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Abstract

Valid inequalities for the knapsack polytope have proven to be very
useful in exact algorithms for mixed-integer linear programming. In
this paper, we focus on the knapsack cover inequalities, introduced
in 2000 by Carr and co-authors. In general, these inequalities can be
rather weak. To strengthen them, we use lifting. Since exact lifting can
be time-consuming, we present two fast approximate lifting procedures.
The first procedure is based on mixed-integer rounding, whereas the
second uses superadditivity.

Keywords: knapsack problems; lifted cover inequalities; polyhedral
combinatorics; mixed-integer linear programming

1 Introduction

A knapsack constraint is a linear constraint of the form
∑n

i=1 aixi ≤ b,
where b and n are positive integers and a ∈ Zn+. Any linear inequality
involving binary variables can be converted into a knapsack constraint, by
complementing variables with negative coefficients [23]. The polyhedron

conv
{
x ∈ {0, 1}n :

n∑
i=1

aixi ≤ b
}

is called a knapsack polytope [2]. Valid inequalities for knapsack polytopes
have proven to be very useful in exact algorithms for mixed-integer linear
programming (e.g., [4, 8, 12–14,16,17]).

There are many papers on valid inequalities for knapsack polytopes.
Most of these focus on lifted cover inequalities (e.g., [2,3,8,12,13,15,16,18,
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23,26]), but there are a few papers on other families of inequalities. These in-
clude weight inequalities [22], lifted pack inequalities [1,16], Chvátal-Gomory
cuts [17], Fenchel cuts [4], and the inequalities in [5], which are (somewhat
confusingly) called knapsack cover inequalities. These last inequalities have
received very little attention in the literature, and have not been analysed
from a polyhedral point of view.

We will see that, in general, knapsack cover inequalities can be rather
weak. To strengthen them, we use lifting (see [2,21,23]). Since exact lifting
can be time-consuming, we present two fast (and sequence-independent)
approximate lifting procedures. The first procedure, which runs in O(n)
time, is based on a simple mixed-integer rounding argument (see [11,19,20]).
The second procedure is stronger, but is a bit more complicated and runs
in O(n log n) time. It is based on the construction of a valid superadditive
lifting function (see [13, 25]). Our examples show that it is possible for
both procedures to generate new facet-defining inequalities for the knapack
polytope.

The paper has a simple structure. The literature is reviewed in Section 2,
the new lifting procedures are presented in Section 3, and some concluding
remarks are made in Section 4. Throughout the paper, we let N denote
{1, . . . , n}.

2 Literature Review

For brevity, we review here only works of direct relevance. We recall cover
inequalities in Subsection 2.1, knapsack cover inequalities in 2.2, lifting in
Subsection 2.3, and mixed-integer rounding in Subsection 2.4.

2.1 Cover inequalities

A set C ⊆ N such that
∑

i∈C ai > b is called a cover. If C is a cover, then
the cover inequality

∑
i∈C xi ≤ |C|−1 is valid for the knapsack polytope [9].

A cover C is minimal if
∑

i∈C\{k} ai ≤ b for all k ∈ C. The minimal cover
inequalities dominate all others [2, 23]. Although they are not guaranteed
to define facets of the knapsack polytope, they can be strengthened to make
them facet-defining (see Subsection 2.3).

2.2 Knapsack cover inequalities

Now consider a knapsack constraint of the form
∑

i∈N aixi ≥ d, where d
and n are positive integers and a ∈ Zn+. Crowder et al. [8] noted that such a
constraint can be strengthened simply by replacing each ai with min{ai, d}.
Carr et al. [5] generalised this as follows. Consider any S ⊂ N , possibly
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empty, such that
∑

j∈S aj < d. The inequality∑
i∈N\S

aixi ≥ d−
∑
j∈S

aj

is trivially valid, and it can be strengthened to yield:∑
i∈N\S

min
{
ai, d−

∑
j∈S

aj
}
xi ≥ d−

∑
j∈S

aj . (1)

Rather confusingly, Carr et al. call the inequalities (1) knapsack cover
inequalities. We will therefore refer to them as KCIs. The standard cover
inequalities, mentioned in the previous subsection, will be called CIs.

2.3 Lifting

We now recall the basics of lifting [21, 24], focusing on 0-1 linear programs
(0-1 LPs). Let P ⊂ [0, 1]n be the convex hull of feasible solutions to a 0-1
LP, let S be a proper subset of N , and let P (S) be the face of P obtained
by setting xi to 0 for all i ∈ S. Suppose we know that dim

(
P (S)

)
=

dim(P )− |S|, and that the inequality∑
i∈N\S

αixi ≤ β

defines a facet of P (S). Then, there exists at least one inequality of the
form ∑

i∈N\S

αixi +
∑
i∈S

γixi ≤ β,

that defines a facet of P . (In particular, any minimal cover inequality can
be strengthened to make it facet-defining for the knapsack polytope.)

The process of computing the γi is called lifting. Lifting is usually done
sequentially, i.e., one variable at a time. To compute each lifting coefficient,
one has to solve an auxiliary 0-1 LP, which may be time-consuming. Fortu-
nately, fast exact and approximate algorithms are available for sequentially
lifting CIs [2, 3, 8, 12, 16, 23, 26]. For other kinds of inequalities, Wolsey [24]
suggests solving the LP relaxations of the auxiliary 0-1 LPs.

There can sometimes exist facet-defining lifted inequalities that cannot
be obtained by sequential lifting [23]. To obtain such inequalities, one must
lift several variables simultaneously. Unfortunately, simultaneous lifting is
very complicated, even for CIs [3, 15]. Wolsey [25] devised an elegant way
to perform simultaneous lifting approximately, based on superadditive func-
tions. This approach, sometimes called sequence-independent lifting, has
been used to good effect in, e.g., [1, 13, 18]. However, the resulting inequal-
ity is not guaranteed to define a facet of P . For brevity, we omit the details.
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2.4 Mixed-integer rounding

Finally, we recall some results from cutting-plane theory. Let P ⊂ Rn+ be a
polyhedron, and suppose that the inequality αTx ≤ β, with β /∈ Z, is valid
for P . It is well known that the inequality

∑
i∈Nbαicxi ≤ bβc is satisfied

by all integer points in P [7, 10]. Less well known is that one can derive
a stronger inequality as follows [11, 20]. Given a real number r, let φ(r)
denote r − brc, the so-called fractional part of r. Also define the folllowing
(continuous and non-decreasing) function

Fβ(r) =

{
brc, if φ(r) ≤ φ(β)

brc+ φ(r)−φ(β)
1−φ(β) , if φ(r) > φ(β).

The strengthened inequality takes the form:∑
i∈N

Fβ
(
αi
)
xi ≤ bβc.

We follow [19,20] in calling these inequalities mixed-integer rounding (MIR)
inequalities.

3 Lifting Knapsack Cover Inequalities

In this section, we show how to strengthen the KCIs by lifting. In Subsection
3.1, we present some simple results and examples to motivate our study. In
Subsection 3.2, we define lifted KCIs formally and give examples. In Subsec-
tions 3.3 and 3.4, we present our sequence-independent lifting procedures.

We remind the reader that there is one KCI (1) for every S ⊆ N satisfy-
ing
∑

j∈S aj < d. Throughout this section, we let d− denote d−
∑

j∈S aj , and

we sometimes refer to the sets L = {i ∈ N \S : ai > d−} and R = N \(S∪L).
(The idea here is that L contains indices with “large” ai value, and R con-
tains the “remaining” indices.) With this notation, the KCIs can be written
in the simpler form ∑

i∈R
aixi + d−

∑
i∈L

xi ≥ d−. (2)

We let e denote the all-ones vector of length n. We also frequently refer
to the following two polytopes:

P≥ = conv
{
x ∈ {0, 1}n : aTx ≥ d

}
P≤ = conv

{
x̄ ∈ {0, 1}n : aT x̄ ≤ eTa− d

}
.

Note that these polytopes are congruent, via the trivial mapping x̄i = 1−xi
for i ∈ N .
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3.1 Motivation

In some preliminary experiments with the software package PORTA [6], we
found that KCIs usually (though not always) define low-dimensional faces
of P≥. A partial explanation is given by the following two lemmas:

Lemma 1 If
∑

j∈R aj < d−, then the KCI (2) is equivalent to or dominated
by the inequality

∑
i∈L xi ≥ 1. Note that this inequality is equivalent to a CI

for P≤.

Proof. By the definition of d−, the stated condition can be written as∑
j∈R∪S aj < d. Under this condition, the inequality

∑
i∈L xi ≥ 1 is valid

for P≥. Writing this as d−
∑

i∈L xi ≥ d−, we see that it is at least as
strong as the KCI. Writing it as

∑
i∈L x̄i ≤ |L| − 1 instead, we see that it is

equivalent to a CI for P≤. �

Lemma 2 If
∑

j∈R aj ≥ d−, but
∑

j∈R\{i} aj < d− for all i ∈ R, then the
KCI (2) is dominated by the inequalities

∑
j∈L∪{i} xj ≥ 1 (i ∈ R). Note

that these inequalities are equivalent to CIs for P≤.

Proof. Suppose the stated conditions hold. If xi = 0 for all i ∈ L, then we
must set xi to 1 for all i ∈ R. Thus, the following inequalities are valid for
P≥: ∑

j∈L∪{i}

xj ≥ 1 (i ∈ R). (3)

Writing these inequalities in the form
∑

j∈L∪{i} x̄j ≤ |L|, we see that they

are equivalent to CIs for P≤. Now, for each i ∈ R, multiply the inequality
(3) by aid

−/
∑

j∈R aj , and sum the resulting |R| inequalities together, to
yield:

d−∑
j∈R aj

∑
i∈R

aixi + d−
∑
i∈L

xi ≥ d−.

Since
∑

j∈R aj ≥ d− by assumption, this last inequality is at least as strong
as the KCI. �

When the conditions in Lemmas 1 and 2 do not hold, the KCI may or
may not define a facet of P≥. This is shown in the following example.

Example 1: Let n = d = 7 and a = (1, 2, 2, 2, 4, 4, 7)T . Taking S = {1}
yields the KCI 2(x2+x3+x4)+4(x5+x6)+6x7 ≥ 6. We have R = {2, . . . , 6}
and

∑
i∈R ai = 14, so Lemmas 1 and 2 do not apply. One can check (either

by hand or with the help of a package like PORTA) that this KCI defines
a facet of P≥. On the other hand, if we take S = {2}, we get the KCI
x1 + 2(x3 + x4) + 4(x5 + x6) + 5x7 ≥ 5. We have R = {1, 3, 4, 5, 6} and∑

i∈R ai = 13, so, again, the lemmas do not apply. Yet, this KCI does not
define a facet, since every extreme point of P≥ that satisfies it at equality
also satisfies x1 + x7 = 1. �
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3.2 Lifted KCIs

We propose to lift KCIs, regardless of whether or not Lemma 1 or Lemma
2 applies. The idea is as follows. The KCI (2) is equivalent to the following
valid inequality for P≤:∑

i∈R
aix̄i + d−

∑
i∈L

x̄i ≤
∑
i∈R

ai + d−(|L| − 1).

It is now apparent that we may be able to lift the variables in S, to obtain
a valid inequality for P≤ of the form:∑

i∈R
aix̄i + d−

∑
i∈L

x̄i +
∑
i∈S

γix̄i ≤
∑
i∈R

ai + d−(|L| − 1).

The corresponding valid inequality for P≥ takes the form:∑
i∈R

aixi + d−
∑
i∈L

xi ≥ d− +
∑
i∈S

γi(1− xi). (4)

We call (4) a lifted knapsack cover inequality or LKCI. In general, LKCIs
are not guaranteed to define facets of P≥. On the other hand, the following
example shows that LKCIs can define non-trivial facets even when Lemma
1 applies.

Example 2: Let n = 5, d = 8 and a = (2, 2, 2, 5, 5)T . Taking S = {1, 2}
yields the KCI 2x3 + 4(x4 + x5) ≥ 4. We have R = {3} and

∑
i∈R ai = 2 <

d− = 4. Thus, Lemma 1 applies. One can check however that the LKCI
2x3+4(x4+x5) ≥ 4+2(1−x1)+2(1−x2) is valid and facet-defining for P≤.
Moreover, if we write the LKCI in the form x̄1 + x̄2 + x̄3 + 2(x̄4 + x̄5) ≤ 3,
we see that it is not equivalent to a lifted CI. �

Now recall that lifting can be done sequentially or simultaneously. If
one wishes to lift a KCI sequentially, one must solve an auxiliary knapsack
problem (KP) to compute each lifting coefficient [21, 24]. This is likely
to be too time-consuming to be useful in practical computation. Following
Wolsey [25], one could compute approximate lifting coefficients sequentiallly,
by solving the continuous relaxations of the KPs. We prefer however to use
sequence-independent lifting, as described in the following two subsections.

3.3 Lifting via mixed-integer rounding

It turns out that one can lift KCIs using mixed-integer rounding. This can
be done in four steps, as follows.

1. Write the constraint aTx ≥ d in the form∑
i∈S

aix̄i −
∑
i∈N\S

aixi ≤ −d−. (5)
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2. Let a+ = maxi∈N\S{ai}, and assume that a+ > d− (since, if not, the
KCI is redundant.) Divide (5) by a+ to obtain

∑
i∈S

(
ai
a+

)
x̄i +

∑
i∈N\S

(
−ai
a+

)
xi ≤ −

d−

a+
.

3. We now set −d−/a+ to β, and apply mixed-integer rounding to get∑
i∈S

Fβ
(
ai/a

+
)
x̄i +

∑
i∈N\S

Fβ(−ai/a+)xi ≤ bβc.

We can simplify this inequality, as follows. Since a+ > d−, we have
bβc = −1 and φ(β) = 1 − d−/a+. For i ∈ R, we have that ai ≤ a+

(by the definition of a+) and ai ≤ d− (by the definition of R). Hence,
φ(−ai/a+) = 1 − ai/a

+ ≥ φ(β) and Fβ(−ai/a+) = −ai/d−. For
i ∈ L, we have that ai ≤ a+ (by the definition of a+) and ai > d−

(by the definition of L). Hence, φ(−ai/a+) = 1 − ai/a+ < φ(β) and
Fβ(−ai/a+) = b−ai/a+c = −1. So, we get∑

i∈S
Fβ
(
ai/a

+
)
x̄i −

∑
i∈R

ai
d−
xi −

∑
i∈L

xi ≤ −1.

4. Multiplying the MIR inequality by d− and re-arranging, we obtain:∑
i∈R

aixi + d−
∑
i∈L

xi ≥ d− + d−
∑
i∈S

Fβ
(
ai/a

+
)
(1− xi). (6)

This is the desired LKCI.

The following example shows that the above MIR procedure can yield
non-trivial facet-defining LKCIs.

Example 3: Let n = 7, d = 17 and a = (3, 3, 3, 4, 7, 7, 7)T . Taking
S = {4, 5} yields the KCI 3(x1 + x2 + x3) + 6(x6 + x7) ≥ 6. We have
d− = 6 and a+ = 7, which gives β = −6/7. We have Fβ

(
a4/a

+
)

=
F1/7(4/7) = 1/2 and Fβ

(
a5/a

+
)

= F1/7(1) = 1. The resulting LKCI is
therefore 3(x1 + x2 + x3) + 6(x6 + x7) ≥ 6 + 3(1− x4) + 6(1− x5). One can
check (either by hand or with the help of a package like PORTA) that this
LKCI defines a facet of P≥. Moreover, if we write the LKCI in the form
x̄1 + x̄2 + x̄3 + x̄4 + 2(x̄5 + x̄6 + x̄6) ≤ 5, we see that it is not equivalent to
a lifted CI. �

For the purpose of what follows, we will find it helpful to express the
lifting coefficients in the LKCI (6) in a more explicit form.

7



Proposition 1 For any r ≥ 0, let f(r) denote d−Fβ
(
r/a+

)
. We have

f(r) =

{
d−br/a+c if r mod a+ ≤ a+ − d−

d−dr/a+e − a+ + r mod a+ if r mod a+ > a+ − d−.

Proof. Write r as ka+ + ε, where k = br/a+c and ε = r mod a+. If
ε ≤ a+ − d−, we have φ(r/a+) = ε/a+ ≤ 1− d−/a+ = φ(β), and therefore

Fβ
(
r/a+

)
= k.

On the other hand, if ε > a+ − d−, we have φ(r/a+) > φ(β), and therefore

Fβ
(
r/a+

)
= k +

φ
(
r/a+

)
−
(
1−d−/a+

)
d−/a+

= k +
a+φ
(
r/a+

)
−a++d−

d−

= k + 1− a+−ε
d− .

We have established that:

Fβ

( r

a+

)
=

{
br/a+c if r mod a+ ≤ a+ − d−

dr/a+e − a+−ε
d− if r mod a+ > −d−.

Multiplying by d− yields the result. �

We remark that the MIR function Fβ is superadditive for any β (see [20]).
Thus, the function f is superadditive for any d− and a+.

3.4 Lifting via superadditivity

Consider again the LKCI (4), and suppose that we wish to lift xk first, for
some k ∈ S. Let r denote ak. Following [21,24], we can compute the largest
possible value of γk by computing

z(r) = min
∑

i∈R aixi + d−
∑

i∈L xi (7)

s.t.
∑

i∈L∪R aixi ≥ d− + r (8)

xi ∈ {0, 1} (i ∈ L ∪R), (9)

and then setting γk to z(r) − d−. The function g(r) = z(r) − d− is called
the exact lifting function. Note that the domain of g is

[
0,
∑

j∈L∪R aj − d−
]

since, if r exceeds
∑

j∈L∪R aj − d−, the above 0-1 LP becomes infeasible.
It follows from the main result in [25] that, if g is superadditive, then we

can use it to lift all variables in S simultaneously. Unfortunately, g is not
superadditive in general. This is demonstrated in the following example.

Example 4: Let n = 7, a = (3, 3, 3, 7, 8, 9, 17), d = 23 and S = {7}. The
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Figure 1: The exact lifting function g(r) for Example 4.
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Figure 2: The lifting function f(r) for Example 4.

reduced knapsack constraint is 3x1 + 3x2 + 3x3 + 7x4 + 8x5 + 9x6 ≥ 6. We
have d− = 6 and a+ = 9. The KCI is 3(x1 + x2 + x3) + 6(x4 + x5 + x6) ≥ 6.
The function g is shown in Figure 1. To see that g is not superadditive, note
that, for example, g(14) = 9 < 2g(7) = 12. �

Following the approach in [13,25], we are led to search for superadditive
valid lifting functions, i.e., superadditive functions that do not exceed g. As,
we remarked in subsection 3.3, the MIR lifting function, called f , is such
a function. Figure 2 shows the function f for Example 4. Note that f is
piecewise-linear, and each “piece” has a slope equal to either 0 or 1.

We now introduce a third lifting function, called h, which we will show
to be superadditive and intermediate between f and g. Let h(r) = z̃(r)−d−,
where

z̃(r) = min y + d−
∑

i∈L xi (10)

s.t. y +
∑

i∈L aixi ≥ d− + r (11)

xi ∈ {0, 1} (i ∈ L) (12)

y ≥ 0. (13)

Note that, due to the continuous variable y, z̃(r) is feasible for all non-
negative values of r. Hence, the domain of h is the whole of R+. In the
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Figure 3: The lifting function h(r) for Example 4.

following proposition, we give an explicit formula for h.

Proposition 2 For k = 1, . . . , |L|, let S(k) be the sum of the k largest aj
values over the members of L. We trivially set S(0) = 0. Then, we can
write h(r) as follows

h(r) =


kd−, if S(k) ≤ r < S(k + 1)− d− for k ∈ {0, . . . , |L| − 1}
r − (S(k)− d−), if S(k)− d− ≤ r < S(k) for k ∈ {1, . . . , |L| − 1}.
r − (S(|L|)− d−), if r ≥ S(|L|)− d−.

Proof. Consider the mixed 0-1 knapsack problem (10)-(13). Observe
that every time that we set a variable xi to 1, we incur a cost d−. This
increases the LHS of the constraint (11) by ai, which is greater than d−

by the definition of L. Hence, to find the optimal solution, it makes sense
to keep switching on binary variables in decreasing order of ai as long as
the constraint (11) is violated. The continuous variable y will only take a
positive value if the remaining violation of the constraint (11) is so “small”
that it is not worth switching on an additional binary variable. �

To aid the reader, we show the lifting function h for Example 4.

Example 4 (cont.): Recall that d− = 6 and L = {4, 5, 6}. Moreover,
S(0) = 0, S(1) = 9, S(2) = 17 and S(3) = 24. Using these, one can com-
pute the function h, which is shown in Figure 3. �

Note that, like f , h is piecewise-linear, and each “piece” has a slope equal
to either 0 or 1. In the following proposition, we prove that h is intermediate
between f and g.

Proposition 3 For all r ∈
[
0,
∑

j∈L∪R aj − d−
]
, we have f(r) ≤ h(r) ≤

g(r).

10



Proof. We will first prove that h(r) ≤ g(r). Given that g(r) = z(r) − d−
and h(r) = z̃(r) − d−, it is sufficient to show that z̃(r) ≤ z(r). To see why
this inequality holds, note that the mixed 0-1 knapsack problem (10)-(13) is
a relaxation of the integer program (7)–(9), obtained by replacing the binary
variables xi for i ∈ R with a single continuous variable y.

We will now prove that h(r) ≥ f(r). Recall that f and h are piecewise-
linear. For the function h, the k-th “piece” with slope 0 has length `hk =
S(k + 1) − S(k) − d−. For the function f , the k-th piece with slope 0 has

length `fk = a+ − d−. By the definitions of S and a+, we have `hk ≤ `fk .
Hence, h(r) ≥ f(r) for all r ∈

[
0,
∑

j∈L∪R aj − d−
]
. (The reader may find it

helpful to compare Figures 2 and 3.) �

In the following proposition, we prove the h is superadditive, which im-
mediately implies that we can use h for simultaneous lifting.

Proposition 4 The function h is superadditive in its domain.

Proof. We will prove that h is superadditive by contradiction. Suppose
that h is not superadditive. Then, there are values r1 and r2 such that
h(r1 + r2) < h(r1) + h(r2). Recall that each “piece” of the function has a
slope of either 0 or 1. We will call the points where h is non-differentiable
“breakpoints”, and the points where h is differentiable “interior” points.

Suppose that r1 is either an interior point where the slope is 0, or a
breakpoint where the slope on the left of r1 is 0 and the slope on the right is
1. Then, there exists a small ε > 0 such that h(r1−ε) = h(r1). We therefore
have h(r1 − ε) + h(r2) = h(r1) + h(r2) > h(r1 + r2) ≥ h(r1 + r2 − ε). This
means that r1 − ε and r2 also form a counter-example. So, we can assume
w.l.o.g. that r1 is neither an interior point with slope 0 nor a breakpoint
where the slope on the left is 0.

Now, suppose that r1 is an interior point with slope 1. Then, there
exists a small ε > 0 such that h(r1 + ε) = h(r1) + ε. We therefore have
h(r1 + ε) + h(r2) = h(r1) + h(r2) + ε > h(r1 + r2) + ε ≥ h(r1 + r2 + ε). This
means that r1 + ε and r2 also form a counter-example. So, we can assume
w.l.o.g. that r1 is a breakpoint where the slope on the left is 1 and the slope
on the right is 0.

The same argument enables us to assume that r2 is also a breakpoint of
the same type. Hence, to complete the proof, we have to show superadditiv-
ity for the case where both r1 and r2 are breakpoints of that type. Note these
points are such that there exist positive integers k1, k2 such that r1 = S(k1)
and r2 = S(k2). So, r1+r2 = S(k1)+S(k2) ≥ S(k1+k2) by the definition of
S. The function h is increasing. So, h(r1 + r2) ≥ h(S(k1 + k2)). By the def-
inition of h, we have that h(r1) = h(S(k1)) = k1d, h(r2) = h(S(k2)) = k2d
and h(S(k1+k2)) = (k1+k2)d

−. This implies that h(r1+r2) ≥ h(r1)+h(r2),
which is a contradiction. �
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We now revisit Example 4 to demonstrate the LKCIs that we get using
f and h.

Example 4 (cont.): Recall that d− = 6 and L = {4, 5, 6}. Using the
MIR lifting function, we get the LKCI 3(x1 + x2 + x3) + 6(x4 + x5 + x6) ≥
6 + 11(1 − x7). Using the lifting function h, we get the stronger LKCI
3(x1+x2+x3)+6(x4+x5+x6) ≥ 6+12(1−x7). One can check (either by hand
or with the help of a package like PORTA) that the latter is facet-defining.
Note that this inequality is not equivalent to a lifted cover inequality. �

4 Concluding Remarks

We have introduced two lifting procedures for knapsack cover inequalities.
Our examples show that it is possible for these lifting procedures to yield
non-trivial facet-defining inequalities. An interesting extension to our work
would be the design and implementation of efficient separation heuristics
for LKCIs. It would also be interesting to compare LKCIs with lifted cover
inequalities.
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