
The University of Manchester Research

D-XMAN: A Platform For Total Compositionality in Service-
Oriented Architectures
DOI:
10.1109/SC2.2017.55

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Arellanes Molina, D., & Lau, K-K. (2018). D-XMAN: A Platform For Total Compositionality in Service-Oriented
Architectures. In The 7th IEEE International Symposium on Cloud and Service Computing
https://doi.org/10.1109/SC2.2017.55

Published in:
The 7th IEEE International Symposium on Cloud and Service Computing

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Jul. 2020

https://doi.org/10.1109/SC2.2017.55
https://www.research.manchester.ac.uk/portal/en/publications/dxman-a-platform-for-total-compositionality-in-serviceoriented-architectures(710fef16-97a0-4b1a-8f25-e88af0649385).html
/portal/damian.arellanesmolina-postgrad.html
/portal/kung-kiu.lau.html
https://www.research.manchester.ac.uk/portal/en/publications/dxman-a-platform-for-total-compositionality-in-serviceoriented-architectures(710fef16-97a0-4b1a-8f25-e88af0649385).html
https://www.research.manchester.ac.uk/portal/en/publications/dxman-a-platform-for-total-compositionality-in-serviceoriented-architectures(710fef16-97a0-4b1a-8f25-e88af0649385).html
https://doi.org/10.1109/SC2.2017.55


D-XMAN: A Platform For Total Compositionality
in Service-Oriented Architectures

Damian Arellanes and Kung-Kiu Lau
School of Computer Science
The University of Manchester

Manchester M13 9PL, United Kingdom
{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract—Current software platforms for service composition
are based on orchestration, choreography or hierarchical or-
chestration. However, such approaches for service composition
only support partial compositionality; thereby, increasing the
complexity of SOA development. In this paper, we propose
DX-MAN, a platform that supports total compositionality. We
describe the main concepts of DX-MAN with the help of a case
study based on the popular MusicCorp.

Index Terms—service composition, platform, orchestration,
choreography, scalability, microservices, exogenous connectors

I. INTRODUCTION

Service-Oriented Architectures (SOA) are popular in the
software industry because they enable high modularity. Many
software platforms for service composition have been proposed.
However, such platforms only provide support for partial
compositionality, since they are based on orchestration [1],
choreography [2], [3] or hierarchical orchestration [4], [5],
[6]. Partial compositionality [7] requires software developers
to design individual workflows for the invocation of service
operations, leading to combinatorial explosion and, therefore,
increasing the complexity of SOA system development.

Total compositionality [7] means that two or more services
can be composed into a new (composite) service of the same
type, that preserves all the operations provided by the composed
services. It implies a hierarchical composition structure but not
the other way round. Total compositionality is crucial for the
scalability of SOA systems since it only requires the design
of one workflow for the invocation of any operation in any
composed service.

In this paper, we present DX-MAN, a platform for total
compositionality based on the hierarchical model we presented
in [7], where services and exogenous connectors are first-class
entities. Exogenous connectors are architectural elements that
mediate the interaction between services. They originate control
and coordinate the execution of an SOA system by passing only
control; to this end, they encapsulate a network communication
mechanism in general and control in particular.

The rest of the paper is organized as follows. Section II
presents an overview of the proposed platform. Section III
discusses the strengths of the proposed platform and presents
the concluding remarks.

II. PLATFORM OVERVIEW

DX-MAN is a platform that delivers the necessary pro-
gramming abstractions and the runtime environment to design,
deploy and execute SOA systems. DX-MAN relies on the
notion of service template and service instance. A service
template provides the skeleton of a service design, whereas a
service instance is the result of a service template deployment.

In this section, we describe the main concepts of DX-
MAN with the help of a case study based on the popular
MusicCorp [8]. The objective of this case study is the creation
of new customers which get a record in a loyalty points bank
and receive a welcome pack/email. Fig. 1 shows the service
composition and the data flow of our case study. For further
details about the model and the case study, please refer to [7].

Fig. 1. Service composition and data flow of our case study.

A. Platform Architecture

We implemented DX-MAN in Java due to the popularity of
this programming language. A central service repository was
also implemented to publish and retrieve service templates so
as to support reuse. Data is managed by MozartSpaces 2.3
[9],1 a popular data space that offers extensive support. Figure
2 illustrates the architecture of DX-MAN.

1The central service repository and the data space can reside at any network
address.



Fig. 3. Process for service design and reuse in DX-MAN.

Fig. 2. DX-MAN platform.

DX-MAN API hides the complexity of the platform and offers
the constructs to design and deploy services, and execute SOA
systems. DX-MAN Core is divided into three modules: (a)
Repository Management provides the functionality to publish
and retrieve services from the central service repository; (b)
Data Space Management provides the functionality to perform
operations in the data space such as reading and writing; and
(c) Deployment Management offers the functionality to deploy
services. Network Management contains the communication
mechanisms to perform operations on the network such as
passing control between connectors and connecting to the
central repository.

A node is a logical entity within a network that uses DX-
MAN. It can host any number of service instances in its Java
Virtual Machine (JVM). DX-MAN requires every node to have
support for Java Runtime Environment (JRE) 1.8. A node can
play the role of provider, consumer, or both. On the one hand,
a provider node publishes service templates in the central
repository for further reuse. On the other hand, a consumer
node retrieves templates from the central repository, in order

to design composite service templates.
Provider nodes are required to set a deployment directive in

service templates. A downloadable directive indicates that the
service template must be deployed in the Java Virtual Machine
(JVM) of consumer nodes. A non-downloadable directive states
that the service template is always deployed in the JVM of
the respective service provider.

A complete life cycle for SOA development should consist
of two life cycles: a service life cycle and a system life cycle.
The service life cycle comprises two phases: (1) design and
(2) deployment. During the phase (1), a node designs service
templates. For the phase (2), deployment directives drive the
deployment of service templates in the JVM of the respective
nodes.

The system life-cycle consists of three phases: (1) design,
(2) deployment and (3) execution. During the phase (1), a
node designs a system template (which has the form of a
composite service template). System templates are deployed in
the phase (2) by using a bottom-up approach: atomic services
are deployed first and the top-level composite is deployed at
the end. Finally, systems are executed in the phase (3).

Figure 3 shows a BPMN diagram that depicts the overall
process for service design and reuse in DX-MAN. Designing
an atomic service template comprises the following steps: (1)
implementation of the computation unit, (2) creation of the
atomic service template, and (3) publication of the atomic
service template in the central repository. The step (3) is carried
out only if the designer node is a provider node.

Service composition requires (1) the retrieval of service
templates from the central repository for the composed services;
(2) the customization of the retrieved service templates;
(3) the creation of the composite service template; (4) the
customization of operations and data flow for the composite
service; and (5) the publication of the composite service
template in the central repository. It is important to mention that
composite service templates can be designed without reusing
templates from the central repository. The step (1) is carried



out only if the designer node is a consumer node and the step
(5) is performed only if the designer node is a provider node.
The steps (2) and (4) are optional.

Next, we describe how DX-MAN maps definitions of our
model to Java language primitives. In particular, we follow a
programmer’s point of view to show how the case study is
implemented using DX-MAN API constructs.

B. Atomic Services

An atomic service is formed by connecting an invoca-
tion connector with a computation unit. A computation unit
encapsulates the implementation of some behaviour and is
not allowed to call other computation units. An invocation
connector provides access to the operations implemented in
the computation unit. A computation unit has the form of a
Java class (Fig. 4). Computation unit operations are defined
as class methods, annotated with @Operation. Operation
parameters must be annotated with @ParameterInfo, and they
must specify a property (of String type) for the parameter
name and a property (of Class type) for the parameter type.
The DXManAtomicParameterIn class is a wrapper for an input
parameter, while the DXManAtomicParameterOut class is a
wrapper for an output parameter. DXManAtomicParameterIn
and DXManAtomicParameterOut provide methods to get and
set data values, respectively. A computation unit is unaware of
how data is handled internally by DX-MAN.

1 public class EmailServiceCU {
2 ...
3 @Operation
4 public void sendWelcEmail(
5 @ParameterInfo(name="email", type=String.class)

↪→ DXManAtomicParameterIn customerEmail,
6 @ParameterInfo(name="res", type=String.class)

↪→ DXManAtomicParameterOut msgResult) {
7 ...
8 }
9 }

Fig. 4. Example of a computation unit definition.

The constructor of an atomic service template requires the
name of the service, the class of the computation unit and
the deployment directive. When an atomic service template is
created, atomic service operations are automatically extracted
from the methods annotated in the computation unit; then, the
invocation connector is automatically created and connected
to the respective computation unit.

Provider nodes publish atomic service templates in the
central repository, using the publish(ServiceTemplate) method
of the ServiceDesigner class. For instance, the template for
EmailService could be created and published with a non-
downloadable directive as follows:
serviceDesigner.publish(serviceDesigner.createAtomicServiceTemplate(

↪→ "EmailService", EmailServiceCU.class, NON_DOWNLOADABLE));

C. Composite Services

A composite service consists of a set of (atomic and/or
composite) services composed by a composition connector.

A composition connector defines explicit control flow and
coordinates the execution of n > 1 (atomic and/or composite)
services. Thus, services do not have any code for invoking
other services. Composition connectors can be defined for the
usual control structures in SOA for sequencing, branching, and
parallelism. A parallel connector executes all the composed
services in parallel, whose constructor only requires the
templates for the composed services.

A sequencer connector executes composed services in
sequential order. Its constructor receives the set of composed
service templates, whose argument order matches the execution
order.

A selector connector uses predefined conditions to choose
the composed services to be executed. Its constructor receives a
set of instances of the ConditionMapping class which associates
a condition with a service template. Conditions are specified
in the matches(ConnectorDataSpace) method of a Java class
implementing the ConnectorCondition interface (Fig. 5). The
ConnectorDataSpace class provides methods to match the value
of a connector’s input parameter with any value specified by
the designer. For instance, the matchesRegex() method requires
two arguments: the name of the connector’s input and the
regular expression to match with. Designers do not know how
data is handled internally by connectors.

1 public class ConditionEmailGuard implements ConnectorCondition {
2 @Override
3 public boolean matches(ConnectorDataSpace cds) {
4 return cds.matchesRegex("email", getEmailPattern());
5 }
6 ...
7 }

Fig. 5. Example of a connector’s condition definition.

Adaptation connectors provide complementary control struc-
tures in SOA such as looping and guarding. They do not
compose services as they only operate, if a predefined condition
is true, over an individual service. Any number of adaptation
connectors can be connected to any composed service. For
instance, our case study requires a guard adapter to deny the
invocation of EmailService, if the customer email is invalid.
Fig. 5 shows the definition of the condition for this adapter.

Figure 6 shows an example of the design of a compos-
ite service template. The retrieveFromRemoteRepository(int)
method, provided by the ServiceDesigner class, is used by
consumer nodes to retrieve service templates from the central
repository (lines 1-2). This method only requires the id of the
service template to be retrieved. Retrieved service templates
can be customized, e.g., by changing the service name (line
3), selecting the operations to be used or both.

The constructor of a composite service template requires
the service name, the template for the composition connector,
the deployment directive, and the set of composed services
(line 9). When a composite service template is created, a
composite service interface is automatically constructed from
the interfaces of the composed services. Hence, a composite
has available all the operations of the composed services.



1 CompositeServiceTemplate postService = (CompositeServiceTemplate)
↪→ serviceDesigner.retrieveFromRemoteRepository(4);

2 AtomicServiceTemplate emailService = (AtomicServiceTemplate)
↪→ serviceDesigner.retrieveFromRemoteRepository(3);

3 emailService.getInfo().setServiceName("EmailService");
4
5 GuardAdapterTemplate gua1 = new GuardAdapterTemplate(ConditionEmailGuard.

↪→ class);
6 gua1.addInput(new DXManParameterIn("email", String.class, 0));
7 emailService.addAdapter(0, gua1);
8
9 CompositeServiceTemplate senderService = serviceDesigner.

↪→ createCompositeServiceTemplate("SenderService", new
↪→ SequencerConnectorTemplate(postServiceTemplate,
↪→ emailServiceTemplate), DOWNLOADABLE, postServiceTemplate,
↪→ emailServiceTemplate);

10
11 serviceDesigner.createDataChannel(senderService, sendWelcomeEmail,

↪→ senderServiceTemplate, "sendWelcomeEmail", "email",
↪→ emailServiceTemplate, gua1, "email");

12
13 serviceDesigner.publish(senderService);

Fig. 6. Example of a design process for a composite service template.

We use data channels to define data flow which is orthogonal
to control flow. A data channel connects two endpoints: an
origin parameter from with a destination parameter to. Data
channels are automatically created when a composite service
template is created. Nevertheless, composite service operations
can be customized so as to add and/or remove data channels
(line 11).

Like atomic service templates, composite service tem-
plates are published in the central repository using the pub-
lish(ServiceTemplate) method of the ServiceDesigner class (line
13).

D. System Design, Deployment and Execution

Our approach for service composition enables hierarchical
construction of SOA systems. Therefore, there is a service at
every level of the hierarchy and there is always one connector
at the top-level that initiates the execution. The top-level
composite represents a system per se.

The SystemDesigner class provides the means to create and
deploy system templates. A system template does not require
a deployment directive since it is always deployed in the JVM
of the provider node. The deployment of a system template
results in a system instance available to final users. In our case
study, CustomerService is created and deployed as follows:

systemDesigner.deploySystem(systemDesigner.createSystemTemplate(
↪→ "CustomerService", new SequencerConnectorTemplate(
↪→ loyaltyPointsBankTemplate, senderServiceTemplate),
↪→ loyaltyPointsBankTemplate, senderServiceTemplate));

The RemoteSystem class allows final users to interact with
the system, e.g., by invoking operations or reading output
values.

III. DISCUSSION AND CONCLUDING REMARKS

In this paper, we presented a platform that supports total
compositionality in SOA. Current software platforms for service
composition are only focused on partial composition, where the
designer needs to create multiple workflows for the invocation

of service operations, leading to combinatorial explosion. In
contrast, in DX-MAN, designers only need to design one
workflow for the invocation of services (not for the invocation
of individual operations). We described the main concepts of
DX-MAN with the help of a case study based on the popular
MusicCorp.

DX-MAN separates data, control and computation, in order
to encourage the maintenance, reuse and evolution of SOA.
In particular, such a separation of concerns makes it easy to
reason about data flow, control flow and behaviour separately.

DX-MAN is based on exogenous connectors which coor-
dinate services from outside, so services do not have code
to interact one another directly. Thus, DX-MAN allows the
development of encapsulated services. This helps to avoid
rigidity so if the designer changes a service, other services are
not changed.

Moreover, services are not required to know the location of
other services. This characteristic is important for SOA because
service instances can be anywhere and their locations can even
dynamically change.

An important advantage of DX-MAN is its hierarchical
nature to construct systems, resulting in well-structured code
for the final system, which is easy to understand and therefore
maintain. Services can be as simple as possible and their size
can be small (e.g., a microservice) or big (e.g., a composite
service composing plenty of services). A bottom-up approach
should make services more tractable and, hence, practicable to
reason about services and their composition separately.

Model-Driven Engineering (MDE) is gaining popularity in
software system development. For this reason, we are currently
working on MDE techniques for DX-MAN. Additionally, we
would like to migrate our platform to the Cloud and evaluate
it in a real-world application. In fact, we are currently in
discussion with an industrial partner on this matter.

REFERENCES

[1] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
“Web services composition: A decade’s overview,” Information Sciences,
vol. 280, pp. 218–238, Oct. 2014.

[2] N. Taušan, J. Markkula, P. Kuvaja, and M. Oivo, “Choreography in the
embedded systems domain: A systematic literature review,” Information
and Software Technology, Jun. 2017.

[3] S. Keller, M. Tivoli, M. Autili, and C. Thomas, “CHOReVOLUTION:
Dynamic and Secure Choreographies of Services,” CHOReOS, White
paper, Mar. 2017.

[4] W. Jaradat, A. Dearle, and A. Barker, “Towards an autonomous decentral-
ized orchestration system,” Concurrency Computat.: Pract. Exper., vol. 28,
no. 11, pp. 3164–3179, Aug. 2016.

[5] G. Chafle, S. Chandra, and V. Mann, “Decentralized Orchestration of
Composite Web Services,” in Proceedings of the 13th International WWW
Conference, 2004, pp. 134–143.

[6] W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. ter
Hofstede, “Design and Implementation of the YAWL System,” in Advanced
Information Systems Engineering. Springer, Berlin, Heidelberg, Jun. 2004,
pp. 142–159.

[7] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in Proceedings of the 10th IEEE International
Conference on Service Oriented Computing and Applications (SOCA
2017). Kanazawa, Japan: IEEE Computer Society, 2017.

[8] S. Newman, Building Microservices, 1st ed. Beijing Sebastopol, CA:
O’Reilly Media, Feb. 2015.

[9] E. Kuehn, “MozartSpaces,” http://www.mozartspaces.org, 2017.


