
The University of Manchester Research

Exogenous Connectors for Hierarchical Service
Composition
DOI:
10.1109/SOCA.2017.25

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Arellanes Molina, D., & Lau, K-K. (2018). Exogenous Connectors for Hierarchical Service Composition. In 10th
IEEE International Conference on Service Oriented Computing and Applications (IEEE SOCA 2017)
https://doi.org/10.1109/SOCA.2017.25

Published in:
10th IEEE International Conference on Service Oriented Computing and Applications (IEEE SOCA 2017)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Jul. 2020

https://doi.org/10.1109/SOCA.2017.25
https://www.research.manchester.ac.uk/portal/en/publications/exogenous-connectors-for-hierarchical-service-composition(370e3feb-e834-4f2b-8dd8-029c151a80c0).html
/portal/damian.arellanesmolina-postgrad.html
/portal/kung-kiu.lau.html
https://www.research.manchester.ac.uk/portal/en/publications/exogenous-connectors-for-hierarchical-service-composition(370e3feb-e834-4f2b-8dd8-029c151a80c0).html
https://doi.org/10.1109/SOCA.2017.25

Exogenous Connectors for Hierarchical Service
Composition

Damian Arellanes and Kung-Kiu Lau
School of Computer Science
The University of Manchester

Manchester M13 9PL, United Kingdom
{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract—Service composition is currently done by (hierarchi-
cal) orchestration and choreography. However, these approaches
do not support explicit control flow and total compositionality,
which are crucial for the scalability of service-oriented systems.
In this paper, we propose exogenous connectors for service
composition. These connectors support both explicit control flow
and total compositionality in hierarchical service composition.
To validate and evaluate our proposal, we present a case study
based on the popular MusicCorp.

Index Terms—hierarchical service composition, scalability, or-
chestration, choreography, microservices, exogenous connectors

I. INTRODUCTION

In Service-Oriented Architectures (SOA) [26], service com-
position is increasingly challenging as SOA systems get ever
larger [10]. Therefore, the de facto approaches for service
composition, namely (hierarchical) orchestration and chore-
ography, need to address scalability.

Microservice architecture [7], [18] is the leading trend in
SOA [26]. It prefers choreography over orchestration so as
to avoid a single point of failure and attack, as well as
performance bottlenecks. However, Netflix, a pioneer of this
architectural style, has recently expressed that they found
it difficult to scale with growing business needs by using
choreographies because the implicit control flow therein is
hard to visualize. For this reason, Netflix now prefers service
orchestration [16].

Apart from explicit control flow, we believe that total
compositionality is also crucial for scalability since it en-
ables hierarchical construction of SOA systems. By total
compositionality we mean algebraic composition, which is
not present in choreography, orchestration or even hierarchical
orchestration.

In this paper, we propose exogenous connectors [13], [12]
for hierarchical service composition. These connectors are
architectural elements that coordinate the execution of an
SOA system by passing only control. Like orchestration,
exogenous connectors define explicit control flow, but unlike
(hierarchical) orchestration and choreography, they enable
total compositionality.

The rest of the paper is organized as follows. Section II
briefly revisits the paradigms for service composition. Section
III describes our approach. Section IV presents a case study
to demonstrate the suitability of our approach. Section V

outlines a qualitative evaluation of our approach and presents
a discussion of the results. Finally, Sect. VI presents the
conclusion and the future work.

II. ORCHESTRATION, HIERARCHICAL ORCHESTRATION
AND CHOREOGRAPHY REVISITED

In this section, we review the paradigms for service compo-
sition, namely (hierarchical) orchestration and choreography,
rather than reviewing methods [24], [14], languages [9], tools
or platforms [2] using these paradigms.

We believe that explicit control flow and total compo-
sitionality are crucial for the scalability of SOA systems.
Explicit control flow means that an architectural entity ex-
plicitly defines the order in which individual services are
executed. On the one hand, in orchestration, control flow
is defined in the central coordinator [21], [9]; similarly, in
hierarchical orchestration, control flow is defined in nested
(inner and outer) orchestrations [8], [4], [25]. On the other
hand, choreography defines control flow only implicitly, in
the collaborative exchange of messages [20], [6], [21], [23].
Implicit control flow is hard to monitor, track, maintain and
evolve since it is hard to visualize entirely [16], [5], [3], [18],
[10].

Compositionality is assumed to be present in orchestration,
hierarchical orchestration, and choreography, as a coordination
of service invocations [15]. However, this is not total com-
positionality, by which we mean algebraic composition: two
or more services can be composed into a new (composite)
service of the same type, that preserves all the operations
provided by the composed services.1 Total compositionality
implies a hierarchical composition structure but not the other
way round; in fact, an orchestration can be hierarchical but not
compositional.2 Totally compositional architectures are more
tractable than non-compositional architectures ones because
they make it easier to evaluate the individual parts [17]. Fur-
thermore, hierarchical construction is a well-known technique
for tackling scale and complexity.

Table I shows that orchestration, hierarchical orchestration,
and choreography do not define a composition of entire
services, but a workflow of invocations of selected and named

1See 6 in Appendix A for a formal definition of total compositionality.
2See Appendix B.

TABLE I
COMPOSITIONALITY IN SOA.

Resulting type of composition Number of operations preserved from the composed services Compositionality
Orchestration Workflow Number of selected and named operations Partial

Hierarchical Orchestration Workflow Number of selected and named operations Partial
Choreography Workflow Number of selected and named operations Partial
Our Approach Service All Total

operations in the composed services [19], [1], [20], [21], [22].3

(Selecting and) Naming a specific set of operations results in a
partial composition in which individual workflows are required
for the invocation of operations in the composed services; thus,
the operations that are not (selected and) named are lost so
they cannot be invoked. Of course, all the operations could be
included; however, the resulting workflow would be potentially
complex as the number of operations increases, leading to
combinatorial explosion. In contrast, our approach enables
total compositionality, since the resulting type of composition
is another service with all the operations of the composed
services (not a workflow with selected and named operations).
In a total composition, any operation of any composed service
can be invoked without the need of individual workflows.

Consider two services: S1 which provides the operations
op11 and op12, and S2 which provides the operations op21
and op22. Figure 1 shows a possible composition of these
services using orchestration, our approach, hierarchical orches-
tration and choreography. In this Figure, it is clear that orches-
tration, hierarchical orchestration, and choreography results in
a partial composition, i.e., a workflow that loses operations of
the composed services. For instance, the operation op22 cannot
be invoked in any of these approaches; any such change would
require an entirely new workflow. In contrast, in our approach,
the symbol # is a wildcard indicating that any operation of the
service involved can be invoked, e.g., both operations op11 and
op12 are available to be invoked in service S1.

Table II shows that orchestration, hierarchical orchestration
and choreography does not support total compositionality.
Only our approach supports total compositionality and, like
orchestration (and hierarchical orchestration), exogenous con-
nectors also define explicit control flow.

TABLE II
ORCHESTRATION VS. HIERARCHICAL ORCHESTRATION VS.

CHOREOGRAPHY VS. OUR APPROACH.

Total Compositionality Explicit Control
Flow

Orchestration

Hierarchical
Orchestration

Choreography

Our Approach

3See 2 in Appendix A.

Fig. 1. Compositionality and control flow in SOA.

III. EXOGENOUS CONNECTORS FOR SERVICE
COMPOSITION

We propose exogenous connectors for service composition,
which define explicit control flow and enable hierarchical con-
struction of SOA systems. Our notion of total compositionality
is akin to mathematical function composition where two or
more functions can be composed into a new function of the
same type that can be further composed with other func-
tions. Mathematical functions are composed algebraically and,
hence, hierarchically. With this in mind, a service composition
results in a new service that can be composed into even bigger
services. Figure 2 shows that, unlike (hierarchical) orchestra-
tion and choreography,4 at every level of the hierarchy the
result of composition is a service (of type S). The operator ◦
denotes a service composition.

Fig. 2. Hierarchical service composition using exogenous connectors.

4See Appendix B.

A. Design of Exogenous Connectors

Our notion of exogenous connectors is borrowed from the
X-MAN component model [11], [12], [13], but our approach
is significantly different from X-MAN, especially in the se-
mantics of distribution,5 services and service composition. A
detailed comparison with X-MAN is out of scope, but we will
briefly discuss the main differences in Sect. V.

Exogenous connectors are architectural elements that medi-
ate the interaction between services. They originate control and
coordinate the execution of an SOA system; to this end, they
encapsulate a network communication mechanism in general
and control in particular. There are three kinds of connectors:
(i) invocation, (ii) composition and (iii) adaptation.

An invocation connector is connected with a computation
unit which encapsulates the implementation of some behaviour
and is not allowed to call other computation units (see Fig.
3(a)). An invocation connector provides access to the opera-
tions implemented in the computation unit.

Fig. 3. Exogenous connectors and services.

A composition connector is a composition operator (◦) that
defines explicit control flow and coordinates the execution of
n > 1 (atomic and/or composite) services (see Fig. 3(b)).
Composition connectors can be defined for the usual control
structures in SOA for sequencing, branching, and parallelism.
The sequencer connector allows the composition of services
S1, . . . , Sn and executes them in sequential order. The selector
connector allows the composition of services S1, . . . , Sn and
can choose the services out of them to be executed, according
to a predefined condition. The parallel connector composes
S1, . . . , Sn services and executes all of them in parallel.

Figure 3(d) shows that n ≥ 0 adaptation connectors can
be connected with either a composition connector or an
invocation connector. Adaptation connectors can be defined
for complementary control structures in SOA such as looping
and guarding. They do not require the composition of services
as they only operate, if a predefined condition is true, over an
individual service. The control structure for looping defines a
number of iterations, while a guard connector provides gating.

Our approach is then a Turing complete set for defining
explicit control flow for sequencing, branching, and loop-
ing. Composition connectors can define (and encapsulate)

5X-MAN is not distributed.

workflows for the set of composed services. Composition
connectors and adapters are able to receive, initiate and return
control; whereas invocation connectors are only able to receive
and return control.

Services only provide operations and do not call directly
operations provided by other services. Figure 3 shows that
there are two kinds of services: (i) atomic and (ii) composite.
An atomic service is formed by connecting an invocation con-
nector with a computation unit (see Fig. 3(a)), whose interface
has all the operations implemented in the computation unit.

A composite service consists of a set of (atomic and/or
composite) services composed by a composition connector
(see Fig. 3(c)). Its interface is constructed from the interfaces
of the composed services; thereby, a composite has available
all the operations of the composed services (see Fig. 4).

Services are decoupled from the hierarchical control flow
structure provided by connectors. Fig. 4 shows that composite
services are self-similar as exogenous connectors enable com-
positional and, therefore, hierarchical construction in a bottom-
up fashion. The connectors of the top- and middle-levels are
of variable arities and types since they can be connected to
any number of connectors. At the bottom-level, there are unary
invocation connectors which connect to single connectors. We
use the master-slave pattern so higher-level connectors are the
masters of the lower-level connectors they are connected to.

Fig. 4. Total compositionality and explicit control flow in our approach.

The precise choice of connectors, the number of levels of
the hierarchy and the connection structure, depend on the
relationship between the behaviour of the individual services
and the behaviour that the system is intended to achieve.
The control structure is always hierarchical, which means
that there is always one connector at the top-level (the top-
level composite can represent an SOA system per se). This
connector initiates the control flow in the whole system. For
instance, the connector CC1 initiates the generic SOA system
presented in Fig. 4.

Figure 5 shows a possible data flow for the service com-
position presented in Fig. 4, where we can see that data
is represented by parameters and data flow is orthogonal
to control flow. Input parameters are the required data by
either an operation or a (composition or adaptation) connector,
while output parameters are data resulting from an operation’s

computation.6 Connectors read input parameter values and
write output parameter values on data channels [11]. Com-
position and adaptation connectors read input parameters to
achieve their purpose, e.g., a selector may define a condition
price < 2000 that requires the input parameter price. An
invocation connector reads input parameters and writes output
parameters for the operations of the computation unit it is
connected to.

Fig. 5. Data flow in our approach.

A data channel connects two endpoints: an origin parameter
from with a destination parameter to. There is a set of
data channels for each operation of a composite service; for
instance, in the composite Composite1 in Fig. 5, the operation
op121A has only one data channel, whereas the operation
op11A has three data channels. Data channels are automati-
cally created (on service composition) for each operation of a
composite service; nevertheless, composite service operations
can be customized so as to add and/or remove data channels.
In Fig. 5, the data channels connected to the input parameters
of connectors CC12 and AC11, respectively, were added
manually.

Figure 6 illustrates that both composite and atomic services
can be potentially mapped onto different nodes over a net-
work. In particular, this Figure shows a possible mapping of
the services and connectors presented in Fig. 4. Exogenous
connectors reside in the same network address as the service
they belong to. For instance, the atomic service Atomic11, its
invocation connector IC11, and its adaptation connector AC11
reside in 203.0.113.7. Services are location- and workflow-
agnostic as exogenous connectors encapsulate service location
and define explicit control flow. The workflow of an SOA sys-
tem is distributed among the involved exogenous connectors.

B. Implementation of Exogenous Connectors

We implemented the meta-model of our proposal in Java
(see Fig. 7). The purple section encompasses the classes for
exogenous connectors, the green section includes the classes
for network communication and the rest of the classes are
concerned with services and data representation. Services and
exogenous connectors were defined as a hierarchy of Java
classes. The superclasses ConnectorType and Service allow

6Connectors do not have output parameters because they do not perform
any computation.

Fig. 6. Connector and service mappings over a network.

the definition of any connector and any service, respectively,
at any level of the hierarchy. We omit the source code due
to space constraints; nevertheless, it is available at https:
//gitlab.cs.man.ac.uk/mbaxrda2/ExogenousConnectors.

Fig. 7. Meta-model of our proposal.

The ServiceInfo class encapsulates the service name and the
service kind as well as the details (i.e., name, IP address and
listening port) of the node wherein the service is deployed.
A service provides at least one operation with at least one
parameter. Parameters and data channels have unique IDs
within a network.

The ExogenousConnector class encapsulates a network
communication mechanism for the interaction between ex-
ogenous connectors via the network. Although we particu-
larly use Remote Method Invocation (RMI), it is possible to
replace it with any other mechanism such as HTTP/REST.
Thus, exogenous connectors use RMI to coordinate an SOA
system execution (by passing only control) via the network.
As we rely on hierarchical composition, a composition con-
nector contains an RMICoordinator instance which provides
the transferControl() method to pass control to the remote
connectors of the composed services. Exogenous connectors

have unique IDs within a network.
Our exogenous connectors are synchronous so they are

always listening for remote invocations from higher-level
connectors. The ConnectorType class has the abstract method
activate() which is invoked remotely by other connectors.
This method is implemented according to the intended control
structure of the exogenous connector involved.

A selector connector associates each lower-level connector
with a condition by which these connectors are invoked. An
adaptation connector associates a single lower-level connec-
tor with a single condition. Sequencer connectors remotely
invoke, in a given order, a list of lower-level connectors.
A parallel connector creates a Thread pool of n threads,
where n is the number of composed services; hence, the
parallel execution of services is performed by Java threads.
An invocation connector uses the invoke() method provided
by Java reflection to execute an operation in the connected
computation unit.

Total compositionality does not require any glue that has
to be constructed manually; therefore, invocation connectors
dynamically invoke an operation (provided by the atomic ser-
vice they belong to) by reading an invocation map from a data
space. An invocation map associates a service ID (i.e., an entry
key) with the ID of the operation (i.e., an entry value) to be
invoked in that service. During the deployment of a composite
service CS, Algorithm 1 generates an invocation map Mi for
each operation Opi provided by CS. For each data channel
dci of the operation Opi, Algorithm 2 analyzes the respective
endpoints (i.e., the origin from and the destination to). Only
data channels connected to service operation parameters are
analyzed7 and we particularly assume that the given data
channels are valid. Invocation maps are written in the data
space DS with the operation ID as the key.

Algorithm 1 Algorithm for the generation of invocation maps
Input: The data space DS and the composite service CS

being deployed
. Opi:An operation provided by the composite CS

for all OPi ∈ CS do
. Mi:Invocation map for the operation Opi

Mi ← newInvocationMap()
. dci:A data channel for the operation Opi

for all dci ∈ OPi do
analyzeEndpoint(DS,CS,Mi, dci.from)
if dc.to.notInConnector() then

analyzeEndpoint(DS,CS,Mi, dci.to)
end if

end for
DS.write(Opi.id,Mi)

end for

When a data channel is connected to a parameter of an
operation provided by a composite service (different to the one

7Data channels connected to connector parameters are not analyzed because
connectors do not provide operations.

Algorithm 2 Algorithm for the analysis of a data channel
endpoint
Input: The data space DS, the composite service CS being

deployed, the invocation map Mi being generated and the
data channel endpoint to analyze
if endpoint.service is a composite then

if endpoint.service is not the composite CS then
Mendpoint = DS.read(endpoint.operationId)
for all key, value ∈Mendpoint do

Mi.putIfAbsent(key, value)
end for

end if
else

Mi.putIfAbsent(endpoint.serviceId,
endpoint.operationId)

end if

being deployed), the invocation map Mendpoint (previously
generated by that composite) is retrieved from the data space
DS and combined with the invocation map Mi.8 Otherwise, if
the data channel is connected to an atomic service’s operation
and the invocation map Mi does not have an entry for that
service, the association between the atomic service ID and the
operation ID is created in the invocation map Mi.

We also developed an algorithm for reading and writing data
efficiently. However, we do not present this algorithm due to
space constraints.

C. Platform Support

We implemented a platform in Java for the development
of SOA systems based on exogenous connectors. A central
service repository was implemented to store and retrieve ser-
vices. Data is managed by a shared data space: MozartSpaces
2.3.9 The source code of the implementation is available at
https://gitlab.cs.man.ac.uk/mbaxrda2/ExogenousConnectors.

Fig. 8. Platform support.

System instances sit above the Platform API which provides
the constructs for designing and deploying services as well as
executing systems. Platform Core provides the functionality
for repository, data and deployment management. Network
Mgmt contains the communication mechanisms to perform
actions over the network such as passing control between
connectors. Our platform requires every node to have support
for Java Runtime Environment (JRE) 1.8.

8The invocation maps for the operations of sub-composite services are
generated in advance as composite services are deployed in a bottom-up way.

9http://www.mozartspaces.org

IV. CASE STUDY

Our case study (see Fig. 9) is based on the popular Music-
Corp [18]. It is focused on the creation of customers which get
a new record in a loyalty points bank and receive a welcome
pack/email. We do not show data flow as services are com-
posed by composition connectors which rely on control flow.
The source code was generated using the platform API and it is
available at https://gitlab.cs.man.ac.uk/mbaxrda2/MusicCorp.

Fig. 9. Compositionality and explicit control flow in our case study.

The atomic services LoyaltyPointsBank, Courier1, Courier2
and EmailService offer primitive operations to achieve the
intended behavior of our case study. LoyaltyPointsBank has
the operation createRecord to store customer details in a
database. Courier1 and Courier2 provide the operations to
send a welcome pack by standard and fast delivery, respec-
tively. EmailService exposes the sendWelcomeEmail operation
to send a welcome email to new customers.

Our case study is constructed in a hierarchical bottom-up
fashion. First, Courier1 and Courier2 are composed into Post-
Service by the selector connector SEL1. Then, the composite
SenderService uses the sequencer connector SEQ2 to compose
PostService and EmailService. Finally, LoyaltyPointsBank and
SenderService are composed into CustomerService by the
sequencer connector SEQ1.

At the bottom-level, we have the invocation connectors IC1,
IC2, IC3, and IC4. In the next level, we have the adapter
GUA1. Then, we have the selector SEL1. Next, we have
the sequencer SEQ2. Finally, at the top-level, we have the
sequencer SEQ1.

The execution of our case study is control-driven. The top-
level connector SEQ1 starts the execution by passing control
to the invocation connector IC1 and the sequencer SEQ2,
in that order. Next, SEQ2 invokes the selector SEL1 which
activates either the invocation connector IC2 or the invocation
connector IC3, depending on the customer address. Then,
SEQ2 invokes the adapter GUA1 (which denies the invocation
of EmailService if the customer email is invalid). Finally,
SEQ2 returns the control to the top-level connector SEQ1 and
the execution terminates.

In general, SEQ1 defines a sequential invocation of Loy-
altyPointsBank and SenderService. Similarly, SEQ2 defines a
sequential execution of PostService and EmailService. SEL1
explicitly defines a condition for invoking either Courier1 or
Courier2. GUA1 defines gating for EmailService.

We implemented a client to remotely execute the operation
CreateCustomer in CustomerService. Our case study was
tested in localhost with each service running in a separate pro-
cess (to simulate different nodes in the Local Area Network).
We mapped a service per node.

Figure 10 displays a screenshot of the standard output for
the composite SenderService, resulting from the execution of
our case study. A glance at the bottom of this Figure, reveals
the explicit control flow defined by the sequencer SEQ2 (with
ID 4684084166367832649): SEQ2 passes control to the se-
lector SEL1 (with ID -5878785820492134700) of PostService
and, then, to the adapter GUA1 (with ID 84636168467804098)
of EmailService.

To achieve total compositionality, the composition of two or
more services must yield another service that (1) preserves all
the operations provided by the composed services and (2) can
be composed into even bigger services. Our composite services
inherit all the operations from their respective composed
services. Thus, primitive operations are initially defined in
atomic services and inherited on composition. For instance, as
shown in Figures 9 and 10, PostService and EmailService are
composed into SenderService by the sequencer SEQ2 (with
ID 4684084166367832649); thereby, the composite Sender-
Service has available the operations sendWelcomeStd, sendWel-
comeFast, and sendWelcomeEmail.

V. EVALUATION AND DISCUSSION

Although our notion of exogenous connectors is borrowed
from the X-MAN component model, there are important
differences. X-MAN is a general-purpose and a single-process
component model, whereas our approach is particularly fo-
cused on SOA systems. For this reason, unlike X-MAN, our
approach is distributed (i.e., multi-process) so services are
mapped onto different network addresses, and the control flow
is distributed over a network. Moreover, in contrast to X-MAN,
we followed SOA principles for the definition of services and
service composition. We also changed the semantics of X-
MAN so as to support (1) the parallel invocation of services
and (2) the execution of multiple services that satisfy a partic-
ular condition in the selector connector. Finally, we developed
an algorithm to dynamically invoke primitive operations in
atomic services, so the manual mapping of operations (during
the design phase) is not required anymore.

Total compositionality entails a strictly hierarchical way
of constructing SOA systems by composing services. In our
approach, atomic services form a flat layer and the entire
control structure (of composition and adaptation connectors)
sits on top of this. This hierarchical composition structure
is split up among the exogenous connectors (which are dis-
tributed over a network). A hierarchical structure enables
location transparency which is crucial for scalability since

Fig. 10. Standard output for the composite PostService.

service locations may dynamically change. For instance, if
PostService changes its location, only the connector of the
composite SenderService is affected without requiring updates
to other connectors or other services.

Having available all the operations in a composite service
implies that any operation can be invoked in any composed
service. In fact, adding new operations does not require any
change in the workflow defined by our connectors. Conversely,
(hierarchical) orchestration and choreography require n work-
flows for n different operations, leading to combinatorial
explosion as the number of operations increases.

For instance, adding the operation sendProduct in the
composite CustomerService does not require changing the
workflow defined by such a composite. Conversely, (hier-
archical) orchestration and choreography will require two
different workflows: one for the invocation of the operation
createCustomer and another one for the invocation of the
operation sendProduct.

Of course, our composite services can be customized to
add new operations or remove operations inherited on com-
position, or both. Figure 9 shows that we customized the
top-level composite CustomerService to expose the operation
createCustomer (to the external world) by removing all the
operations inherited on composition.

Total compositionality results in a service type at every
level of the hierarchy, leading to service reuse. For instance,
the composite CustomerService can be reused in multiple e-
commerce systems. In orchestration, it is possible to reuse a
workflow whereas in our approach it is possible to reuse a
service containing multiple workflows.

Invocation connectors use the Algorithms presented in Sect.
III-B so as to dynamically find the operation to invoke. There-
fore, exogenous connectors only pass control and explicitly
define the order in which services are executed, rather than
define the order in which operations are invoked. Explicit
control is important for scalability since it enables monitoring,
tracking and visualization of the interaction between services.
It therefore leverages the maintenance and the evolution of
SOA systems.

VI. CONCLUSION AND FUTURE WORK

Total compositionality and explicit control flow are crucial
for the scalability of SOA systems. In this paper, we presented

exogenous connectors for service composition. Like orchestra-
tion, exogenous connectors define explicit control flow, but un-
like (hierarchical) orchestration and choreography, they enable
total compositionality. We were not able to get a real-world
case study consisting of many services to perform quantitative
evaluation on scalability, so we evaluated qualitatively our
proposal from the popular MusicCorp. We plan to perform
quantitative evaluation in the future.

Centralized execution of composite services is not desirable
for scalability [21]. For this reason, currently, we are inves-
tigating novel ways of achieving decentralized service com-
position. Additionally, as our approach enables composition
automation, we are working on a novel mechanism to dynam-
ically reconfigure services in the presence of changes in the
environment. We strongly believe that exogenous connectors
will play an important role in the development of large-scale
SOA systems. Indeed, we are currently in discussion with an
industrial partner on this matter.

REFERENCES

[1] A. Barros, M. Dumas, and P. Oaks, “Standards for Web Service
Choreography and Orchestration: Status and Perspectives,” in Business
Process Management Workshops. Springer, Berlin, Heidelberg, Sep.
2005, pp. 61–74.

[2] E. Ben Hadj Yahia, I. Gonzalez-Herrera, A. Bayle, Y.-D. Bromberg, and
L. Réveillère, “Towards Scalable Service Composition,” in Proceedings
of the Industrial Track of the 17th International Middleware Conference,
ser. Middleware Industry ’16. ACM, 2016, pp. 3:1–3:6.

[3] C. Carneiro and T. Schmelmer, “Microservices: The What and the Why,”
in Microservices From Day One. Berkeley, CA: Apress, 2016, pp. 3–18.

[4] G. Chafle, S. Chandra, and V. Mann, “Decentralized Orchestration of
Composite Web Services,” in Proceedings of the 13th International
WWW Conference, 2004, pp. 134–143.

[5] S. Daya, N. V. Duy, K. Eati, C. M. Ferreira, D. Glozic, V. Gucer,
M. Gupta, S. Joshi, V. Lampkin, M. Martins, S. Narain, and R. Vennam,
Microservices from Theory to Practice: Creating Applications in IBM
Bluemix Using the Microservices Approach, Sep. 2016.

[6] P. D. Fensel, D. F. M. Facca, D. E. Simperl, and I. Toma, “The Web
Service Execution Environment,” in Semantic Web Services. Springer
Berlin Heidelberg, 2011, pp. 163–216.

[7] M. Fowler and J. Lewis, “Microservices: A definition of this new
architectural term,” https://martinfowler.com/articles/microservices.html,
2014.

[8] W. Jaradat, A. Dearle, and A. Barker, “Towards an autonomous decen-
tralized orchestration system,” Concurrency Computat.: Pract. Exper.,
vol. 28, no. 11, pp. 3164–3179, Aug. 2016.

[9] S.-S. T. Q. Jongmans, F. Santini, M. Sargolzaei, F. Arbab, and H. Af-
sarmanesh, “Orchestrating web services using Reo: From circuits and
behaviors to automatically generated code,” Service Oriented Computing
and Applications, vol. 8, no. 4, pp. 277–297, Dec. 2014.

[10] M. Jung and J. Simon, “Microservices on AWS,” https://aws-de-media.
s3.amazonaws.com/images/AWS Summit Berlin 2016/sessions/
pushing the boundaries 1300 microservices on aws.pdf, 2016.

[11] K. K. Lau and C. M. Tran, “X-MAN: An MDE Tool for Component-
Based System Development,” in 2012 38th Euromicro Conference on
Software Engineering and Advanced Applications, 2012, pp. 158–165.

[12] K.-K. Lau, L. Safie, P. Stepan, and C. Tran, “A Component Model That
is Both Control-driven and Data-driven,” in Proceedings of the 14th
International ACM Sigsoft Symposium on Component Based Software
Engineering. ACM, 2011, pp. 41–50.

[13] K.-K. Lau, P. Velasco Elizondo, and Z. Wang, “Exogenous Connectors
for Software Components,” in Proceedings of the 8th International
Conference on Component-Based Software Engineering. Berlin, Hei-
delberg: Springer-Verlag, 2005, pp. 90–106.

[14] P. Leitner, W. Hummer, and S. Dustdar, “Cost-Based Optimization
of Service Compositions,” IEEE Transactions on Services Computing,
vol. 6, no. 2, pp. 239–251, Apr. 2013.

[15] A. L. Lemos, F. Daniel, and B. Benatallah, “Web Service Composition:
A Survey of Techniques and Tools,” ACM Computing Surveys, vol. 48,
no. 3, pp. 1–41, 2016.

[16] Netflix, “Conductor,” https://netflix.github.io/conductor/, 2016.
[17] P. G. Neumann, “Principled Assuredly Trustworthy Composable Archi-

tectures,” Tech. Rep., 2004.
[18] S. Newman, Building Microservices, 1st ed. Beijing Sebastopol, CA:

O’Reilly Media, Feb. 2015.
[19] C. Peltz, “Web Services Orchestration and Choreography,” Computer,

vol. 36, no. 10, pp. 46–52, Oct. 2003.
[20] S. Ross-Talbot and T. Fletcher, “Web Services Choreography Description

Language: Primer,” https://www.w3.org/TR/ws-cdl-10-primer/, 2006.
[21] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and

X. Xu, “Web services composition: A decade’s overview,” Information
Sciences, vol. 280, pp. 218–238, Oct. 2014.

[22] K. A. Suji and S. Sujatha, “A Comprehensive Survey of Web Service
Choreography, Orchestration And Workflow Building,” International
Journal of Computer Applications, vol. 88, no. 13, pp. 18–23, Feb. 2014.

[23] N. Taušan, J. Markkula, P. Kuvaja, and M. Oivo, “Choreography in the
embedded systems domain: A systematic literature review,” Information
and Software Technology, Jun. 2017.

[24] N. Temglit, A. Chibani, K. Djouani, and M. A. Nacer, “A Distributed
Agent-Based Approach for Optimal QoS Selection in Web of Object
Choreography,” IEEE Systems Journal, no. 99, pp. 1–12, 2017.

[25] W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. ter Hofstede,
“Design and Implementation of the YAWL System,” in Advanced
Information Systems Engineering. Springer, Berlin, Heidelberg, Jun.
2004, pp. 142–159.

[26] O. Zimmermann, “Microservices tenets,” Comput Sci Res Dev, vol. 32,
no. 3, pp. 301–310, 2017.

APPENDIX A

A service exposes a set of operations through a well-defined
WSDL interface. A service S ∈ S, where S is the type of
services, is a set of operations defined as follows:

S = {opi | i ∈ N} (1)
An orchestration or a choreography can be defined as a

function ORCH with the following type:

ORCH : OP×OP× · · · ×OP→WF (2)
where OP is the type of operations in the invoked services
and WF is the type of workflows for invoking a set of such
operations.

A workflow is a sequence of invocations of service oper-
ations whose permutation is defined by the designer of the
orchestration. A workflow is then defined as follows:

wf = 〈inv(opi) | i ∈ N〉 (3)

where inv(opi) is an invocation to the operation opi.

A conversion from a workflow type WF into a service
type S (with one operation for invoking the workflow) can
be defined as a function CONV with the following type:

CONV : WF→ S where |S| = 1 (4)
A hierarchical orchestration is defined by concatenating

workflow sequences. It can therefore be defined as a function
HORC as follows:

HORC(wf1, wf2, . . . , wfn) = wf_
1 wf_

2 · · ·_ wfn (5)

Our notion of total compositionality is defined as a function
COMP with the following type:

COMP : S× S× · · · × S→ S (6)

APPENDIX B
Although an orchestration can be hierarchical, it is not

totally compositional since there is not a service type at every
level of the hierarchy as in our approach (see Fig. 2 in Sec.
III). Consider the formal definitions presented in Appendix
A and four services: S1 = {op11, op12}, S2 = {op21, op22},
S3 = {op31, op32} and S4 = {op41, op42}. Fig. 11 illustrates a
hierarchical orchestration wf1234 constructed by the concate-
nation of the sub-workflows wf12 and wf34:

HORCH(wf12, wf34) = wf12
_wf34 = wf1234 (7)

Fig. 11. Hierarchical orchestration.

The workflows wf12 and wf34 are sequences of type WF
resulting from the functions:

ORCH(op11 ∈ S1, op21 ∈ S2)

= 〈inv(op11 ∈ S1), inv(op21 ∈ S2)〉 = wf12 (8)

ORCH(op31 ∈ S3, op41 ∈ S4)

= 〈inv(op31 ∈ S3), inv(op41 ∈ S4)〉 = wf34 (9)

Fig. 11 shows that in hierarchical orchestration, even if
workflows can be converted into services (providing one
operation for invoking the workflow) by applying the function
CONV , there is not a service type at every level of the
hierarchy.

