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Variability is a problem for the scalability of semiconductor quantum devices. The parameter
space is large, and the operating range is small. Our statistical tuning algorithm searches for specific
electron transport features in gate-defined quantum dot devices with a gate voltage space of up to
eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm
can tune each device to optimal performance in a median time of under 70 minutes. This performance
surpassed our best human benchmark (although both human and machine performance can be
improved). The algorithm is approximately 180 times faster than an automated random search of
the parameter space, and is suitable for different material systems and device architectures. Our
results yield a quantitative measurement of device variability, from one device to another and after
thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other
technologies.

INTRODUCTION

Gate defined quantum dots are promising candidates
for scalable quantum computation and simulation [1, 2].
They can be completely controlled electrically and are
more compact than superconducting qubit implementa-
tions [1]. These devices operate as transistors, in which
electrons are controlled by applied gate voltages. If these
gate voltages are set correctly, quantum dots are created,
enabling single-electron control. If two such quantum
dots are created in close proximity, the double quantum
dot can be used to define robust spin qubits from the
singlet and triplet states of two electrons [3, 4]. Due
to device variability, caused by charge traps and other
device defects, the combination of gate voltage settings
which defines a double quantum dot varies unpredictably
from device to device, and even in the same device after
a thermal cycle. This variability is one of the key chal-
lenges that must be overcome in order to create scalable
quantum circuits for technological applications such as
quantum computing. Typical devices require several gate
electrodes, creating a high-dimensional parameter space
difficult for humans to navigate. Tuning is thus a time-
consuming activity and we are reaching the limits of our
ability to do this manually in arrays of quantum devices.
To find, in a multi-dimensional space, the gate voltages
which render the device operational is referred to in the
literature as coarse tuning [5, 6].

Here, we present a statistical algorithm which is able
to explore the entire multi-dimensional gate voltage space
available for electrostatically defined double quantum dots,
with the aim of automatically tuning them and studying

their variability. Until this work, coarse tuning required
manual input [7] or was restricted to a small gate voltage
subspace [8]. We demonstrate a completely automated
algorithm which is able to tune different devices with up
to eight gate electrodes. This is a challenging endeavour
because the desired transport features are only present
in small regions of gate-voltage space. For most gate
voltage settings, the device is either pinched off (meaning
that the charge carriers are completely depleted so that
no current flows) or too open (meaning that the tunnel
barriers are too weakly defined for single-electron charge
transport to occur). Moreover, the transport features that
indicate the device is tuned as a double quantum dot are
time-consuming to measure and difficult to parametrise.
Machine learning techniques and other automated ap-
proaches have been used for tuning quantum devices [5–
14]. These techniques are limited to small regions of the
device parameter space or require information about the
device characteristics. We believe our work significantly
improves the state-of-the-art: our algorithm models the
entire parameter space and tunes a device completely
automatically (without human input), in approximately
70 minutes, faster than the typical tuning by a human
expert [15].

Our algorithm explores the gate-voltage space by mea-
suring the current flowing through the device, and its
design makes only a few assumptions, allowing it to be
readily applied to other device architectures. Our quan-
tum dot devices are defined in a 2-dimensional electron
gas in a GaAs/AlGaAs heterostructure by Ti/Au gate
electrodes. DC voltages applied to these gate electrodes,
V1 to V8, create a lateral confinement potential for elec-

†Both authors contributed equally and are displayed in random order.



2

FIG. 1. Overview of device, and gate voltage space.
a Schematic of a gate-defined double quantum dot device. b
Left: Boundary hypersurface measured as a function of V2,
V5, and V8, with fixed values of V1, V3, V4, V6 and V7. The
current threshold considered to define this hypersurface is
20% of the maximum measured current. The gate voltage
parameter space, restricted to 3D for illustration, contains
small regions in which double and single quantum dot transport
features can be found. These regions typically appear darker in
this representation because they produce complex boundaries.
Right: For particular gate voltage locations marked with green
crosses, the current as a function of V7 and V3 is displayed.
The top and bottom current maps display double and single
quantum dot transport features, respectively.

trons. Particularly important are the two plunger gate
voltages V3 and V7, which mainly tune the electron occu-
pation of the left and right dots. A bias voltage Vbias is
applied to ohmic contacts to drive a current (I) through
the device. The device schematic, designed for precise
control of the confinement potential [16–18], is shown in
Fig. 1a. Measurements were performed at 50 mK.

We consider the space defined by up to eight gate volt-
ages between 0 and -2 V. This range was chosen to avoid
leakage currents. In this parameter space, the algorithm
has to find the desirable transport features within tens of
mV. Identifying these features is slow because it is requires
measuring a two-dimensional current map, i.e. a plot of I
as a function of the two plunger gate voltages. Although
other techniques for measuring the double quantum dot
exist, such as charge sensing and dispersive readout, they
also require other parameters to be re-tuned when the
gate voltages vary and are therefore not suitable for auto-
mated measurements. Our algorithm is thus designed to
minimize the number of current maps that it requires to
find the transport features in question.

We make two observations. Firstly, that for very nega-
tive gate voltages, no current will flow through the device,
i.e. the device is pinched-off. Conversely, for very positive
gate voltages, full current will flow and single electron
transport will not be achieved. This means that transport
features are expected to be found near the hypersurface
that separates low and high current regions in parameter
space. The second observation is that to achieve single-
electron transport, a confinement potential is needed. The
particular transport features that evidence single-electron
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FIG. 2. Overview of the algorithm. The sampling
phase stage produces candidate locations in gate voltage space,
which are on the boundary hypersurface (pink surface). The
distance between a candidate location (red cross) and the
origin of the gate voltage space is marked with a dashed
line. The investigation stage evaluates the local region by, for
example, measuring current maps which are evaluated by a
score function. (The current map displayed is an example of
a measurement performed by the algorithm. It uses a colour
scale running from red, the highest current measured, to blue,
the lowest current). Evaluation results are fed back to the
sampling stage.

transport are Coulomb peaks, which are peaks in the
current flowing through the device as a function of a sin-
gle plunger gate voltage. These observations lead us to
only two modelling assumptions: (i) single and double
quantum dot transport features are embedded near a
boundary hypersurface, shown in Fig. 1b, which separates
regions in which a measurable current flows, from regions
in which the current vanishes; (ii) large regions of this
hypersurface do not display transport features.

The algorithm consists of two parts: a sampling stage
that generates candidate locations on the hypersurface,
and an investigation stage in which we collect data in
the vicinity of each candidate location, i.e. close to the
candidate location in gate voltage space (see Section Inves-
tigating nearby voltage space, for precise definitions of the
size of the regions explored around candidate locations),
to evaluate transport features (Fig. 2). The results of
the investigation stage feed back into the sampler, which
chooses a new candidate location in the light of this in-
formation. The purpose of the sampler is to produce
candidate locations in gate voltage space for which the de-
vice operates as a double quantum dot. A block diagram
of the algorithm is displayed in Fig. 3. Our modelling
assumptions are based on the physics of gate defined de-
vices leading to minimal constraints; we do not assume
a particular shape for the hypersurface, and we instead
allow measurements to define it by fitting the data with
a Gaussian process. Overall, the algorithm minimises
tuning times by identifying candidate locations on a hy-
persurface model that is updated with each measurement;
by prioritising the most promising of these locations; and
by avoiding the acquisition of two-dimensional current
maps which do not correspond to a double quantum dot
regime.

We demonstrate over several runs, in two different de-
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FIG. 3. Flow diagram of the algorithm. (See text and
Fig. 4 for a full description.) Each step is annotated with the
corresponding panel in Fig. 4. Steps that involve interaction
with the device are shaded brown, and entirely computational
steps are grey. In the ablation studies of Section Ablation
study, the different modules that constitute the algorithm are
studied in terms of their contribution to the algorithm’s per-
formance; these modules are marked by the blue background
regions. The steps belonging to the initialisation, sampling,
and investigation steps are indicated on the right.

vices and over multiple thermal cycles, that the algorithm
successfully finds transport features corresponding to dou-
ble quantum dots. We perform an ablation study, which
identifies the relative contribution of each of the mod-
ules that constitute the algorithm, justifying its design.
Finally, we demonstrate that our algorithm is capable
of quantifying device variability, which has only been
theoretically explored so far [19]. We have done this by
comparing the hypersurfaces found for different devices
and for a single device in different thermal cycles.

Automating experimental science has the impact to sig-
nificantly accelerate the process of discovery. In this work
we show that a combination of simple physical principles
and flexible probabilistic machine learning models can
be used to efficiently characterise and tune a device. We
envisage that in the near future such judicious application
of machine learning will have tremendous impact even in
areas where only small amounts of data are available and
no clear fitness functions can be defined.

RESULTS

Description of the algorithm

The algorithm starts with an initialization stage. This
stage begins with setting Vbias. The current is then mea-
sured at the two extremes of the gate voltage space, Vj = 0
and Vj = −2 V for j = 1, ..., N where N is the number
of gate electrodes. For the most negative extreme, the
measured current should be 0, but current offsets might
change this value for different measurement setups. The
difference between the currents at these two extremes is
the full-scale current which is used to set the threshold
that defines the hypersurface. The search range was cho-
sen as the typical gate voltage range used when tuning
similar devices from scratch.

The algorithm then begins an iterative process during
which it alternates between the sampling and investiga-
tion stages. In each iteration, the sampling stage identifies
a candidate location on the hypersurface in voltage space,
attempting to select locations with a high probability of
desirable transport features. The investigation stage then
explores the nearby region of voltage space, attempting
to identify whether current maps measured in this region
show Coulomb peaks and honeycomb patterns. The pres-
ence of Coulomb peaks is reported back to the sampling
stage as an evaluation result, which it uses in future it-
erations to inform its selection of new candidates. The
steps that make up each iteration will now be described
in detail.

Searching for the hypersurface

In each iteration, the algorithm first locates the hy-
persurface in gate voltage space. To do this, it selects
a search direction, specified by a unit vector u which
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FIG. 4. Characterising the boundary hypersurface using machine learning. Each panel illustrates a step of the
algorithm presented in Fig. 3. The gate voltage space, restricted to two dimensions for illustration, is divided into regions of
near-zero (blue) and non-zero current (pink), separated by a boundary hypersurface. a Locating the hypersurface. The gate
voltages are scanned along a ray (violet arrow) starting at the origin (white circle) and defined by direction u. By monitoring the
current, the intersection with the hypersurface is measured. b To determine whether a region should be pruned, the algorithm
scans each gate voltage individually towards the bottom of its range from a location just inside the hypersurface as shown.
If only one scan intersects the hypersurface (as in the inset), future exploration of that region is inhibited by displacing the
origin as shown. c Based on a short 1D scan, the location is classified according to whether it shows current peaks indicating
Coulomb blockade. d If peaks are found, a 2D scan (violet square) is performed in the plane of V3 and V7, and is possibly
repeated at higher resolution. e From the first thirty measurements (green and yellow circles), the algorithm builds a model of

the hypersurface and assigns a probability P̃peak that peaks will be found. f To refine the model, the algorithm generates a set

of candidate search locations (squares), each weighted by its corresponding value of P̃peak, and selects one at random. A new
scan is then performed in the corresponding direction to generate a new measurement of the hypersurface location. Steps d-f
are then repeated indefinitely. Inset: Scheme for numerically sampling the hypersurface using simulated Brownian motion. Each
point represents a simulated particle moving inside the enclosed volume. The collisions between the particles and the modelled
hypersurface generate a set of candidate search locations.

during the first 30 iterations of the algorithm is selected
randomly from a hypersphere, restricted to the octant
where all gate voltages are negative. The gate voltages
are then scanned along a ray beginning at the origin o
and parallel to u (Fig. 4a). During this scan, the current
is monitored; when it falls below a threshold of 20% of
full scale, this is taken as defining a location v(u) on the
hypersurface.

While this procedure correctly identifies locations for
which current through the device is pinched off, it does
not recognise whether the device is ‘tunable’ in the sense

that every gate voltage strongly affects the current. We
find that for some locations, most gate voltages have lit-
tle effect, which suggests that the measured current is
not being determined by the potential in the quantum
dot. With such a combination of gate voltages, a double
quantum dot cannot be usefully formed. To reduce the
amount of time spent exploring such regions of the hyper-
surface, we implemented the following heuristic pruning
process (Fig. 4b), applied in each of the first 30 iterations.
From the hypersurface intersection v(u), all voltages are
stepped upwards to a location vδ(u) ≡ v(u) + δ, where
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δ is a step-back vector with each component chosen to be
+100 mV. Each voltage in turn is then swept downwards
towards the bottom of its range or until the hypersurface
is encountered. If the hypersurface is encountered only
along one voltage axis k, then the origin for subsequent
iterations is moved so that its k-component is equal to
the k-component of vδ (Fig. 4b inset). Over several itera-
tions, this process prunes away search paths for which the
hypersurface is not intersected within the chosen range.

Investigating nearby voltage space

Having located the hypersurface, the algorithm then
proceeds to investigate the nearby region of voltage space
to determine whether a double quantum dot is formed.
The investigation is carried out in the plane containing
v(u) and defined by varying the two plunger gate voltages
V3 and V7. These gates, selected before running the
algorithm, are the ones that should predominantly shift
the electrochemical potential in the left and right dots.
If a double quantum dot is formed, the current should
therefore show a honeycomb pattern in this plane, similar
to Fig. 2.

First, a one-dimensional scan is made in this inves-
tigation plane, starting at v(u) and running along the

diagonal axis V̂e ≡ 1√
2
(V̂3 + V̂7), where V̂i indicates a unit

vector in voltage space (Fig. 4c). This scan is chosen to
have length 128 mV and resolution 1 mV. A peak detec-
tion routine identifies the presence or absence of Coulomb
peaks. If Coulomb peaks are absent, investigation here
ceases and a new iteration begins.

Next, if Coulomb peaks are present in this diagonal scan
a two-dimensional scan is made (Fig. 4d). The scanning

region is a square oriented along V̂e and its orthogonal axis
V̂a ≡ 1√

2
(V̂3 − V̂7). This square is bounded by v(u), and

its side length is chosen to be 3.5 times the average peak
spacing identified in the diagonal scan. (If the diagonal
scan shows less than three peaks, the side length is set
to be 100 mV.) The scan is made first at low resolution
(16× 16 pixels), and a score is assigned to the resulting
current map. The score function (see Supplementary
Methods, Score function) is a predefined mathematical
expression designed to reward specific transport features
that correspond to the visual features typically looked for
by humans when manually tuning a device. In particular,
it is designed to identify honeycomb patterns similar to
Fig. 2 indicating the formation of a double quantum dot.
It rewards current maps containing sharp and curved
lines.

If the score function of the low-resolution scan is high,
it is repeated at high resolution (48 × 48 pixels). The
score threshold is dynamically adjusted throughout the
experiment so that 15% of low-resolution scans are re-
peated. (See Supplementary Methods, Optimal threshold
α′, for a statistical analysis of the optimal threshold.)
The high-resolution maps, scanned in regions of voltage

space identified as showing desirable double-dot behaviour,
constitute the output of the tuning algorithm.

Searching efficiently by learning about the hypersurface

To more rapidly locate the hypersurface, and to increase
the fraction of time spent exploring regions of gate space
containing Coulomb peaks, the algorithm improves the
search process of Section Searching for the hypersurface
by incorporating information from its measurements. It
applies this information beginning with the 31st iteration.
To do this, it starts each iteration by using the measured
locations of the hypersurface to generate a model hyper-
surface spanning the entire voltage space (Fig. 4e). The
model is generated using a Gaussian process incorporating
the uncertainty of the measured locations as explained
in the Supplementary Methods, Gaussian process mod-
els. To each candidate search direction u, the model
assigns an estimated distance to the hypersurface m(u)
with uncertainty s(u). Furthermore, the model uses in-
formation on whether current peaks were identified in
previous searches to assign to each point on the model
hypersurface a probability P̃peak of expecting peaks.

Using this model, the algorithm can now select new
search directions u more efficiently. It is desirable to
select search directions associated with a high probability
P̃peak, while also occasionally exploring less promising
regions of the hypersurface. To achieve this trade-off, the
algorithm first generates a set of candidate search loca-
tions on the hypersurface (Fig. 4f). To generate a set that
is approximately uniform despite the convoluted shape
of the hypersurface, we adopt a selection routine based
on simulated Brownian motion [20]; a set of ‘particles’
is simulated inside the hypersurface, and each encounter
with the hypersurface contributes one candidate location
(Fig. 4f inset). To each of these locations, the algorithm
then assigns a weight proportional to the corresponding
value of P̃peak, and selects one location at random (i.e.
using Thompson sampling). This location then defines a
new search direction u.

The model hypersurface is also used to improve the
efficiency of the search. Instead of beginning at the origin
(as in Fig. 4a), the new search scan begins at the location
g(u) ≡ o + (m(u)− 2s(u))u which should lie just inside
the hypersurface (as in Fig. 4f). If m(u)− 2s(u) < 0, the
search scan begins at o.

Occasionally, the measured current at the beginning of
the scan is below threshold, indicating that g(u) is already
in the pinched-off region. In these cases, the algorithm
scans in the opposite direction, along −u. Once the
measured current increases above 0.8 of the value at o,
the algorithm reverts to measuring in the u direction
to locate the hypersurface in the usual way. Over many
iterations, the algorithm thus builds up the required set of
high-resolution current maps, measured with constantly
improved efficiency.
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Experimental results

The performance of our algorithm is assessed by a sta-
tistical analysis of the expected success time µt. This is
defined as the time it takes the algorithm to acquire a
high-resolution current map that is confirmed a posteriori
by humans as containing double quantum dot features.
Note that this confirmation is only needed to assess the
performance of the algorithm. Because human labelling is
subjective, three different researchers labelled all current
maps, deciding in each case if they could identify features
corresponding to the double quantum dot regime, with
no other information available. See Supplementary Meth-
ods, Bayesian statistics, for details of the multi-labeller
statistical analysis.

Device tuning

To benchmark the tuning speed of our algorithm, we
ran it several times on two different devices with identical
gate architecture, Devices 1 and 2, and we compared
its performance with a Pure random algorithm. The
Pure random algorithm searches the whole gate voltage
parameter space by producing a uniform distribution
of candidate locations. Unlike our algorithm, which we
will call Full decision, it does not include hypersurface
weighting or pruning rules, but uses peak detection in its
investigation stage. All Full decision runs presented in this
section for Device 1 and Device 2 were performed during
a single cool down (cool down 1). The Pure random runs
in each device were performed in a different cool down
(cool down 2).

As mentioned in the introduction, we consider a gate
voltage space whose dimension is defined by the number
of working gate electrodes, and we provide a gate voltage
range that avoids leakage currents. While for Device 1 we
considered the eight-dimensional parameter space defined
by all its gate electrodes, for Device 2 we excluded gate
electrode 6 by setting V6 = 0 mV due to observed leakage
currents associated with this gate.

We define the average count C̄ as the number of current
maps labelled by humans as displaying double quantum
dot features divided by the number of labellers. For a
run of the Pure random algorithm in Device 2 and five
runs of our algorithm in Devices 1 and 2, we calculated C̄
as a function of laboratory time (Fig. 5a,b). We observe
that C̄ is vastly superior for our algorithm compared with
Pure random, illustrating the magnitude of the parameter
space.

The labellers considered a total of 2048 current maps
produced in different runs, including those of the ablation
study in Section Ablation study. The labellers had no
information of the run in which each current map was
produced, the device or the algorithm used. For the
Pure random approach, the labelled set was composed
of 51 current maps produced by the algorithm and 100
randomly selected from the set of 2048.
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FIG. 5. Algorithm’s performance. a-d Average number
of current maps displaying double quantum dot features, C̄,
and P (peaks) as a function of laboratory time. Current maps
are labelled by humans a posteriori, i.e. after the algorithm is
stopped. a,c and b,d correspond to one run of Pure random
and five runs of our algorithm, respectively. All algorithm
runs displayed in main panels were performed in Device 2,
while insets show runs of our algorithm in Device 1. e,f High
resolution current maps measured in Device 2 by Pure random
and one of our algorithm runs, respectively. We indicate the
time the algorithm had been running for before they were
acquired and the number of labellers, C, that identified them
as displaying double quantum dot features. Current maps are
ordered from left to right in decreasing order of C, and maps
that have the same values of C are displayed in the order at
which they were sampled. Each panel uses an independent
colour scale running from red (highest current measured) to
blue (lowest current).

The time µt is estimated by the multi-labeller statistics.
The multi-labeller statistics uses an average likelihood of
µt over multiple labellers and produces an aggregated pos-
terior distribution (see Supplementary Methods, Bayesian
statistics). From this distribution, the median and 80%



7

(equal-tailed) credible interval of µt is 2.8 hr and (1.9, 7.3)
hr for Device 1 and 1.1 hr and (0.9, 1.6) hr for Device 2.
Experienced humans require approximately 3 hr to tune
a device of similar characteristics into exhibiting double
quantum dot features [15]. Our algorithm’s performance
might therefore be considered super human. Due to de-
vice variability, the hypersurfaces of these two devices are
significantly different, showing our algorithm is capable
of coping with those differences.

In Fig. 5c,d, we compare the probability of measuring
Coulomb peaks in the vicinity of a given v(u), P (peaks),
for Pure random and different runs of our algorithm. We
calculate P (peaks) as the number of sampled locations in
the vicinity of which Coulomb peaks were detected over
n. In this way, we confirm that P (peaks) is significantly
increased by our algorithm. It has a rapid growth followed
by saturation.

Figure 5e,f shows the high resolution current maps
produced for Device 2 by Pure random and one of our
algorithm runs. We observe that our algorithm produces
high resolution current maps which are recognized by all
labellers as displaying double quantum dot features within
1.53 hr. The three current maps in Figure 5f correspond
to double quantum dot regimes found by our algorithm
in different regions of the gate voltage space. The number
of labellers C who identify the current maps produced
by Pure random as corresponding to double quantum
dots, C, is 0 or 1. This demonstrates our algorithm
finds double quantum dot regimes, which can be later
fine tuned to reach optimal operation conditions fully
automatically [22].

To significantly reduce tuning times, we then mod-
ified our algorithm to group gate electrodes that per-
form similar functions. The algorithm assigns equal gate
voltages to gate electrodes in the same group. For De-
vice 1, we organized the eight gate electrodes into four
groups: G1 = (V1), G2 = (V2, V8), G3 = (V3, V7), and
G4 = (V4, V5, V6). In this case, the median and 80% cred-
ible interval of µt improve to 0.6 hr and (0.4, 1.1) hr
(see Supplementary Figure 2 for a plot of C̄). This ap-
proach, by exploiting knowledge of the device architecture,
reduces µt by more than four times.

Ablation study

Our algorithm combines a sampling stage, which in-
tegrates the hypersurface sampling with weighting and
pruning, and an investigation stage that includes peak
detection and score function decisions. Each of these mod-
ules, illustrated in Fig. 3, contributes to the algorithm’s
performance. An ablation study identifies the relative
contributions of each module, justifying the algorithm’s
architecture. For this ablation study we chose to compare
our algorithm, Full decision, with three reduced versions
that combine different modules; Pure random, Uniform
surface and Peak weighting (see Table I).

Pure random, defined in the previous section, produces

a uniform distribution of candidate locations over the
whole gate voltage space. It excludes the sampling and
pruning rules. Uniform surface makes use of the hyper-
surface sampling, but no weighting or pruning rules are
considered. Peak weighting combines the hypersurface
sampling with weighting and pruning rules. These three
algorithms use peak detection in their investigation stage,
but none of them use the score function decision. For the
ablation study, we define low (high) resolution as 20× 20
(60× 60) pixels.

To analyse the algorithm’s performance, we estimate
P (peaks) and the probability of success, i.e. the probabil-
ity to acquire a high-resolution current map labelled as
containing double quantum dot features, given Coulomb
peak measurements P (success|peaks). To take measure-
ment times into consideration, we define t500 as the time
to sample and investigate 500 locations in gate voltage
space. The ablation study was performed in Device 1
keeping investigation stage parameters fixed. The cool
down cycle was the same as in Section Device tuning (cool
down 1), except for Pure random, which was performed in
a new thermal cycle (cool down 2). Results are displayed
in Fig. 6.

Figure 6a shows that the introduction of the hypersur-
face sampling, and weighting and pruning, increases t500.
This is because P (peaks) increases with these modules
(Fig. 6b), and thus the number of low and high reso-
lution current maps required by the investigation stage
is larger. Within uncertainty, P (success|peaks) remains
mostly constant for the different algorithms considered.
The result is a decreasing µt from Pure random to Peak
weighting within experimental uncertainty. See Methods,
Mathematical analysis of ablation study results, for a
mathematical analysis of these results.

The reason behind the use of peak detection in all
the algorithms considered for this ablation study is the
vast amount of measurement time that would have been
required otherwise. Without peak detection, the posterior
median estimate of µt for Pure random is 680 hr.

To complete the ablation study, we compare the con-
sidered algorithms with the grouped gates approach de-
scribed in the previous section, keeping parameters such
as the current map resolutions are equal. We found
µt = 80.5 mins (see Supplementary Figure 3 for a plot
comparing these algorithms).

In summary, comparing Pure random and Uniform sur-
face, we show the importance of hypersurface sampling.
The difference between Uniform surface and Peak weight-
ing highlights the importance of weighting and pruning.
The improved performance of Full decision with respect
to Peak weighting evidences the tuning speedup achieved
by the introduction of the score function. These results
demonstrate Full decision exhibits the shortest µt and
imply an improvement over Pure random without peak
detection of approximately 180 times.
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FIG. 6. Ablation study. a and b bar charts and corresponding data points comparing µt (light green), t500 (dark green),
P (peaks) (dark blue) and P (success|peaks) (light blue) for the different algorithms considered. Error bars represent 80%
(equal-tailed) credible intervals. Due to a measurement problem, 459 sampling iterations instead of 500 were considered for the
Full decision algorithm. c to f High resolution current maps sampled by Pure random, Uniform surface, Peak weighting and
Full decision, respectively. In each panel, we indicate C, the number of human labellers that identified a map as displaying
double quantum dot features. Current maps with identical values of C are displayed in the order in which they were sampled,
from top to bottom. Current maps with C : 0 were randomly selected. Each panel uses an independent colour scale running
from red (highest current measured) to blue (lowest current).

TABLE I. Comparison of algorithms used in the ablation study. Modules in the sampling stage (SS) and the investigation stage
(IS) are indicated with a tick if included and with a cross if excluded.

Algorithm SS: Hypersurface sampling SS: Weighting and pruning IS: Peak detection IS: Score function decision

Pure random × × X ×
Uniform surface X × X ×
Peak weighting X X X ×
Full decision X X X X

Device variability

The variability of electrostatically defined quantum
devices has not been quantitatively studied so far. We
have been able to exploit our algorithms for this purpose.
Using the uniform surface algorithm only (no investigation
stage), we obtain a set of locations on the hyper-surface
va. Changes occurring to this hyper-surface are detected
by running the algorithm again and comparing the new
set of locations, vb, with va. This comparison can be
done by a point set registration method, which allows us
to find a transformation between point sets, i.e. between
the hypersurface locations.

Affine transformations have proven adequate to find
useful combinations of gate voltages for device tuning [9,
10]. To find a measure of device variability, understood
as changes occurring to a device’s hyper-surface, we thus
use an affine transformation vt = Bvb, with B a matrix

which is a function of the transformation’s parameters.
We are looking for a transformation of coordinates that
converts vb into a set of locations vt which is as similar
to va as possible.

The particular point set registration method we used is
coherent point drift registration [23]. This method works
with an affine transformation which includes a transla-
tion vector. We have modified the method to set this
translation vector to zero, as the transformation between
hyper-surfaces can be fully characterized by the matrix
B (see Supplementary Methods, Point set registration).

We have used this approach to quantify the variability
between Devices 1 and 2, and the effect of a thermal cycle
in the hypersurface of Device 2. Figure 7 displays the
matrix Bc = B − I for each case, quantifying how much
B, the transformation that converts a set of locations
from one hypersurface onto the other, differs from the
identity matrix (I). Non-zero elements of Bc thus indicate
device variability. Diagonal elements of Bc are responsible
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for scale transformations and can be interpreted as a ca-
pacitance change for a given gate electrode. Off-diagonal
elements are responsible for shear transformations and can
be interpreted as a change in cross-capacitance between
a pair of gate electrodes.

Fig. 7a shows Bc corresponding to the changes in the
hypersurface of Device 2 after a thermal cycle (cool down
1 vs cool down 3). This transformation shows that device
variability in a thermal cycle is dominated by a uniform
change in capacitance for all gate electrodes. We have
also measured Bc for a thermal cycle of Device 1 (see
Supplementary Figure 4). Fig. 7b displays Bc comparing
the hypersurface of Device 1 (cool down 1) with the
hypersurface of Device 2 (cool down 3). We observe
that the variability between these devices, which share a
similar gate architecture, is given by non-uniform changes
in gate electrode capacitance, as well as by changes in
cross-capacitance. This variability is attributed to charge
traps and other device defects, such as a small differences
in the patterning of gate electrodes.

DISCUSSION

We demonstrated an algorithm capable of tuning a
quantum device with multiple gate electrodes in approxi-
mately 70 mins. This was achieved by efficiently navigat-
ing a multi dimensional parameter space without manual
input or previous knowledge about the device architecture.
This tuning time was reproduced in different runs of the
algorithm, and in a different device with a similar gate
architecture. Our tuning algorithm is able to tune devices
with different number of gate electrodes with no modi-
fications. We showed that gate electrodes with similar
functions can be grouped to reduce the dimensionality of
the gate voltage space and reduce tuning times to 36 mins.
Tuning times might be further improved with efficient
measurement techniques [24], as measurement and gate

Vt

Vt

Vt

Vt

Vt

Vt

Vt

Vb1 Vb2 Vb3 Vb4 Vb5 Vb7 Vb8 Vb1 Vb2 Vb3 Vb4 Vb5 Vb7 Vb8

B
c,ij

FIG. 7. Learning about device variability. Bc matrices
obtained using point set registration. Indices are the gate
voltage locations vb and vt. V6 = 0 mV was fixed in Device
2 to prevent leakage currents. a Transformation between the
hypersurface of Device 2 before and after a thermal cycle. b
Transformation between the hyperfsurfaces of Device 1 and
Device 2.

voltage ramping times were found to be the limiting fac-
tor. The use of charge sensors and RF readout could
also be implemented to improve tuning times, although
these techniques would require to be automatically tuned
to their optimum operating configuration, and would be
restricted to small regions of the gate voltage space. We
analysed our algorithm design through an ablation study,
which allowed us to justify and highlight the importance
of each of its modules. The improvement over the pure
random search without peak detection is estimated to be
179 times.

We showed that device variability can be quantified us-
ing point set registration by uniform sampling of the hyper-
surface separating regions of high and low current in gate
voltage space. We found that variability between devices
with similar gate architectures is given by non-uniform
changes in gate capacitances and cross-capacitances. Vari-
ability across thermal cycles is only given by a uniform
change in gate capacitances.

Other device architectures might use the sampling stage
of our algorithm as a first tuning step, and the investiga-
tion stage can be adapted to tune quantum devices into
more diverse configurations. To achieve full automated
tuning of a singlet-triplet qubit, it will be necessary to go
beyond this work by tuning the quantum dot tunnel barri-
ers, identifying spin-selective transitions, and configuring
the device for single-shot readout.

METHODS

The score function as a classifier

One of key strength of the proposed algorithm is that
it does not require an ideal score function. It is important
to highlight that we are using the score function just as
a classifier, instead of aiming at finding the gate voltage
configuration that maximises the score. The reason for
this is threefold; (i) the score function is not always a
smooth function; (ii) it does not always capture the qual-
ity of the transport features; (iii) it is just designed for
a particular transport regime, in this case, honeycomb
patterns. Therefore, the score threshold acts as a param-
eter that just controls the characteristics of the classifier.
If the threshold is low, many high resolution scans not
leading to double quantum dot transport features are pro-
duced. If the threshold is too high, then promising gate
voltage windows are missed. The optimal threshold can
be estimated by minimising the time required to produce
a high-resolution current map that is labelled by humans
as containing double quantum dot features.

Mathematical analysis of ablation study results

The results in the ablation study can be verified under
a few assumptions by a mathematical derivation of µt

(see Supplementary Methods, Mathematical derivation of
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µt). From this derivation, we can compare the expected
times µabl

t for Pure random, Uniform surface, and Peak
weighting:

µabl
t =

µabl
i

P (success)
, (1)

where µabl
i is the expected time per each iteration of the

algorithm, and P (success) = P (peaks)P (success|peaks)
is the probability that double quantum dot transport fea-
tures are observed in a high resolution scan at a given
iteration of the algorithm. For each iteration, time is
required for a low resolution scan t2D-L, a high resolu-
tion scan t2D-H, and for the rest of the investigation and
sampling tothers, including ramping gate voltages, peak
detection, and computation time. The simulation of the
Brownian particles is conducted in parallel with the in-
vestigation stage of the location proposed by the sampler
in a previous run, and it does not increase tothers. As a
result, the expected time for each iteration is

µabl
i = tothers + P (peaks) t2D, (2)

where t2D = t2D-L + t2D-H. Note that 2D scans are ac-
quired with probability P (peaks). If the score function
decision is not included, high resolution current maps are
always acquired when Coulomb peaks are detected. In
this case, low resolution current maps are not useful, but
we have still included t2D-L in t2D to keep the comparison
between algorithms consistent.

For all methods in Table I except Pure random, the time
for 2D scans is the same, t2D-L ≈ 33 s and t2D-H ≈ 273 s,
and tothers ≈ 35 s. Therefore, the difference on µabl

t across
methods is given by P (peaks) and P (success|peaks). In
Fig. 6b, we can see that P (success|peaks) is similar across
the different algorithms, but P (peaks) is different. In
conclusion, P (peaks) in Equations (1) and (2) determines
t500 and µt in Fig. 6a.

Rearranging µabl
t yields

µabl
t =

(
tothers

P (peaks)
+ t2D

)
1

P (success|peaks)
,

and this implies that t2D has a significant weight when
P (peaks) is large, motivating the introduction of the score
function.

The expected time for Full decision algorithm is

µfull
i =tothers + P (peaks) t2D-L + P (highres) t2D-H

µfull
t =

µfull
i

P (success)
,

where P (highres) is the probability of acquiring a high
resolution current map given a score. The score function
decision always makes µfull

i smaller than µabl
i , because

µabl
i − µfull

i = P (peaks)(1 − P (highres|peaks))t2D-H and
P (highres|peaks) < 1. This is experimentally verified in
Fig 6 from the fact that t500 of Full decision is smaller
than that of Peak weighting.

Comparisons between µabl
t and µfull

t can be affected by
the dependence of P (success|peaks) on the score func-
tion threshold. In Fig. 6b, however, we observe that
P (success|peaks) is similar for Peak weighting and Full
decision. This implies that the introduction of a score
function threshold does not reduce the probability of
success.

In this case,

µabl
t − µfull

t =
1− P (highres|peaks)

P (success|peaks)
t2D-H.

This equation confirms that that the score function re-
duces µt in the case that the score function threshold
does not degrade P (success|peaks). Further analysis on
the optimal threshold, i.e the threshold that minimizes
µfull
t , can be found in Supplementary Methods, Optimal

threshold α′.

Code availability

The original implementation of the algorithm and a
refactored version (with examples and documentation)
that is easier to deploy are available here [url].

Data availability

The data acquired by the algorithm during experiments
is available from the corresponding author upon reason-
able request.
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