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Abstract 
 
The regulation and physiological management of feeding behaviour, appetite and fullness in 

humans, and many other multicellular organisms, is governed by the pathways involved in 

the Endocannabinoid system (ECS). This complex system comprises lipid endocannabinoids 

e.g. Anandamide (AEA), that bind to cannabinoid receptors (e.g. CB1 and CB2), together 

with the enzymes involved in cannabinoid generation and hydrolysis. The ECS can also be 

stimulated by the plant cannabinoids (phytocannabinoids) such as Δ9-tetrahydrocannabidiol 

(Δ9-THC) and cannabidiol (CBD) which are found in Cannabis sativa.  

 

This study examined the effects exogenous of AEA and CBD on prey ingestion and food 

vacuole formation in the ciliate Tetrahymena pyriformis when feeding on an indigestible 

fluorescent cyanobacterium Synechococcus. Both AEA and CBD affected the ciliate feeding 

by inducing a lag; AEA having a shorter lag (ca. 36 min) in comparison to CBD (ca. 60 min). 

When ingestion resumed, AEA-treated cells fed at the same rate as the Control cells 

whereas CBD-treated cells had elevated ingestion rates (hyperphagia). The mechanism 

behind this is currently unknown but it does not appear to involve a cessation of food 

vacuole trafficking and defecation. It was also considered unlikely to be due to vacuole 

membrane recycling and the formation of phagocytic cups as the cellular machinery for this 

is very similar to that required for vacuole trafficking, which is unaffected by AEA and CBD. 

The study therefore hypothesised that: AEA and CBD completely stops prey capture but that 

pre-existing vacuoles are trafficked and defecated as normal and membrane is recycled to 

the cytostome where it accumulates. A lag of 60 min would allow the accumulation of more 

membrane than a 30 min lag and is the possible reason as to why ingestion rates after the 

former are higher.  

  

This study provides a basis for future research into the effects of CBD and AEA on the 

feeding capture processes of protists as well as their potential targets. Since protists do not 

possess the usual cannabinoid receptors associated with the human ECS future work might 

elucidate the ancestral targets of these cannabinoids together with their function in single 

cells. 
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Glossary 
 

AA Arachidonic acid 

2-AG 2-Arachidonoylglycerols 

2-AcGs 

2-O-AG 

2-acylglycerols 

2-O-acylglycerol 

AEA N-arachidonoyl ethanolamine, Anandamide 

AMT 

ATP 

AEA membrane transporter 

Adenosine triphosphate 

BG11 

BLAST 

cAMP 

Blue green 11 broth 

Basic Local Alignment Search Tool 

Cyclic adenosine monophosphate 

CB1 Cannabinoid Receptor 1 

CB2 Cannabinoid Receptor 2 

CBD 

CBD-A 

Cannabidiol 

Cannabidolic acid 

CBG 

CNS 

cGMP 

Cannabigerolic acid 

Central Nervous System 

Cyclic guanosine monophosphate 

CNS 

CORVERT 

COX-2 

DAG 

DAGLα 

Central Nervous System 

Class C core vacuole/endosome tether  

Cyclooxygenase-2 

Diacylglycerol  

Diacylglycerol lipase α 

DAPI 

EEA 

4,6- Diaminide-2-phenylindole dihydrochloride  

Eicosenoylethanolamine 

EEA1 Early endosomal antigen 1 

ECS Endocannabinoid System 

FAAH 

FFAs 

Gal/GalNAc 

Fatty acid amide hydrolase 

Free Fatty Acids 

Galactose- and N-acetyl-d-galactosamine 

GlcNAc 

GLEA 

N-Acetyl-D-glucosamine 

N-γ-linolenoylethanolamine 
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GPCR 

GPR55 
 
HMM 

HOPS 

G protein- coupled receptor 

G protein-coupled receptor 55 

Heavy Meromyosin  

Homotypic fusion and vacuole sorting 

IC50 Half maximal inhibitory concentration 

IR Ingestion Rate 

LAMP 1/2 Lysosomal- associated membrane protein 1/2 

LB 

LEA 

LOX 

LPS 

Lysogeny broth 

N-linoleoylethanolamine 

Lipoxygenase 

Lipopolysaccharides  

MAGL Monoacylglycerol lipase 

MAPK Mitogen- activated protein kinase 

MIC Minimum inhibitory concentration 

NADPH 

NAE 

NAPE 

Nicotinamide adenine dinucleotide phosphate 

N-Acyl Ethanolamines 

N- arachidonoyl phosphatidylethanolamine 

NSF 

OEA 

ONE WAY ANOVA 

PAMPs 

N-ethylmaleimide Sensitive Factor 

N- Oleoylethanolamine 

The one-way analysis of variance 

Pathogen-Associated MolecularPatterns 

PEA 

PGH2 

N-Palmitoylethanolamine 

Prostaglandin H2 

PPAR Peroxisome proliferator- activated receptor 

PI3K Phosphoinositide 3- kinase 

PIK3 VPs34 

PIP3 

Class III phosphatidylinositol 3- kinase vacuolar protein sorting 34 

Phosphatidylinositol 3- phosphate 

PKA/B/C 

PLC 

Protein Kinase A/ B/C 

Phospholipase C 

PRR Pattern recognition receptors 

RAB5/7 Rabaptin-5/7 

Rho Rhodopsin 

ROS Reactive oxygen species 
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SEA N- stearoylethanolamine 

SEM 

SNAREs 

Standard Error of Mean  

Soluble NSF protein receptors  

TRPV1 Transient receptor potential vanilloid type 1 

TD 

THC-A 

VFR 

Transmembrane Domains 

Tetrahydracannabonolic acid 

Vacuole Formation Rate 

VGCC 

VPT 

Voltage gated calcium channel 

Vacuole Passage Time 

Δ9-THC Delta- 9- Tetrahydrocannabinol 

5-HT1A Hydroxytryptamine serotonin receptors 
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1. Introduction 

 

1.1 The human endocannabinoid system 

The endocannabinoid system (ECS) is a ubiquitous neuromodulatory system which plays a 

vital role in controlling regulatory functions throughout the body, i.e., central nervous, 

cardiovascular, immune and gastrointestinal systems (Marzo et al., 2004). It governs the 

regulation of systematic processes such as learning, memory, pain sensation, sleep, immune 

response, addiction, as well as the control of appetite/metabolism and digestion (Aizpurua-

Olaizola et al., 2017). The ECS is often referred to as a “broad-spectrum modulator” 

(Aizpurua-Olaizola et al., 2017) because it has many components which, through interaction, 

contribute to the functional versatility of this system (Maccarrone et al., 2015). The 

components include endogenous cannabinoids (Section 1.2), the receptors they bind to 

(Section 1.4), along with the enzymes that synthesise and degrade the cannabinoids 

(Section 1.3) (Aizpurua-Olaizola et al., 2017). 

 

1.2    Cannabinoids 

Cannabinoids are biologically active long chain lipids (Kendall and Yudowski, 2017; Zou and 

Kumar, 2018) which function as ligands for receptors in mammals, that are primarily G-

protein coupled receptors (Pertwee, 1997; Zou and Kumar, 2018). Non-synthetic 

cannabinoids can be classified into groups; phytocannabinoids and endogenous 

cannabinoids (Bilici, 2014).  

 

1.2.1    Phytocannabinoids  

Cannabinoids derived from plants are known as Phytocannabinoids (Lambert and Fowler, 

2005). The most widely known and researched phytocannabinoids are delta-9-

tetrahydrocannabinol (Δ9-THC) and Cannabidiol (CBD), from the plant Cannabis sativa 

(Pertwee, 2015; Maroon and Bost, 2018) (Figure 1.1). Cannabis contains over 421 chemical 

compounds out of which more than 60 cannabinoids have been isolated (Mechoulam, 2005; 

Appendino et al., 2011) that may have antagonistic or synergistic characteristics relevant to 

their pharmacological use (Izzo, 2001).   
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Extracts of cannabis have been extensively used for medical purposes (Appendino et al., 

2011) such as; anti-inflammatory, anti-convulsant, antinociceptive and antiemetic 

(Mechoulam, 1986; Iversen, 2000), targeting diseases such as gastrointestinal disorders 

(Grinspoon and Bakalar, 1997; Izzo, 2001), Alzheimer’s disease and multiple sclerosis (MS) 

(Maroon and Bost, 2018). However, Δ9-THC and CBD have different side-effects concerning 

human feeding, i.e., the psychoactive THC enhances feeding causing subjects to have the 

‘munchies’ (Soria-Gómez et al., 2014; Roberts et al., 2019), whereas the non-psychoactive 

CBD decreases appetite (Iffland and Grotenhermen, 2017). Being non-psychoactive, 

medicinal trials of CBD have increased as over the years and it has been shown to alleviate 

diabetes, depression and anxiety (Bakas et al., 2017) as well as aid in the reduction of pain in 

inflammatory conditions such as arthritis, and can also be used to decrease seizures in 

epilepsy and other psychotic symptoms (Pacher, 2006; Devinsky et al., 2014).  

 

1.2.2    Endogenous cannabinoids (Endocannabinoids) 

Endogenous cannabinoids are composed of derivatives of unsaturated fatty acids, and their 

main function in the ECS involves operating as endogenous ligands for cannabinoid 

receptors (Habayeb et al., 2002). Anandamide (AEA) was the first endogenous cannabinoid 

to be isolated (Devane et al., 1992). The uterus contains the highest amount of AEA in 

mammals, and there is more recent evidence of its role in reproduction (Schmid et al., 1997; 

Habayeb et al., 2002). Furthermore, AEA has been found to demonstrate various effects in 

 
Figure 1.1: The biochemical structure 
of Δ9-THC, CBD and cannabigerolic 
acid (CBG). Both Δ9-THC and CBD are 
synthesized from CBG (common 
precursor) as tetrahydracannabonolic 
acid (THC-A) and cannabidolic acid 
(CBD-A). THC-A and CBD-A are 
produced directly through cannabis 
growth, whereas the conversion to Δ9-
THC and CBD occurs when cannabis is 
heated e.g. for smoking or vaporising, 
as this causes THC-A and CBD-A to 
decarboxylate (Maroon and Bost, 
2018). 
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the nervous system via modulating interactions with neurotransmitters, affecting brain 

activities (Di Marzo et al., 1998; Habayeb et al., 2002). Research on rodents has indicated 

that AEA can inhibit memory consolidation (Castellano et al., 1997; Habayeb, et al., 2002), 

as well as hinder working memory overall (Mallet and Beninger, 1996; Habayeb et al., 2002). 

AEA has also been shown to have analgesic properties (Mechoulam et al., 1995) and prevent 

motor coordination (Di Marzo et al., 1998; Habayeb et al., 2002).  

 

Another endogenous endocannabinoid, which acts on cannabinoid receptors, was 

discovered three years after AEA, i.e. 2- Arachidonoyglycerol (2-AG) (Mechoulam et al., 

1995). 2-AG was first isolated within the canine gut and rat brain and in both of these 

organs, the concentration of this endocannabinoid was greater than that of AEA 

(Mechoulam et al., 1995; Stella, et al., 1997; Waku and Sugiura, 2003).  

 

1.3 Biosynthetic and degradation enzymes  

2-AG and AEA are both produced “on-demand” through biosynthetic pathways (Bisogno et 

al., 2001). Both AEA and 2-AG are classified as N-acylethanolamines (NAEs) and were 

discovered to act as endogenous lipids in hypoxic myocardium by Epps et al. (1979).  

 

It has been established that the synthesis of AEA is a two-step process (Figure 1.2). The first 

step involves the generation of its membrane precursor named N-arachidonoyl 

phosphatidylethanolamine (NAPE) (Di Marzo et al., 1994). This process is catalysed by a 

calcium dependent N-acyltransacylase (NAT), which plays an essential part in the 

transferring of arachidonic acid (AA) from the sn-1 position of the 1,2-sn-di-

arachidonylphosphatidylcholine to the amino group of the hydroxyethyl of 

phosphatidylethanolamine which entails the formation of NAPE (Basavarajappa, 2007). 

After NAPE undergoes a cleavage governed by a NAPE specific phospholipase D (NAPE-PLD) 

forming AEA and phosphatic acid (Natarajan et al., 1981; Schmid et al., 1983; Di Marzo et 

al., 1994) (Figure 1.2).  

 

The hydrolysis and degradation of AEA to AA and ethanolamine is mediated by the enzyme 

fatty acid amide hydrolase (FAAH) (Deutsch and Chin, 1993; Cravatt et al., 1996) (Figure 1.2). 

The first report of a similar enzyme activity to FAAH was described to by Schmid et al. (1985) 
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who observed the hydrolysis of saturated and monosaturated NAEs in rat liver. Following 

this Deutch and Chin (1993) isolated FAAH in the N18TG2 neuroblastoma cells, where they 

first observed this enzyme’s activity of converting AEA to AA. However, it was not until 

1996, when Cravette et al. purified the hydrolysis activity of FAAH in rat liver membrane, 

that FAAH was named and recognised for its action in the ECS. The metabolism of AEA is 

also known to be mediated by cyclooxygenase-2 (COX-2), cytochrome P450 and 

lipoxygenase (LOX) (Basavarajappa, 2007a).  

 
Figure 1.2: AEA is synthesised on demand by formation and hydrolysis of N-arachidonoyl 
phosphatidylethanolamine (NAPE). 1) NAPE is hydrolysed through the transfer of 
arachidonic acid (AA) also known as an acyl group, from the sn-1 position of the 
phosphatidylcholine to the amino group of the hydroxyethyl of phosphatidylethanolamine. 
This reaction is catalysed by N-acyltransacylase (NAT). 2) NAPE then undergoes cleavage 
mediated by N-arachidonoyl phosphatidylethanolamine specific phospholipase D (NAPE-
PLD). This leads to the formation of AEA and phosphatic acid. When no longer required, AEA 
is degraded mainly by fatty acid amide (FAAH) to ethanolamine and arachidonic acid. This 
breakdown process mainly occurs in the endoplasmic reticulum of the cell.  
 

 

 



 12 

2-AG is synthesized in neurones by two possible pathways, one of which involves 

phospholipase C (PLC) governed hydrolysis of membrane phospholipids that leads to the 

production of diacylglycerol (DAG) which is then converted to 2-AG mediated by the activity 

of diacylglycerol lipase (DAGL) (Prescott and Majerus, 1983; Sugiura et al., 1995). On the 

other hand, DAG may be produced by the hydrolysis of phosphatidic acid mediated by Mg2+ 

and Ca2+ dependent phosphohydrolase activity followed by the same conversion process to 

2-AG as the first pathway (Waku and Sugiura, 2003; Bisogno et al., 2008) (Figure 1.3).  

 

 

Figure 1.3: 2- AG can be synthesised by two pathways; First pathway involves the hydrolysis 
of the membrane phospholipid, phosphatidylinositol bis-phosphate (PIP2) which produced 
Diacylglycerol (DAG). This reaction is governed by Phospholipase C. DAG then converted to 
2-AG by the activity of Diacylglycerol lipase (DAGL). Second pathway involves the hydrolysis 
of phosphatidic acid, which is mediated by the phosphohydrolase activity of the ions Mg2+ 
and Ca2+, this in turn leads to the production of DAG. After this step, the remaining synthesis 
process of 2-AG is the same as the first pathway. 2-AG is degraded mostly by 
monoacylglycerol lipase and causes the production of glycerol and arachidonic acid as end 
products of this process.  
 

The breakdown of 2-AG is initiated by the reuptake of a membrane transport molecule 

named AMT (AEA membrane transporter) (Maccarrone et al., 1998; Beltramo and Piomelli, 

2000), and just like AEA, the signalling functionality of 2-AG is halted by this process 
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(Basavarajappa, 2007a; Ahn et al., 2008). Following this, the degradation of 2-AG occurs by 

monoacylglycerol lipase (MAGL) (Konrad et al., 1994) (Figure 1.3). MAGL was isolated and 

purified in adipose tissue, where it is found to be the catalyst for the ultimate step of 

triglyceride metabolism (Karlsson et al., 1997). Dinh et al. (2002) found that in rat cortical 

neurones the over-expression of MAGL led to the reduction in 2-AG levels. Furthermore, it 

was found by Dinh et al. (2004) that in MAGL knock out HeLa cells and rat brain fractions, 

the reduction in the hydrolysis of 2-AG was observed. Both of these studies established a 

direct correlation between the activity of both 2-AG and MAGL and how one impacts on the 

other. 2-AG is also metabolised through COX-2 into prostaglandin H2 (PGH2) (Sang et al., 

2006) as well as FAAH (Simpson et al., 1991).  

 

1.4 Endocannabinoid receptors and cannabinoid interactions 

The ECS is comprised of several receptors, however only a few have been classified to date, 

these include CB1, CB2 and TRPV1 (McPartland and Pruitt, 2002). CB1 and CB2 belong to the 

superfamily of G-protein coupled receptors (GPCRs), that are made up of extracellular N-

terminal and intracellular C-terminal tail, seven transmembrane domains that are linked via 

three intracellular loops (Basavarajappa, 2007b). TRPV belongs to the superfamily of 

Transient receptor potential proteins that are known to form gated cation channels 

triggered by multiple variables such as light, pressure, temperature and osmotic stress 

(Baylie and Brayden, 2010).  

  

1.4.1. CB1  

CB1 is a G-protein coupled receptor and the most abundant endocannabinoid receptor in 

the Central Nervous System (CNS) hence, it is also known as the ‘brain cannabinoid 

receptor’ (Iannotti et al., 2016). Also known as a metabotropic receptor (Aizpurua-Olaizola 

et al., 2017), it is found at high volumes in the brain regions such as the cerebellum, 

neocortex, basal ganglia, brain stem and hippocampus, amygdala and hypothalamus (Lu and 

Mackie, 2016; Kendall and Yudowski, 2017). It is found in decreased amounts in peripheral 

tissues, in regions such as vascular endothelium, eyes leucocytes, skeletal muscles, lungs, 

adrenal glands, spleen and testis (Howlett et al., 2002; Basavarajappa, 2007b; Kendall and 

Yudowski, 2017).   
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Figure 1.4 Some of the primary signalling pathways can be modulated by CB1 receptors 
(CB1R): 1) CB1 couples to the heterotrimeric G protein named Gi/o protein alpha subunit 
which suppresses adenylyl cyclase (AC) which in turn stops the production of cyclic 
adenosine monophosphate (cAMP) as well as halting the activity of protein kinase A (PKA). 
2) CB1 can block the voltage-gated calcium channel (VGCC), further inhibiting calcium influx 
into the cells. 3) Mitogen- activated protein kinases (MAPK) can be stimulated by CB1 
receptors, leading to elevated levels due to the decrease in adenylyl cyclase. 4) However, 
Adenylyl cyclase activity can be regulated by the activation of phosphoinositide 3-kinase 
(PI3K)/ protein kinase B (Akt) pathway. This therefore means that the increase in cell 
survival or cell death is dependent on the ligand and cellular environment in which the 
modulation of CB1 signalling occurs. Blunt arrows in the diagram represent inhibition and 
normal arrows represent stimulation by CB1 receptors. (Zou and Kumar, 2018).   
 

The intracellular region of CB1 binds to the heterotrimeric G protein named Gi/o protein 

alpha subunit whose essential function is to halt the production of cyclic adenosine 

monophosphate (cAMP) from adenosine triphosphate (ATP) (Turu and Hunyady, 2009). 

Therefore, exogenous and endogenous ligands can cause an increased provocation of CB1 

leading to downregulation of adenylate cyclase activity) (Figure 1.4). This results in a 

decrease of cAMP levels or elevates levels of mitogen-activated protein kinase (MAPK) 
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(Howlett, 1998; Turu and Hunyady, 2009) (Figure 1.4). Additionally, other categories of 

intracellular signals, e.g., phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt/PKB) 

present in certain cell types, can be coupled to CB1 by Gi/o to regulate adenylyl cyclase 

(Gomez del Pulgar et al., 2000; Navarrete and Araque, 2010) (Figure 1.4). The vital 

functionality of the cAMP pathway is to regulate various cell activities which include cell 

proliferation, cell survival and cell distinction. Furthermore, this cAMP cascade is also 

responsible for controlling the function of several ion channels, such as; Voltage-gated 

Potassium (K+) and Calcium (Ca2+) channels (Pertwee, 1997; Howlett and Mukhopadhyay, 

2000; Sanchez, 2003; Witkowski et al., 2012). The activation of CB1 coupled Gi/o in neurons 

causes the inhibition of voltage activated Ca2+ channels (Iannotti et al., 2016). 

 

1.4.2. CB2  

CB2 receptors are more prevalent than CB1 in immune cells and tissues (Klein, 2005; 

Mackie, 2006). Their levels are much lower in the CNS in comparison to CB1 (Lu and Mackie, 

2016). CB2 is mainly found in vascular elements (Ramirez et al., 2012), localized CNS 

macrophages (Mackie, 2008) and microglia (Walter et al., 2003). CB2 expression is also 

associated with nerve injury, inflammation and some pathological conditions (Van Sickle, 

2005; Palazuelos et al., 2009; Viscomi et al., 2009). Research has indicated that the 

regulatory effects of CB2 receptors impact the microglial cells’ functionality that plays a key 

role in the onset and progression of Alzheimer’s disease as well as other basal ganglia 

associated disorders (Ramirez, 2005; Sagredo et al., 2007; Fernández-Ruiz et al., 2011).  

 

1.4.3. TRPV1  

TRPV1 differs from both CB1 and CB2 as it has six transmembrane domains, and consists of 

an extra intramembrane loop, which conjoins both the fifth and sixth transmembrane 

domains and shapes the pore channel region (Caterina et al., 1997; Iannotti et al., 2016). 

Various exogenous and endogenous agents such as some phytocannabinoids, AEA and N-

oleyl-dopamine can activate these fundamental channels existing in TRPV1 (Van der Stelt et 

al., 2005; Marzo and Petrocellis, 2010; De Petrocellis and Di Marzo 2012; Iannotti et al., 

2014), leading to an influx of calcium (Ca2+) and sodium (Na+) causing the depolarization of 

the cells inducing the physical/ neural effects of the stimuli which activated the receptor 
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(Liedtke et al, 2010). TRPV plays a key part in vasculature and can be sub divided into 6 sub-

families, TRPV 1-4 (Baylie and Brayden, 2010). 

 

1.4.4 Other receptors  

Research has indicated that cannabinoids can interact with alternative receptors/targets. A 

study conducted by Bergamaschi et al. (2011) showed that elevated levels of CBD activated 

the hydroxytryptamine serotonin receptors (5-HT1A) which are responsible for various 

biological and neurological processes such as sleep, pain, perception, appetite and anxiety 

(Toth, 2003; De Matos Feijó et al., 2011; Leopoldo et al., 2011; Stiedl et al., 2015). 

Furthermore, cannabinoids can activate nuclear hormone receptors, specifically peroxisome 

proliferator activated receptors (PPAR) α, β and γ. Phytocannabinoids such as CBD 

(O'Sullivan et al., 2009; Granja et al., 2012), THC (O’Sullivan et al., 2005; Granja et al., 

2012), cannabigerol (Granja et al., 2012) and cannabichrome (Granja et al., 2012) bind PPAR 

γ leading to either an increase in its transcriptional activity or influence its effects on 

selective antagonists. The endocannabinoids N- Oleoylethanolamine (OEA) (Fu et al., 2003; 

Sun et al., 2007; Hind et al., 2015) and Palmitoylethanolamide (PEA) (LoVerme et al., 2005; 

Borrelli et al., 2014) activate PPAR α altering its effects on selective antagonists. Some 

research has also shown that AEA and 2AG can activate PPAR α (Kozak et al., 2002; Sun et 

al., 2007; Romano and Lograno, 2012) and PPAR γ (Kozak et al., 2002; Ahn et al., 2015).  

 

CBD has been shown to interact with G protein-coupled receptor 55 (GPR55), also known as 

an orphan G protein-coupled receptor (Bih et al., 2015). Research has implied that this could 

be due to the transmembrane domains (TD) framework of TD1, 2 and 3, since they resemble 

to those existing in CB1 and CB2 receptors (Whyte et al., 2009; Bih et al., 2015), thus 

suggesting a potential binding site for the cannabinoids on GPR55 (Baker et al., 2006; Whyte 

et al., 2009). This receptor is a ligand of lysophosphatidylinositol, and when activated it is 

responsible for the release of Ca2+ from intracellular stores which modulates hippocampal 

neurotransmission (Sylantyev et al., 2013). The binding of CBD to GPR55 has displayed 

antagonistic effects and help to support evidence of CBD being an anti-epileptic agent (Bih 

et al., 2015).   
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Lastly, reports by Leweke et al. (2012) and Seeman (2016) have suggested that CBD may be 

a partial agonist for dopamine D2 receptors, although more evidence is required to 

corroborate this.  

 

1.5 Single celled protists and cannabinoids 

 

1.5.1. Introduction to protists 

Protists are eukaryotic, unicellular organisms that are either free-living, parasitic or 

endosymbionts (reviewed in Corliss, 2002). The free-living protists are ubiquitous and are 

abundant in soil, marine and freshwater environments (Foissner et al., 2008). For simplicity, 

protists can be broadly grouped into amoebae, ciliates and flagellates, based on their 

motility (Whittaker and Margulis, 1978; Adl et al., 2007). Of the three groups, ciliates are the 

most diverse, consisting of over 3500 identified species (Lanzoni et al., 2016). Ciliates are 

also considered the most evolved, as they possess a rudimentary mouth (Cytostome), a 

rudimentary anus (Cytoproct) and can reproduce sexually via conjugation (Foissner, 2008). 

They contain at least one macronucleus, which is essential for the ciliate’s development 

processes (Brenner et al., 2001), together with one to several micronuclei, required for 

sexual reproduction; a process which flagellates, and amoebae cannot perform (Brenner et 

al., 2001).  

 

Most ciliates are phagocytic heterotrophs, while mixotrophic species are found in a lower 

abundance (Mitra et al., 2016).  Their cilia, along with motility, assist the ciliate with feeding; 

they guide the prey into the oral groove where the prey enter the cytostome (mouth) 

before being deposited into food vacuoles (phagosomes) (Adl et al., 2007; Lanzoni et al., 

2016). Ciliates also possess a cytoproct (anus) for the exocytosis of undigested matter (Allen 

and Wolf, 1974). They primarily feed on bacteria, algae and other protists, with high 

ingestion rates (Fenchel, 1987) and as such, make a significant contribution to the microbial 

food chain whereby they are central to the transfer of energy, through organic compounds, 

between several trophic levels in the food web (Kathol et al., 2009; Xu et al., 2014). Ciliates 

also release inorganic compounds into the environment, via remineralisation, which include 

ammonia and phosphorus; key nutrients for their prey (Caron and Goldman, 1990). 
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1.5.2. Presence of ECS components in ciliates  

Some research has examined whether the elements of the human endocannabinoid system 

are present and functional in protists, with the main test organism being the ciliate 

Tetrahymena. 

 

1.5.2.1. Endocannabinoids 

Anagnostopoulos et al. (2010) showed that Tetrahymena thermophila possesses a suite of 

endocannabinoids including NAEs, 2-AcGs and Free fatty acids (FFAs). The 6 main NAEs, in 

order of abundance, are N-γ-linolenoylethanolamine (GLEA), N-eicosenoylethanolamine 

(EEA), N-linoleoylethanolamine (LEA), N-palmitoylethanolamine (PEA), N-

oleoylethanolamine (OEA) and N-stearoylethanolamine (SEA). A few other NAEs, including 

AEA, were also identified, but these were present at a very low concentration 

(Anagnostopoulos et al., 2010). GLEA is not common in nature, and SEA and EEA are present 

at very low concentrations in humans (Anagnostopoulos et al., 2010; Gaitán et al., 2018). 

LEA, OEA and PEA are more common in humans (Artmann et al., 2008) and activate similar 

receptors, mainly PPARs (⍺ and γ) and TRPV1 (Kleberg et al., 2014). 

 

1.5.2.2. Enzymes 

The two main degrading enzymes, but not the synthesizing enzymes, of the 

endocannabinoid system have been reported to exist in Tetrahymena. Karava et al. (2001) 

was the first to show that Tetrahymena pyriformis possessed a functional FAAH enzyme, 

which could hydrolyse AEA and excrete a breakdown product amidohydrolase into the 

surrounding medium. The optimum pH for the enzyme was pH 9-10, which is similar to 

FAAH activity reported in variety of mammalian tissues and cell types (Karava et al., 2001). 

Moreover, Karava et al. (2005) showed that T. thermophila possesses 2 isoforms of FAAH: 

46 and 66 kDa. The 66 kDa isoform is close in size of human and mammalian FAAH (63 or 67 

kDa) (Giang and Cravatt, 1997; Maccarrone et al., 1998) while the 45 kDa is close to the 46 

kDa FAAH in invertebrates (Matias et al., 2001).  Anagnostopoulos et al. (2010) showed that 

the FAAH in T. thermophila could hydrolyse all of its endogenous NEAs, with the highest 

enzyme activity being evident with AEA.  
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Using Blast and phylogenetic tree comparisons, MAGL, which catalyses the breakdown of 2-

AG was believed to be present in T. thermophila (McPartland et al., 2006). The presence of 

two isoforms (40kDa and 45kDa) was later confirmed experimentally by Evagorou et al. 

(2010). Two isoforms of MAGL have also been reported for several cell types (Bisogno et al., 

1997; Dinh et al. 2002). 

 

1.5.2.3. Receptors 

McPartland et al. (2006) carried out a micro-genomic study to research the evolutionary 

transformation of the endocannabinoid system. The study involved investigating twelve 

phylogenetically varied organisms (including T. thermophila) and the functional orthologs 

(speciation related genes that have evolved to play the same biological role in different 

classes/species of organisms). The functional orthologs of receptors were limited to certain 

groups of organisms; TRPV1 and GPR55 (mammals), CB1- like receptors and DAGLα 

(animals), CB2 (Vertebrates). This study confirmed that none of the main endocannabinoid 

receptor genes (for CB1, CB2, TRPV1 and GPR55) were found in T. thermophila. 

 

The above studies have indicated that Tetrahymena possesses a rudimentary ECS but to 

date, the receptor involved has not been identified. Even so, this ciliate can respond to 

exogenous cannabinoids (Section 1.5.3) but the target is currently unknown. 

 

1.5.3. Effect of exogenous cannabinoids on protists 

Only a handful of studies have tested the effects of cannabinoids on protists. McClean and 

Zimmerman (1976) showed a dose depended effect of Δ9-THC caused the cells of the ciliate 

T. pyriformis to become round and move in a sluggish manner; recovering after some hours 

(time not stated). Zimmerman et al. (1981) went on to show that T. pyriformis was most 

sensitive to Δ9-THC in the G2 phase of the cell cycle where the downregulation of both 

cAMP and cGMP led to an 8 to 15 minutes delay in the cell division.  

 

Pringle et al. (1979) found that Δ9-THC did not affect motility of the amoeba-flagellate 

Naegleria fowleri but it did inhibit encystment and enflagellation, and reduced population 

growth in a dose-dependent manner. A reduction in amoeba population growth was also 

reported for Acanthamoeba castellanii, Vermamoeba (Hartmannella) vermiformis, and 
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Willaertia magna when treated with AEA, 2-O-acylglycerol (2-O-AG), and a non-hydrolyzable 

analogue of 2-O-AG, i.e. 2-O-AG ether (Dey et al., 2010). Population growth over three days 

was reduced by 58%, 96% and 68%, respectively, with all three compounds. The fact that 2-

O-AG ether reduced population growth proved that it was the cannabinoid itself, and not 

any breakdown product that elicited the amoebic response (Dey et al., 2010).  

 

In all these studies, the mode of action of cannabinoids has not been deduced. The 

cannabinoids appear to affect, in the main, population growth and considering this is reliant 

on successful feeding it is surprising that no study has yet evaluated the effect of 

cannabinoids on the feeding processes of Tetrahymena.  

 

1.5.4. Ciliate feeding process 

 

1.5.4.1. Ingestion 

Pattern Recognition Receptors (PRRs) play a vital role in recognising non-self-ligands, i.e., 

bacterial motifs termed Pathogen-Associated Molecular Patterns (PAMPs) (reviewed in 

Janeway and Medzhitov, 2002), in phagotrophs/macrophages in innate immunity (Vogel et 

al., 1980; Pauwels et al., 2017). PRRs identified in protists to date have been members of the 

C-type lectin superfamily, which is enclosed of 17 subgroups of glycoproteins (Drickmer and 

Taylor 2015; Boskovic et al., 2006), and primarily involved in recognising carbohydrate 

ligands from bacterial LPS and fungal cell walls (Stahl and Ezekowitz, 1998; East and Isacke, 

2002). Some carbohydrates recognised by C-type lectins are: Glucose, L-fucose, N-

acetylgalactosamine (GalNac), N-acetylglucosamine (GlcNAc), galactose and mannose 

(Drickamer and Fadden., 2002). Due to the diverse nature of C-type lectins, they have found 

to be involved in various processes such as platelet activation, pathogen recognition, 

phagocytosis cell binding and cell differentiation (Ramoino et al., 2001; Cambi et al., 2005; 

Roberts et al., 2006; Gupta and Gupta., 2012; Al-hammadi., 2020). As well as this, this 

glycoprotein superfamily has been shown to influence prey capture processes in amoebae 

and can incur binding to carbohydrate ligands present on bacteria utilising an extracellular 

carbohydrate recognition domain (CDR) which is calcium dependent (Kerrigan and Brown., 

2009, Alenton et al., 2017).  
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The mannose receptor has been shown to be involved in feeding in the amoebae 

Entamoeba histolytica (Bracha et al., 1982) and Acanthamoeba castellanii (Allen and 

Davidowicz, 1990; Alsam et al. 2005) and in the marine dinoflagellate Oxyrrhis marina 

(Wootton et al., 2007). The mannose receptor has also been implicated in the feeding of the 

ciliates Euplotes mutabilis (Wilks and Sleigh, 2004) and T. pyriformis (Dürichen et al., 2016). 

The Gal/GalNAc receptor has been shown to be involved in the feeding of the amoebae E. 

histolytica (Bär et al., 2015) and V. vermiformis (Venkataraman et al., 1997; Harb et al., 

1998) but not in the dinoflagellate O. marina (Wootton et al., 2007). The Gal/GalNAc 

receptor has been also implicated in the feeding of the ciliates Euplotes vannus (Roberts et 

al., 2006) and E. mutabilis (Wilks and Sleigh, 2004). 

 

Another group of glycoprotein surface membrane receptors are Scavenger receptors (SRs) 

which are divided into ten sub classes (A to J) (Zani et al., 2015). Class A and B SRs (SR-A, SR-

B) have cysteine-rich domains similar to the C-type lectins and are the most commonly 

involved SRs in macrophage phagocytosis (Peruń et al., 2016). Both types can recognise 

bacterial cell structures such as lipoteichoic acids from Gram-positive bacteria (Dunne et al., 

1994; Baranova et al., 2008) and lipid A from the LPS of Gram-negative bacteria (Hampton 

et al., 1991; Stuart et al., 2005). Recently, the scavenger receptors LmpA and LmpB were 

reported to be involved in prey uptake in Dictyostelium discoideum. LmpA was isolated in 

phagolysomes and endosomes and seemed to be involve in the phagocytosis of mainly 

Gram-positive bacteria, whereas LmpB was confined in the plasma membrane and early 

phagosomes and was solely involved in the uptake of Gram-positive prey (Sattler et al., 

2018). It is unknown whether Tetrahymena possesses scavenger receptors. 

 

When the ciliate ingests a bacterial prey, signalling pathways involving PRRs recognise this 

bacterial intake and activate the food processing mechanisms, i.e., formation of food 

vacuoles/phagosomes (Muller, 1980a,b; Wootton et al., 2007). These signalling pathways 

cause the restructuring of the actin cytoskeleton, leading to the generation of pseudopod-

like structures that surround the prey and form the phagocytic cup (Pauwels et al., 2017). A 

contractile force driven by myosin helps seal the two ends of the pseudopods (Swanson, 

2008) and recruitment of dynamin leads to the vacuole detaching from the surface and 

moving into the cytoplasm (Marie-Anaïs et al., 2016).  
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1.5.4.2. Digestion 

Once the food vacuole is in the cytoplasm it goes through various stages of maturation 

(Levin et al., 2016). In the initial stage of the maturation process the phagosome undergoes 

fusion with early endosomes and acquires proteins such as GTPases and Ras related protein 

Rab5 (Rab5). The effector present in Rab5, called Rabaptin-5 obtains a class III 

phosphatidylinositol 3-Kinase vacuolar protein sorting 34 (PIK3 VPs34), which reacts with 

other molecules, entailing a cyclic collection of Phosphatidylinositol 3- phosphate (PIP3) in 

the phagosome (Vieira et al., 2001). PIP3 aids the attachment of early endosomal antigen 1 

(EEA1) and class C core vacuole/endosome tether (CORVET) complex target membranes 

onto the phagosome membrane (Lawe et al., 2001; Peplowska et al., 2007). As well as this, 

v-ATPase is recruited, which triggers acidification within the phagosomal lumen, initiated by 

pumping of protons, leading to breakdown of the particles (Figure 1.5).   

 

The maturation process involves the change of Rab5 to Ras related protein Rab7 early 

phagosome to late phagosome leading to the alteration of CORVET to homotypic fusion and 

vacuole sorting (HOPS) (Rink et al., 2005). Rab7 is fundamental for the maturation process 

as this initiates phagosome movement along with recruitment of Lysosomal-associated 

membrane protein 1 and 2 (LAMP1 and LAMP 2) (Harrison et al., 2003; Huynh et al., 2007). 

These proteins aid the phagosomes to fuse with acidic lysosome structures by allowing 

them to pass through the plasma membrane and conjoin with the food vacuole internally 

(Jacobson and Anderson, 1996; Pauwels et al., 2017). The resultant ‘phagolysosome’ can be 

arbitrated by various soluble NSF attachment protein receptors (SNAREs) (Luzio et al., 

2000). This increases the degradation processes in the phagosome due to the acquisition of 

hydrolytic enzymes, e.g., lipases, DNAses, glycosidases and proteases and cathepsins which 

function optimally in a low pH acidic environment and causes the breakdown of the cargo 

(Yates et al., 2009). Reactive oxygen species (ROS) are produced by Nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidases during the degradation process (Duclos, 2003; 

Savina et al., 2006; Luzio et al., 2010).  
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Figure 1.5: Different phases of phagosome maturation in a phagocyte. The process of 
Phagocytosis involves a sequence of fission and fusion events associated with the endocytic 
vesicles and phagosomes, leading to the acidification of the phagosomes, phagosomes and 
lysosomes integration which eventually causes the formation of phagolysosomes (Poirier 
and Av-gay, 2015). This process initiates by engulfment of micro-organisms by the 
phagocyte, into the phagosome (an organelle derived from the plasma membrane). After 
which the micro-organisms captured within the phagosome the react with the endosomal 
pathways: 1) Early phagosome fuses with early endosomes and acquires Ras-related protein 
Rab 5 and other proteins such as syntaxin 13 which is a soluble NSF attachment protein 
(SNARE)- required for vesicle trafficking (Prekeris et al., 1998) and Hrs (Hepatocyte growth 
factor regulated tyrosine- kinase substrate)- involved in late endosomal sorting (Vieira et al., 
2004). 2) Rab 5 acquires class III phosphatidylinositol 3-kinase vacuolar protein sorting 34 
(PIK3 VPS34), which in turn reacts with other molecules causing a cyclic collection of 
phosphatidyl 3- phosphate (PIP3) in the phagosome (Poirier and Av-gay, 2015). 3) Sorting 
nexin protein (SNX) is recruited to aid PIP3 in the attachment of early endosomal antigen 1 
(EEA1) (Chua and Wong, 2013) and class C core vacuole/ endosome tether complex 
(CORVET) to the phagosome membrane (Lawe et al., 2001; Peplowska et al., 2007). 4) 
VTPASE is then recruited to establish proton pumping in the phagosome lumen leading to 
acidification of the phagosome and further entailing particle breakdown (Poirier and Av-gay, 
2015). 5) Mon1-Ccz1 also known as the guanine nucleotide exchange factor (GEF) is 
recruited for the conversion of Rab 5 to Ras-related protein Rab 7 during the phagosome 
maturation process (Nordmann et al., 2010). 6) Rab 7 is vital for this process as it initiates 
the phagosome movement by associating with the Rab- interacting lysosomal protein (RILP), 
which therefore bridges the phagosome with dynein – dynactin (microtubule-associated 
motor complex) (Harrison et al., 2003). 7) Rab 7 recruits Lysosomal associated membrane-
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protein (LAMP1/ 2) and Vesicle associate membrane proteins (VAMP7/ 8) which are 
important for the fusion of the phagosome and lysosome (Huynh et al., 2007; Vieira et al., 
2002). 8) The change of the Rab proteins further causes the change to the early phagosome 
to a late phagosome and alters CORVET to homotypic fusion and vacuole sorting (HOPS 
(Rink et al., 2005). The oxysterol-binding protein homologue (ORPL1) is recruited by HOPS to 
localize late endosome with the late phagosome (Johansson et al., 2005). 9) The recruited 
proteins help to join the phagosome to the acidic lysosome by allowing the lysosome to 
pass through the plasma membrane and join the phagosome internally, making a 
phagolysosome complex. 10) Other SNARE proteins such as syntaxin 7/8 are recruited by 
the phagolysosome (Luzio et al., 2000) and help to increase the degradation processes 
within by further obtaining hydrolytic enzymes e.g. DNAses, lipases, proteases, nucleases 
etc (Yates et al., 2009). This overall leads to the breakdown of the cargo (micro-organism 
matter) within the phagolysosome (Poirier and Av-gay, 2015).  
 

Allen and Fok (1980) showed that vacuole membrane availability in a ciliate cell is limited; 

therefore, the food vacuole membrane has to be recycled in order to be reused for the 

production of new food vacuoles. Indigestible phagosomal cargo diffuses out through the 

cell membrane and into the cytoproct of the ciliate where it is expelled via the process of 

exocytosis (Allen and Wolf, 1974; Satir, 1989). The retromer complex proteins, Rab4, Rab10 

and Rab11 are then responsible for recycling other phagosomal cargo proteins back to the 

plasma membrane or trans- Golgi network to allow for new food vacuole formation 

(Damiani et al., 2004; Wollert and Hurley, 2010).  

 

Food vacuoles therefore have a definitive ‘life-span’ in a cell, known as the Vacuole Passage 

time (VPT) which includes the processes of ingestion, food vacuole formation and exocytosis 

(Allen and Fok, 1980; Capriulo and Degnan 1991). Thurman et al. (2010) reported that the 

minimum VPT in T. pyriformis was ca. 30 min but because the ciliate has only one cytoproct, 

and vacuoles need to queue inside the cell (in the order they were formed) before being 

exocytosed, some vacuoles are present in the cell for longer. Other studies have also 

suggested that the first vacuoles formed are the first to be defecated in T. pyriformis 

(Rothstein, 1974; Ricketts and Rappitt, 1976; Ricketts, 1979; Ricketts, 1983).  

 

1.6 Rationale and overall aim of this study 

The endocannabinoid system has been investigated as a potential target for the 

pharmacotherapeutic treatment of various diseases. However, many of the effects cannot 

be attributed exclusively to the activation of the more common cannabinoid receptors (e.g. 
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CB1 and CB2) and studies suggest cannabinoids can interact with a variety of other 

molecular targets (Bih et al., 2015). The use of a ciliate model to elucidate these ‘other’ 

targets is attractive because they do not possess any of the common receptors yet respond 

to exogenous cannabinoids. The overall objective of this study was therefore to examine the 

effect of exogenous CBD and AEA on prey ingestion and food vacuole formation in the 

ciliate T. pyriformis and deduce which stage of the feeding process was being affected by 

these cannabinoids.   
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2. Methods and Materials 

 

2.1. Organisms and maintenance 

 

2.1.1. Preparation and maintenance of prey 

The heterotrophic bacterium Klebsiella aerogenes (National Collection of Type Culture 

[NCTC] 9528) was grown as streak plates on Lysogeny Broth (LB) Agar plates (Appendix 1) 

and incubated at 25oC for 48 h. A concentrated cell suspension was made by pouring ca. 

10ml of sterile water onto two plates and dislodging the cells with a sterile spreader. This 

suspension was stored at 4oC and used to routinely feed the ciliate Tetrahymena pyriformis 

(see 2.1.2).  

 

The autotrophic bacterium Synechococcus sp. KH-3 (Dillon & Parry, 2008) was used as the 

main prey in experiments. It was grown in Blue Green 11 (BG 11) broth (Appendix 1) on a 

rotary shaker at 23oC, 7 days prior to experiments. Following this, 10ml sub-samples were 

centrifuged at 3500 rpm for 10 min and then 9ml of the supernatant was removed. The 

remaining 1ml samples were pooled to give a concentrated stock suspension.   

 

A suspension of 0.49µm diameter fluorescently-labelled yellow/green microspheres 

(‘beads’) (FluoresbriteTM Polyscience Inc.), of known particle concentration, was stored at 

4oC. The suspension was sonicated for 5 min prior to experiments.  

  

2.1.2. Preparation and maintenance of Tetrahymena pyriformis  

T. pyriformis was grown in 400ml Chalkley’s medium (Appendix 1) supplemented with ca. 

2ml of K. aerogenes suspension (2.1.1), at room temperature (23oC), 3 days prior to each 

experiment. Sixteen 15ml samples were centrifuged at 2000rpm for 15 min and then 14ml 

of the supernatant was removed. The remaining 1ml samples were pooled to give a 

concentrated stock suspension. Pulse-chase experiments (Section 2.6) required a ciliate 

suspension at a higher concentration, so more than 16 sub-samples were centrifuged and 

pooled, then re-centrifuged to concentrate cells further. This gave ciliate starting 

concentrations of at least 8 x 104 cells/ml.   
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2.2. Counting cells 

 

2.2.1. Counting T. pyriformis 

An aliquot (normally 100µl) of T. pyriformis suspension was fixed with glutaraldehyde (0.5% 

v/v final conc.), i.e., 5µl of 10% (v/v) glutaraldehyde was added to 100µl sample. The sample 

was loaded into 2 haemocytometers, each with 2 counting grids and viewed with a light 

microscope (x40 magnification). Each counting grid comprised 9 medium-sized squares and 

the number of cells in each was determined (36 squares in total). The average number of 

cells per square was multiplied by 104 to give cells/ml.  

 

2.2.2. Counting Synechococcus sp.  

Serial dilutions of the Synechococcus suspension were prepared down to 10-3. A 200µl 

sample was taken from either the 10-2 or 10-3 and filtered onto a 0.2µm pore-sized filter 

(Millipore) with the aid of a suction pump. The filter was placed onto a slide, on top of some 

immersion oil, and a drop of oil placed on top of the filter followed by a cover slip. A further 

drop of oil was placed onto the coverslip before viewing the slide with an epifluorescence 

microscope. Since the cells contain chlorophyll a, they fluoresce red under green excitation. 

The number of cells in randomly chosen Whipple Grids (housed in an eye-piece) was 

determined until at least 400 cells had been counted. The average number of cells/Whipple 

grid was multiplied by 23068 (to determine the number of cells on the filter) and knowing 

what volume and dilution of suspension had been used, the cell concentration (cells/ml) in 

the undiluted suspension was determined.  

 

2.2.3. Counting Synechococcus and beads inside ciliate cells 

Samples from experiments were fixed with glutaraldehyde (0.5% v/v final conc.) and 8µl 

applied to a slide, followed by a coverslip and drop of immersion oil. In pulse-chase 

experiments, ciliate concentration after the chase was too low to observe enough ciliates 

using this method so 1ml of fixed sample was filtered onto a 1.2µm pore-sized filter 

(Millipore) and mounted onto a slide as described in 2.2.2. The number of Synechococcus 

cells or beads, and the number of food vacuoles, in ten T. pyriformis cells were counted per 

replica sample to provide data on prey/cell (P/C), vacuoles/cell (V/C) and prey/vacuole (P/C 
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divided by V/C).  Synechococcus cells and fluorescent beads were counted under green and 

blue excitation, respectively.  

 

2.3. Cannabinoids and PPARα receptor agonist and blockers 

Cannabidiol (CBD) and Anandamide (AEA) (TOCRIS) were maintained as 10mM and 14.4mM 

stock solutions, in ethanol, respectively. They were stored at -20oC. The standard 

concentration used in experiments was 4µM (close to their IC50 values, Jones 2017): for an 

experimental tube containing 1ml of T. pyriformis, 40µl of 10-2 dilution of CBD or 28µl of 10-2 

dilution of AEA was used.  

 

The PPARα agonist, Oleoylethanolamine (OEA) (TOCRIS), and PPARα blocker, GW6471 

(TOCRIS), were both maintained as 10mM stock solutions, in ethanol, at -20oC.   

 

2.4. Effect of cannabinoids on Synechococcus sp. 

Synechococcus sp. was incubated with CBD and AEA (each at 4 and 8µM), in triplicate, for 

180 min. Cell concentration was determined at Tzero and T180h (see 2.2.2) and compared 

against the control (no AEA/CBD) to determine whether the bacterium was directly affected 

by the cannabinoids (it was not). 

 

2.5. Feeding Experiments 

 

2.5.1. Basic experimental procedure 

Experimental tubes contained 1ml T. pyriformis (variable concentration) and 1x107 cells/ml 

of Synechococcus. The ‘test’ tubes contained either CBD or AEA (normally 4µM) whilst the 

‘control’ tubes did not (all in triplicate).  Experiments were performed at 23oC and samples 

were removed throughout the experiment, fixed with glutaraldehyde and the P/C, V/C and 

P/V determined for each replicate (see 2.2.3) and then averaged. Each of the three 

parameters (±Standard Error of the Mean [SEM]) were plotted against time.  

 

To determine ciliate ingestion rate (prey/cell/min), linear regression analysis was performed 

on the initial linear portion of P/C vs time, for each of the triplicates. Any lag phase in 
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feeding (min) was determined from these linear regressions – where the line crossed the 

horizontal axis (P/C = zero). All data were then averaged (±SEM). 

 

2.5.2. The effect of AEA and CBD on prey ingestion by T. pyriformis 

Two 180 min experiments were performed to monitor the effect of AEA and CBD (both at 

4µM) on T. pyriformis feeding. Samples were removed every 2 min (until 30 min) and then 

every 5 min (from 35 min to 180 min) for the control. For the samples containing CBD and 

AEA samples were removed every 10 min (until 30 min) and then every 5 min (from 35 min 

to 180 min). Samples were fixed and processed as described in 2.5.1. 

 

2.5.3 Involvement of Synechococcus in feeding lag phase induced by cannabinoids 

In 2.5.2, both AEA and CBD induced a lag phase prior to feeding (see 3.3). To deduce 

whether this might be an indirect effect, due to absorption of cannabinoids into 

Synechococcus cells and subsequent effect on ciliate after ingestion, a 45 min experiment 

was performed. Synechococcus was pre-incubated with 4µM AEA or CBD for 1 h then 

washed 6 times (1 wash = centrifugation at 3500rpm for 10 min and replacement of 

supernatant with Chalkley’s medium followed by vortexing). Treated and untreated 

Synechococcus were fed to T. pyriformis and samples taken every 2 min (until 30 min) and 

then every 5 minutes (35 min to 45 min). Samples were fixed and processed as described in 

2.5.1. 

 

2.5.4 Effect of using a non-living prey on lag phase induced by cannabinoids 

To further prove that the cannabinoids were having a direct (and not an indirect) effect on 

the ciliate, a 180 min experiment was performed with fluorescent beads (Inert prey) 

following 2.5.2. 

 

2.5.5 The effect of AEA and CBD on vacuole trafficking and defecation by T. pyriformis 

This pulse-chase experiment was performed once and involved the monitoring of 

Synechococcus-containing food vacuoles in T. pyriformis over a 120 min period, with and 

without a ‘chase’ step (with/without CBD/AEA) at 15 min.  
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Controls: Three tubes contained T. pyriformis and 1x107 Synechococcus cells/ml only, were 

sampled every 5 mins from 0-120mins to determine V/C (‘Control – un-chased’ x3). At 15 

min, 0.5ml sub-samples from each tube was added to 24.5ml Chalkleys (a 1 in 50 dilution – 

the ‘chase’) and these were also sampled every 5 mins to 118 mins (‘Control – chased’ x3). 

This dilution aimed to reduce the Synechococcus prey concentration to such a level that it 

was no longer possible for the ciliate to consume it (or produce new fluorescent vacuoles), 

and allow the evaluation of the persistence of pre-existing vacuoles only from 15 to 118 

mins. To confirm that the dilution did stop feeding, three tubes containing T. pyriformis and 

Synechococcus at 2x105 cells/ml (‘Residual uptake’ x3), were included and sampled every 5 

mins to 120 mins to determine V/C.  

 

Tests: For each test (+CBD, +AEA), three tubes containing T. pyriformis and 1x107 

Synechococcus cells/ml only were sampled every 5 mins from 0-15 mins. Then, a 0.5ml sub-

sample from each tube was added to 24.5ml Chalkleys + cannabinoid (at 4µM) and 

subsequently sampled every 5 mins to 118 mins (‘Test – chased’ x3). Immediately after this, 

the cannabinoid was also added to the undiluted tubes (at 4µM) and sampled every 5 mins 

to 120 mins (‘Test – un-chased’ x3).  

 

All sub samples (100µl pre-chase, 1ml post-chase) were fixed with glutaraldehyde (0.5% 

final conc.) and V/C determined (see 2.2.3). Data post-chase were corrected for any residual 

formation of vacuoles. Rates of vacuole formation/loss were determined with linear 

regression analysis on each of the triplicates and then averaged (±SEM).  

 

2.5.6 Effect of cannabinoid concentration on lag phase and feeding rates  

Ninety-minute feeding experiments were performed with a range of CBD and AEA 

concentrations: 0 µM, 0.25µM, 0.5µM, 0.75µM, 1µM, 1.25µM, 1.5µM, 1.75µM, 2µM, 

2.25µM, 2.5µM, 2.75µM, 3 µM, 3.25µM, 3.5µM, 4 µM and 4.5µM. Samples were removed 

every 2 min (until 30 min) and then every 5 min until (90 min) for the control and every 5 

min (until 90 min) for both AEA and CBD. Samples were processed as described in 2.5.1 with 

prey/cell being determined up until at least two complete food vacuoles had been formed in 

the cell.  Graphs were plotted of ingestion rate and lag phase duration against cannabinoid 

concentration.  



 31 

2.5.7 Evaluating whether the molecular target for CBD is PPARα 

Wanlahbeh (2020) showed that blocking PPARα with the antagonist GW6471 completely 

alleviated CBD-induced cell death in T. pyriformis. Its effect on feeding was tested in a 

ninety-minute feeding experiment whereby T. pyriformis was treated with (i) CBD alone 

(4µM), (ii) the PPARα blocker GW6471 alone (10µM), (iii) CBD (4µM) with GW6471 (10µM) 

and (iv) no CBD or blocker (Control). Considering OEA is a natural ligand for PPARα, an 

additional experiment was performed alongside this with tubes containing, (i) OEA alone 

(45µM – its IC50 for T. pyriformis [Wanlahbeh, 2020]), (ii) GW6471 alone (90µM) and (iii) 

OEA (45µM) with GW6471 (90µM). Samples were taken over 90 min and processed as 

described in 2.5.1. 

 

2.6 Statistical analysis  

Data for two variables were statistically compared using an independent student t test. Data 

for more than two variables were compared using a one-way ANOVA, followed by a post-

hoc Tukey test. Both used a confidence limit of 95% (P≤0.05).  
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3. Results 
 
3.1. Effect of CBD and AEA on Synechococcus survival 

Synechococcus sp. was incubated with CBD and AEA (each at 4 and 8µM), and no 

cannabinoid (Control), for 180 min and cell concentration determined at Tzero and T180h 

(Table 3.1). There was no significant effect of either cannabinoid, at either concentration, on 

cell survival (ANOVA, P>0.05). 

 

Table 3.1: Synechococcus concentration (cells/ml) at Tzero and after incubation for 180 min 
(T180) with AEA or CBD (4 and 8µM) or no cannabinoid (Control). n=3. 
 

Treatment 
Cells/ml (±SEM) 

Tzero T180 
Control  1.17±0.31x108 1.05±0.43x108 
CBD (4µM) 0.96±0.16x108 1.00±0.44x108 
CBD (8µM) 1.11±0.11x108 1.08±0.24x108 
AEA (4µM) 0.98±0.52x108 1.02±0.50x108 
AEA (8µM) 1.06±0.15x108 1.13±0.10x108 

 

 

3.2. Effect of ‘pre-loading’ Synechococcus with CBD and AEA on T. pyriformis feeding 

Synechococcus was pre-incubated with 4µM AEA or CBD for 1 h then washed 6 times before 

feeding the cells to T. pyriformis. Untreated Synechococcus (Control) was also fed to the 

ciliate. There was no effect of feeding ‘pre-loaded’ Synechococcus to the ciliate (Figure 3.1) 

suggesting that if AEA/CBD showed a negative effect on the ciliate in later experiments, it 

would be due to a direct response on the ciliate cell itself and not an indirect response of 

ingesting an affected prey.  

 

3.3. Effect of CBD and AEA (4µM) on T. pyriformis feeding on Synechococcus 

Experiments were performed to examine the effect of AEA and CBD (both at 4µM) on T. 

pyriformis feeding on Synechococcus over a 3h period. Data for prey/cell and vacuoles/cell 

over time are shown in Figure 3.2 (data for prey/vacuole in Appendix 2).  
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Figure 3.1: T. pyriformis was fed with Synechococcus (‘Pico’) at 1x107 cells/ml and the 
average number (±SEM) of prey per ciliate cell was determined over 45 min. Pico-CBD and 
Pico-AEA had been pre-incubated with 4µM CBD or AEA, respectively while Control-Pico had 
not been pre-incubated with either cannabinoid.  Error bars are SEM. n=3. 
 

The untreated ciliate (Control) showed no lag period before feeding commenced (Figure 

3.2). Two phases of feeding were then recorded, before reaching satiation at ca. 150 min.  

There was an initial phase of feeding (Phase 1: 0-30 mins), followed by no feeding (30-50 

min), followed by a second phase of feeding (Phase 2: from 50 min) (Figure 3.2). The 

ingestion rate (IR) and vacuole formation rate (VFR) in the second phase were significantly 

lower (T-Test, P<0.01), being 60% and 33% the rate in phase 1, respectively (Table 3.2). In 

the presence of AEA, the ciliate exhibited a lag of 31.28±0.37 min (based on prey/cell) and 

29.89±0.80 min (based on vacuoles/cell) (Table 3.2); these were not significantly different to 

each other (T-Test, P=0.15). Following this, feeding proceeded in two phases. The IR and 

VFR in Phase 1 (30 to 50 min) were not significantly different to the rates exhibited by the 

Control in its Phase 1 (Table 3.2). Then, in Phase 2 (from 50 min) the IR and VFR were, (i) 

significantly lower (P<0.01) than the Phase 1 rates (IR at 83% and VFR at 47%) and, (ii) 

significantly higher than the rates exhibited by the Control in its Phase 2 (Table 3.2). At 

satiation, the AEA-treated cells contained the same number of prey as the Control, but the 

number of vacuoles and number of prey within those vacuoles was significantly higher 

(Table 3.2). 
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Figure 3.2: T. pyriformis was fed with Synechococcus at 1x107 cells/ml in the absence 
(Control) or presence of CBD and AEA (4µM). The average number (±SEM) of a) prey per 
ciliate cell and b) vacuoles per ciliate cell was determined over 180 min. n=6. 
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Table 3.2: Feeding parameters (average±SEM) when T. pyriformis feeds on Synechococcus 
(1x107 cells/ml) in the absence (Control) and presence of 4µM CBD (+CBD) or AEA (+AEA). 
Significantly different to control at P<0.05* or P<0.01** (Tukey’s HSD). CBD significantly 
different to AEA at P<0.05^ or P<0.01^^ (Tukey’s HSD). n=6. 
 
Parameter Control +CBD +AEA 
Phase 1 of feeding       
Lag phase (based on prey/cell) 0.00±0.00 59.13±0.27**^^ 31.28±0.38** 
Lag phase (based on vacuoles/cell) 0.00±0.00 57.82±0.45**^^ 29.89±0.80** 
Ingestion rate, IR (prey/cell/min) 1.23±0.05 2.32±0.13**^^ 1.00±0.09 
Vacuole formation rate, VFR 
(vacuoles/cell/min) 0.12±0.01 0.21±0.01**^^ 0.11±0.00 
Phase 2 of feeding       
Ingestion rate, IR (prey/cell/min) 0.74±0.03 0.91±0.02**^ 0.83±0.02* 
Vacuole formation rate, VFR 
(vacuoles/cell/min) 0.04±0.00 0.05±0.00**^^ 0.05±0.00** 
At satiation (150-180min)       
Prey/cell 98.48±0.77 97.17±0.53 98.13±0.57 
Vacuoles/cell 7.99±0.05 7.40±0.05**^^ 7.73±0.05** 
Prey/vacuole 12.15±0.11 13.02±0.11** 12.68±0.11** 

   

In the presence of CBD, the ciliate exhibited a lag of 59.13±0.27 min (based on P/C) and 

57.82±0.45 min (based on V/C) (Table 3.2); these were significantly different to each other 

(T-Test, P=0.03). Following this, feeding proceeded in two phases. The IR and VFR in Phase 1 

(60 to 75 min) were significantly higher than the rates exhibited by the Control and AEA-

treated cells in Phase 1; being twice as high (Table 3.2). Then, in Phase 2 (from 75 min) the 

IR and VFR were, (i) significantly lower (T-Test, P<0.01) than the Phase 1 rates (IR at 39% and 

VFR at 22%) and, (ii) significantly higher than the rates exhibited by the Control and AEA-

treated cells in their Phase 2 (Table 3.2). At satiation, the CBD-treated cells contained the 

same number of prey as the Control and AEA-treated cells but they contained significantly 

fewer vacuoles containing significantly more prey (Table 3.2). 

 

To further confirm that AEA and CBD were directly affecting the ciliate cells, one of these 3h 

experiments included fluorescent beads as the prey (Figure 3.3). The patterns of 

cannabinoid effects were the same as those obtained with Synechococcus, and no 

significant difference in calculation IR and lag phases was recorded (Table 3.3).  
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Figure 3.3: T. pyriformis was fed with 0.49µm fluorescent beads at 1x107 beads/ml in the 
absence (Control) or presence of CBD and AEA (each at 4µM). The average number (±SEM) 
of a) prey per ciliate cell and b) vacuoles per ciliate cell was determined over 180 min. n=3. 
 
 
 
 
Table 3.3: Average Phase 1 ingestion rate (prey/cell/min) and lag phase (min) (±SEM) when 
T. pyriformis feeds on Synechococcus (Pico) or 0.49µm diameter beads (1x107 beads/ml) in 
the absence (Control) and presence of 4µM CBD (+CBD) or AEA (+AEA). Same trends seen 
with both prey particles. n=3 (beads), n=6 (Pico). 
 

Treatment Lag phase (min) Ingestion rate (prey/cell/min) 
Control (Pico) 00.00±0.00 1.23±0.05 
CBD-Pico 59.10±0.27 2.33±0.31 
AEA- Pico 31.30±0.37  1.00±0.09 
Control (Beads) 00.00±0.00 1.80±0.26 
CBD-Beads 58.80±0.19 2.33±0.19 
AEA-Beads 36.40±0.44 1.77±0.11 
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3.4 Effect of CBD and AEA (4µM) on food vacuole passage time and defecation when T. 

pyriformis feeds on Synechococcus 

This experiment was performed once and involved the monitoring of Synechococcus--

containing food vacuoles in T. pyriformis over a 120 min period, with and without a ‘chase’ 

at 15 min (with/without CBD/AEA). The un-chased Control (Figure 3.4 – blue) behaved 

similarly to previous Controls in that vacuole formation was evident in Phase 1 (0-30 min), 

then vacuole formation stopped (30-55 min), then it started again in Phase 2 at a lower rate 

(Table 3.4). In the chased Control (Figure 3.4 – orange) the 1/50 dilution at 15 min was 

carried out in Chalkley’s medium which contained no Synechococcus, hence it stopped 

further feeding/vacuole formation and only the persistence of the 3 pre-formed vacuoles 

were monitored thereafter. These 3 vacuoles persisted in the cell until 55 min (the vacuole 

Passage Time, VPT), after which they were defecated in a linear manner at a rate of 

0.085±0.002 vacuoles/cell/min which was slower than the ingestion rate. All vacuoles were 

lost from the cells by 88 min (Figure 3.4).  

 

 
Figure 3.4: The average number of vacuoles/cell (±SEM) when T. pyriformis feeds on 
Synechococcus at 1x107 cells/ml, a) with no interruption (‘un-chased’) and b) when diluted 
1/50 at 15 min (‘chased’). n=3. 
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The chased Tests (Figure 3.5 – orange) showed a similar response to the Control (Figure 3.4 - 

orange). The presence of 4µM cannabinoid at 15 min did not significantly affect the vacuole 

passage time nor the defecation rates (Table 3.4); all cells needed ca. 12 min to defecate 

one vacuole.  

 
The un-chased Tests (Figure 3.5 – blue) behaved similarly to previous Tests (Figure 3.3) in 

that the addition of AEA/CBD at 15 min immediately halted vacuole formation (at 3 V/C), 

whereas the Control continued to form a 4th vacuole by 30 min (Figure 3.4). Lag phases 

were shorter than previously reported (Table 3.2) but the trend was the same in that, CBD 

resulted in a significantly (Tukey’s HSD, P<0.01) longer lag phase than AEA (Table 3.4). 

 

Table 3.4: Feeding parameters (average±SEM) when T. pyriformis feeds on Synechococcus 
(1x107 cells/ml) in the absence (Control) and presence of 4µM CBD (+CBD) or AEA (+AEA) 
and when (i) the CBD/AEA is added at 15 min (Un-chased) or, (ii) when the culture is diluted 
1/50 into Chalkley’s medium containing CBD/AEA (‘Chased’). Significantly different to 
control at P<0.05* or P<0.01** (Tukey’s HSD). CBD significantly different to AEA at P<0.05^ 
or P<0.01^^ (Tukey’s HSD). Phase 1 vacuole formation rate for the Control was determined 
between 0 and 30 min~. n=3. 
 

Parameter Control +CBD +AEA 
0-15 min       
Vacuole formation rate, VFR 
(vacuoles/cell/min) 0.18±0.01 0.19±0.01 0.17±0.01 

Post addition of cannabinoids in Tests       
Chased        
Vacuole passage time (min) 54.687±1.67 49.67±1.67 54.67±3.33 
Defecation rate (vacuoles/cell/min) 0.088±0.00 0.08±0.01 0.09±0.01 
Un-chased        
Lag phase (min) 0.000±0.000 45.00±0.00**^^ 21.67±4.41** 
Vacuole formation rate, VFR 
(vacuoles/cell/min) Phase 1 0.138±0.00~ 0.617±0.01**^^ 0.08±0.02*  

Vacuole formation rate, VFR 
(vacuoles/cell/min) Phase 2 0.048±0.00 0.04±0.00 0.04±0.00 
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Figure 3.5: The effect of a) CBD and b) AEA on the average number of vacuoles/cell (±SEM) 
when T. pyriformis feeds on Synechococcus at 1x107 cells/ml and when (i) 4µM AEA/CBD is 
added at 15 min (blue line) or, (ii) when the culture is diluted 1/50 into Chalkley’s medium 
containing 4µM CBD/AEA (orange line). n=3. 
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After this lag, AEA-treated cells exhibited a short Phase 1 (40-50 min), a short break (50-60 

min), followed by a longer Phase 2 (60-120 min) (Figure 3.5b). The Phase 1 vacuole 

formation rate (VFR) was significantly (Tukey’s HSD, P<0.05) lower than that of the Control, 

but this time, rates were equivalent in Phase 2 (Table 3.4). CBD-treated cells exhibited a 

very short Phase 1 (60-65 min), a very short break (65-70 min), followed by a short Phase 2 

(70-95 min) (Figure 3.5a). The Phase 1 VFR was significantly (Tukey’s HSD, P<0.01) higher 

than those of the other systems (14x higher), resulting in 4 vacuoles being produced in 5 

min. This rate was also 3-times higher than that reported for CBD in Table 3.2. The Phase 2 

VFR was also equivalent to that of the Control and AEA-treated cells (Table 3.4). 

 
Now knowing that vacuole defecation is occurring in Phase 2, the VFR in this Phase would 

be a Net rate (formation and defecation). Therefore, defecation rate was subtracted from 

this Net VFR, in each triplicate, to provide a Gross VFR for Phase 2. Resultant rates were 

remarkably similar and not significantly different to each other (ANOVA, P=0.79): 0.13±0.00, 

0.12±0.01 and 0.13±0.01 vacuoles/cell/min for Control, CBD- and AEA-treated cells, 

respectively. These rates were equivalent (ANOVA, P=0.625) to the Phase 1 VFR of the 

Control (0.13±0.00 vacuoles/cell/min, Table 3.4); a Gross rate calculated over the first 30 

min of feeding where no defecation of fluorescent vacuoles occurs due to their VPT being 

55 min (Table 3.4). Thus, Control Phase 1 and Phase 2 Gross VFRs were equivalent and 

CBD/AEA did not appear to affect this Phase 2 rate.  

 

3.5. Effect of CBD and AEA concentration on T. pyriformis feeding on Synechococcus 

With the knowledge that CBD and AEA significantly affects Phase 1 of the ciliate feeding 

process, the effect of different concentrations of AEA and CBD on the feeding lag (if present) 

and instantaneous ingestion rates were examined (Figure 3.6). Two features were common 

to both AEA and CBD. Both caused a significant (ANOVA, P<0.01) reduction in ingestion rate 

(compared to the Control), with no lag, at 1.75µM and 2µM, then both caused a significant 

(ANOVA, P<0.01) lag from 2.25µM onwards (Figure 3.6). Differences were then evident at 

concentrations >2.25µM.  

 

AEA-treated cells showed a gradual increase in both lag time and ingestion rate from 

2.25µM until a plateau was reached at 3µM (Figure 3.6b) and where ingestion rate was 
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equivalent to the Control (ANOVA, P>0.05). CBD-treated cells maintained a lag of ca. 30 

mins, with low ingestion rate, between 2.25µM and 3µM, and then both parameters 

increased gradually until they plateaued at 3.5/4µM (Figure 3.6b).  

 

  

 
Figure 3.6: The effect of a) CBD and b) AEA concentration (µM) on (i) the duration of the lag 
phase and (ii) instantaneous ingestion rate (following that lag phase, if one is present), when 
T. pyriformis feeds on Synechococcus at 1x107 cells/ml. Data are averages (±SEM). n=3.  
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What is evident in both cases is that lag and ingestion rate patterns mirror each other very 

closely and there is a good correlation between them (Figure 3.7). This suggests that the 

feeding rate post lag, is a direct consequence of the length of that lag.   

 

 
Figure 3.7: Relationship between the length of the cannabinoid-induced lag phase and 
subsequent instantaneous ingestion rate that follows, in T. pyriformis, using data in Figure 
3.6. n=3. 
 
 

 

3.6. Effect of blocking PPARα on CBD effects on T. pyriformis feeding on Synechococcus 

The effect of blocking the PPARα receptor with GW6471 (10µM), on CBD (4µM) induced lag 

and feeding was tested. Results showed that the blocker alone had no effect on the ciliate 

ingestion, and it did not alleviate the lag or subsequent increased ingestion rate in the 

presence of CBD (Figure 3.8a).  

 

Considering OEA is a natural ligand for PPARα, an additional experiment was performed to 

test whether OEA at its IC50 for T. pyriformis cell death (45µM, Wanlahbeh, 2020) affected 

feeding. Results showed that OEA had no effect, and hence the blocker (90µM) also had no 

effect (Figure 3.8b).  
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Figure 3.8: The effect of blocking PPARα with GW6471 on the feeding of T. pyriformis on 
Synechococcus at 1x107 cells/ml, a) in the presence of CBD, b) in the presence of OEA. Data 
are average ingestion rates (±SEM). 10 = blocker at 10µM, 90 = blocker at 90µM. n=6. 
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4. Discussion 

 

4.1 Summary of major findings 

The overall aim of this study was to examine the effect of exogenous CBD and AEA on prey 

ingestion and food vacuole formation in the ciliate Tetrahymena pyriformis. A naturally 

fluorescent bacterial prey was employed, Synechococcus sp., which is indigestible to this 

ciliate (Thurman et al., 2010) and hence remained visible throughout its journey from 

ingestion to defecation. In addition, this bacterium was shown to be unresponsive to CBD 

and AEA thus any effect of these cannabinoids on the ciliate would be a direct effect on the 

ciliate cell as opposed to it being an indirect effect of ingesting an affected prey.  

 

The feeding dynamics of T. pyriformis, in the absence of cannabinoids, showed an initial 

bout of feeding (Phase 1), then a break, followed by a second bout of feeding (Phase 2), 

which had an ingestion rate that was significantly lower than that in Phase 1. Both CBD and 

AEA consistently affected Phase 1 only although this appeared to have nothing to do with 

food vacuole trafficking or defecation, as these were unaffected by both cannabinoids. 

 

Both AEA and CBD caused a reduction in Phase 1 ingestion rate at 1.75µM and 2µM, and 

then a cessation in feeding at 2.25µM. The length of this lag was variable and the 

subsequent ingestion rate that followed appeared to reflect the duration of the lag, i.e., 

longer lag gave rise to increased ingestion rate. At 4µM, AEA cause a lag of 30-36 min 

followed by an ingestion rate that was equivalent to the control. CBD, on the other hand, 

caused a lag of ca. 60 min followed by an ingestion rate that was greater than the Control 

(hyperphagia). Neither the lag nor the hyperphagia caused by CBD were prevented by 

blocking the PPARα receptor.  

 

4.2. Bacterial interactions with cannabinoids  

The prey used in the current study was a freshwater cyanobacterium, Synechococcus sp. 

(‘Pico 3’). This genus is characterized as a photosynthetic Gram-negative bacterium (Perkins 

et al., 1981) that, in addition to Chlorophyll a, contains the accessory light-harvesting 

pigments phycoerythrin and phycocyanin (Ficner and Huber, 1993). Freshwater species, 
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such as Pico 3, contain more phycocyanin than phycoerythrin, giving the culture a ‘blue-

green’ appearance (Bryant, 1982; Six et al., 2007); marine species contain more 

phycoerythrin than phycocyanin, giving the culture a pink appearance (Six et al., 2007; 

Taylor et al., 2013).  

 

It was important to investigate whether this bacterium responded to AEA and CBD itself, as 

if it did, then any effect of these cannabinoids on the ciliate might be due to an indirect 

effect of ingesting an affected prey, rather than being a direct effect on the ciliate. Data 

showed that Synechococcus concentration was not affected by CBD/AEA over a 180 min 

period (Table 3.1), suggesting it is unresponsive to these cannabinoids. 

 

Cannabis sativa has long been recognized as possessing strong anti-bacterial properties 

(Appendino et al., 2011) however, Gram-positive bacteria have been shown to be more 

susceptible than Gram-negative bacteria. Crude extracts from C. sativa leaves can inhibit the 

growth of Gram-positive bacteria (Staphylococcus aureus) and, to a lesser extent, Gram-

negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae) (Lone and 

Lone, 2012; Mkpenie et al., 2012; Anjum, 2018). The observed antimicrobial activity has 

been attributed to polyphenols as there is a strong correlation between anti-microbial 

activity and polyphenol content of those extracts tested (Mkpenie et al., 2012). Polyphenols 

interact with the peptidoglycan in bacterial cell walls which is highly accessible in Gram-

positive cell walls but covered by an extensive lipopolysaccharide (LPS) layer in Gram-

negative cell wall which hinders the peptidoglycan-polyphenol interaction (Nohynek et al., 

2006; Cui et al., 2012).   

 

Studies that have examined the direct effect of cannabinoids on bacterial survival also show 

the trend of Gram-positive strains being more susceptible than Gram-negative strains but 

the mechanism behind this is unknown. Van Klingeren and Ham (1976) recorded minimum 

inhibitory concentrations (MICs) of 2-5µg/ml and 1-5µg/ml for Δ9-THC and CBD, 

respectively, against various strains of Gram-positive Staphylococcus aureus and 

streptococci (Streptococcus pyogenes, S. milleri, S. faecilis).  The Gram-negative Escherichia 

coli, Salmonella typhi and Proteus vulgaris were considered resistant (MIC >100µg/ml). 

Using another cannabinoid, Cannabichromene (CBC), Turner and Elsohly (1981) recorded 
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MIC values of 0.78, 1.56 and 25µg/ml with the Gram-positive Bacillus subtilis, S. aureus and 

Mycobacterium smegmatis, respectively. Although the MICs for the Gram-negative E. coli 

and Pseudomonas aeruginosa were not reported, the authors stated that these strains were 

‘less sensitive’; indicating an MIC >25µg/ml (highest concentration tested). Appendino et al. 

(2008) compared the potency of C. sativa’s five main cannabinoids, CBC, CBD, Δ9-THC, 

Cannabigerol (CBG) and Cannabinol (CBN), against strains of methicillin-resistant S. aureus 

(MRSA). MIC values ranged from 0.5-1µg/ml (CBD), 0.5-2.0µg/ml (Δ9-THC), 1.0µg/ml (CBN) 

and 1.0-2.0µg/ml (CBC, CBG), which although very similar (ca. 1.6-6.4µM) suggesting that 

CBD is the most toxic of all five.  

 

Results from the current study agree that a Gram-negative bacterial strain, Synechococcus 

sp., was not inhibited by CBD. The concentrations used (4 and 8µM) were close to the range 

of MICs recorded for Gram-positive cell susceptibility to CBD (Klingeren and Ham, 1976; 

Appendino et al., 2008). However, even though Synechococcus cell concentration was not 

affected, there might still be the possibility that the cannabinoids entered the cells and 

remained there. If this were the case, then any CBD/AEA within Synechococcus cells might 

indirectly affect the ciliate, post-ingestion. This was tested by pre-incubating Synechococcus 

with 4µM AEA/CBD for 1h, washing the cells and then feeding them to T. pyriformis. Results 

showed that these ‘pre-loaded’ cells were ingested at the same rate as untreated cells and 

there was no negative effect on the ciliate (Figure 3.1).  

 

This lack of effect might have something to do with the fact that Synechococcus cells are 

indigestible to T. pyriformis (Thurman et al., 2010), i.e., lack of digestion would mean a lack 

of release of prey-harboured AEA/CBD in the ciliate’s food vacuole. It would be interesting 

to repeat this pre-loading experiment with a digestible bacterial prey (which showed no 

obvious response to AEA/CBD based on cell survival) to see whether any cannabinoid is 

harboured by the bacterial cell and subsequently released into the ciliate cell upon prey 

digestion. It might be possible to test the extent of CBD harbouring in bacterial cells with the 

use of Fast Blue B salt reagent, in combination with thin layer chromatography (TLC); a dye 

which stains CBD orange and THC red (Ardrey, 2005).  Binder and Meisenberg (1978) used 

this dye, and TLC, to monitor the metabolism of THC by 15 bacterial strains (strains of 

Azotobacter, Bacillus, Proteus, Pseudomonas, Serratia and Streptomyces). The Gram-



 47 

positive strains showed some ability to metabolise THC although this was highly variable 

and occurred to a lesser extent to that of fungi. The three Gram-negative strains did not 

metabolise THC. It would be useful to extend the study of Binder and Meisenberg (1978) to 

specifically evaluate whether CBD actually enters the cells of Gram-negative bacteria, as 

Synechococcus is itself Gram-negative.  

 

However, for the current study, Synechococcus still represented a cannabinoid-

unresponsive, fluorescent and indigestible prey which allowed its cells to be visualised 

inside the ciliate for the full duration of a 3h experiment.  

 

4.3 Tetrahymena pyriformis feeding on Synechococcus in absence of CBD and AEA 

In the current study, T. pyriformis exhibited no lag period before feeding commenced on 

Synechoccocus (Figure 3.2). Two phases of feeding were then recorded.  There was an initial 

phase (Phase 1: 0-30 mins), followed by a period of no feeding (30-50 min), and then a 

second phase of feeding (Phase 2: from 50 min). The ingestion rate and vacuole formation 

rate in the second phase were significantly lower than the rates in Phase 1 (Table 3.2).  

 

Such patterns in T. pyriformis feeding have been recorded previously at Lancaster (Jones, 

2017; Ballard, 2018) but there is no information in the literature as to the reason behind this 

pattern; particularly the observed break in feeding. This might be because most published 

studies have focus on instantaneous ingestion rates only (aka ‘Phase 1’) and by using short 

incubation times (e.g. Jonsson, 1986) the feeding break and Phase 2 has not been observed. 

In those studies which have monitored prey ingestion over longer periods of time, longer 

sampling intervals (10 min) than those used in the current study (2 and 5 min) might have 

led to the two distinct phases, and break, being missed with an average ingestion rate 

(incorporating Phases 1 and 2, and break) being deduced instead (e.g. Chrzanowski and 

Šimek, 1990).  

 

In the current study, results from the pulse-chase experiment, where vacuole trafficking and 

defecation were monitored, confirmed that defecation of prey was occurring in Phase 2. So, 

the calculated Phase 2 rate of the Control would be a Net rate (vacuole formation and 

defecation). When defecation rate was subtracted from this Net rate, the resultant Gross 
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rate was equivalent to that in Phase 1; which itself is a Gross rate calculated over the first 30 

min of feeding where no defecation of fluorescent vacuoles occurs due to their VPT being 

55 min (Table 3.4). Therefore, there appears to be no real change in vacuole formation rate 

between the Phases, it only looks that way because net rates are always presented, though 

not acknowledged, and pulse-chase experiments are not routinely performed alongside 

feeding experiments to determine Gross rates. Data therefore suggests that for a given 

prey, temperature, concentration etc., the rate of Gross vacuole formation might proceed at 

a defined rate (like a ‘conveyor belt’).   

 

Published data on ‘Phase 1’ (instantaneous) feeding of ciliates on Synechococcus, for 

comparison purposes, are rare. Thurman et al. (2010) recorded a vacuole formation rate of 

0.444±0.017 vacuoles/cell/min, and a corresponding defecation rate of 0.137±0.004 

vacuoles/cell/min, with the same T. pyriformis strain as the current study (and temperature) 

but feeding on Synechococcus sp. S-KH5 at 2x107 cells/ml. These rates are higher than those 

recorded in the current study (Table 3.4) possibly due to the use of a different prey strain, 

and a higher concentration. It does however confirm the finding in the current study, in that 

that defecation rate was slower than ingestion rate. It also demonstrates that 

ingestion/vacuole formation rate and, to a lesser extent, defecation rates are variable, and 

dependent on prey strain and concentration. 

 

It is currently unknown as to why T. pyriformis would exhibit a break from feeding in- 

between Phases 1 and 2, but it might have something to do with the availability of food 

vacuole membrane, the volume of which is limited in a cell and needs to be constantly 

recycled (Fok et al., 1982; Plattner., 2010). The maximum volume of vacuole membrane in T. 

pyriformis can be crudely estimated from experimental data (Table 3.2) and by knowing the 

biovolume of a Synechococcus S-KH3 cell (0.588±0.031µm3, Wong 2017). In the current 

study, at satiation (150 min), T. pyriformis contained ca. 8 vacuoles each containing ca. 12 

cells when fed with 1x107 Synechococcus cells/ml (Table 3.2). This equates to ca. 56µm3 of 

vacuolar membrane needed to surround these prey cells. Jones (2017) and Ballard (2018), 

using the same T. pyriformis strain but with different concentrations of Synechococcus S-

KH3 (1x108 and 2x107 cells/ml, respectively) recorded, 6 vacuoles containing 15 prey (ca. 

53µm3 membrane) and 9 vacuoles containing 9 prey (ca. 48µm3 membrane), respectively, at 
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satiation (30 and 70 min, respectively). This suggests that only ca. 48-56µm3 of membrane is 

available for food vacuole manufacture in this strain of T. pyriformis. The author cannot find 

any published estimates of the volume of available food vacuole membrane in any protistan 

cell, to which this estimate could be compared.   

 

All T. pyriformis cultures in the current study were 3-days old, having been fed on K. 

aerogenes, and would be in their mid/late stationary phase of growth at the start of an 

experiment (Parry, personal communication). It is likely that the full amount of membrane 

for vacuole formation to enclose newly ingested Synechococcus would not be available, due 

to the presence of pre-existing food vacuoles containing non-fluorescent K. aerogenes cells. 

It is therefore hypothesised that, in the current study, all the available membrane was used 

to ingest Synechococcus in Phase 1 (between 0-30 min) and deposit them into four new 

food vacuoles. But when this membrane became unavailable (at 30 min), ingestion ceased; 

suggesting the ciliate cells already contained 4 pre-existing food vacuoles (8 vacuoles/cell = 

satiation, Table 3.2). Under these circumstances the cell would have to wait for pre-existing 

vacuoles to be defecated at the cytoproct so that their membrane could be recycled, to 

allow ingestion to start again (after 50 min). Based on the length of time of this feeding 

break (20 min), this might involve the defecation of one pre-existing vacuole (takes 12 

minutes, Table 3.4) with a further 8 minutes being necessary for the recycling process to be 

complete, although the author can find no published data on how long the recycling process 

actually takes in protistan cells. Future experiments could stain T. pyriformis cells at Timezero 

with 4,6-Diaminide-2-phenylindole dihydrochloride (DAPI) to visualise ingested K. aerogenes 

and determine the number pre-existing food vacuole in cells, to see if there is a relationship 

between ‘fullness’ and the observed ingestion dynamics.  

 

4.4 The effects of CBD and AEA on Tetrahymena pyriformis feeding 

The feeding of T. pyriformis, on Synechococcus and fluorescent beads, was examined in the 

presence of 4µM CBD and AEA. This concentration was chosen as it is close to the IC50 

values for both compounds when tested against this T. pyriformis strain (CBD, 4.38µM, AEA, 

3.78µM, Jones 2017). Results showed that neither cannabinoid affected the trafficking of 

food vacuoles in the ciliate cell nor did they affect the Gross vacuole formation in Phase 2. 

At satiation they had no significant effect on prey/cell and even though significance was 
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found for lower vacuoles/cell with higher prey content in their presence, data were 

incredibly similar.  

 

The only phase that was obviously affected by the cannabinoids, was the initial phase of 

ingestion/vacuole formation (Phase 1) (Figure 3.6). Here, both caused the complete 

cessation of ciliate feeding for a given period of time (feeding lag), with CBD inducing a 

significantly longer lag (ca. 60 min) than AEA (ca. 36 min) at 4µM. Following this lag, feeding 

resumed and AEA-treated cells had equivalent rates to the Control by 3µM, while CBD-

treated cells had increased rates (hyperphagia) compared to those of the Control and AEA-

treated cells by 3.5µM (Figure 3.6).  

  

4.4.1 Effect on CBD and AEA on T. pyriformis capacity to feed 

Both cannabinoids stopped T. pyriformis feeding for a given amount of time (the lag) 

(Figures: 3.2, 3.3, 3.5 3.6, 3.8 and Tables: 3.2, 3.3, 3.4) but the mechanism behind this is 

currently unknown. One possibility was that the lag was related to cell death, since 4µM of 

either cannabinoid would induce the death of ca. half the population by 90 min (Jones, 

2017). However, for CBD at least, this does not seem to be the case and the feeding lag 

appears to be independent of cell death. Firstly, the dose response experiment showed that 

a concentration of 2.25µM was required to induce a lag (feeding was reduced at 1.75 and 

2µM) (Figure 3.6). CBD does not induce cell death in T. pyriformis until 3.16µM (the MIC) 

(Jones, 2017), thus the observed induction of the lag (and reduction in feeding) occurred in 

the absence of cell death. Secondly, T. pyriformis cell death can be completely prevented by 

blocking the PPARα receptor (Wanlahbeh, 2020). In the current study, the blocking of this 

receptor had no effect on the lag phase (or feeding rate) of T. pyriformis in the presence of 

4µM CBD (Figure 3.8), suggesting different targets are used by CBD for causing cell death 

and affecting feeding.  

 

The case for AEA not being associated with cell death is less strong. It mirrored the action of 

CBD in that a lag was induced at 2.25µM (and feeding was reduced at 1.75 and 2µM) (Figure 

3.6). But its MIC is lower, being 1.17µM (Jones, 2017) and therefore, unlike CBD, the AEA 

effects on lag (and feeding) at these concentrations would be accompanied by cell death. 

Secondly, Wanlahbeh (2020) showed that blocking PPARs had no effect on AEA induced cell 
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death and because she did not identify the receptor involved, the current study could not 

block a ‘death-receptor’ to see if it also stopped the effect on feeding.  

 

One thing that is common to both cannabinoids is that T. pyriformis cell death in the 

presence of any concentration of AEA/CBD only occurs for 90 min, after which cells start to 

recover (Wanlahbeh, 2020). This response has been observed previously with T. pyriformis 

in the presence of Δ9-THC but the time taken for the start of recovery was not stated 

(McClean and Zimmerman, 1976). Neither CBD nor AEA induced a lag of 90 min to correlate 

with the length of population cell death. Also, when feeding resumed after their ca. 30-36 or 

60 min 4µM-induced lag, respectively, cells would have still been dying. This, although not 

as strong a case as CBD, suggests that the action of AEA on the feeding process might also 

be independent of cell death but further work is necessary to confirm this.  

 

With the knowledge that the cannabinoid effect of feeding is possibly independent of cell 

death and considering AEA and CBD both instigate a lag at the same concentration 

(2.25µM), it suggests that they might be acting on the same target with equivalent efficacy. 

If they did, the difference in lag times they induce might then be related to the capacity of T. 

pyriformis to degrade these cannabinoids within the cell. 

 

A FAAH-like enzyme is known to metabolise AEA in T. pyriformis and T. thermophilia (Karava 

et al., 2001, 2005). Moreover, Anagnostopoulos et al. (2010) showed that even though the 

FAAH in T. thermophila could hydrolyse all of its endogenous NAEs, the highest enzyme 

activity was evident with AEA even though it was the least abundant NAE in the cell. At 100 

µM AEA, ca. 106 T. thermophila cells/ml hydrolysed 4.9 nmol AEA in 1 min at possibly 27oC 

(temperature inferred but not stated) (Anagnostopoulos et al., 2010). This suggests the 

ciliate population would require a period of 204 min to fully hydrolyse 1µM AEA at this 

temperature. Estimates for other cell types are rare but Kaczocha et al. (2006) showed that 

106 rat basophilic leukaemia cells (RBL-2H3) hydrolysed 89% of AEA (0.1µM) in 5 min at 

37oC. This suggests the population would require a period of 56 min to fully hydrolyse 1µM 

AEA at this temperature. The current study tested 1µM AEA (Figure 3.6) at 23oC with ca. 105 

cells (Section 2.1.2) and found no effect of AEA on lag induction (or feeding), even though 
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AEA would have been present in the cell as its hydrolysis would be even slower than those 

calculated above.  

 

There are currently no reports on the metabolism of CBD within ciliate cells. In humans, CBD 

is metabolised by cytochrome P450 (CYP450) oxidases, sulfotransferases and glucuronyl 

transferases (Ujváry and Hanus, 2016). Homologues of the first two are present in T. 

thermophila (www.ciliate.org) however only CYP450 oxidases have been thoroughly studied 

in other cells. Cytochromes P450 (CYPs) are a family of enzymes containing heme as a 

cofactor that function as monooxygenases (Jeffreys et al., 2018). In mammals, CYP450s are 

necessary for the detoxification of foreign chemicals and the metabolism of drugs (Šrejber 

et al., 2018). Even though there are more than 50 CYP450 enzymes, only six of them 

(CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) are responsible for metabolising 

90 percent of medicinal drugs, including CBD (Lynch and Price, 2007). CBD undergoes 

extensive hydroxylation and further oxidations by these enzymes which results in some 100 

CBD metabolites with the major metabolites being derivatives of CBD-7-oic acid (7-COOH-

CBD) (Ujváry and Hanus, 2016). T. thermophila contains two CYP homologues, i.e., CYP13A1 

(WBGene00011677) and CYP13A3 (WBGene00011675) (www.ciliate.org). These are 

members of the CYP13 family which is a member of the CYP3 clade (Yan and Cai, 2010), 

within which CYP3A4 and CYP3A5 are two of the six important CYPs for the metabolism of 

CBD. Thus, it is conceivable that Tetrahymena has the ability to metabolise CBD, but this has 

yet to be tested. Future work could include exogenous FAAH and CYPs into the feeding 

experiments to see if these reduce the extent of the feeding lag.  

 

It is therefore unlikely that the mere presence of AEA or CBD in T. pyriformis cells induces a 

feeding lag, so they must be reacting with something, such as a protein, to cause this effect. 

Identifying their target is difficult, but the first stage would be to discern what stage in the 

feeding process was being affected by them. The fact that neither affected the trafficking of 

fully-formed vacuoles through the cell, or their defecation rate (Table 3.4), suggests that 

their target is either, (i) vacuole recycling from cytoproct to cytostome and/or the formation 

of a new phagocytic cup thus preventing any ingestion of captured prey or, (ii) prevention of 

prey capture, which is possibly receptor-mediated, so there is nothing to ingest into an 

awaiting phagocytic cup. Separating out the processes of prey capture and ingestion is 
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difficult as both are so closely coupled and prey/cell or vacuole/cell will not increase if either 

one is impaired. However, examination of the ingestion rates in the presence of these 

cannabinoids might offer some clue as to which stage of the process is most likely the 

target. 

 

4.4.2 Effect of CBD and AEA on T. pyriformis ingestion rates  

Both cannabinoids caused a reduction in feeding at 1.75 and 2µM with no lag (‘direct 

effect’) and then, when a lag was present, the subsequent ingestion rate increased and 

correlated strongly with the duration of this lag, i.e., the longer the lag the higher the 

ingestion rate afterwards (Figure 3.7). The latter response therefore appears to be a 

‘domino effect’ with changes in ingestion rate being a consequence of the lag period 

duration (‘indirect effect’).  

 

The direct effect was equivalent between CBD and AEA (MIC >1.5<1.75µM), after which 

analysis was complicated by the presence of a lag phase, and its own indirect effect on 

feeding. This experiment was only performed once and requires repeating to confirm the 

data. But, numerous experiments with 4µM did confirm that a lag does occur and that this 

differs between AEA and CBD with regards to its duration and rate of feeding afterwards.  

 

With regards to this ‘indirect effect’, it could be due to either of the two potential 

cannabinoid targets in the feeding process, i.e., prevention of vacuole recycling or prey 

capture. If CBD/AEA completely stopped vacuole recycling/phagocytic cup formation, but 

prey capture was unaffected, T. pyriformis cells might accumulate prey at the cytostome 

during the lag period. When vacuole membrane then became available, more prey would be 

present (locally) to give rise to higher ingestion rates (compared to the cannabinoid-induced 

low rate). However, there are some observations which question this hypothesis. The first 

questions whether there would be enough food vacuole membrane available at the 

cytostome to capture this higher number of prey, if recycling had been completely halted 

beforehand. When examining the feeding behaviour of Control cells (Figures 3.2, 3.4) the 

break in feeding between Phase 1 and Phase 2 was considered to be due to a lack of 

available membrane (cells were ‘full’); these cells would have had a fully functional capture 

mechanism (Section 4.3). However, if prey cells had accumulated at the cytostome of these 
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Control cells, why was the Gross ingestion rate after the break (in Phase 2) not higher than 

that in Phase 1? This suggests that membrane recycling is governing the process of 

ingestion, even if prey capture is enhanced.  

 

The second observation relates to the rate of this membrane recycling. It would be expected 

that if AEA- and CBD-treated cells fully recovered after the lag period, this rate would be 

equivalent in each of the treated cells so subsequent ingestion rate should also be 

equivalent. This was not recorded. For example, when a 30 min lag was induced (Figure 3.6), 

AEA-treated cells had a post-lag ingestion rate of ca. 1.5 prey/cell/min, which was higher 

than those at 1.75 and 2µM and thus conformed with the hypothesis. CBD-treated cells, on 

the other hand, had a post-lag ingestion rate of ca. 1 prey/cell/min which was significantly 

lower than that of AEA-treated cells (P<0.05) and equivalent to those at 1.75 and 2µM CBD; 

no increase in rate which does not conform to the hypothesis. The final observation is that 

when counting prey ingestion in T. pyriformis cells, the author has never seen an obvious 

accumulation of fluorescent Synechococcus cells at the cytostome in cannabinoid-treated 

cells.  

 

There is also much evidence to suggest a similarity between the cellular machinery required 

for recycling/phagocytic cup formation and vacuole trafficking, and the latter was shown to 

be unresponsive to AEA or CBD treatment. Studies on the ciliate Paramecium have 

confirmed that actin microfilaments are associated with phagocytosis (Cohen et al., 1982), 

playing a role in the formation of the phagocytic cup, migration of newly formed food 

vacuoles into the cell and fusion with acidic-lysosomes (Allen and Fok, 1983 a-c). Actin 

microfilaments have also been shown to play a role in the formation of food vacuoles 

(Tiggemann and Plattner, 1981; Tiggemann et al., 1981) and their transit in Tetrahymena, 

after binding to heavy meromyosin (HMM- proteolytic fragment of myosin) (Méténier, 

1984). Being involved in both the trafficking and formation of vacuoles renders actin an 

unlikely target for AEA and CBD. 

 

Another element that may be inclusive in the ciliates’ cytoskeleton is Dynamin. Although it 

is yet unclear the exact methodology and involvement of dynamin in phagocytosis in 

different organisms; previous studies have indicated that it may contribute to the actin-
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dependent processes involving actin-binding protein 1 (ABP1) in mammals (Kessels et al., 

2001) and yeast (Rooij et al., 2010). In mammalian cells, it has been observed that knocking 

out Dynamin 1 and 2 leads to elongated microtubules which do not pinch off and cannot be 

stabilized by F-actin, which is essential for phagosome processing (Ferguson et al., 2009). 

Lack of Dynamin A in Dictyostelium cells has shown defects in acidification process carried 

out by lysosomal enzymes as well as the binding of early phagosomes which is mediated by 

F-actin (Gopaldass et al.,2011) Dynamin 2 has also demonstrated involvement in the 

phagocytosis process in macrophages (Gold et al., 1999), particularly regulating the vacuole 

processing (exocytosis) during phagocytic cup formation (Di et al., 2003). Considering that 

the latter is not affected by AEA or CBD it is unlikely that recycling/cup formation is affected 

also. If it was, the target would be a distinctly different component of the cytoskeleton. 

   

On balance, it appears that the more likely candidate target might be the process of prey 

capture. If prey capture completely stopped, but vacuole recycling/phagocytic cup 

formation was unaffected, cells would accumulate membrane at the cytostome (since 

vacuole trafficking and defecation would be occurring); but prey would still not be ingested. 

Then, when prey capture resumed, ingestion could proceed at a rate determined by the 

amount of accumulated membrane available at the cytostome. The limiting factor for 

ingestion might then be prey capture. If this were so, it would be expected that, at a given 

prey concentration and temperature, ingestion rates between experiments would be 

equivalent. In the current study Phase 1 ingestion rates were variable even though a 

standard prey concentration of 1x107 Synechococcus cells/ml at a temperature of 23oC was 

used, i.e., 1.23±0.05 prey/cell/min (Table 3.2), 1.80±0.26 prey/cell/min (Table 3.3), 

1.58±0.12 prey/cell/min (Figure 3.6) and 1.19±0.04 prey/cell/min (Figure 3.8). Such 

differences using a single prey concentration have been observed by others and the 

accepted explanation is that it is due to variations in the nutritional and physiological 

conditions of the protist at the start of the experiment, i.e., starved cells feed faster than 

well-fed cells (Boenigk et al., 2001). Although T. pyriformis was grown on K. aerogenes for 3 

days prior to each experiment, the level of prey was not standardised and thus, slight 

variations in their ‘fullness’ would be expected at the start of experiments. However, what is 

evident is that ingestion rate (possibly via capture) adjusts very quickly to exploit whatever 

membrane is available.   
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4.4.3 Possible targets within T. pyriformis for AEA and CBD  

It is hypothesised that AEA and CBD completely stops prey capture but that pre-existing 

vacuoles are trafficked and defecated as normal, and membrane is recycled to the 

cytostome where it accumulates. A lag of 60 min would allow the accumulation of more 

membrane than a 30 min lag and is the possible reason as to why ingestion rates of the 

former are higher (with CBD). However, there currently is no explanation as to why a lag of 

30 min would result in significantly different ingestion rates (ca. 1.5 and 1.0 prey/cell/min 

for AEA- and CBD-treated cells, respectively) - unless the effect of AEA is completely lost by 

30 min whereas CBD is still partially effective at 30 min. 

 

Future work should examine the interaction between cannabinoids and those receptors 

associated with prey capture. To date, C-type lectins have been shown to be involved in 

protist feeding (Bracha et al., 1982; Allen and Davidowicz, 1990; Alsam et al. 2005; Wootton 

et al., 2007) and recent studies at Lancaster University have confirmed the presence of C-

type lectins for Mannose, GalNAc and GlcNAc in T. pyriformis (Boboc, 2020) and in the 

amoeba Vermamoeba vermiformis (Al-hammadi, 2020). The latter study also examined the 

interaction between CBD and these receptors as, in a similar manner to the current study, 

CBD disrupts the feeding of the amoeba on Synechococcus by inducing a feeding lag. 

Blocking each C-type lectin in turn (with mannose, GalNAc and GlcNAc), in the presence and 

absence of CBD, revealed no interaction between CBD and those receptors for GalNAc or 

mannose. However, there was an interaction with the GlcNAc receptor; when this receptor 

was blocked in the presence of CBD the extent of the feeding lag was doubled. However, Al-

hammadi (2020) did not consider CBD to physically bind to the GlcNAc receptor, only that 

the yet unidentified ‘CBD target’ and the GlcNAc receptor are both involved in vacuole 

formation (as opposed to being involved in prey capture which appeared to be the sole role 

of the mannose and GalNAc receptors). And, because all the cytoskeleton machinery is in 

place for vacuole formation in V. vermiformis (and is not directly affected by CBD), Al-

hammadi (2020) considered the ‘CBD target’ to lie within the signalling cascade which 

stimulates the cytoskeleton to form the phagocytic cups.  

 

Repeating such experiments with T. pyriformis would allow an evaluation as to whether CBD 

interacts with C-type lectins in the same way as V. vermiformis or whether it is prey capture 
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itself that is affected by CBD. And, considering that scavenger receptors have recently been 

identified in D. discoideum (Sattler et al., 2018), it would be beneficial to evaluate whether 

T. pyriformis possesses such feeding receptors and if it does, whether they interact with 

CBD.  

 

5. Conclusions 

Previous research has indicated that the ciliate Tetrahymena possesses a rudimentary 

endocannabinoid system but the effect on feeding, and the molecular target for a 

cannabinoid remained unstudied. The current study assessed the former, using AEA and 

CBD as examples of endo- and phyto-cannabinoids, respectively. The results showed that 

both of these compounds could modify the feeding behaviour of Tetrahymena, principally 

by inducing a lag before feeding resumed. The lengths of these lags were different at 4µM 

(CBD ca. 60mins, AEA ca. 36mins), suggesting that CBD is a more potent cannabinoid than 

AEA. This might be due, in part, to faster metabolism of AEA (with the FAAH-like enzyme) 

compared to CBD (with possibly CYP13 enzymes).  Following the lag, the ingestion rates for 

the AEA-treated cells return to the same state as the Control, whereas CBD induced 

hyperphagia.   

 

Neither of the cannabinoids affected the trafficking of the food vacuoles or their defecation 

rate, therefore the potential target candidates were narrowed down to (i) vacuole recycling, 

and formation of the new phagocytic cup or (ii) prevention of prey capture. Since much of 

the machinery used for the former are also used to traffic vacuoles, it was considered 

unlikely that this would be the target, and that it is the stage of prey capture that is 

affected. However further work should confirm this as CBD might be affecting the signalling 

cascade that initiates phagocytic cup formation, which was not considered here and only 

came to light after submission of this thesis. 
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8. Appendices  

 

Appendix 1: 
 
Lysogeny Broth LB Agar: 
 
NaCl 10g 
Tryptone 10g 
Yeast Extract 5g 
Agar No.2 15g 
Distilled water (H2O) 1000mL 
 
Preparation: The nutrient mix was dissolved in 1000mL of distilled water, then autoclaved 
at 121oC for 1 hour. The agar was then poured into petri dishes and allowed to set. The 
plates were then stored at 4oC.  
 
Chalkley’s medium: 
 
Stock in 1 Litre of distilled water 
 
NaCl 20g 
KCl 0.8g 
CaCl2 1.2g 
 
Preparation: A 5mL aliquot of this stock solution to 995mL of distilled water and then 
autoclaved 121oC for 1 hour. The diluted medium was then ready for T. pyriformis culture.  
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Blue Green 11 (BG11) Broth: 
 
Stock: each per 500ml distilled water 
 

A. Sodium Nitrate 
(NaNO3) 

75g 

B. Dipotassium 
phosphate (K2HPO4) 

2g 

C. Magnesium Sulphate 
Heptahydrate 
(MgSO47H2O) 

3.75g 

D. Calcium Chloride 
Dihydrate 
(CaCl2.2H2O) 

1.8g 

E. Citric acid 0.3g 
F. Ammonium ferric 

citrate green 
0.3g 

G. EDTANa2 0.05g 
H. Sodium Carbonate 

(Na2CO3) 
1g 

 
Stock: Trace metals in 1000ml of distilled water 
 
 
 
Preparation: A 10ml aliquot of the stock solutions A-H and 1ml aliquot of the stock solution 
I. were added to a flask, which was then topped up to 1000ml of distilled water. The pH. was 
kept to 7.1 with the addition of 1M Sodium hydroxide (NaOH) or Hydrochloric acid (HCl). 
Oxoid L11 agar was added (15g) and the medium was autoclaved at 121oC for 1 hour.  
 
 
 
 
 
 

Boric Acid (H3BO3) 2.86g 
Manganese Chloride Tetrahydrate 
(MnCl2.4H2O) 

1.81g 

Zinc Sulphate heptahydrate (ZnSO4.7H2O) 0.22g 
Sodium Molybdate Dihydrate (Na2MoO4. 
2H2O) 

0.39g 

Copper Sulphate Pentahydrate 
(CuSO4.5H2O) 

0.08g 

Cobalt Nitrate Hexahydrate (Co 
(NO3)2.6H2O 

0.05g 
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Appendix 2 
 

 
T. pyriformis was fed with Synechococcus at 1x107 cells/ml in the absence (Control) or 

presence of CBD and AEA (4µM). The average number (±SEM) of prey per vacuole. The 

experimental time was 180 minutes.  


