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Innovative And Additive Outlier Robust Kalman
Filtering With A Robust Particle Filter

Alexander T. M. Fisch, Idris A. Eckley, Paul Fearnhead

Abstract—In this paper, we propose CE-BASS, a particle
mixture Kalman filter which is robust to both innovative and
additive outliers, and able to fully capture multi-modality in
the distribution of the hidden state. Furthermore, the particle
sampling approach re-samples past states, which enables CE-
BASS to handle innovative outliers which are not immediately
visible in the observations, such as trend changes. The filter is
computationally efficient as we derive new, accurate approxi-
mations to the optimal proposal distributions for the particles.
The proposed algorithm is shown to compare well with existing
approaches and is applied to both machine temperature and
server data.

Index Terms—Kalman Filter, Anomaly Detection, Particle
Filtering, Robust Filtering

I. INTRODUCTION AND LITERATURE REVIEW

Anomaly detection is an area of considerable importance
and has been subject to increasing attention in recent years.
Comprehensive reviews of the area can be found in [1, 2]. The
field’s growing importance arises from the increasing range
of applications to which anomaly detection lends itself: from
fraud prevention [1, 2], to fault detection [1, 2], and even the
detection of exoplanets [3]. More recently, the emergence of
the internet of things and the ubiquity of sensors has led to
emergence of the online detection of anomalies as an important
statistical challenge.

Kalman filters [4] provide a convenient framework to detect
anomalies within a streaming data context. In particular, they
can be updated in a fully online fashion at a fixed compu-
tational cost. At each time point, Kalman filters also provide
an estimate both for the expectation and variance of the next
observation. These can be used to determine whether that
observation is anomalous or not. However, the major drawback
of Kalman filters is their lack of robustness to outliers: once
the filter has encountered an outlier, it will often produce
inaccurate predictions for many future time points.

The anomaly detection literature distinguishes between two
types of outliers. The first are additive outliers, sometimes
referred to as observational outliers [5], which affect the obser-
vational noise only. The other type are innovative, or process
[6], outliers. These affect the updates of the hidden states. In
practice, both have a similar effect on the next observation, but
quite different effects on subsequent observations. Moreover,
some innovative outliers cannot be detected immediately as
their influence on the observations is only noticeable after, or
over, a period of time.

A range of robust Kalman filters has been proposed to date.
Many side-step the problem of distinguishing between the two
outlier types. By far the largest class of filters aims to be

robust against heavy tailed additive outliers. Examples of such
filters include [7, 8], which assume t-distributed additive noise
and perform inference using variational Bayes, [9], who use
Huberised, i.e. truncated, residuals, and [10] who inflate the
noise covariance matrix whenever an outlier is encountered. A
few filters have also been developed with the aim of achieving
robustness against innovative outliers [9]. The problem with
such filters is that they exacerbate the shortcomings of the
Kalman filter when they encounter the other type of anomaly:
additive outlier robust Kalman filters, for example, update their
hidden states even less than the classical Kalman filter when
encountering innovative outliers.

In principle, it seems straightforward to combine the ideas
of these two types of robust Kalman filter. One body of
literature proposes to use Huberisation of both innovative
and additive residuals [5, 10]. Others [6, 11] have modelled
both additive and innovative outliers using t-distributions, by
imposing Wishart priors on the precision matrix of both the
innovations and additions and maintaining the posterior by
using variational Bayes approaches. The issue with these filters
comes from how they approximate the filtering distribution of
the state. Both return uni-modal posteriors after encountering
an anomaly. This is a shortcoming given that the posterior after
an anomaly is likely to be multi-modal (see Figure 2 below)
as different types of anomalies contain different amounts of
information about the state: If we have an anomaly at time
t, then if this is an additive anomaly it has little information
about the state at time t, and thus the new filtering distribution
for the state will be close to the predictive distribution for
the state given the data up to time t − 1. Whereas if it
is an innovative anomaly then the state will have changed
substantially from what was predicted.

The ideal approach to constructing a robust filter would be
to model the possibility of outliers in both the observation
and system noise, and then use a filter algorithm that attempts
to calculate, or approximate, the true filtering distribution for
the model. An early attempt to do this was the spline based
approach of [12], but the computational complexity increases
very quickly with the number of dimensions and such a filter
becomes impracticable when the state dimension is greater
than 3. As a result we consider using particle filters [13, 14].
These are able to produce Monte Carlo approximations to
the filtering distribution for an appropriate model that allows
for outliers, and, in principle, can work even if the filtering
distribution is multi-modal. However the Monte Carlo error
of standard implementations of the particle filter can be
prohibitively large [10].

In this paper, we develop an efficient particle filter by using
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a combination of Rao-Blackwellisation and well-designed
proposal distributions. The idea of Rao-Blackwellisation is
to integrate out part of the state so that the particle filter
approximates the filtering distribution of a lower-dimensional
projection of the state. In our application this projection is
whether each component of the additive and innovative noise
is an outlier, and if it is how much the variance of the noise
has been inflated. Conditional on this information, the state
space model becomes linear-Gaussian and we can implement
a Kalman Filter to calculate exactly the conditional filtering
distribution, while being able to fully capture multi modal
posteriors. This idea is similar to that which underpins the
Mixture Kalman Filter [15].

Whilst Rao-Blackwellisation improves the Monte Carlo ac-
curacy of the filter, such a filter can still have the shortcomings
noted by [10] and perform poorly without good proposal
distributions for the information we condition on. One of
the main contributions of this work is a proposal distribution
that accurately approximates the conditional distribution of
the variance inflation for each component of the noise, and
hence approximates the optimal proposal distribution [16]. As
a result of this proposal, we find that accurate results can be
obtained even with only a few particles.

Another important challenge addressed by this paper is that
certain innovative outliers can not immediately be detected.
An innovative outlier in a latent trend component for instance
can cause a trend change which may only become apparent
– i.e. produce a visible outlier in the observations – many
observations after the innovative outlier in the trend occurred.
It is nevertheless important to capture such outliers as they
can affect a potentially unlimited number of observations to
come. The proposed particle filter includes the possibility
to back-sample the variance inflation particles in light of
more recent observations, which enables it to capture these
important anomalies.

The remainder of this paper is organised as follows: We
discuss our robust noise model, consisting of a mixture distri-
bution of Gaussian noise, representing typical behaviour, and
heavy tailed noise, representing atypical behaviour, for both
the additive (observational) and innovative (system) noise pro-
cess in Section II. We then introduce the proposal distribution
for the scale of the noise in Section III, before extending it to
anomalies which are not immediately identifiable in Section
IV. The proposed filter is compared to others in Section V and
applied to router data and a benchmark machine temperature
data-set in Section VI. The proposed methodology, which we
call Computationally Efficient Bayesian Anomaly detection by
Sequential Sampling (CE-BASS) has been implemented in the
the R package RobKF available on CRAN [17].

II. MODEL AND EXAMPLES

Throughout this paper, we will consider inference about a
latent state, Xt, through partial observations, Yt, modelled as

Yt = CXt + Σ
1
2

AV
1
2
t εt,

Xt = AXt−1 + Σ
1
2

I W
1
2
t νt.

(1)

(a) Random walk (b) Random walk with trends

Fig. 1: Two examples of time series which are realisations of
outlier infested Kalman models. (a) was simulated using the
setup defined in Equation (2), with σA = 1, σI = 0.1, and
outliers defined by W100 = 3600, V400 = 100, and W700 =
10000. Conversely (b) second example was simulated using
the model defined in Equation (3) using σA = 1, σ(1)

I = 0.1,
σ

(2)
I = 0.01 and outliers defined by W

(1)
100 = 3600, V400 =

100, and W (2)
700 = 40000.

Here the additive noise, εt ∈ Rp, and the innovations νt ∈ Rq
are both i.i.d. standard multivariate Gaussian. The matrices ΣA

and ΣI denote the covariance of the additive and innovation
noise respectively. Without loss of generality we assume
that these matrices are diagonal, as a general model can be
transformed to one which satisfied this assumption by applying
a suitable rotation to the observation and/or the state (see
Section III in the Supplementary Material for details). The
diagonal matrices Vt and Wt are used to capture additive and
innovative outliers respectively, with large diagonal entries of
Vt corresponding to additive outliers and large diagonal entries
of Wt corresponding to innovative outliers. The classical
Kalman model is recovered by setting Wt = I and Vt = I
for all times t.

The model in Equation (1) can be used to model a range
of time series behaviours. We will use the following two
examples throughout the paper:

Example 1: The random walk model with both change-
points and outliers, similar to the problem considered by [18].
It can be formulated as

Yt = Xt + V
1
2
t σAεt, Xt = Xt−1 +W

1
2
t σIνt. (2)

Here atypically large values of Vt correspond to outliers,
whilst atypically large values of Wt correspond to changes.
A realisation of this model can be found in Figure 1a. This
example illustrates the challenge of the bi-modal hidden state
distribution introduced by anomalies. Figure 2 expands on this
point.

Example 2: A time series with changes in trend, level shifts,
as well as outliers, similar to the model considered by [19]. It
can be formulated as

Yt = X
(1)
t + V

1
2

t σAεt

X
(1)
t = X

(1)
t−1 +X

(2)
t−1 +

(
W

(1)
t

) 1
2
σ
(1)
I ν

(1)
t ,

X
(2)
t = X

(2)
t−1 +

(
W

(2)
t

) 1
2
σ
(2)
I ν

(2)
t ,

(3)
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(a) x99|Y0:99 (b) x100|Y0:100 (c) x101|Y0:101

Fig. 2: The distribution of the hidden state xt for the process
depicted in Figure 1a. When we observe the abrupt change in
the observations at time 100, we have a bi-modal posterior as
the observation may be an additive or an innovative outlier.

with the first component of the hidden state denoting the
current position and the second indicating the trend. Here,
outliers are modelled by large values of Vt whilst level shift
and changes in trend are modelled by atypically large values
of W (1)

t and W
(2)
t respectively. A realisation of this model

can be found in Figure 1b.
A key feature of this second model is that an outlier

in the trend component, X(2)
t , may only become detectable

many observations after the outlier – this challenging issue
mentioned in the introduction is addressed via the methods in
Section IV. A wide rage of other commonly used time series
features, such as auto-correlation, moving averages, etc. can
be incorporated in the model.

In the rest of the paper we will use the notation that a
superscript (i, j) on a matrix refers to the (i, j)th entry of that
matrix, and the superscript (i, :) refers to the ith row. To infer
the locations of anomalies we use the model

V(i,i)
t = 1 + λ

(i)
t

1

Ṽ
(i,i)

t

W(j,j)
t = 1 + γ

(j)
t

1

W̃
(j,j)

t

(4)

for 1 ≤ i ≤ p and 1 ≤ j ≤ q. The Bernoulli random variables
λ

(i)
t ∼ Ber(ri) and γ

(j)
t ∼ Ber(sj) are indicators that

determine whether an anomaly is present or not for 1 ≤ i ≤ p
and 1 ≤ j ≤ q respectively. For additional interpretability, we
impose that at most one anomaly is present at any given time
t, and define ri and sj to be the probabilities that λ(i)

t = 1

and γ(j)
t = 1 respectively. The inverse scale, or precision, of

an anomaly is assumed to be distributed as a scaled gamma
random variable. That is if Γ(a, b) denotes a gamma random
variable with shape parameter a and rate parameter b, then
Ṽ

(i,i)

t ∼ σ̃iΓ(ai, ai) and W̃
(j,j)

t ∼ σ̂jΓ(bj , bj) for 1 ≤ i ≤ p
and 1 ≤ j ≤ q respectively.

The proposed model bears similarities to the model used
by [11]. Both use a mixture of Gaussian and heavy tailed
noise. The main difference is that the anomalous behaviour
is characterised by noise which is the sum of a Gaussian
and a t-distribution in our model as opposed to just a t-
distribution in the model used by [11]. This ensures that
anomalies coincide with strictly greater noise and makes
the result more interpretable. In practice, however, the noise
distribution considered in this paper and in [11] are likely to
be of very similar shape.

III. PARTICLE FILTER

We now turn to filtering the model defined by Equations
(1) and (4). The main feature we exploit is the fact that if
we knew the value of (Vt,Wt) at all times t, we could just
run the classical Kalman filter over the data. Consequently,
our approach will consist of sampling particles for (Vt,Wt),
conditional on which the classical Kalman update equations
for the hidden state xt can be used. This approach, very
similar to the mixture Kalman filter [15, 20], is summarised
by the pseudocode in Algorithm 1. Details of sub-routines for
this and later algorithms can be found in Section VI of the
Supplementary Material.

For each time, t, the code loops over the existing particles,
(Vt,Wt), and simulates M ′ descendants for each of them
in Step 4. They and their associated weights, denoted by
prob, are stored in a set of candidate particles. If we have
N particles at time t, keeping all candidates would produce
NM ′ particles at time t+ 1. To avoid the number of particles
growing exponentially with t, Step 7 resamples the candidates
with probability proportional to their weights to keep just N
particles; there are various algorithms that can be used, see
[21]. The filtering distribution for each of these particles is
then calculated using the Kalman Filter updates in Step 10.
As the particles store the Vt and Wt matrices it is simple to
extract information about whether there have been any outliers:
if a particle has an entry on the diagonal of Vt or Wt, that
is not one then that particle corresponds, respectively, to an
additive or innovative outlier.

Algorithm 1 Basic Particle Filter (No Back-sampling)
Input: An initial state estimate (µ0,Σ0)

A number of descendants, M ′ = M(p+ q) + 1
A number of particles to be maintained, N .
A stream of observations Y1,Y2, ...

Initialise: Set Particles(0) = {(µ0,Σ0)}
1: for t ∈ N do
2: Candidates← {}
3: for (µ,Σ) ∈ Particles(t) do
4: (V,W, prob)← Sample Particles(M ′,µ,Σ,Yt+1,A,C,ΣA,ΣI)
5: Candidates← Candidates ∪ {(µ,Σ,V,W, prob)}
6: end for
7: Descendants← Resample(N,Candidates)
8: Particles(t+ 1)← {}
9: for (µ,Σ,V,W, prob) ∈ Descendants do

10: (µnew,Σnew)← KF Upd(Yt+1,µ,Σ,C,A,VΣA,WΣI)
11: Particles(t+ 1)← Particles(t+ 1) ∪ {(µnew,Σnew)}
12: end for
13: end for

The main challenge in the above approach consists of
selecting a good sampling procedure for the particles. Whilst
it may be a natural choice to sample particles (Vt+1,Wt+1)
from their prior distribution, this is not suitable for the problem
considered in this paper. In particular, this sampling procedure
would not be robust to outliers: the stronger an anomaly was,
the less likely we would be to sample a particle with an
appropriate value of (Vt+1,Wt+1), as discussed by [10].

Adopting ideas from [16] and [22], we overcome the
above challenge by sampling particles from an approxima-
tion to the conditional distribution of (Vt+1,Wt+1) given
observation Yt+1. Denote the model’s prior distribution for
(Vt+1,Wt+1) in (4) by π0(·). The conditional distribution
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π(Wt+1,Vt+1|Yt+1) for the descendants of a particle whose
filtering distribution for xt is N(µ,Σ) is then proportional to

π0(W,V)L
(

Y,CAµ,CAΣATCT + ΣAV + CΣIWCT
)
.

Here we have dropped time indices for convenience, and
L (x,µ,Σ) denotes the likelihood of an observation x under a
N(µ,Σ)-model. Since at most one component is anomalous,
we can re-write this as a sum over which, if any, component
is anomalous

I{W=I,V=I}π(I, I|Y) +

q∑
j=1

I{
W=I+ I(j)

W̃(j,j)
,V=I

}π̂j

(
W̃(j,j)

)
+

p∑
i=1

I{
W=I,V=I+ I(i)

Ṽ(i,i)

}π̃i

(
Ṽ(i,i)

)
.

Here, I(j) denote a matrix whose (j, j)th entry is 1 and all
other entries are zero, and we use the shorthand

π̃i

(
Ṽ(i,i)

)
= π

(
I, I +

I(i)

Ṽ(i,i)
|Y
)

and
π̂j

(
W̃(j,j)

)
= π

(
I +

I(j)

W̃(j,j)
, I|Y

)
.

Since the target distribution π(W,V|Y) is intractable, we
construct an approximation to it, which we denote q(W,V|Y),
and use this as our proposal distribution. This proposal is
proportional to

I{W=I,V=I}β0 +

q∑
j=1

I{
W=I+ I(j)

W̃(j,j)
,V=I

}β̂j q̂j (W̃(j,j)
)

+

p∑
i=1

I{
W=I,V=I+ I(i)

Ṽ(i,i)

}β̃iq̃i (Ṽ(i,i)
)
.

Clearly, there is no benefit in simulating multiple identical
descendants, so we wish to sample precisely one dependent
that corresponds to no outliers. To do this, and also to have
the same number of descendant particles for each possible
type of outlier, we set β0 = 1

1+M(p+q) , β̃i = M
1+M(p+q) , and

β̂j = M
1+M(p+q) , and use stratified subsampling as in [20]. This

leads to M ′ = M(p+q)+1 total descendants per particle, M
for each of the p additive and q innovative outliers, and one
for no outlier. Each of these particles is then given a weight
proportional to

π(Wt+1,Vt+1|Yt+1)

q(Wt+1,Vt+1|Yt+1)
.

The main challenge now consists of obtaining proposal
distributions q̃i(·) for 1 ≤ i ≤ p and q̂j(·) for 1 ≤ j ≤ q
that provide good approximations to the conditional posteriors
which are proportional to π̃i(·) and π̂j(·) respectively. In the
next subsection, we therefore derive proposal distributions that
provide leading order approximations to the conditional pos-
teriors. To simplify notation, we define the predictive variance
Σ̂ = CAΣATCT + ΣA + CΣICT and use it throughout the
remainder of this paper. We also begin by assuming that C
contains no columns that are identically 0, as if this is the case
then the observation at time t contains no information about
at least one component of the state at time t. The proposal
introduced in the following subsection also forms the basis of
back-sampling introduced in Section IV, which allows us to
relax this assumption on C.

A. Proposal Distributions

For 1 ≤ i ≤ p, we would like the proposal distribution
q̃i

(
Ṽ

(i,i)
)

for the precision, Ṽ
(i,i)

, to be as close as possible

to π̃i
(

Ṽ
(i,i)
)

or, equivalently, proportional to

fi

(
Ṽ(i,i)

) exp

(
− 1

2
(Y− CAµ)T

(
Σ̂ +

Σ
(i,i)
A

Ṽ(i,i) I(i)
)−1

(Y− CAµ)

)
√∣∣∣∣Σ̂ +

Σ
(i,i)
A

Ṽ(i,i) I(i)
∣∣∣∣

,

where fi() denotes the PDF of the σ̃iΓ(ai, ai)-distributed prior
of Ṽ

(i,i)
.

It should be noted that the intractable terms,∣∣∣∣∣Σ̂ +
Σ

(i,i)
A

Ṽ
(i,i)

I(i)

∣∣∣∣∣ and

(
Σ̂ +

Σ
(i,i)
A

Ṽ
(i,i)

I(i)

)−1

(5)

can both be expanded using the matrix determinant lemma and
the Sherman-Morrison formula respectively, as they are rank
1 updates of a determinant and inverse respectively. Indeed,
by the matrix determinant lemma,

∣∣∣∣∣Σ̂ +
Σ

(i,i)
A

Ṽ(i,i)
I(i)
∣∣∣∣∣ =

∣∣∣Σ̂∣∣∣
Ṽ(i,i)

(
1 + Σ

(i,i)
A

(
Σ̂−1

)(i,i)
+O

(
Ṽ(i,i)

))
,

the leading order term is conjugate to the prior of Ṽ
(i,i)

.
Moreover, by the Sherman Morrison formula the second term
in Equation (5) is equal to

Σ̂−1 − Σ̂−1I(i)Σ̂−1

 1(
Σ̂−1

)(i,i) −
 1(

Σ̂−1
)(i,i)


2

Ṽ(i,i)

Σ
(i,i)
A

 ,
up to O ((Ṽ

(i,i)
)
2
). Crucially, the first two terms are constant

in Ṽ
(i,i)

, while the third is linear in Ṽ
(i,i)

and therefore returns
a term which is conjugate to the prior of Ṽ

(i,i)
. Furthermore,

we are most concerned about accurately sampling the particle
when an anomaly occurs in the ith component, which happens
when the precision, Ṽ

(i,i)
, and the higher order terms, become

small.
Keeping only the leading order terms in the determinant

and the exponential term results in a proposal distribution for
Ṽ

(i,i)
of the form

Ṽ(i,i) ∼ σ̃iΓ

ai +
1

2
, ai +

σ̃i

2Σ
(i,i)
A


(
Σ̂−1

)(i,:)
(Y− CAµ)(

Σ̂−1
)(i,i)


2 .

More detailed derivations, including the associated weight,
are given by Theorem 1 in the Supplementary Material. This
proposal has the property that as the observed anomaly in the
ith component becomes larger, i.e. as

1

Σ
(i,i)
A


(
Σ̂−1

)(i,:)

(Y− CAµ)(
Σ̂−1

)(i,i)


2
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increases, the mean of the proposal for Ṽ
(i,i)

diverges from
the prior mean and behaves asymptotically like

(2ai + 1)Σ
(i,i)
A


(
Σ̂−1

)(i,i)

(
Σ̂−1

)(i,:)

(Y− CAµ)


2

.

Consequently, the variance and the squared residual will be
on the same scale, thus achieving computational robustness.

A very similar approach can be used to obtain a pro-
posal distribution q̂j

(
W̃

(j,j)
)

which provides a leading
order approximation for the distribution proportional to
π
(

I + 1

W̃(j,j) I(j), I|Y
)

. The proposal consists of sampling

W̃(j,j) ∼ σ̂jΓ

bj +
1

2
, bj +

σ̂i

2Σ
(j,j)
I

(CT
)(j,:)

Σ̂−1 (Y− CAµ)(
CT Σ̂−1C

)(j,j)


2
and is of very similar form to the proposal distribution for
particles with an additive outlier and well defined if C has no
columns that just contain zeros. Further details, including the
associated weight, are given in Theorem 2 in the Supplemen-
tary Material. Like the proposal distribution for particles with
an additive anomaly this proposal is computationally robust: it
ensures that the squared residual and the variance will be on
the same scale as the anomaly in the jth innovative component
becomes stronger.

Finally, the “proposal” for particles without anomalies con-
sists of deterministically setting V = I and W = I. The
weight associated with this particle is proportional to the
likelihood, the closed form of which is given in Theorem 3 in
the Supplementary Material.

B. Choices of Parameters

The choice of hyper-parameters, particularly σ̂i and σ̃i,
has a significant effect on the performance of the proposed
filter. One reason for this is that an outlier observation could
be the result of either an additive or an innovative outlier.
It may be that the root cause can only be determined after
further observations are made. Thus, we wish to choose hyper-
parameters in such a way as to ensure that observed anomalies,
which are equally well explained by different classes of
anomalies, are given similar importance weights. This will
not automatically happen for larger outlier observations, as
the model could asymptotically always prefer to explain it as
an additive outlier or as an innovative outlier. The following
result describes how we can choose the hyper-parameters of
the model to avoid this. The idea is to look at the particle
filter weights for describing an extreme observation as either
an additive or an innovative outlier, if that is possible, and
ensuring they are of similar order to each other.

Theorem 4: To simplify notation we drop the temporal
subscripts and let the prior for the hidden state Xt be N(µ,Σ)
and the observation at time t + 1 be Y . For either an
additive anomaly for component i or an innovative anomaly
for component j we can standardise the size of the anomaly
to define δ such that

Y− CAµ =
δei√(

Σ̂−1
)(i,i) or Y− CAµ =

δC(:,j)√(
CT Σ̂−1C

)(j,j) ,

(a) t = 100 (b) t = 101 (c) Full data

Fig. 3: Robust particle filter output at various times. Additive
anomalies are denoted by red points, innovative anomalies by
blue lines. Grey observations are yet to be observed.

If the shape parameters for the prior for the precision of all
anomalies are set to be the same, that is a1 = ... = ap = b1 =
... = bq = c, and if the prior mean for the precision of each
anomaly is chosen to be

σ̃i = Σ
(i,i)
A

(
Σ̂−1

)(i,i)

and σ̂j = Σ
(j,j)
I

(
CT Σ̂−1C

)(j,j)

,

then, to leading order, the particle weights of additive and
innovative anomalies are asymptotically proportional to

cc 1
M ri

Γ(c+ 1
2 )

Γ(c) exp
(

1
2δ

2
)(

δ2

2

)c and
cc 1
M sj

Γ(c+ 1
2 )

Γ(c) exp
(

1
2δ

2
)(

δ2

2

)c .

respectively, as δ →∞.
The choice of hyper-parameters given in this theorem leads

to all components being given equal asymptotic importance
weight under an arbitrarily large anomaly. Setting all the ais
and bjs to the same constant is advisable due to the fact that the
convolution of two t-distributions whose means drift further
and further apart yields two stable, i.e. non-vanishing modes
if and only if they have the same scale parameter.

While Σ̂−1 is not fixed but time dependent, it nevertheless
converges to a limit under an observable Kalman filter model.
In practice, we therefore use this limit to set σ̃i and σ̂j .

C. Example 1 – revisited

The proposed filter can be applied to the data displayed in
Figure 1a to detect anomalies in an online fashion. It is worth
pointing out that the filter re-evaluates past anomalies as more
data becomes available. This can be seen in Figure 3: When
initially encountering the anomaly at time t = 100 the filter
gives approximately equal weight to the possibility of it being
an additive outlier and to it being an innovative one. It is only
when the next observation becomes available, that the filter
(correctly) classifies it as an innovative anomaly. Note that
only N = 20 particles were used and only M = 1 descendent
of each anomaly type was sampled per particle.

IV. PARTICLE FILTER WITH BACK-SAMPLING – CE-BASS

As mentioned in the introduction, it is possible that inno-
vative outliers may not immediately be observed. One such
example are innovative outliers in the trend component of the
model described in (3). The filter as described in Algorithm
1 can not deal with such anomalies as it only inflates the
variance of the innovative process at time t when there is
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evidence from Yt that an outlier occurred. We remedy this
by back-sampling particles representing innovative outliers at
a later time once we have more observations, and therefore
more evidence for an anomaly is available. This can be done
using nearly identical approximation strategies as used in the
previous section and allows to relax the assumptions made in
the previous section that C has no columns that just contain
zeros, to only requiring that the system be observable.

A. Back-Sampling Particles Using the Last k+1 Observations
The proposed back-sampling strategy at time t consists of

sampling particles for (Vt+1−k, ...Vt+1,Wt+1−k, ...,Wt+1)
given a N(µt−k,Σt−k) filtering distribution for xt−k and ob-
servations Yt−k+1, ...,Yt−k. Specifically, we sample particles
with an innovative single anomaly in Wt+1−k assuming no
other innovative anomalies or additive anomalies. Conditional
on these augmented particles classical Kalman updates can
once more be used as shown in Algorithm 2.

At each iteration of Algorithm 2 we first simulate candidate
weighted particles. At time t, for each particle at time t−1 we
calculate the candidate particle that corresponds to no outlier
at time t (Sample typical in Step 4), and also simulate M
candidate particles for each possible type of additive outlier
(Sample additive in Step 6). These can be carried out as
before. Simulating candidate particles for innovative outliers
is different and involves the idea of back-sampling. The algo-
rithm has a user-defined maximum horizon (max horizon).
For each k = 1, . . . ,max horizon we consider all particles
at time t−k and simulate a set of descendants which have an
innovative outlier at time t−k+1 and then no further outliers
until time t. This is performed at step 14 with the Inn Des
function. This function outputs a set of M sample values for V
and W at time t−k+1 for each type of innovative outlier, and
each sample has an associated importance sampling weight.
Importantly as we are comparing new particles proposed from
old particles at different times in the past, the importance
sampling weights need to include a factor that estimates the
evidence, i.e. the marginal probability of the data, at the time
of the old particle – see Section IV in the Supplementary
Material for a more detailed explanation for this. We calculate
the usual particle filter estimate of the evidence at each
iteration in steps 21 to 24. The weights of these particles are
down-weighted by a factor of 1/max horizon to account for
the fact that the same innovative anomaly will be proposed
multiple times.

After obtaining the full set of candidates, we resample
them with probability proportional to their weight, for example
using stratified resampling [14], and then use the Kalman Filter
update to obtain the corresponding filtered mean and variance
for the state at time t. For the back-sampled particles from
time t− k + 1 for k > 1 we need to apply the Kalman Filter
update for k time steps, and this is done under the particle’s
assumption of no outliers at times t− k + 2, . . . , t.

Algorithm 1 is a special case of Algorithm 2 which arises
from setting the maximum horizon to 1. The Sample Particles
function in Algorithm 1 corresponds to the simulation of
candidates for no outlier, an additive outlier or an innovative
outlier that are listed separately in Algorithm 2.

Algorithm 2 Particle Filter (With Back Sampling) – CE-BASS
Input: An initial state estimate (µ0,Σ0).

A number of descendants, M ′ = M(p+ q) + 1.
A number of particles to be maintained, N .
A stream of observations Y1,Y2, ...

Initialise: Set Particles(0) = {(µ0,Σ0, 1)}
EV (t) = 1
Set max horizon

1: for t ∈ N do
2: Cand← {}
3: for (µ,Σ) ∈ Particles(t) do
4: (V,W, prob)← Sample typical(µ,Σ,Yt+1,A,C,ΣA,ΣI)
5: Cand← Cand ∪ {(µ,Σ,V,W, prob · EV (t), 1)}
6: Add Des← Sample additive(µ,Σ,Yt+1,A,C,ΣA,ΣI ,M)
7: for (V,W, prob) ∈ Add Des do
8: Cand← Cand ∪ {(µ,Σ,V,W, prob · EV (t), 1)}
9: end for

10: end for
11: for k ∈ {1, ...,max horizon} do
12: for (µ,Σ) ∈ Particles(t− k + 1) do
13: Ỹ←

[
YT
t−k+2, ...,Y

T
t+1

]T
14: Inn Des← BS inn(µ,Σ, Ỹ,A,C,ΣA,ΣI ,M, k)
15: for (V,W, prob) ∈ Inn Des do
16: Cand← Cand ∪ {(µ,Σ,V,W,

prob·EV (t+1−k)
max horizon

), k)}
17: end for
18: end for
19: end for
20: EV (t+ 1)← 0 . Calculate estimate of evidence at time t+ 1
21: for (µ,Σ,V,W, prob, k) ∈ Cand do
22: EV (t+ 1)← EV (t+ 1) + prob/|Cand|
23: end for
24: Descendants← Resample(N,Cand) . Resample particles
25: Particles(t)← {} . Calculate µt+1 and Σt+1 for each particle
26: for (µ,Σ,V,W, prob, k) ∈ Descendants do
27: (µ,Σ)← KF Upd(Yt+2−k,µ,Σ,C,A,VΣA,WΣI)
28: if k > 1 then
29: for i ∈ {2, ..., k} do
30: (µ,Σ)← KF Upd(Yt+1+i−k,µ,Σ,C,A,ΣA,ΣI)
31: end for
32: end if
33: Particles(t+ 1)← Particles(t+ 1) ∪ {(µ,Σ)}
34: end for
35: end for

We now describe how we sample candidate particles which
allow for innovative outliers in Step 14 of Algorithm 2. The
idea is that we can use the same idea as previously, but
for a larger state-space model that considers jointly all the
observations since time t− k + 1.

To sample a particle with an innovative anomaly in the jth
component of Wt+1−k, we define an augmented observation
vector Ỹ

(k)

t+1−k = (YTt+1−k, ...,Y
T
t+1)T . This is normally

distributed with mean C̃
(k)

Aµt−k and variance

C̃(k)
0 AΣt−kAT

(
C̃(k)
0

)T
+

k∑
i=0

[
C̃(k)
i V−1

t+1−k+iΣA

(
C̃(k)
i

)T ]
+ R̃(k)

,

where

C̃
(k)

i = C
(

0q×iq,
(
A0
)T
, ...,

(
Ak−i

)T)T
(6)

for 0 ≤ i ≤ k denote the augmented matrices mapping the
hidden states and innovations to the observations and

R̃(k)
=


V−1
t+1−kΣA 0

. . .

0
. . . 0

. . . 0 V−1
t+1ΣA
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In a similar spirit, we define the augmented predictive variance
Σ̂(k) to be

C̃(k)
0 AΣt−kAT

(
C̃(k)
0

)T
+

k∑
i=0

[
C̃(k)
i ΣA

(
C̃(k)
i

)T ]
+ Ik+1 ⊗ΣA.

As a result of this reformulation, we retrieve update equations
consisting of a single Kalman step, albeit with slightly differ-
ent dimensions of the observation, (k+ 1)p instead of p. It is
therefore possible to use the sampling procedure for innovative

outliers introduced in Section III-A providing
(

C̃
(k)
)(:,j)

6= 0.

This consists of sampling particles for W̃
(j,j)

t+1−k from

σ̂jΓ

bj +
1

2
, bj +

σ̂j

2Σ
(j,j)
I


((

C̃(k)
)T)(j,:) (

Σ̂(k)
)−1

z̃(k)t+1−k((
C̃(k)

)T (
Σ̂(k)

)−1
C̃(k)

)(j,j)


2 .

for the residual z̃(k)
t+1−kỸ

(k)

t+1−k − C̃
(k)

Aµt−k. The associated
weight is given in Theorem 5 in the Supplementary Material.
For details of how we choose the hyper-parameters for this
proposal see Section I in the Supplementary Material.

A range of observations guide the choice of the maxi-
mum horizon. We assume that the Kalman model is ob-
servable, i.e. that there exists a k such that the matrix[
(C)

T
, (CA)

T
, ...,

(
CAk

)T]
has full column rank. Let k∗

denote the lowest such k. We suggest choosing the maximum
horizon so that it is at least equal to or bigger than k∗, as any
innovative anomaly capable of influencing the observations
must do so within k∗ time steps. Increasing the maximum hori-
zon further can be beneficial, as it allows detection of weaker,
but persistent, innovative anomalies (e.g. weak changes in
mean). However, this comes at an increased computational
cost. It can therefore be recommended to set it to as large a
value as is computationally feasible.

In some situations we may wish to only consider back-
sampling a set of previous time-points. This could be to
reduce computational cost, or to account for the above pro-

posal distribution not being well defined for k if
(

C̃
(k)
)(:,j)

is the 0 vector. This is possible if we change step 11
of Algorithm 2 to consider only k within some subset of
{1, . . . ,max horizon}.

B. Example

With back-sampling, we are now able to tackle the example
from Figure 1b. We used a maximum horizon of 40 We
maintained N = 40 particles and sampled M = 1 descendants
of each type. The output of the particle filter can be seen
in Figure 4. As before, the filter updates its output as new
observations become available. Whilst the trend innovation
occurs at time t = 800, the anomaly is first detected around
time t = 820. Even then, there is a large amount of uncertainty
regarding the precise location of the anomaly which only gets
resolved at a later time.

C. Computational Cost

First and foremost, CE-BASS is fully on-line; i.e. its
computational cost does not increase in time. This constant

(a) t = 820 (b) t = 821 (c) Full data

Fig. 4: Robust particle filter output at various times. Additive
anomalies are denoted by red points, innovative anomalies by
blue lines. Grey observations are yet to be observed.

computational cost of each individual step is O(NM(p3+q3))
when no back-sampling is used and dominated by the cost of
matrix multiplications/inversions. Back-sampling at a horizon
k increases the dimension of the predictive variance matrix
Σ̂ from p × p to pk × pk. Since it has to be inverted for
k = 1, ...,max horizon, the computational cost is propor-
tional to max horizon4.

When processing Example 1 on a standard laptop, our C++
implementations took an average of 3.3ms (CE-BASS), 0.7ms
(IORKF from [9]), 0.8ms (AORKF from [9]), 1.1ms [8],
and 0.7ms (classical Kalman filter) for each iteration. This
increased to 51.8ms (CE-BASS), 0.8ms (IORKF from [9]),
0.8ms (AORKF from [9]), 1.2ms [8], and 0.8ms (classical
Kalman filter) per iteration for the second example.

V. SIMULATIONS

We now turn to comparing CE-BASS against other methods.
In particular, we compare against the t-distribution based addi-
tive outlier robust filter by [8], the Huberisation, i.e. truncation,
based additive outlier robust filter by [9], the Huberisation
based innovative outlier robust filter by [9], and the classical
Kalman Filter [4]. All these algorithms are implemented in
the accompanying package.

We consider four different models and generate 1000 obser-
vations for each. For each of the four models, we consider a
case in which no anomalies are present, a case in which only
additive anomalies are present, a case in which only innovative
anomalies are present, and a case in which both additive
and innovative anomalies are present. When anomalies are
added, they are added at times t = 100, t = 300, t = 600,
and t = 900. Specifically we considered the following three
models:

1) The model of Example 1 with σA = 1 and σI = 0.1. We
consider a case with only additive outliers, a case with
only innovative outliers, and a case where an additive
outlier at t = 100, is followed by two innovative outliers
at times t = 300 and t = 600, which were then followed
by an additive outlier at time t = 900. To simulate
additive anomalies, we set V

1
2
t σAεt = 10 and to simulate

the innovative outliers we set W
1
2
t σIνt = 10.

2) The random walk model with two measurements

Y
(1)
t = Xt +

(
V

(1)
t

) 1
2
σ
(1)
A ε

(1)
t , Xt = Xt−1 +W

1
2
t σIνt

Y
(2)
t = Xt +

(
V

(2)
t

) 1
2
σ
(2)
A ε

(2)
t ,
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(a) Case 1 (b) Case 1, IOs (c) Case 1, AOs (d) Case 1, Both

(e) Case 2 (f) Case 2, IOs (g) Case 2, AOs (h) Case 2, Both

(i) Case 3 (j) Case 3, IOs (k) Case 3, AOs (l) Case 3, Both

(m) Case 4 (n) Case 4, IOs (o) Case 4, AOs (p) Case 4, Both

Fig. 5: Violin plots for the average predictive log-likelihood of
the five filters (IOAO: CE-BASS, KF: The classical Kalman
Filter, AO T: [8], AO H: [9], IO: [9]) over the four different
scenarios under a range of models. Higher values correspond
to better performance. Methods are omitted on the graphs if
they can not be applied to the setting or if their performance
is too poor.

where σ
(1)
A = σ

(2)
A = 1 for i = 1, 2 and σI = 0.1.

We consider a case with only additive outliers (one in
the first component, then two in the second, then one
in the first), a case with only innovative outliers, and a
case where an additive outlier in the first component at
time t = 100 is followed by two innovative outliers at
times t = 300 and t = 600, which are then followed
by an additive outlier in the second component at time
t = 900. For additive anomalies, (V

(1)
t )

1
2 σ

(1)
A ε

(1)
t = 10

or (V
(2)
t )

1
2 σ

(2)
A ε

(2)
t = 10 and for innovative outliers,

W
1
2
t σIνt = 10.

3) The model of Example 2 with σA = 1, σ(1)
I = 0.1

and σ(2)
I = 0.01. We consider a case with only additive

outliers, a case with only innovative outliers (one in the
second component, then one in the first, then one in
the second, then one in the first), and a case with an
additive outlier at t = 100, followed by an innovative
outlier affecting the first component of the hidden state
at times t = 300, followed by an innovative outlier
affecting the second component of the hidden state at
times t = 600, followed by an additive outlier at time
t = 900. The additive anomalies were instances where
V

1
2
t εt = 30 and the innovative outliers were instances

where (W
(1)
t )

1
2 η

(1)
t = 100 or (W

(2)
t )

1
2 η

(2)
t = 500.

4) An extension of Example 2 where the position is also
observed. The equations governing the hidden state are
as before whilst the equations governing the observa-
tions are

Y
(1)
t = X

(1)
t +

(
V

(1)
t

) 1
2
σ
(1)
A ε

(1)
t ,

Y
(2)
t = X

(2)
t +

(
V

(2)
t

) 1
2
σ
(2)
A ε

(2)
t ,

where σ
(1)
A = σ

(2)
A = 1. We consider a case with

only additive outliers (in the first component only), a
case with only innovative outliers (one in the second
component, then one in the first, then one in the second,
then one in the first), and a case with an additive
outlier at time t = 100, followed by an innovative
outlier affecting the first component of the hidden state
at time t = 300, followed by an innovative outlier
affecting the second component of the hidden state at
time t = 600, followed by an additive outlier at time
t = 900. For additive anomalies, (V

(1)
t )

1
2 σ

(1)
A ε

(1)
t = 30

and for innovative outliers, (W
(1)
t )

1
2 σ

(1)
I η

(1)
t = 100 or

(W
(2)
t )

1
2 σ

(2)
I η

(2)
t = 500.

We evaluate the different methods based on average predic-
tive log-likelihood and average predictive mean squared error.
That is we calculate the one step-ahead predictive distribution
for the next observation, and respectively evaluate the log-
predictive density of the observation or evaluate the square
error of the mean of the predictive distribution, and then
average these quantities over the observations. We exclude all
observations corresponding to anomalies from the calculation
of these averages since the filters can not be expected to
predict them. When calculating the average mean squared error
we additionally remove one observation after the anomaly
in the first setting and two observations in the third setting
from the performance metric. This is to give the filter enough
information to determine which type of anomaly the outlier
corresponds to and return to a unimodal posterior: the MSE
is a less informative metric for multimodal posteriors, as it is
minimised at the posterior mean and this can be in a region
of negligible posterior mass.

The average log-likelihoods across all models can be found
in Figure 5, while the qualitatively very similar results for
the mean squared error can be found in the Supplementary
Material. We see that the performance of CE-BASS compares
favourably with that of the competing methods. In particular it
is as accurate as the Kalman filter in the absence of anomalies
and is more accurate than the additive outlier and innovative
outlier robust filters even when only additive or innovative
outliers are present, i.e. the settings for which these algorithms
were designed.

VI. APPLICATION

We now apply CE-BASS with two different types of model
to illustrate how CE-BASS can be used on real datasets. The
first dataset is a labelled benchmark dataset which consists of
temperature readings on a large industrial machine. Here, we
will use a model which considerably restricts the movements
of the hidden states when no anomalies are present, and thus
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(a) Data + labels (b) CE-BASS output (c) IO-RKF output

Fig. 6: Machine temperature dataset. The known anomalous
regions are shown by the red regions. The estimated locations
of innovative outliers are shown by blue vertical lines. For the
IO-RKF some of these are at very similar times – and these
can only be noticed by eye through the wider vertical lines on
the plot.

emulates a changepoint model. The second is an unlabelled
dataset which consists of repeated throughput measurements
on a router. For that application we will use a model which
has a considerable amount of flexibility and where the hidden
states tend to follow the observations and therefore detect
localised anomalies.

A. Machine Temperature Data

We now apply CE-BASS to the machine temperature data
taken from the Numenta Anomaly Benchmark (NAB, [23])
which can be accessed at https://github.com/numenta/NAB.
The data consists of over 20000 readings from a temperature
sensor on a large industrial machine and is displayed in Figure
6a along the three periods of anomalous behaviour labelled by
an engineer. The first corresponds to a planned shutdown and
the second to an early warning sign of the third anomaly – a
catastrophic failure.

In order to do so, we use the random walk model from Ex-
ample 1 with the aim of detecting persistent changes in mean.
We therefore use a maximum backsampling horizon of 250 but
to reduce computational cost we only consider back-sampling
at a sub-set of earlier times, so in Step 11 of Algorithm 2
we consider only k ∈ {1, 5, 10, 20, 40, 80, 150, 250} and fix
σI = 1/10000σA to ensure that long and weak anomalies
will not be interpreted as a persistent shift in the typical state.
We use the first 15% of the data, marked by [23] as training
data, to estimate the standard deviation σA as well as the initial
mean µ0 using the median absolute deviation and the median
respectively. Using robust covariance methods we also detect
very strong auto-correlation (ρ = 0.99) and therefore took the
default probabilities for anomalies to the power of 1

1−ρ .
The results of this analysis can be seen in Figure 6b. We

note that all anomalies flagged by the engineer are also being
detected by CE-BASS. Two additional innovative anomalies
around a prolonged drop which preceded the planned shut-
down are also detected. They could be a false positive or an
early warning sign of an anomaly prevented by the shutdown
which has not been noticed by the engineer. For comparison,
five anomaly detection methods were tested on this data in

(a) Day 11 (b) Day 12 (c) Day 13

(d) Day 14 (e) Day 15 (f) Day 16

(g) Day 17 (h) Day 18 (i) Day 19

Fig. 7: CE-BASS applied to 9 days of de-seasonalised router
data. Lines correspond to innovative anomalies, i.e. spikes or
level shifts.

[23]: only one of these was able to detect all three anomalies
and that method had three additional false positives.

We also applied the innovative outlier robust Kalman filter
by [9] using the same values of σA, σI , A, C, and Σ0. The
initial mean µ0 was set to the value of the first observation.
For the purpose of comparison, we chose the threshold for
an anomaly such that the number of detected anomalies is
equal to that found by CE-BASS. The result of this analysis
is displayed in Figure 6c. The detected anomalies overlap
with just the first and last of the known anomalies, and it
picks up an additional anomaly between the second and third
known anomalies. It can be seen that the detected anomalies
correspond to the largest jumps in observed values. This
highlights the practical value of CE-BASS’s back-sampling
as it is able to detect weaker, but persistent changes, such
as the second anomalous window of the machine temperature
dataset.

B. Router Data

The online analysis of aggregated traffic data on servers
is an important challenge in both predictive maintenance and
cyber security. This is because anomalies in throughput can
point towards problems in the network such as malfunctions or
malicious behaviour. Detecting anomalies as soon as possible
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therefore means that the root cause can be addressed more
quickly – potentially even before user experience is affected
or harm caused.

In this section, we consider 19 days worth of (unlabelled)
data that represents the input data rate observed at an IP router
interface in the core of a telecommunications network. The
data is gathered at a frequency of one observation every 30
seconds. To preserve confidentiality, we de-seasonalised the
data for days 11 to 19 using a seasonality model trained on
days 1 to 10 and, for the purpose of this paper, consider only
the de-seasonalised data for days 11 to 19 which can be found
in Figures 7a to 7i. The main features apparent in the daily
series are spikes, outliers, and changepoints. In order to capture
these, we use an AR(1) model with slowly changing mean to
model the observations Yt. Formally, we used the model

Yt = X
(1)
t +X

(2)
t + VtσAεt,

X
(1)
t = X

(1)
t−1 +W

(1)
t σ

(1)
I η

(1)
t ,

X
(2)
t = ρX

(2)
t−1 +W

(2)
t σ

(2)
I η

(2)
t .

Here, anomalies in εt correspond to isolated outliers,
anomalies in η

(1)
t correspond to level shifts and outliers in

η
(2)
t correspond to spikes.

We use the first 1000 observations of the first day, to
estimate the hyper-parameters. We first used robust loess-
smoothing to obtain a smoothed signal ŷt from the original
time series yt. Taking a robust estimate of the variance of
ŷt− ŷt−1, we estimated σ(1)

I = 0.0157. Using a robust AR(1)
regression on the residuals yt−ŷt, we further estimated σ(2)

I =

0.516 and ρ = 0.815. We then set σA = 1/10σ
(1)
I = 0.0516,

The result obtained from running CE-BASS with these
parameters on the daily router data is displayed in Figures
7a to 7i. A large number of anomalies are flagged, including
a large number of outliers and spikes, but also some level
shifts (Day 14). Discussion with engineers highlighted that the
anomalies detected matched well with their knowledge of the
data. This shows CE-BASS’s ability to return a large number
of diverse features which can be used as inputs to a supervised
algorithm should labels become available.

VII. DISCUSSION

We have presented CE-BASS, a robust particle filter algo-
rithm that can deal with both innovative and additive outliers.
The main limitation of this algorithm is that it assumes only
a single outlier, that is one affecting a single component of
either the additive or innovative noise, is possible at any
time-step. This assumption is needed to obtain our efficient
proposal distribution for particles, and one important extension
of our work would be to relax this assumption. We show
in simulations in the Supplementary Material that that the
performance of CE-BASS can deteriorate in situations where
multiple outliers occur simultaneously. Particular care should
be taken if we have transformed the model or observation
equation to remove correlations in the noise, as described in
Section II. In this case an outlier in, say, one component of the
observation vector could appear as an outlier affecting multiple
components of the transformed observation.
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