
The University of Manchester Research

Workflow Variability for Autonomic IoT Systems

DOI:
10.1109/ICAC.2019.00014

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Arellanes Molina, D., & Lau, K-K. (2019). Workflow Variability for Autonomic IoT Systems. In 16th IEEE
International Conference on Autonomic Computing https://doi.org/10.1109/ICAC.2019.00014

Published in:
16th IEEE International Conference on Autonomic Computing

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Jul. 2020

https://doi.org/10.1109/ICAC.2019.00014
https://www.research.manchester.ac.uk/portal/en/publications/workflow-variability-for-autonomic-iot-systems(93fa950b-9b5d-47d4-87cc-64821e488bfe).html
/portal/damian.arellanesmolina-postgrad.html
/portal/kung-kiu.lau.html
https://www.research.manchester.ac.uk/portal/en/publications/workflow-variability-for-autonomic-iot-systems(93fa950b-9b5d-47d4-87cc-64821e488bfe).html
https://doi.org/10.1109/ICAC.2019.00014

Workflow Variability for Autonomic IoT Systems
Damian Arellanes and Kung-Kiu Lau

School of Computer Science
The University of Manchester

Manchester M13 9PL, United Kingdom
{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract—Autonomic IoT systems require variable behaviour
at runtime to adapt to different system contexts. Building suitable
models that span both design-time and runtime is thus essential
for such systems. However, existing approaches separate the
variability model from the behavioural model, leading to syn-
chronization issues such as the need for dynamic reconfiguration
and dependency management. Some approaches define a fixed
number of behaviour variants and are therefore unsuitable for
highly variable contexts. This paper extends the semantics of
the DX-MAN service model so as to combine variability with
behaviour. The model allows the design of composite services
that define an infinite number of workflow variants which can
be chosen at runtime without any reconfiguration mechanism.
We describe the autonomic capabilities of our model by using a
case study in the domain of smart homes.

Index Terms—Internet of Things, autonomic systems, DX-
MAN, exogenous connectors, algebraic service composition, work-
flow variability, models@runtime, smart home

I. INTRODUCTION

The Internet of Things is an emerging paradigm that
envisions the interconnection of everything through novel
distributed services which are combined into complex work-
flows using service composition mechanisms. Workflows
represent IoT systems composed of billions of services with
an overwhelming number of interactions. Thus, it becomes
infeasible to manually manage such systems as the scale and
complexity increases.

Autonomicity is a crucial desideratum for the management of
complex large-scale IoT systems operating in highly dynamic
environments. It is a property that allows adapting behaviour
at runtime to different contexts with minimal or no human
intervention. Autonomicity thus requires workflow variability
for the definition of alternative system behaviours.

Although relatively trivial in static IoT systems, changing
behaviour at runtime in highly variable environments is a
complex and challenging task. For that reason, variability-
based autonomicity has been an active research topic for
software engineering in the last decade [1], [2]. Although
there are many proposals for managing variability, they fail at
incorporating variability in behavioural elements (i.e., in the
solution space) while avoiding the cumbersome time-consuming
task of dynamic reconfiguration [1], [3].

This paper extends the semantics of the DX-MAN ser-
vice model [4], [5], [6] with autonomicity capabilities for
IoT systems. The semantics allows adapting workflows at
runtime to different contexts without requiring any dynamic
reconfiguration mechanism. Our contribution is thus two-fold:

(i) a model that combines variability with behaviour in the
solution space, while providing an infinite number of workflow
variants for composite IoT services; and (ii) an approach that
avoids dynamic reconfiguration (by using non-deployable and
executable only workflows).

The rest of the paper is structured as follows. Sect. II
describes the main constructs of the DX-MAN model. Sect. III
presents the mechanism to realize workflow variability. Sect.
IV describes the autonomicity dimension of the model. Sect.
V presents a case study to show autonomicity in a case study.
Sect. VI describes the related work. Finally, Sect. VII presents
the conclusions and the future work.

II. DX-MAN MODEL

DX-MAN is an algebraic model for IoT systems where
services and exogenous connectors are first-class entities. An
exogenous connector is a deployable entity that executes
multiple workflows with explicit control flow. A service S
is a stateless distributed software unit with a well defined
interface, which can be either atomic (A) or composite (C):

S := A|C (1)

A service defines a workflow space W which is a non-empty
(finite or infinite) set, where each w ∈W is a workflow variant
that represents an alternative service behaviour. The workflow
space constitutes the service interface, and is semantically
equivalent to a service S:

S ≡W = {w1, w2, . . .} (2)

A. Atomic Services
An atomic service A is a tuple 〈IC,O〉 consisting of an

invocation connector IC and a non-empty finite set O of j
primitive operations (Fig. 1). It is formed by connecting an
invocation connector with a computation unit.

Sa

w1w2

wj

WIC =
{

{
op2
op1

opj

w1 w2 wj
Atomic
service
Computation
Unit
Operation
Invocation
Connector

op1 op2 opj

Waaa Atomic
Workflow
Space

Workflow Space

Fig. 1. A DX-MAN atomic service defines j workflows: |W | = j.

A computation unit is not allowed to call other computation
units, and is the place where j service operations are imple-
mented using well-known technologies such as REST. To satisfy

an external request, an invocation connector is responsible for
executing a workflow in W .

Fig. 1 shows that an atomic service Sa ∈ A defines an atomic
workflow space Wa s.t. |Wa| = j and each wi∈[1,j] ∈ Wa is
a workflow invoking an operation opi∈[1,j] ∈ O. The atomic
workflow space Wa is the interface of Sa.

B. Algebraic Composition

Our notion of algebraic service composition is inspired by
algebra where functions are hierarchically composed into a
new function of the same type. The resulting function can be
further composed with other functions, yielding a more complex
one. Algebraic service composition is then the operation by
which a composition connector composes k services into a
more complex service. The result is a (hierarchical) composite
service whose interface is constructed from the sub-service
interfaces. Formally, a composite service is a tuple 〈CC,W〉
consisting of:
• a composition connector CC that invokes multiple work-

flows defined by the composite service, and
• a non-empty finite W set which is a family of non-empty

(finite of infinite) sets of sub-workflow spaces s.t. each
Wi ∈ W, i = 1, . . . , k is a workflow space of either an
atomic sub-service or a composite sub-service.

A composite service is a variation point which defines a
new non-empty (finite or infinite) workflow space W using
the sub-workflow spaces W via algebraic references (Fig. 2).
W serves as the composite service interface, and is available
to more complex composites.

Composition
Connector

Composite
Service

Algebraic
Reference

Invocation
Connector

Atomic
service

Computation
Unit

Composite
Workflow
Space

Atomic
Workflow
Space

Operation

WwaICwa =

{
wclotheswdishes

{

washClothes
washDishes

Oven

WovICov =
{wcook{

cookMeals
Offers Offers

Wwa
Wov

Smart
Home PARhome Offers

Wrobot

WashingServ

Whome

WrtICrt =

{
wrightwleft

{

right
left

FrontWheel

WwhICwh =
{wgo{

go
Spin
Composite

Offers Offers

Offers
Wspin

Wrt
Wwh
Wspin

Available

Vacuum
Robot SEQrobot Offers

Wrobot

RotatingServ

Available (W) home

(W) robot

Fig. 2. Algebraic Composition for a Smart Home.

Fig. 2 depicts a two-level DX-MAN composition for a smart
home with four atomic services (i.e., WashingServ, Oven, Ro-
tatingServ and FrontWheel) and three composite services (i.e.,
SpinComposite, VacuumRobot and SmartHome). The services
are described in Sect. III. For the sake of clarity, we omit the
internal structure of SpinComposite, but we show its interface:
the composite workflow space Wspin. The interfaces of Wash-
ingServ, Oven, RotatingServ and FrontWheel are the atomic

workflow spaces Wwa = {wclothes, wdishes}, Wov = {wcook},
Wrt = {wright, wleft} and Wwh = {wgo}, respectively. The
services RotatingServ, FrontWheel and SpinComposite are
composed into VacuumRobot (using the composition connector
SEQrobot, see Fig. 3). Thus, the interfaces Wrt, Wwh and
Wspin are available in VacuumRobot which, in turn, defines the
composite workflow space Wrobot. Then, WashingServ, Oven
and VacuumRobot are composed into the top-level composite
SmartHome (using the composition connector PARhome, see
Fig. 6). So, SmartHome has available the interfaces Wwa, Wov

and Wrobot, and yields the composite workflow space Whome.

C. Workflow Selection
A composition connector CC is a variability operator that

defines the alternative behaviours of a composite service. It is
a function that defines a workflow space W , given a family of
sub-workflow spaces W:

CC :W 7→W (3)

A composition connector has access to atomic sub-workflow
spaces, but not to composite sub-workflow spaces. This is
because a composite sub-service is a black box whose behaviour
is unknown. Hence, a composition connector operates on n
elements to define sequential, branching or parallel workflows
for a composite c ∈ C. The total number of elements n is the
sum of the cardinality of atomic sub-workflow spaces and the
number of composite sub-services:

n =

|Wc|∑
i=1

{
|W i

c | sic ∈ A
1 sic ∈ C

(4)

where Wc ∈ W is the set of sub-workflow spaces of the
composite c, n ≥ |Wc| and W i

c ∈ Wc is the workflow space
of a sub-service Sic.

At design-time, an abstract workflow tree is automatically
created for a composite service, as a result of composition. It
represents the hierarchical control flow structure of a composite
service, where n leaves are atomic workflows, composite
workflow spaces or any combination thereof (e.g., Fig. 3).
The leaves are also referred to as the elements of a workflow
tree. The edges represent customizable control flow parameters
(e.g., execution order or conditions) which are determined
by the composition connector being used. In our current
implementation, abstract workflow trees are JSON objects.

A concrete workflow tree enables the selection of a workflow
variant at runtime. It particularly sets specific values for the
customizable control flow parameters of an abstract workflow
tree, in order to select the elements (i.e., atomic workflows
or composite workflow spaces) to include in a workflow out
of n possibilities (e.g., Fig. 4). In our current implementation,
concrete workflow trees are also JSON objects.

III. COMPOSITION CONNECTORS AS VARIABILITY
OPERATORS

This section describes some of the composition connectors
currently supported by DX-MAN, namely sequencer, paral-
lelizer and exclusive selector. Although the inclusive selector is
also supported, we do not describe it due to space constraints.

A. Sequencer

A sequencer connector SEQ uses the Kleene star operation
to allow the repetition of n elements, resulting in infinite
sequences. It then defines an infinite workflow space for
a composite service s.t. each wi ∈ W, i = 1, . . . ,∞ is a
sequential workflow. A sequencer is a function defined as:

SEQ :W 7→W (5)

where |W | =∞.
1) Example: Consider a vacuum robot that cleans a room

in a smart home using a composite service VacuumRobot. It
relies on two atomic services and one composite service to
navigate efficiently, as shown by Fig. 3. The atomic service
RotatingServ provides two operations for turning the robot to
the left and right, respectively. The atomic service FrontWheel
offers the operation go to move the robot one unit forward.
There is also a SpinComposite service that enables the robot to
spin 360◦, in order to clean the dirtiest areas of the room. For
clarity, we do not show the internal structure of SpinComposite.

Atomic
service
Computation
Unit

Composite
Service

Algebraic
Reference

Invocation
Connector

Atomic
Workflow
Space

Operation

Composite
Workflow
Space

Sequencer
Connector

WrtICrt =

{
wrightwleft

{

right
left

FrontWheel

WwhICwh =
{wgo{

go
Spin
Composite

Offers Offers

Offers
Wspin

Wrt
Wwh
Wspin

Available

Vacuum
Robot SEQrobot Offers

Wrobot

RotatingServ

wrobot1 wrobot4wrobot3wrobot2 wrobot5
Wrobot

Wspin

Wspin

Wspin

Co
m

po
sit

e
se

rv
ice

W
or

kfl
ow

 S
pa

ce wright

wgo

wleft

wright wleft

wleft

wgo wleft wleft

wgo

Ab
st

ra
ct

W

or
kfl

ow
Tr

ee

wright wleft wgo
[orderList] [orderList] [orderList] [orderList]

Wspin

SEQrobot

(W) robot

Fig. 3. A sequencer defines∞ workflows for a composite service: |W | =∞.
In this example, there are ∞ sequential workflows for Vacuum Robot.

The sequencer connector SEQrobot composes the services
RotatingService, FrontWheel and SpinComposite into Vacuum-
Robot, resulting in the infinite workflow space Wrobot. Fig.
3 illustrates a few workflow variants for VacuumRobot. For
instance, the variant wrobot4 indicates that the atomic workflow
wleft is executed before the composite workflow space Wspin

which, in turn, is executed before the atomic workflow wgo.
Note that Wspin cannot be accessed by the VacuumRobot since
the SpinComposite sub-service is a black box entity which can
take any possible behaviour. Instead, only atomic workflow
spaces (i.e., Wrt and Wwh) can be accessed.

2) Workflow Selection: An abstract workflow tree of a
sequencer requires the specification of the execution order
for n elements. An execution order is a non-negative integer
that reflects the position of an element in a workflow. As a
sequencer allows repetition, an element requires an order list
[order1, order2, . . .], as shown by Figs. 4 and 5. Elements with
no order lists are not included in a workflow and, to ensure
consistent sequences, an order cannot appear in multiple lists.

Fig. 4 shows an example of a concrete workflow tree for
choosing the sequential workflow wrobot3 for the composite
VacuumRobot. The element wright is left out as it does not
have any order list. Fig. 5 illustrates another example for
the selection of the sequential workflow wrobot1 which now
excludes the composite workflow space Wspin.

=
[1,3]

wright wleft wgo Wspin

SEQrobot

[0] [2]

wleft

wleft

wgo [0]
[1]
[2]

[3]

Wspin

Fig. 4. Concrete workflow tree for choosing the sequential workflow wrobot3

for the V acuumRobot composite.

=
SEQrobot

wright wleft wgo
[2] [1][0]

[0]
[1]
[2]

wright
wgo
wleftWspin

Fig. 5. Concrete workflow tree for choosing the sequential workflow wrobot1

for the V acuumRobot composite.

B. Parallelizer

A parallelizer connector PAR allows the execution of
multiple elements in parallel. As it supports element repetition,
it defines∞ parallel workflows for a composite service s.t. each
wi ∈W, i = 1, . . . ,∞ is a workflow executing all the elements
in parallel. Formally, a parallelizer is a function defined as:

PAR :W 7→W (6)

where |W | =∞.
1) Example: Consider the composition depicted in Fig. 6

where SmartHome is the top-level composite which is able to do
the chores for a user. The atomic service WashingServ provides
the operations washClothes and washDishes for washing clothes
and washing dishes, respectively. The atomic service Oven
offers the operation cookMeals for cooking breakfast, lunch and
dinner in a specific day. The composite service VacuumRobot,
previously presented in Fig. 3, is also available for the smart
home. For clarity concerns, we omit the internal structure of
VacuumRobot and we only show the respective interface.

A parallelizer connector PARhome composes WashingServ,
Oven and VacuumRobot into SmartHome, resulting in the

workflow space Whome of infinite parallel workflows. Some
workflow variants are displayed in Fig. 6. For instance, the
variant whome2 executes the atomic workflows wclothes and
wcook in parallel. whome4 is another variant that leverages the
support for repetition so as to execute the atomic workflow
wcook in three different tasks. This is useful for cooking three
meals for three different people simultaneously.

Ab
st

ra
ct

W

or
kfl

ow
Tr

ee

wclothes wdishes wcook Wrobot

PARhome

|tasks#| |tasks#| |tasks#| |tasks#|

Whome

Algebraic
Reference

Atomic
service
Computation
Unit

Composite
Service
Invocation
Connector

Atomic
Workflow
Space

Operation

Composite
Workflow
Space

Parallelizer

W
or

kfl
ow

 S
pa

ce

whome1

wclothes wdishes wcook Wrobot wclothes wcook

wcook wclothes wcook wcook

whome4

wclothes

whome2 whome3

whome5

WwaICwa =

{
wclotheswdishes

{

washClothes
washDishes

Oven

WovICov =
{wcook{

cookMeals
Vacuum
Robot

Offers Offers

Offers

Wwa
Wov

Smart
Home PARhome Offers

Wrobot

WashingServ

Co
m

po
sit

e
se

rv
ice

Whome

Wrobot

wcook wcook wcook

Wrobot

wdishes

Available(W) home

Fig. 6. A parallelizer defines∞ workflows for a composite service: |W | =∞.
In this example, there are ∞ parallel workflows for SmartHome.

2) Workflow Selection: The abstract workflow tree of a
parallelizer allows the selection of elements to include in
a parallel workflow, and there are n elements that can be
selected with repetition allowed. Each element requires the
specification of a natural number that represents the number of
tasks for that particular element, and elements with no tasks
are excluded from the workflow being constructed. A task
basically represents the number of times an element is repeated
in a parallel workflow. So, at runtime it is an invocation thread.

Fig. 7 shows a concrete workflow tree for choosing the
variant whome5. It defines three tasks for the atomic workflow
wcook, one task for the atomic workflow wclothes and another
one for the atomic workflow wdishes. This means that the smart
home washes dishes, prepares three meals and washes clothes
at the same time. The composite workflow space Wrobot is
excluded from whome5. Fig. 8 shows another concrete workflow
tree for choosing whome3 which only includes the composite
workflow space Wrobot and the atomic workflow wclothes.

C. Exclusive Selector

An exclusive selector XSEL defines a workflow space with
2n − 1 exclusive branching workflows for a composite service.

=wclothes wdishes wcook Wrobot

PARhome

|1| |1| |3|

wcook wclothes wcook wcook wdishes

Fig. 7. Concrete workflow tree for choosing the parallel workflow whome5

for the SmartHome composite.

=wclothes wdishes wcook Wrobot

PARhome

|1| |1|

wclothesWrobot

Fig. 8. Concrete workflow tree for choosing the parallel workflow whome3

for the SmartHome composite.

Each workflow wi ∈W, i = 1, . . . , (2n − 1) contains at least
one element out of n possibilities, and chooses a single element
to be executed. An exclusive selector is a function defined as:

XSEL :W 7→W (7)

where |W | = 2n − 1.
1) Example: Consider a speaker controlled by a composite

service Player for playing audio in a room. It has an atomic
service Music that provides two operations for playing Jazz
and playing pop music, respectively. There is also an atomic
service News for reading the most recent news, and a composite
service WeatherReport for listening to the weather forecast.
For clarity, we omit the internal structure of WeatherReport.

Fig. 9 shows that the exclusive selector XSELplay composes
the services Music, News and WeatherReport into Player. The
composition process results in the workflow space Wplay of
24 − 1 = 15 exclusive branching workflows, as there are four
elements available: the atomic workflows wjazz , wpop and
wnews, and the composite workflow space Wweather. Fig. 9
illustrates some workflow variants for the composite Player.
For instance, the workflow wplay15 may execute wjazz , wpop
or Wweather. Another variant is wplay6 which chooses to play
either jazz or pop.

2) Workflow Selection: The abstract workflow tree of an
exclusive selector chooses the elements to include in a workflow
out of n possibilities. To do so, a binary tag must be specified
for each element, so elements tagged with One are included,
whilst elements tagged with Zero are not included. A single
condition must be specified for the entire branch because an
exclusive selector applies 1 condition to multiple elements,
thereby choosing only one element at a time. Thus, the
maximum number of possible executions is the same number
of elements included in the workflow, plus an empty execution.
The empty execution means that no element is executed
when the condition holds false at runtime. In our current
implementation, we use Java interfaces for defining conditions.

Fig. 10 shows a concrete workflow tree for choosing the
variant wplay15 which excludes the atomic workflow wnews.
It applies a single condition to wjazz , wpop and Wweather for

Algebraic
Reference

Atomic
service
Computation
Unit

Composite
Service
Invocation
Connector

Atomic
Workflow
Space

Operation

Composite
Workflow
Space

WmuICmu =

{
wjazz,wpop

{

playJazz
playPop

News

WneICne =

readNews

WeatherReport

Offers Offers

Offers

Wmu
Wne

Available

Player
XSELplay Offers

Music

Co
m

po
sit

e
se

rv
ice

Wplay

Wweather

Ab
st

ra
ct

 W
or

kfl
ow

Tr
ee

wplay1

wplay5

wplay2

wplay6

Wplay

W
or

kfl
ow

 S
pa

ce

wnews wpop wnews

wnews wjazz wpop wjazz wpop

wpop wnews wpop

wplay3 wplay4

wplay15

{wnews{

Exclusive
Selector

Wweather

Wweather

Wweather

Wweather

Wweather

wjazz wpop wnews

XSELplay

Wweather

condition

~0/1~ ~0/1~ ~0/1~ ~0/1~

(W) play

Fig. 9. An exclusive selector defines 2n − 1 workflows for a composite
service: |W | = 2n − 1. In this example, there are 24 − 1 = 15 exclusive
branching workflows for Player.

playing Jazz at nights, pop music on afternoons or the weather
forecast in the morning. wplay15 has four possible executions.

wjazz wpop wnews

XSELplay

Wweather
~1~ ~1~ ~0~ ~1~

if (night) then wjazz
if (afternoon) then wpop
if (morning) then wweather= wjazz wpop Wweather

night
afternoon

morning

Fig. 10. Concrete workflow tree for choosing the exclusive branching workflow
wplay15 for the Player composite.

Fig. 11 illustrates another concrete workflow tree for choos-
ing the workflow variant wplay3. It has a condition for playing
pop music if there are multiple users present, or listening to
the news when there is only one user. As it uses an if-else
condition, wplay3 enables only two possible executions.

wjazz wpop wnews

XSELplay

Wweather
~0~ ~1~ ~1~ ~0~

if (users>1) then wpop
otherwise wnews = wpop wnews

users>1 otherwise

Fig. 11. Concrete workflow tree for choosing the exclusive branching workflow
wplay3 for the Player composite.

IV. EMERGENT BEHAVIOUR OF DX-MAN COMPOSITIONS
USING FEEDBACK CONTROL LOOPS

This section describes the mechanism that enables an
autonomous selection of workflow variants at runtime in
composite services.

In DX-MAN, workflow spaces represent the adaptation space
of a composite service, since they provide a wide range of
workflow variants, each representing a different behaviour.
Unlike existing approaches, DX-MAN does not require to link
the variability model with the behavioural model, as those
dimensions are mixed in the semantics of a composite service.

The selection of workflow variants (i.e., changing behaviour)
takes place at runtime whenever the context changes. This is
done by building the concrete workflow tree that best adapts
to the current context. For this, we use Monitoring, Analysis,
Planning, Execution and Knowledge (MAPE-K) [7] which
endow composite services with autonomicity. MAPE-K is a
feedback control loop consisting of multiple sensors, a monitor,
an analyzer, a planner, an executor, an effector and a knowledge
base. Fig. 12 shows that a MAPE-K loop manages a composite
service and collects information from the external context (e.g.,
the surrounding environment or user preferences). Remarkably,
autonomicity is an orthogonal dimension to control, data and
computation in the DX-MAN model.

Sensors Effector

Monitor

Analyzer Planner

ExecutorKnowledge
Base

MAPE-KExternal
Context

Managed Element

Composition
Connector
Composite
Service

Fig. 12. MAPE-K for DX-MAN.

The MAPE-K components are able to read and update the
knowledge base which stores relevant information for realizing
autonomic behaviour. By default, the knowledge base stores
the abstract workflow tree for the managed composite service.

The monitor uses sensor data to build a context model for the
external environment, which is used by the analyzer to decide
if a new behaviour is required. If so, the planner determines
the best workflow variant for the current context state, resulting
in a plan that is passed to the executor which transforms it
into a concrete workflow tree matching the structure of the
abstract workflow tree. Finally, the executor uses the effector
to change the behaviour of the managed composite service, by
executing the chosen concrete workflow tree. In our current
implementation, the context model, the context state, plans
and workflow trees are JSON documents. We do not show the
source code due to space constraints, but JSON samples are
available at https://gitlab.cs.man.ac.uk/mbaxrda2/dxman.

At runtime, control blocks when it reaches a composition
connector. Once a MAPE-K determines the “best” workflow
for a managed composite service, the executor resumes the
workflow execution by passing a concrete workflow tree to the
connector of the managed composite.

As every composite service is managed by a different MAPE-
K loop, any composite at any level in the hierarchy is able to
change its behaviour at runtime independently. This inevitably
requires ensuring consistency for the current workflow execu-
tion. Fortunately, dynamic workflow deployment is not required
since DX-MAN workflows are executable only. Whenever a
new workflow is required, the effector kills the thread of the
current workflow execution, thereby instantly stopping the sub-
workflows being executed by the managed composite. A new
thread is then created for the execution of the new workflow.

Workflow selection may potentially happen simultaneously at
multiple levels in the hierarchy. So, continuously changing sub-
workflows leads to an emergent behaviour of the whole system.
MAPE-K loops are continuously operating, even though control
flow has not yet reached the managed composition connector.
However, they can only change the composite service behaviour,
by executing a concrete workflow tree, when control flow has
passed through or is blocked in the managed connector.

A running IoT system is practically a complex workflow
consisting of sub-workflows s.t. each sub-workflow represents
a composite service behaviour. This is precisely due to the
hierarchical structure of a DX-MAN composition. By contrast,
MAPE-K loops are not structured hierarchically as they
never interact. Instead, they only select a workflow for the
managed composite service (at any level in the hierarchy)
and they execute new workflows (when control is blocked in
the managed composition connector) or replace an existing
workflow with a “better one” (when control has already passed
through).

V. CASE STUDY: SMART HOME

This section presents a case study in the domain of end-user
smart homes where the external context (e.g., user presence)
is always changing and users are always willing a quick
workflow selection. So, existing approaches for variability-
based autonomicity (see Sec. VI) are not suitable for smart
homes. This is because those approaches require time for
changing behaviour due to dynamic reconfiguration and/or
provide a limited number of variants which may not be suitable
for some contexts. We leverage the capabilities of DX-MAN
to avoid dynamic reconfiguration and provide a wide range of
workflow variants. The DX-MAN composition for our case
study is basically the composite service SmartHome described
in Sect. II and depicted in Fig. 2. Although we endow every
composite service with its own MAPE-K loop, this section just
focuses on the autonomicity of VacuumRobot and SmartHome.

A. Autonomic Vacuum Robot Composite

The goal of the VacuumRobot composite (Fig. 3) is to clean
a room as efficiently as possible by continuously changing
the robot trajectory. As it operates on a dynamic environment
where people is always moving, the robot changes trajectory
whenever an obstacle is detected. For that, a MAPE-K loop
chooses the most efficient trajectory (i.e., the best sequential
workflow) that cleans every accessible areas of the room while
avoiding collisions.

The MAPE-K is equipped with three range sensors that
perceive the external environment of the vacuum robot. The
infrared proximity sensor is used for detecting obstacles while
the robot moves around. A cliff sensor is important to avoid
driving over cliffs (e.g., stairwells or ledges) and a dirt sensor
detects the dirtiness level on the current position of the robot.

The MAPE-K knowledge contains information about the
surrounding map, in addition to the abstract workflow selection
tree of VacuumRobot. The map contains information about
obstacles and dirtiness levels in the room which are updated
by the monitor to improve future navigation, and is queried
when a new trajectory is required. We assume that the dirtiness
levels are determined by any existing approach (e.g., Poisson
processes [8]). We also assume that the map is bidimensional
where each position is a disk shape fitting the robot size, as
shown in [9]. In particular, a disk can be either an obstacle or
a free space with a (high or normal) dirtiness level.

[1,4]
wright wleft wgo Wspin

SEQrobot

[0,2,5] [3]

wleft

wgo

wgo

Wspin

wgo

Context Concrete Workflow Tree

[2,4]
wright wleft wgo Wspin

SEQrobot

[1,3,5]

wgo

wleft

wright

wleft

Behaviour

wgo

wgo

[0]

Sequencer
Connector

Free Space
(with Avg.
Dirtiness)

Obstacle
Free Space
(with High
Dirtiness)

Vacuum
Robot(Going
Down)

wleft

Fig. 13. Possible behaviours for the VacuumRobot composite.

The analyzer determines if there is an obstacle in the current
robot position, and discovers new areas to cover. The planner
is notified when the analyzer detects an obstacle, and uses scan
matching online cell decomposition [10] for finding the best
trajectory. To ensure a harder cleaning, we modified such an
approach so as to enable trajectories where the robot spins on
the dirtiest areas of the room. This mechanism is out of the
scope of this paper.

The executor transforms the best trajectory into a sequence
of actions (i.e., the best sequential workflow variant) the robot
needs to carry out for the current context. For this, it uses
the abstract workflow tree to build a concrete workflow tree,
and then triggers the effector. Finally, the effector executes the
variant by passing the concrete workflow tree to the sequencer
SEQrobot. The current execution (if any) is overridden (i.e.,
stopped and replaced) by the new workflow variant. Fig. 13

shows two possible behaviours for the VacuumRobot composite
in two different contexts. Due to space constraints, the contexts
are fragments of the map presented in [9].

B. Autonomic Manager for the Smart Home Composite

The SmartHome composite does chores in parallel for a
user, while minimizing energy consumption and maximizing
tidiness. Its behaviour changes once a day and depends on
user preferences, changes in the external environment, and non-
functional properties of SmartHome elements. Table I shows
the annotated non-functional properties for wclothes, wdishes,
wcook and Wrobot. The userPresence property takes a binary
value to indicate whether the element should be executed when
the user is at home (i.e., One) or away (i.e., Zero). The energy
property defines the average discrete amount of energy (in Watts
per hour) required for the execution of an element. The tidiness
property determines the discrete level of tidiness resulting from
the execution of a specific element. The sum of all tidiness
values must be equal to One. It is also important to note that
the non-functional properties we assume can be much more
complex in other case studies.

Element UserPresence(u) Energy(e) Tidiness(t)
wclothes 0 500.0 0.25
wdishes 0 350.0 0.25
wcook 1 1300.0 0.10
Wrobot 0 150.0 0.40

TABLE I
NON-FUNCTIONAL PROPERTIES FOR THE ELEMENTS OF SmartHome.

The userPresence values depend on user-defined rules which
indicate to hoover and wash when the user is away, in order
to avoid accidents and noise disturbances. Thus, only wcook
has a userpresence of 1.

A workflow variant wi ∈ Whome includes v elements s.t.
v ≤ n, and its properties are computed using Equations 8,
9 and 10. The userPresence u(wi) is an average s.t. each
uxi , x = 1, . . . , v is the userPresence value of an element
x of wi. The energy consumption e(wi) is a sum s.t. each
exi , x = 1, . . . , v is the energy consumption of an element
x of wi. Similarly, the level of tidiness t(wi) is a sum s.t.
each txi , x = 1, . . . , v is the tidiness value of an element x of
wi. Thus, the workflow variant wi with all the elements of
SmartHome (i.e., v = n), provides the highest tidiness and the
highest energy consumption.

u(wi) =

v∑
x=1

uxi

v
(8)

e(wi) =

v∑
x=1

exi (9)

t(wi) =

v∑
x=1

txi (10)

The external context φ changes daily and is modeled by
setting the user presence u(φ), the current energy cost c(φ)

(in dollars per Watt-hour) and a threshold τ(φ) which defines
the maximum amount (in dollars) the user is willing to spend
for energy (in a given day). We particularly define utility
functions to express the quantitative level of satisfaction of
workflow variants for the current context [11]. Overall, the
objective is to minimize energy cost and maximize tidiness.
The utility functions range from [0,1] where 0 reflects the
worst satisfability and 1 means the opposite.

Equation 11 is the utility function f1 that computes the
suitability of a workflow variant wi ∈ Whome for the user
presence. Equation 11 describes a piecewise utility function f2
that determines how well wi minimizes energy costs. Finally,
Equation 13 is the utility function f3 that computes the
contribution to tidiness of wi.

f1(wi, φ) = 1− | u(φ)− u(wi) | (11)

f2(wi, φ) =

{
1− e(wi)·c(φ)

τ(φ) e(wi) · c(φ) < τ(φ)

0 e(wi) · c(φ) ≥ τ(φ)
(12)

f3(wi) = t(wi) (13)

Equation 14 computes the overall utility U(wi, φ) of a
workflow variant wi ∈ Whome for the current context φ.
The weights ω1, ω2 and ω3 define the preference of taking
into account user presence, the priority of considering the
energy cost and the preference of having a tidy environment,
respectively. They are continuous values in the range [0, 1] s.t. a
higher value indicates a higher preference. For our experiments,
ω1 = ω2 = ω3 = 1.

U(wi, φ) =
ω1 · f1(wi, φ) + ω2 · f2(wi, φ) + ω3 · f3(wi)

ω1 + ω2 + ω3
(14)

The behaviour of the SmartHome composite is controlled by
a MAPE-K loop which has three sensors collecting information
from the external context φ, namely user presence, current
energy costs (from the energy supplier) and a threshold value
(continuously changed by the user). In addition to the abstract
workflow tree of SmartHome, the knowledge base includes the
aforementioned utility functions, as well as context values and
selected workflows from previous days. It also contains the
values of the non-functional properties presented in Table I.

The monitor is executed once a day, and builds a relationship
between context properties and sensor values. Some examples
of context models are presented in Table II. The analyzer
receives a context model as an event, and triggers an Event-
Condition-Action (ECA) rule. The rule decides a new plan is
required if the current context values are different from the
previous day; otherwise, it executes the plan from the previous
day and no planning phase is performed.

As the size of Whome is infinite (Fig. 6), evaluating all
workflow variants is infeasible. For that reason, we propose
a planner using a metaheuristic approach which finds the
most suitable workflow for a specific context. For clarity, we
reduce the space search by omitting element repetition for every
wi ∈Whome. So, elements of selected workflow variants have

Day () UserPresence(u) EnergyCost(e) Threshold(τ)

0 0.00014 0.2
1 0.00007 0.6
1 0.00012 0.3
0 0.00013 0.5

ϕ ϕ

1
2
3
4

ϕϕ

TABLE II
POSSIBLE CONTEXT MODELS.

only one task. As SmartHome has four elements (i.e., wclothes,
wdishes, wcook and Wrobot), there would be 24 − 1 = 15
workflow variants in Whome. Although |Whome| is relatively
small, we use a genetic algorithm to show what a planner
would do for larger workflow spaces.

A chromosome represents a workflow variant with four
boolean genes.1 Fig. 14 shows that the order of genes is manda-
tory as each gene represents an element of the SmartHome
composite, where a gene Zero means that the element is
not selected, whilst a gene One entails that the element has
one task. For instance, the chromosome 0101 represents a
workflow variant for executing wdishes and Wrobot in parallel.
A population is thus a set of workflow variants representing
possible solutions for the current context φ. Each variant is
evaluated by the utility function presented in Equation 14.

wclothes wdishes wcook Wrobot

PARhome

|1|

0 1 0 1
|1|

Day () Concrete Workflow Tree

1

2

ϕ Chromosome Behaviour

1 1 1 1

wdishes Wrobot
Utility=0.77

wclothes wdisheswcook Wrobot
Utility=0.66 wclothes wdishes wcook Wrobot

PARhome

|1| |1||1||1|

Fig. 14. Possible behaviours for the SmartHome composite.

After two workflow variants are selected in a generation,
a one-point crossover operator is used. The crossover point
is randomly selected and replaces the gene of one variant
with the gene of another one. The result is two children
representing two new workflow variants for the next generation.
To increase diversity, we introduce mutation by randomly
selecting a gene and flipping it from zero to one, or viceversa.
For our implementation, we use the NSGA-II algorithm and
the MOEA framework. Our source code is available at https:
//gitlab.cs.man.ac.uk/mbaxrda2/dxman. As this is a relatively
small problem, the parameters of the genetic algorithm are
as follows: population size is 8, crossover probability is 0.5,
mutation probability is 0.2 and number of iterations is 20.

The result of the planner is a chromosome representing the
optimal parallel workflow for the current context. The executor
then creates a concrete workflow tree that fits the plan. Fig. 14

1For infinite workflow spaces, we could consider a chromosome where each
gene is a non-negative integer in [0,∞].

shows the behaviours of SmartHome for adapting to the context
of days 1 and 2 (described in Table II). We only show two
behaviours due to space constraints. To change the behaviour
of the SmartHome composite, the effector passes the respective
concrete workflow tree to the parallelizer PARhome at runtime.

VI. RELATED WORK

The related work is classified into two categories con-
cerning workflow variability: solution space variability and
Models@Runtime. We omit approaches using variability at the
planning-level (e.g., [12]) as they do not propose any model
constructs for supporting workflow variability, but they are
built on top of existing component models with reconfiguration
capabilities (e.g., Fractal [13]).

A. Solution Space Variability

The solution space captures variability at the level of
composition constructs of either component models or process
languages. In particular, components models define variation
points using parametric variability or enumerative variabil-
ity. Approaches using parametric variability [14], [15], [16]
manually define a fixed number of behaviour variants at the
implementation-level during design-time. Hence, there is only
one workflow with multiple branching structures. Furthermore,
dynamic reconfiguration is needed to change the composition
structure at runtime.

Only FX-MAN [17] enumerates all possible variants in the
solution space at design-time. However, it does not support
service composition, requires variation generators on top of
compositions, and does not addresses variability of control flow
(i.e., workflow variability) and workflow selection at runtime.

Approaches extending Process Modeling Languages allow
the definition of control flow constructs (e.g., activities or
gateways) as variation points whose variants are realized via
model transformations [2]. Most of the approaches [18], [19],
[20], [21] support control flow variability only at conceptual
level as they operate on non-executable models. Only few
approaches [22], [23] support control flow variability via exe-
cutable models (e.g., YAWL or BPEL). The main drawback is
that they operate on a single flat workflow which is customized
by adding, removing or replacing business process fragments
via reconfiguration rules. At runtime, workflows are customized
using process flexibility (i.e., dynamic reconfiguration) [24].

Other approaches [25] extend business processes with
support for parametric variability. However, they also require
dynamic binding at runtime and the number of variants are
limited as they are manually fixed at design-time.

B. Models@Runtime

Traditional Software Product Lines (SPL) [26] enable the
modeling of families of related products (i.e., workflows).
As variability is separated from the behavioural model, SPL
requires linking a non-executable variability model with an
executable software architecture. To do so, a developer needs
to implement the product in such a way that the software

architecture matches the selected features. So, SPL naturally
lacks mechanisms for changing behaviour at runtime.

Dynamic Software Product Lines (DSPL) [27] change
behaviour at runtime whenever the context changes, by using
models@runtime [28] to causally connect a variability model
(typically a feature model [29] or an orthogonal variability
model [30]) with a behavioural model (typically architectural
units). To change behaviour, they bind variation points at
runtime by selecting (i.e., activating or deactivating) features
that best adapt to the current context. Thus, a set of features
represents a behaviour variant, which is transformed into a
software architecture using a transformation mechanism [29],
[31]. Undoubtedly, such a mechanism increases the overhead
for changing behaviour at runtime. Furthermore, DSPL requires
dynamic reconfiguration of the running composition, as they
also separate variability from behaviour.

Dynamic reconfiguration includes code substitution (e.g.,
parametrization or pre-processor directives) [32], [33], dy-
namic aspect weaving [34], [29], [35], [36], [1], [36], en-
abling/disabling services and connectors [37], [3], and compo-
nent substitution [38], [39].

C. Discussion

Parametric variability is only suitable when all variants can
be defined and implemented in advance. However, IoT systems
require plenty of different alternative behaviours for adapting
to the ever changing context, even though they operate under
closed environments. For that reason, parametric variability is
inconvenient for highly dynamic IoT environments.

Remarkably, DX-MAN does not require the manual defi-
nition of alternative behaviours since an infinite number of
workflow variants simultaneously exist at the conceptual level
of a composite service. As it is infeasible to implement
and deploy infinite workflow variants, workflows are non-
deployable and executable only. Exogenous connectors are
the actual deployable entities (cf., [4]) which coordinate the
execution of multiple workflow variants. Thus, our approach
does not operate on a single flat workflow, but on a multi-level
composite where there is a workflow space (with multiple
workflows) at every level of the hierarchy.

Constraints are important to filter out the workflows that
a designer considers invalid under a closed environment.
Hence, DX-MAN supports the definition of constraints in
a similar fashion to feature models, with the difference that
constraints are directly applicable to system’s behaviour. DX-
MAN currently supports topological sorting (for sequencers)
and logical constraints (for parallelizers). We do not explain
them due to space constraints.

Models@runtime separate variability and behaviour to
allow an independent reasoning of these concerns. However,
as scale increases and dependencies become overwhelming,
the relationship between features and architectural artefacts
becomes unmanageable. Hence, models@runtime face several
problems when coping with dependencies. Moreover, the
separation between variability and behavior requires dynamic
reconfiguration to maintain a causal relationship between both

dimensions. Dynamic reconfiguration is undesirable for highly
dynamic IoT environments, since it takes time to decide the
actions to be done, performing those actions, ensuring state
consistency, checking safeness and redeploying the running
composition. Remarkably, DX-MAN does not require any
means to connect variability with behaviour as those dimensions
are mixed in the definition of composite services, thereby
avoiding the need of dynamic reconfiguration.

We previously presented a preliminary version of DX-
MAN (cf. [5]). In this paper we described new semantics
for supporting variability using workflow spaces. We also
presented detailed examples to explain autonomicity, and a new
composition connector called exclusive selector. Furthermore,
we extended DX-MAN with capabilities for changing behaviour
at runtime using MAPE-K loops.

A MAPE-K loop controls the behaviour of a composite
service and is defined according to the expected goal of the
managed composite. We particularly focus on the executor
component which do not perform dynamic reconfiguration, but
only execute a concrete workflow tree (i.e., a workflow variant)
for adapting to different contexts.

Although our examples show autonomicity only in the
context of IoT, DX-MAN can be used for other domains such
as robotics, unmanned space or e-commerce. It is important
to mention that we emphasize on the semantics of our
model, rather than focusing on a particular implementation.
Nevertheless, an implementation of DX-MAN is available at
https://gitlab.cs.man.ac.uk/mbaxrda2/dxman.

VII. CONCLUSIONS AND FUTURE WORK

This paper extended the semantics of the DX-MAN model
by mixing variability with behaviour in composite services. In
particular, composition connectors are variability operators that
define composite workflow spaces containing an infinite number
of workflow variants which represent alternative composite
service behaviours. Thus, composite services define an infinite
number of Turing machines at once in the design phase.

A MAPE-K manages a composite service behaviour and
selects the workflow variant that best adapts to the current
context. As workflows are non-deployable and executable
only, the executor changes a composite service behaviour
by executing the selected variant instead of dynamically
reconfiguring the whole workflow. The variant is a concrete
workflow tree built at runtime from an abstract workflow tree
(defined at design-time). Composition connectors are the actual
deployable entities which coordinate the execution of multiple
workflows, thereby reusing the same deployment configuration
for multiple executions.

We demonstrated the autonomic capabilities of DX-MAN
using a case study in the domain of smart homes. Our results
indicate that DX-MAN is a promising model for autonomic
IoT systems. Nevertheless, there are some open issues.

DX-MAN currently enables control flow variability, making
it suitable for actuating operations that do not require any
data, e.g., switching the lights on. We plan to investigate novel

ways of incorporating data flow variability by leveraging the
separation of autonomicity, control, data and computation.

DX-MAN is suitable for closed environments only where
the designer understands the context in which the system
is deployed. We are currently investigating novel ways to
dynamically evolve a DX-MAN composition, so as to enable
the emergence of new workflow spaces at runtime. Evolution
is indeed another important characteristic of autonomic IoT
systems, in addition to workflow variability.

REFERENCES

[1] G. H. Alférez and V. Pelechano, “Achieving autonomic Web service com-
positions with models at runtime,” Computers & Electrical Engineering,
vol. 63, pp. 332–352, Oct. 2017.

[2] M. L. Rosa et al., “Business Process Variability Modeling: A Survey,”
ACM Comput. Surv., vol. 50, no. 1, pp. 2:1–2:45, Mar. 2017.

[3] H. Gomaa and M. Hussein, “Dynamic Software Reconfiguration in
Software Product Families,” in Software Product-Family Engineering, ser.
Lecture Notes in Computer Science, F. J. van der Linden, Ed. Springer
Berlin Heidelberg, 2004, pp. 435–444.

[4] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in IEEE SOCA, 2017, pp. 125–132.

[5] D. Arellanes and K.-K. Lau, “Algebraic Service Composition for User-
Centric IoT Applications,” in ICIOT 2018, ser. Lect. Notes Comp. Sci.
Springer Int. Pub., 2018, pp. 56–69.

[6] D. Arellanes and K.-K. Lau, “D-XMAN: A Platform For Total Compo-
sitionality in Service-Oriented Architectures,” in IEEE SC2, 2017, pp.
283–286.

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[8] J. Hess et al., “Poisson-driven dirt maps for efficient robot cleaning,” in
2013 IEEE International Conference on Robotics and Automation, May
2013, pp. 2245–2250.

[9] M. A. Yakoubi and M. T. Laskri, “The path planning of cleaner robot
for coverage region using Genetic Algorithms,” Journal of Innovation in
Digital Ecosystems, vol. 3, no. 1, pp. 37–43, Jun. 2016.

[10] B. Dugarjav et al., “Scan matching online cell decomposition for coverage
path planning in an unknown environment,” Int. J. Precis. Eng. Manuf.,
vol. 14, no. 9, pp. 1551–1558, Sep. 2013.

[11] K. Kakousis et al., “Optimizing the Utility Function-Based Self-adaptive
Behavior of Context-Aware Systems Using User Feedback,” in On the
Move to Meaningful Internet Systems: OTM 2008, ser. Lecture Notes
in Computer Science, R. Meersman and Z. Tari, Eds. Springer Berlin
Heidelberg, 2008, pp. 657–674.

[12] R. R. Filho and B. Porter, “Defining Emergent Software Using Continuous
Self-Assembly, Perception, and Learning,” ACM Trans. Auton. Adapt.
Syst., vol. 12, no. 3, pp. 16:1–16:25, Sep. 2017.

[13] E. Bruneton et al., “The FRACTAL component model and its support
in Java,” Software: Practice and Experience, vol. 36, no. 11-12, pp.
1257–1284, 2006.

[14] A. Haber et al., “Hierarchical Variability Modeling for Software Archi-
tectures,” in 2011 15th International Software Product Line Conference,
Aug. 2011, pp. 150–159.

[15] R. v. Ommering et al., “The Koala component model for consumer
electronics software,” Computer, vol. 33, no. 3, pp. 78–85, Mar. 2000.

[16] E. M. Dashofy et al., “A Comprehensive Approach for the Development
of Modular Software Architecture Description Languages,” ACM Trans.
Softw. Eng. Methodol., vol. 14, no. 2, pp. 199–245, Apr. 2005.

[17] C. Qian and K. Lau, “Enumerative Variability in Software Product
Families,” in 2017 International Conference on Computational Science
and Computational Intelligence (CSCI), Dec. 2017, pp. 957–962.

[18] M. La Rosa et al., “Configurable multi-perspective business process
models,” Information Systems, vol. 36, no. 2, pp. 313–340, Apr. 2011.

[19] I. Reinhartz-Berger et al., “Extending the Adaptability of Reference
Models,” IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 40, no. 5, pp. 1045–1056, Sep. 2010.

[20] A. Hallerbach et al., “Capturing Variability in Business Process Models:
The Provop Approach,” J. Softw. Maint. Evol., vol. 22, no. 6-7, pp.
519–546, Oct. 2010.

[21] K. Czarnecki and M. Antkiewicz, “Mapping Features to Models: A
Template Approach Based on Superimposed Variants,” in Generative
Programming and Component Engineering, ser. Lecture Notes in
Computer Science, R. Glück and M. Lowry, Eds. Springer Berlin
Heidelberg, 2005, pp. 422–437.

[22] F. Gottschalk et al., “Configurable workflow models,” Int. J. Coop. Info.
Syst., vol. 17, no. 02, pp. 177–221, Jun. 2008.

[23] A. Kumar and W. Yao, “Design and management of flexible process
variants using templates and rules,” Computers in Industry, vol. 63, no. 2,
pp. 112–130, Feb. 2012.

[24] R. Cognini et al., “Business process flexibility - a systematic literature
review with a software systems perspective,” Inf Syst Front, vol. 20,
no. 2, pp. 343–371, Apr. 2018.

[25] M. Koning et al., “VxBPEL: Supporting variability for Web services
in BPEL,” Information and Software Technology, vol. 51, no. 2, pp.
258–269, Feb. 2009.

[26] K. C. Kang and a. P. Donohoe, “Feature-oriented product line engineering,”
IEEE Software, vol. 19, no. 4, pp. 58–65, Jul. 2002.

[27] S. Hallsteinsen et al., “Dynamic Software Product Lines,” Computer,
vol. 41, no. 4, pp. 93–95, Apr. 2008.

[28] G. Blair et al., “Models@ run.time,” Computer, vol. 42, no. 10, pp.
22–27, Oct. 2009.

[29] B. Morin et al., “Models@ Run.time to Support Dynamic Adaptation,”
Computer, vol. 42, no. 10, pp. 44–51, Oct. 2009.

[30] N. Bencomo et al., “Genie: Supporting the Model Driven Development
of Reflective, Component-based Adaptive Systems,” in Proceedings of
the 30th International Conference on Software Engineering, ser. ICSE
’08. New York, NY, USA: ACM, 2008, pp. 811–814, event-place:
Leipzig, Germany.

[31] I. Schaefer et al., “Delta-Oriented Programming of Software Product
Lines,” in Software Product Lines: Going Beyond, ser. Lecture Notes in
Computer Science, J. Bosch and J. Lee, Eds. Springer Berlin Heidelberg,
2010, pp. 77–91.

[32] B. Morin et al., “Taming Dynamically Adaptive Systems using models
and aspects,” in 2009 IEEE 31st International Conference on Software
Engineering, May 2009, pp. 122–132.

[33] C. Parra et al., “Context Awareness for Dynamic Service-oriented Product
Lines,” in Proceedings of the 13th International Software Product Line
Conference, ser. SPLC ’09. Pittsburgh, PA, USA: Carnegie Mellon
University, 2009, pp. 131–140, event-place: San Francisco, California,
USA.

[34] G. H. Alférez et al., “Dynamic adaptation of service compositions with
variability models,” Journal of Systems and Software, vol. 91, pp. 24–47,
May 2014.

[35] L. Baresi et al., “Service-Oriented Dynamic Software Product Lines,”
Computer, vol. 45, no. 10, pp. 42–48, Oct. 2012.

[36] F. Fleurey et al., “A Generic Approach for Automatic Model Composi-
tion,” in Models in Software Engineering, ser. Lecture Notes in Computer
Science, H. Giese, Ed. Springer Berlin Heidelberg, 2008, pp. 7–15.

[37] C. Cetina et al., “Autonomic Computing through Reuse of Variability
Models at Runtime: The Case of Smart Homes,” Computer, vol. 42,
no. 10, pp. 37–43, Oct. 2009.

[38] J. Floch et al., “Using architecture models for runtime adaptability,” IEEE
Software, vol. 23, no. 2, pp. 62–70, Mar. 2006.

[39] J. White et al., “Creating self-healing service compositions with feature
models and microrebooting,” International Journal of Business Process
Integration and Management, vol. 4, no. 1, p. 35, 2009.

