and the ET calculated by GF-4 as the simulated value. 272 
The verification results were shown in table 5. 273 

Table 5. Using Flux Data andMODIS to Verify the Accuracy of Simulated ET 274 

Region 
Data of 

verification 
MRE(%) RMSE(mm/min) 

KE KoFlux data 16.95 0.00072 

CB,CG and CF MODIS 48.64 0.00451 

KB,KE and KD MODIS 48.33 0.00655 

 275 

As can be seen from figure 6 and table 5, RMSE=1.04 (mm/day) and the MRE was 16.95% when 276 
validating simulated ET values using KoFlux data, which showed that it was feasible to simulate ET 277 
using the methods in this paper, while most GF-4 simulated ET values were higher than those of 278 
MODIS’s, the MRE of ET when validating GF-4 using MODIS was less than 50%. 279 

In order to further analyze the variation of ET in all study areas at time T1-T15 in areas CB, CG 280 
and CF, 𝐓𝟏

′ − 𝐓𝟕
′  in areas KB, KE and KD, the minimum, maximum, and average values, and the 281 
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standard error of ET at above time was calculated by ArcMAP 10.3 for all pixels, as shown in Figure 282 
7 and Figure 8. 283 

 284 

Figure 7. ET of GF-4 at time T1-T15 in areas CB, CG, and CF (the minimum value, the maximum value, the 285 

average value, and the standard error)  286 

 287 

Figure 8. ET of GF-4 at time 𝐓𝟏
′ − 𝐓𝟕

′  in areas KB, KE, and KD (the minimum value, the maximum value, the 288 

average value, and the standard error) 289 

As shown in Figure7, the trends of the average, minimum, maximum and average ET in 290 
different study areas have significant differences, but the minimum ET in areas CF at time T1-T15 291 
does not. The minimum ET does not vary in study area at time T1-T15, and the pixel with ET=0 292 
always exists. As shown in Figure7 and Figure 8, the maximum value trend in all areas is the same 293 
as that of the average values, while the fluctuation in trend of the maximum and minimum value in 294 
all areas is different. This is mainly due to the difference among soil types and meteorological 295 
conditions in the six areas, causing the impacts on ET to vary[3,45]. This validates that due to the 296 
different of surface types and meteorological conditions, even 2 MODIS remote sensing images 297 
show daily variation in remote sensing pixel ETs. This daily variation does not follow the constant 298 
linear rule, meaning that extrapolating instantaneous ET at the imaging time to a hourly or daily 299 
time scale will cause relatively large errors[46,47]. Although GF-4 is with no thermal infrared band 300 
and the LST at imaging time could not be obtained, its temporal resolution is relatively high and the 301 
land surface ET at a three-minute time interval can be attained by using all available meteorological 302 
and MODIS data. By using this method, the error associated with extrapolating instantaneous ET 303 
from one remote sensing image could be avoided and the real spatial diversity of ET at various 304 
imaging time could be obtained. 305 

4. Discussion 306 

While this paper compared ETs derived from GF-4 and MODIS using the SEBAL model, the 307 
extent of the differences from SEBAL model ET input data needs further analysis. The reason for 308 
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the difference in ET simulation results between the two sensors needs further discussion, and the 309 
validation of ET simulation results requires careful consideration as well: 310 

(1) Errors in SEBAL model input data lead to a decrease in ET simulation accuracy. However, in 311 
many areas, simulation is limited by available data, and often, the wind speed, LST, air temperature, 312 
and other data cannot be attained. While simulating the above parameters using the present model, 313 
various kinds of error must exist. If the above meteorological data could be replaced by observed 314 
data, the model accuracy could be significantly improved. In addition, the ESUN of GF-4 is not 315 
published yet, and the subsequent ESUN simulation that was used has errors which affected both 316 

the calculation of NDVI and the simulated values of ET.  317 

(2) Besides the errors associated with SEBAL input data, the dependence on remote sensing 318 
data can lead to different ETs derived from the GF-4 and MODIS Sensors. Many researchers have 319 
pointed out that the local variables of the SEBAL model would change with the scope of the remote 320 
sensing image, which could lead to additional uncertainty associated with the domain dependence 321 
of the remote sensing model accuracy[7,28,34,48]. On the other hand, remote sensing images with 322 
different spatial resolutions would also cause differences in local variables, and thus could lead to 323 
completely different dry-wet conditions, dependent upon the resolution of the remote sensing 324 
models. For all established models based on remote sensing images, the model outputs may have 325 
uncertainties if the determination of variables or input parameters depends on the scope and 326 
resolution of those images.  327 

(3) The objective of this paper was not to validate whether the GF-4 or MODIS remote sensor 328 
has higher accuracy in ET retrieval, but to quantify the similarities and differences between ETs 329 
derived from both satellites by comparing their retrievals. It is clear that more efficient ground 330 
observations are essential to validate model results. Currently, widely used ET remote sensing 331 
model validation techniques include the lysimeter method, the field water balance method, the 332 
Bowen ratio method, the eddy covariance method and the large aperture scintillometer method 333 
[23,49-52]. However, in practical operation, the spatio- temporal scale of the observed data does not 334 
always match with that of the model retrievals. Therefore, we can only use KoFlux data with 2-10 335 
minutes difference in remote sensing images for verification. The GF-4 is only the beginning of high 336 
orbit and high temporal-spatial resolution satellite technology, and as more research and data are 337 
gathered, new observational approaches will emerge. 338 

(4)It is also necessary to consider cross-validation using remote sensing data with higher spatial 339 
resolution. We tried to verify GF-4 imaged at 11:14 in regions CB,CG and CF by using Landsat 8 340 
imaged at 10:29.  Meanwhile in regions KB, KE and KD, Landsat 8 imaged at 10:04 was used to 341 
verify GF-4 imaged at 11:14, the verification results of ET were shown in table 6. 342 

Table 6. Using Landsat 8 Data to Cross-Verify the Simulated ET of GF-4 343 

Region 
Data of 

verification 
MRE (%) RMSE(mm/min) 

CB,CG and CF Landsat 8 79.21 0.00462 

KB,KE and KD Landsat 8 190.36 0.00383 

As can be seen from table 6, when the simulated ET of GF-4 was verified by Landsat 8, the MRE 344 
of ET of GF-4 was very large.  Since the imaging time of Landsat8 was 44 minutes earlier than that 345 
of GF-4 in regions CB,CG and CF; and the imaging time of Landsat 8 was 70 minutes earlier than that 346 
of GF-4 in region KB,KE and KD. On such a long time difference, we think that the results of table 6 347 
can not accurately represent the actual accuracy of GF-4. However there is still a strong correlation 348 
between the ET derived from GF-4 and Landsat 8,R=0.548 (p<0.001). 349 
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5. Conclusions 350 

(1) The spatial distribution of ET derived from MODIS and GF-4 showed that the texture of ET 351 
derived from GF-4 was more obvious than that from MODIS, and GF-4 was able to express the 352 
variability of ET spatial distribution. The correlation between ETs derived from two sensors showed 353 

significant linear correlation; and ET values derived from GF-4 was higher than that of MODIS.  354 

(2) Even in the same study area, trends in the maximum value, the average value, and the 355 
standard error of ET at different times were not the same. This validates that even if in 2 MODIS 356 
remote sensing images scope, due to different surface types and meteorological conditions, the daily 357 

variation of ET in the remote sensing pixel scale does not follow the constant linear rule.  358 

(3) Since the temporal resolution of GF-4 is 3 minutes in our paper, the land surface ET every 359 
three-minutes could be obtained by using all available meteorological data and other remote sensing 360 
data. At this scale, the extrapolation of instantaneous ET from a single image was avoided, and the 361 

spatial diversity at each imaging time was attained. 362 

(4) This paper has validated ET derived from GF-4 and MODIS, and the verification results also 363 
showed that the error was within the normal range, but more observational methods to validate ET 364 
estimation results of GF-4 is needed, and should be a major goal for future studies. 365 

6. Perspectives 366 

The GF-4 satellite can not only collect images with a large scope and at high temporal and 367 
spatial resolutions, but also carry out “staring observation” in a specific region according to user 368 
instructions, which will play an important role in disaster reduction, meteorology, earthquake, 369 
forestry, and obtaining precise measurements in other fields. For example, GF-4 could practically 370 
observe a typhoon, since middle and low orbit satellites have high spatial resolution, but the 371 
retrogression time is relatively long, and the continuous observation of interesting areas is difficult. 372 
Compared with present high orbit continuous observation meteorological satellites, GF-4 could not 373 
only continuously provide information on the development of a typhoon, but could also take 374 

observations and measurements of details like typhoon textures. 375 

In addition, GF-4 will further accelerate the development of advanced models supported by 376 
remote sensing data. Currently, models in disparate fields like ecology, hydrology, geochemistry, 377 
and meteorology are driven by remote sensing data, but are limited by the temporal and spatial 378 
resolution of available remote sensing data, and face issues of fulfilling simultaneous goals such as 379 
having "short time", "high accuracy", and "large space" [53-55]. Most models driven by remote 380 
sensing are on time scales of days, months, or years. Even if a part of these models could realize 381 
hourly time scales from meteorological satellites such as ones available from NOAA, the spatial 382 
resolution of their simulation results is over 1 km, which could not accurately estimate the spatial 383 
diversity of observation pixels [56-58]. Comprehensive advantages of GF-4 on increased temporal 384 
and spatial resolution and large widths would facilitate the appearance of various kinds of remote 385 

sensing models on fine time scales at minutes or even seconds. 386 
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