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Role of Artificial Intelligence and Vibrational Spectroscopy in Cancer Diagnostics 

Abstract:  

Raman and Infrared spectroscopic techniques are being used for the analysis of different 

types of cancers and other biological molecules. It is possible to identify cancers from normal 

tissues both in fresh and fixed tissues. These techniques can be used not only for the early 

diagnosis of cancer but also for monitoring the progression of the disease. Furthermore, 

chemical pathways to the progression of the disease process can be understood and followed. 

More recently, Artificial Intelligence (AI), Neural Network (NN) and Machine Learning are 

being combined with spectroscopy, which is making it easier to understand the chemical 

structural details of cancers and biological molecules more precisely and accurately. In this 

report, these aspects are being outlined by using breast cancer as a specific example.  
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Article highlights: 

1- Analysis of breast cancer using Raman spectroscopy  

2- Principal Component Analysis of spectral data of breast cancer 

3- Cluster analysis of normal and cancerous normal breast tissue 

4- Role of artificial intelligence and machine learning.  

5- Early diagnosis and monitoring of the progression of cancer.  

 

Introduction:  

Tumorigenesis is a complex dynamic process accompanied by changes in the chemistry and 

biochemistry of cells, tissue and the microenvironment [1]. If these changes can be monitored 

and quantified over time before morphological or systemic expression of the disease, 

diagnosis can be done at a much earlier stage, improving prognosis. The information required 

for this spans over a number of biological levels from molecular structure to tissue 

composition. Raman and infrared spectroscopic techniques collect highly specific information 

making these suitable for cell and tissue analysis. This approach may help not only in early 

diagnosis but also in characterizing the disease state at various points of its progression. This 

is critical in planning the therapeutic approach of individual patients. To understand chemical 

structural properties of cancer and associated changes with the progression of disease, it is 

important to understand the biology and chemistry of the cancer. [2]  

 

Most cancers (approximately 90%) are carcinomas. This can be explained by two factors: cell 

proliferation mainly occurs in epithelia, and they are more frequently exposed to various 

forms of physical and chemical damage that favour the development of cancer [3]. 

Dedifferentiation or anaplasia denotes the loss of normal characteristics, which may be 

attributed to chemical structure and these chemical structures can be very well studied with 



the use of spectroscopic techniques.  These techniques can help in identifying and 

establishing a chemical pathway by which the cancer progresses. The biological pathway of 

cancer progression is very well established, but the chemical pathway is still a matter of 

debate. It is strongly believed that vibrational spectroscopy offers excellent potential to study 

the chemical structural characteristics of the biological tissues. This is only possible if the 

spectral bands are precisely and accurately assigned to specific chemical bonds and functional 

groups.  

 

In recent years, applications of IR and Raman spectroscopy have increased a great deal, the 

application of these spectroscopic methods on biological studies, particularly on clinical 

studies related to malignancy, and cancer detection has attracted significant attention among 

both clinical and non-clinical researchers. These methods have been reported on several 

biological tissues including bone[4-6], skin[7-9], colon[10], lung[11,12], breast[13-18], 

heart[19,20], cornea[21,22], liver[23,24], prostate[25,26], gastric[27,28], larynx[29], 

oral[30,31], bladder[ 32],  endometrium[33 ], multiple sclerosis [34] and brain [35].  

 

Spectroscopic techniques have immense potential in the diagnosis of human diseases 

including infections, inflammatory conditions and various cancers. Currently, although 

imaging can aid in diagnosis of many disease processes, histopathological tissue diagnosis 

remains the gold standard for diagnosis of most clinical conditions. In this respect, 

spectroscopic techniques can be of immense value to aid histopathological diagnosis. 

The spectroscopic measurements can often be carried out with minimal sample preparation 

or need for consumables. Unlike IR spectroscopy, the material may absorb power from the 

laser or be induced to release part of its own power. Both cases are associated with a 

displacement between energy levels resulting in a shift in frequency between the incident 

and scattered radiation.   

The spectra represent molecule specific peaks that are sensitive to composition, stress state, 

orientation and concentration. Namely, the spectra are a fingerprint of the material based on 

its chemical composition and structure. Its features are interpreted as a function of control 

variables;  either light (amplitude, frequency, etc.) or of the sample (change of physical 

properties). The extraction of quantitative data from the spectra therefore requires a 

reference. Having an appropriate control is essential for the reliable discrimination of spectra.  

In literature, significant information is available to clinicians and spectroscopists, including 

clinical, biological and biospectral chemical data and outputs of related spectral imaging. A 

combination of this data provides information that requires precise and accurate evaluation 

of pathology, chemical changes that may occur due to the progression of the disease process 

either for early diagnosis or monitoring of the disease process.  To bring the entire process 

from “lab to patients” there is a need to understand the entire process in a rapid and accurate 

way that can be added to the armoury of pathologists and clinicians that will help in avoiding 

misdiagnosis. To achieve this, employment of artificial intelligence, computer aided diagnosis; 



machine learning and artificial neural networks will play a pivotal role in the future. A 

combination of these methodologies will help in developing learning algorithms capable of 

analysis and interpretation of clinical data and in integrating them into categorized, defined 

outputs.  

Spectroscopic evaluation of cancer progression:  

It is widely believed that cancer progression can be modelled using ‘somatic evolution theory’ 

[36]. The theory describes the tissue and substrate constraints applicable to the landscape in 

which evolution takes place. The tissue constraints represent both intracellular and 

extracellular changes and control initial tumour growth. Once the tumour has grown to a 

certain critical size, progression is limited by substrate constraints. It is important to 

distinguish the two different development states as; 

- the adaptive phase, during which tissue constraints may alone present identifiable 

markers in the spectra (early diagnosis)  

-  the active growth phase, where substrate constraints may provide a better measure 

of the ‘stage’ of cancer.  

It is envisaged that mutations (intracellular changes) play a more permissive than a 

constructive role in progression, their mutual link to extracellular changes and substrate 

utilization mechanics establishes a positive feedback loop. This feedback loop has to be taken 

into account when limiting the number and type of constraints being measured and used in 

the spectra [36].   

Actively targeting either constraint can be a problem as the evolutionary landscape of cancer 

is highly complex, dynamic and heterogeneous. The effects of cancer progression extend 

beyond the primary tumour boundary even before it reaches a metastatic state. However, 

due to this heterogeneity, the products of the cancer and cancer-associated cells (both 

signalling pathways and metabolites) and their substrate utilization rates may remain regional 

and occur in temporary bursts. It is clinically unfeasible to collect Raman spectra from a large 

number of focal planes or over an extended time period during diagnosis. This raises two 

important considerations for reliable diagnosis [37]; 

i. How to select the location(s), size and number of focal spots for spectra collection that 

are truly representative of the cancer population 

ii. Out of the variables of location and time, is it possible to fix one, i.e. are there any 

constraints that are time-independent 

There are some key points in defining the corresponding functional groups of every spectral 

peak. These points can play an outstanding role in the process of characteristic peak analysis, 

and they are of an outstanding importance in the process of having a clear understanding 

from the spectroscopic technique. There is a considerable amount of studies on spectroscopy 

of cancer tissues and the use of this technique is growing rapidly. There is a growing need to 

identify key spectral peaks and to correctly assign them to their respective chemical 



structures. Therefore, it is of utmost importance to have a trustable spectral database widely 

available to researchers working on vibrational spectroscopy of biological molecules. In 

addition, it is equally important to have an approach which provides quantitative analysis as 

rapidly and precisely as possible.  

Analysing cancer with a combination of spectroscopy, machine learning and artificial 

intelligence: 

Just to highlight, substantial changes in chemical structure that are caused by cancer and their 

different grades and subtypes using vibrational spectroscopy can be more precisely picked up 

with a combination of spectroscopy, machine learning and artificial intelligence. The spectra 

data on breast cancer given in figures 1 and 2 highlights the importance of FTIR and Raman 

spectroscopy, chemometrics analysis and their outstanding clinical potential. It is clear that 

more understanding is required to improve the technology and facilitate its clinical use and 

data processing. As stated earlier, the role of spectroscopy in analysis of biological molecules 

has increased significantly over the last decade and more and more clinical studies are being 

reported. To accomplish more clinical multidisciplinary collaboration between researchers, 

companies, and clinicians is crucial. 

Analysing breast cancer with Spectroscopy and AI: 

Both infrared and Raman spectroscopic techniques in combination with artificial intelligence 

is the future with early and precise diagnosis and monitor progression of disease processes 

and analysing biological molecules.  

While analysing normal tissue and breast cancer tissue with Raman spectroscopy in 

combination with Principal component analysis applied to the general spectral region, a clear 

separation and grouping was achieved with the PC-1 and PC-2 accounting for 57% of the 

variance, as it can be seen in Figure 1. The loadings associated with these principal 

components identified the following peaks as responsible for the grouping and separation: 

2884, 1583, 1450, 1336, 1245, 1159, 1122, and 1004 cm-1.  

The peak located at 2884 cm-1 has been assigned to the CH2 and CH stretching of lipids and 

proteins  and was identified to contribute more in the cancer area in comparison with normal 

breast. This difference in content might be caused by the accelerated and active cell 

component production, which is characteristic of cancer development and progression [38].  

The peak at 1583 cm-1 has been associated with tryptophan and the C=C bending mode of 

phenylalanine[185] and presented greater intensities on the cancer samples. This component 

forms a part of proteins and its contribution might be associated with the structural 

components in highly dense samples. This behaviour was confirmed by the peak at 1450 

cm-1 also presenting higher intensities than the normal counterpart and which is 

representative of the CH2 bending characteristic of malignant tissues [38].  

Furthermore, the peak at 1000-1004 cm-1 presented greater contributions in cancerous 

samples and was assigned to phenylalanine [38]. Different authors focus on this peak as a 



collagen specific assignment. The literature has reported collagen fibre deposition, 

rearrangement of fibres and overproduction occurring when tumours develop and grow [39].   

Consequently, an increase of intensity in peaks associated with stromal overproduction were 

expected as classifiers of cancerous samples. Nonetheless, stromal components were an 

important and dominant part of the normal breast sections and they could have been 

included in the Raman acquisition. Besides, a phenylalanine assignment can be correlated to 

proteins and structural components of the epithelial cells. 

Similar trends were found when analysing normal and breast cancer samples with FTIR. When 

compared, the spectral profile of both tissue types presented characteristic bands associated 

with the presence of carbohydrates, lipids, nucleic acids and proteins as shown in Figure 2. 

Overall, the bands found in the cancerous area spectrum are shifted towards lower 

wavenumbers in comparison with the normal breast bands. This downshift has been reported 

in cancerous samples by different research groups as well [40,41].  

Furthermore, differences in the intensity of peaks were identified between normal and 

cancerous tissues as seen in Figure 2. The cancerous area spectra had a higher overall 

intensity which suggested biochemical changes associated with the disease. The increased 

intensity in C-H bands can be considered as an indicator of an increase of cellular components 

such as lipids, nucleic acids and proteins. Likewise, the shifting and increased intensity in the 

1700-1500 cm-1 area associated with nucleic acids and amide-stretching peaks might suggest 

changes in the conformational structure of proteins in the cancerous tissue [14].  

When PCA was applied to the spectral general region, good separation was obtained with 

principal component 3 and 5, accounting for 15% of the variance as is seen in the score plot 

presented in Figure 2. In this figure, a clear grouping can be seen for the cancerous area and 

the normal breast. CA and NB samples are presented at opposite sides of both principal 

components axes. The peaks responsible for the separation of cancerous and normal tissue 

on the score plots are 3275, 2963, 2916, 2849, 1669,1633, and 1530, cm-1.  

While applying the PCA model, created by using the whole spectral range and validated using 

Linear discriminant analysis (LDA), a sensitivity of 92% and specificity of 86% were each 

confirmed. In addition, cluster analysis was performed for the cancerous area and normal 

breast samples. The analysis was set up to recognize 10 clusters to facilitate separation as 

seen in Figure 3. The fourth cluster presented in plot D is formed by most of the normal breast 

samples. However, some of the normal samples are located on B, E, and H. The infiltration of 

normal samples into a cluster mainly formed by cancer samples confirmed the heterogeneity 

of our cohort. The cancerous samples analysed with this method represented different grades 

and subtypes, and as a result, present different characteristics that might resemble the 

normal tissue. Therefore, the clustering of both type of samples.  

Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra. In this study, 

Deep learning methods for the prediction of molecular excitation spectra are presented. For 

the example of the electronic density of states of 132k organic molecules, three different 

neural network architectures: multilayer perceptron (MLP), convolutional neural network 

(CNN), and deep tensor neural network (DTNN) are trained and assessed. (48) 



Support vector machines (SVM) in near infrared (NIR) spectroscopy have been employed to 

study model complex non-linear boundaries through the use of adapted kernel functions. 

They have been introduced in chemometrics and have proven to be powerful in NIR spectra 

classification. In this study, they highlighted one of the major drawbacks of SVM, which is that 

training the model requires optimization of the regularization and kernel meta-parameters in 

order to control the risk of overfitting and the complexity of the boundary. They proposed a 

methodological approach to guide the choice of the SVM parameters based on a grid search 

for minimizing the classification error rate but also relying on the visualization of the number 

of support vectors (SVs). Their optimized SVM models were quite parsimonious, relying on 8 

and 35 support vectors respectively, and good classification performances were obtained 

(classification rate of 98.9% and 91% on the test sets, respectively). (49) 

Applications of THz laser spectroscopy and machine learning for medical diagnostics have 

been reported which allows analysing molecular rotations associated with hydrogen bond 

breaking. By using the optimization algorithm, they carried out the classification of THz 

spectra of the most informative areas obtained in-vivo from the lymphedema-affected leg 

tissue (result of surgery) and obtained from healthy leg tissue. The results adequately show 

the separation of lymphedema tissues from healthy tissues in the space of the principal 

components (50) 

The use of a self-learning classifier would be an ideal next step for this research. In general, 

terms, in the training stage, a model is created containing several rules. These rules 

encompass relevant information that is characteristic of specific classes, for example, the 

relevant database of the normal and malignant breast tissue biochemical behaviour identified 

in this work.  When new data is included in this model, it should evolve and produce more 

accurate classification rates, adapting and improving the robustness of the final model.  

Additionally, once the new and improved algorithm has been improved, the new classification 

algorithm could be tested in different fixated samples. These systems will then provide the 

opportunity of immediate feedback to clinicians and pathologists, significantly improving 

patient care. This will help in increasing confidence among the clinicians and rapidly bringing 

these techniques to the armoury of surgeons, oncologists, and pathologists. 

Conclusion: 

To summarise, vibrational spectroscopy combined with data mining and machine learning has 

the potential to offer a real-time analysis in biological samples, including cancer, with 

excellent accuracy and is capable of maintaining this accuracy for early diagnosis and 

monitoring of the progression of disease.  Moreover, FTIR and Raman spectroscopic 

techniques can provide practitioners and researchers with chemical information reflecting 

changes at tissue and cellular levels. In clinical practice, these changes influence the 

treatment strategies. In practical research, these insights help to understand carcinogenesis 

and invasive progressions, accelerating the development of new treatments.  



Expert opinion 

Employing different methodologies for precise and rapid analysis through big data 

management techniques and working in partnership with clinicians is a way forward for all 

new researchers exploring the use of vibrational spectroscopy to study cancer and other 

disease processes. These will help in understanding the chemical pathway to the progression 

of disease opening possibilities of early diagnosis and continuous monitoring. It would be 

interesting to carry these findings further and focus some research on improving the 

sensitivity and specificity of the prediction model.  

This could be achieved using machine learning and taking advantage of the big cohort data. 

The use of artificial intelligence and machine learning can represent an important tool in the 

spectroscopic analysis of vibrational data. The combination of vibrational spectroscopy and 

these strategies and algorithms can offer an effective and low-cost solution to healthcare and 

diagnostics. 

Machine learning approaches consist of a combination of several classification systems. The 

use of several classifiers allows an improvement in the accuracy of the classification. These 

algorithms are designed to maximise the number of accurate classifications. Ideally, artificial 

intelligence (AI) and machine learning algorithms should be able to adapt to new data without 

retraining. AI and machine learning have been widely used in different fields using vibrational 

spectroscopy data, for example, the analysis of ovarian and breast cancer tissue, cervical 

cytology, food analysis, drugs concentrations, and soil analysis [42 – 47] and this trend is 

increasing rapidly. 

A pathway depicting the pathway to combine vibrational spectroscopy with AI and ML has 

been suggested in Figure 4, which has immense potential in predicting various stages of 

different disease processes, in particular, with cancer diagnosis, staging and designing 

treatment. This will result in improved patient care pathways. A wealth of data now exists, 

describing chemical structural changes associated with various human disease conditions, 

including cancers. There still is the unmet need for creation of a single comprehensive and 

standardised database of these chemical change spectra for future applications and reference 

from where both the AI and ML can play a pivotal role in clinical applications. In addition, 

machine learning and data mining approaches have been advancing rapidly in recent years, 

with exciting new applications and it is anticipated  that in the near future these combined 

approaches will provide a number of solutions not only to tackle cancer but also to facilitate 

a clearer understanding of other disease processes and biomaterials in a way that allows 

tailoring drugs and materials for a number of specific clinical applications.  
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Figure 1; Principal component analysis on the general region (4,000-400 cm-1). (A) Score plot using PC-1 and PC-

2 accounting for 57% of the variance, (B) Average Raman spectral profile for breast cancer and normal breast. 

Dotted lines represent the peaks found as responsible for the separation based on the loadings presented in 

C&D, (C) PC-1 Loading, (D) PC-2 loading. 

Figure 2; Principal component analysis of the general region (4,000-675 cm-1). (A) Score plot using 

PC-3 and PC-5 accounting for 15% of the variance, (B) Average spectral profile for breast cancer and 

normal breast. Dotted lines represent the peaks found as responsible for the separation based on 

the loadings presented in C&D, (C) PC-3 Loading, (D) PC-5 loading. 



 

 

 

Figure 3; Cluster analysis of Cancerous area (CA) and Normal breast (****NB****). The analysis was set up to 

identify ten groups presented from A to J. 

 

 

           Figure 4; A pathway to cancer diagnosis by using vibrational spectroscopy and artificial intelligence.  
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