
The University of Manchester Research

Decentralized Data Flows in Algebraic Service
Compositions for the Scalability of IoT Systems
DOI:
10.1109/WF-IoT.2019.8767238

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Arellanes Molina, D., & Lau, K-K. (2019). Decentralized Data Flows in Algebraic Service Compositions for the
Scalability of IoT Systems. In IEEE 5th World Forum on Internet of Things https://doi.org/10.1109/WF-
IoT.2019.8767238

Published in:
IEEE 5th World Forum on Internet of Things

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Jul. 2020

https://doi.org/10.1109/WF-IoT.2019.8767238
https://www.research.manchester.ac.uk/portal/en/publications/decentralized-data-flows-in-algebraic-service-compositions-for-the-scalability-of-iot-systems(97a4014d-5238-4557-912c-f2cade2d22e3).html
/portal/damian.arellanesmolina-postgrad.html
/portal/kung-kiu.lau.html
https://www.research.manchester.ac.uk/portal/en/publications/decentralized-data-flows-in-algebraic-service-compositions-for-the-scalability-of-iot-systems(97a4014d-5238-4557-912c-f2cade2d22e3).html
https://www.research.manchester.ac.uk/portal/en/publications/decentralized-data-flows-in-algebraic-service-compositions-for-the-scalability-of-iot-systems(97a4014d-5238-4557-912c-f2cade2d22e3).html
https://doi.org/10.1109/WF-IoT.2019.8767238
https://doi.org/10.1109/WF-IoT.2019.8767238

Decentralized Data Flows in Algebraic Service
Compositions for the Scalability of IoT Systems

Damian Arellanes and Kung-Kiu Lau
School of Computer Science
The University of Manchester

Manchester M13 9PL, United Kingdom
{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract—With the advent of the Internet of Things, scalability
becomes a significant concern due to the huge amount of data
involved in IoT systems. A centralized data exchange is not
desirable as it leads to a single performance bottleneck. Although
a distributed exchange removes the central bottleneck, it has
network performance issues as data passes among multiple coor-
dinators. A decentralized data flow exchange is the only solution
that fully enables the realization of efficient IoT systems as there
is no single performance bottleneck and the network overhead is
minimized. In this paper, we present an approach that leverages
the algebraic semantics of DX-MAN for realizing decentralized
data flows in IoT systems. As data flows are not mixed with
control flows in algebraic service compositions, we developed
an algorithm that smoothly analyzes data dependencies for the
generation of a direct relationship between data consumers
and data producers. The result prevents passing data alongside
control among multiple coordinators because data is only read
and written on a data space. We validate our approach using
the Blockchain as the data space and conducted experiments to
evaluate the scalability of our approach. Our results show that
our approach scales well with the size of IoT systems.

Index Terms—Internet of Things, decentralized data flows,
Blockchain, DX-MAN, exogenous connectors, scalability, sepa-
ration between control and data, algebraic service composition

I. INTRODUCTION

The Internet of Things (IoT) envisions a world where
everything will be interconnected through distributed services.
As new challenges are forthcoming, this paradigm requires a
shift in our way of building software systems. With the rapid
advancement in hardware, the number of connected things is
considerably increasing to the extent that scalability becomes
a significant concern due to the huge amount of data involved
in IoT systems. Thus, IoT services shall exchange data over
the Internet using efficient approaches.

Although a centralized data exchange approach has been
successful in enterprise systems, it will easily cause a bottleneck
in IoT systems which potentially generate huge amount of data
continuously. To avoid the bottleneck, a distributed approach
can be used to distribute the load of data over multiple
coordinators. However, this would introduce unnecessary
network overhead as data is passed among many loci of control.

A decentralized data exchange approach is the most efficient
solution to tackle the imminent scale of IoT systems, as it
achieves better response time and throughput by minimizing
network hops [1], [2], [3], [4], [5]. However, exchanging data

among loosely-coupled IoT services is challenging, specially
in resource-constrained environments where things have poor
network connection and low disk space.

Moreover, constructing data dependency graphs is not trivial
when control flow and data flow are tightly coupled. The
separation of such concerns would allow a separate reasoning,
monitoring, maintenance and evolution of both control and data
[6]. Consequently, an efficient data exchange approach can be
realized without considering control flow. Thus, the number
of messages transmitted over the Internet can be reduced
considerably.

This paper proposes an approach that leverages the algebraic
semantics of DX-MAN [7], [8] for the realization of decen-
tralized data flows in IoT systems. The algebraic semantics of
DX-MAN allows a well-defined structure of data flows which
are smoothly analyzed by an algorithm, in order to form a
direct relationship between data consumers and data producers.
For this analysis, the algorithm particularly takes advantage of
the fact that DX-MAN separates control flow and data flow.

The rest of the paper is organized as follows. Sect. II
introduces the composition semantics of the DX-MAN model.
Sect. III describes its data flow dimension. Sect. IV presents
the algorithm that analyzes data flows. Sect. V presents the
implementation of our approach. Sect. VI outlines a quantitative
evaluation of our approach. Finally, we present the related work
in Sect. VII and the conclusions in Sect. VIII.

II. DX-MAN MODEL

DX-MAN is an algebraic model for IoT systems where
services and exogenous connectors are first-class entities. An
exogenous connector is a variability operator that defines
multiple workflows with explicit control flow, while a DX-
MAN service is a distributed software unit that exposes a set
of operations through a well-defined interface.

An atomic service provides a set of operations and it
is formed by connecting an invocation connector with a
computation unit. A computation unit represents an actual
service implementation (e.g., a RESTful Microservice or a
WS-* service) and it is not allowed to call other computation
units. The red arrows in Fig. 1(a) show that, as a consequence
of the algebraic semantics, the interface of an atomic service
has all the operations in the computation unit. An invocation

connector defines the most primitive workflow which is the
invocation of one operation in the computation unit.

Atomic
service
Composite
service

Composition Connector Adaptation
Connector

Invocation Connector
Computation
Unit

(a) Atomic
 Service

(b) Composition
 Connector

(c) Composite
 Service

(d) Adaptation
 Connectors

Operation

S1

op11
op12

IC1 op11
op12

S1

op11
op12

IC1 op11
op12

S2

op21
op22

IC2 op21
op22

op11
op12
op21
op22

S3
Control
Flow

Data Flow

Computation

(e) Dimensions

CC3

Fig. 1. DX-MAN Model.
Our notion of algebraic service composition is inspired by

algebra where functions are hierarchically composed into a new
function of the same type. The resulting function can be further
composed with other functions so as to yield a more complex
one. Algebraic service composition is the operation by which
a composition connector is used as an operator to compose
multiple services, resulting in a (hierarchical) composite service
whose interface has all sub-service operations. Thus, a top-level
composite will always contains the operations of all atomic
services. Fig. 1(c) illustrates this concept. In particular, there
are composition connectors for sequencing, branching and
parallelism. A sequencer connector enables infinite workflows
for the sequential invocation of sub-service operations. A
selector connector defines 2n branching workflows and chooses
the sub-service operations to invoke, such that n is the number
of operations in the composite service interface. A parallel
connector defines 2n parallel workflows and executes sub-
service operations in parallel according to user-defined tasks.

Fig. 1(d) shows that an adapter can be connected with only
one exogenous connector. A looping adapter iterates over a
sub-workflow while a condition holds true, and a guard adapter
invokes a sub-workflow whenever a condition holds true. There
are also adapters for sequencing, branching and parallelism
over the operations of an individual atomic service.

Fig. 1(e) shows that control, data and computation are orthog-
onal dimensions in DX-MAN. Exogenous connectors enable
the separation between control flow and computation, since
they decouple service implementations from the (hierarchical)
composition structure. Unlike existing composition approaches,
data flow never follows control flow as exogenous connectors
only pass control to coordinate workflow executions. For further
details about the control flow dimension, we refer the read to
our previous papers [7], [8].

III. DATA CONNECTORS

A DX-MAN operation is a set of input parameters and
output parameters. An input parameter defines the required
data to perform a computation, while an output parameter is the
resulting data from a specific computation. Although exogenous
connectors do not provide any operation (because they do
not perform any computation), some of them require data.
In particular, selector connectors, looping adapters and guard
adapters require input values to evaluate boolean conditions.
Connectors do not have any parameters by default since
designers define the parameters they require when choosing

a workflow. Workflow selection is out of the scope of this
paper, but we refer the read to our previous paper on workflow
variability [8].

In addition to the operations created on algebraic composi-
tion, custom operations can be defined in composite services.
This is particularly useful when designers want to hide the
operations created during algebraic composition or when
designers want to create a unified interface for a composite
service.

A data connector defines explicit data flow by connecting a
source parameter with a destination parameter. Fig. 2 shows
that an algebraic data connector is automatically created during
composition and it is available for all the workflows defined by
a composite. In particular, an algebraic data connector connects
two parameters vertically, i.e., in a bottom-up way for outputs
or in a top-down fashion for inputs. The top-down approach
connects a parameter of a composite service operation to a
parameter of a sub-service operation, whilst the bottom-up
approach means the other way round. Fig. 3 shows the data
connection rules, where we can see that the algebraic data
connectors are defined in four different ways.

CompositeD

i C0 C1
OpC

o
AtomicC

i A0
OpA

i A1 A2o
AtomicA

i B0
OpB

i B1 B2o
AtomicB

i A1
OpA

i A0 A2o i B0
OpB

B1 B2o

i A0
OpA

A1 A2o i B1
OpB

B0 B2o i C0 C1
OpC

o

Algebraic
Data
Connector

Atomic
Service

Composite
Service

Operation
ii

i

CompositeE

Fig. 2. Algebraic data channels.
A custom data connector is manually created by a designer

for only one workflow. Custom data connectors connect two
parameters either vertically or horizontally. An horizontal
approach connects the parameters of two sub-service operations,
or an operation parameter with an exogenous input. A quick
glance at Fig. 3 reveals that a designer is allowed to connect
parameters in 16 different ways.

A designer uses custom data connectors to define data flows
for a particular workflow. Currently, DX-MAN supports the
most common patterns: sequencing and map-reduce. For the
sequencing pattern, the parameters of two different operations
are horizontally connected. Fig. 4 shows an example of this
pattern, where operation OpB requires data from operation OpA.
In particular, a custom data connector links the output A0 with
the input B0, while another custom data connector connects
the output A1 with the input B1. To improve readability, we
ignore algebraic data connectors.

A data processor is particularly useful when data pre-
processing needs to be done before executing an operation. It
waits until all input values have been received, then performs
some computation and returns transformed data in the form
of outputs. A mapper executes a user-defined function on
each input value received. A reducer takes the result from a
mapper and executes a user-defined reduce function on inputs. A
reducer can also be used in isolation to perform straightforward
computation such as combining data into a list. Fig. 5 shows

Cust.

Cust.

Cust. Cust.

Cust.

Cust.

Cust.

Cust. Cust.

Cust.

Alge. Alge.

Alge.

Alge.

in

Adapter

Operation in
sub-composite

Composition
connector

Operation in
the composite

Operation in
sub-atomic

Operation in
sub-atomic

Operation
in sub-
composite

Adapter

fro
m\
to

Operation
in the
composite

Composition
connector

out in out in out in out in out
in
out
in
out
in
out
in
out
in
out

N/A
N/A

N/A

N/A
N/A

N/A
N/A

N/A

N/A

N/A
N/A

N/A
N/A

N/A
N/A N/A

N/A
in
out

Data
processor

Data
processor

in out

N/A
N/A

N/A
N/A

Cust.

Cust. Cust. Cust. Cust. Cust.

Alge.

N/A

Cust. Custom Data Connection

No Applicable

No Data Connection

Algebraic Data Connection

Fig. 3. Data connection rules.

CompositeC

OpA
A0 A1o
AtomicA

OpB
i B0

AtomicB

OpA
A0 A1o

OpB
i B0

Atomic Service
Composite Service

Operation

Custom Data
Connector

o

o

i B1

i B1

Fig. 4. An example of two sequential data flows.

an example of the map-reduce pattern, where operation opB
requires the pre-processing of data generated by operation opA.
In particular, two custom data connectors link the input A0 and
the output A1 with the inputs of the mapper. The output of the
mapper is connected to the input of the reducer and, similarly,
the output of the reducer is connected to the input B0. Please
note that A0 can only be connected from the composite service
operation, according to the rules shown in Fig. 3.

Composite
C

OpA
i A0A1o

AtomicA

OpB

AtomicB

OpA
i A0 A1o

OpB
i B0

Atomic
Service

Composite
Service

Operation

i
i
Mapper i oReducero

Custom
Data
Connector

i B0

Data
Processor

Fig. 5. An example of the map-reduce pattern.
In some workflows, algebraic data connectors may not

be useful. For that reason, such connectors can be removed
manually at the discretion of the designer. For example, in Fig.
5 all algebraic connectors were removed because data is only
needed for the realization of the map-reduce pattern. At quick
glance at Fig. 4 reveals that composite services encapsulate data
flows to ensure reusability. Thus, composite services are black
boxes who are not aware of data flows of other composites.

IV. ANALYSIS OF DATA CONNECTORS

Algebraic service composition and the separation of concerns
are key enablers for the realization of decentralized data
flows. The separation between control and data allows a
separate reasoning of these dimensions. In particular, exogenous
connectors provide a hierarchical control flow structure that is
completely separated from the data flow structure enabled
by data connectors. The data connections in a composite
service form a well-structure data dependency graph that is
analyzed at deployment-time by means of the Algorithm 1. To
understand this algorithm, it is necessary to underline some
formal definitions.

Algorithm 1 Algorithm for the analysis of data connectors
1: procedure ANALYZE(dc) . dc ∈ DC
2: Xw ← ∅ . Xw = {x | x ∈ D}
3: Yr ← ∅ . Yr = {y | y ∈ D}
4: if Π1(dc) /∈ PD ∧Π1(dc) ∈ dom(R) then
5: Xw ← R(Π1(dc))
6: else
7: Xw ← {Π1(dc)})
8: if Π2(dc) /∈ PD ∧Π2(dc) ∈ dom(W) then
9: Yr ←W (Π2(dc))

10: for each y ∈ Yr do
11: R⊕ {y 7→ R(y)− {Π2(dc)} ∪Xw}
12: else
13: Yr ← {Π2(dc)})
14: for each y ∈ Yr do
15: R⊕ {y 7→ R(y) ∪X}
16: for each x ∈ Xw do
17: W ⊕ {x 7→W (x) ∪ Y }

Let D be the data type, PD the type of processor parameters,
OD the type of operation parameters and CD the type of
exogenous connector inputs, such that PD,OD,CD ⊆ D. A
data connector is then a tuple of type DC : D×D that connects
a source ∈ D parameter with an origin ∈ D parameter.

Reader parameters are the entities that directly consume data
produced by writer parameters. Ir is the set of inputs that read
data during a workflow execution, namely the inputs of atomic
service operations, the inputs of exogenous connectors and the
inputs of data processors. Or is the set of operation outputs in
the top-level composite, useful for reading data resulting from
a workflow execution. The set Iw represents the required data
for a workflow execution, which are the inputs of operations in
the top-level composite. Ow is the set of outputs that write data
during a workflow execution, namely the outputs of atomic
service operations and the outputs of data processors.

Basically, the Algorithm 1 analyzes data connectors for all
composite services, in order to create a relationship between
reader parameter and writer parameters, while ignoring those
parameters who do not need to manipulate data. It receives a
data connector dc ∈ DC as an input, and uses R = Ir ∪Or 7→
{w | w ⊂ Iw ∪Ow} for mapping a reader parameter to a set
of writer parameters and W = Iw ∪Ow 7→ {r | r ⊂ Ir ∪Or}
for mapping a writer parameter to a set of reader parameters.

The Algorithm 1 creates two empty sets Xw and Yr, in order
to analyze the endpoints of a data connector dc ∈ DC. Xw is
the set of parameters connected to the source parameter Π1(dc)
iff Π1(dc) is not a data processor parameter and Π1(dc) has
incoming data connectors; otherwise, Xw only contains Π1(dc).
Similarly, if the destination parameter Π2(dc) is not a data
processor parameter and Π2(dc) has outgoing data connectors,
then Yr is the set of parameters connected from Π2(dc) and
Xw (without Π2(dc)) is added into the writers of each element
y ∈ Yr; otherwise, Yr only contains Π2(dc). Finally Xw is
added into the writers of each element Y ∈ Yr, while the set
Yr is added into the readers of each element x ∈ Xw. The
result of the algorithm is a mapping of reader parameters to
writer parameters.

V. IMPLEMENTATION

We implemented our approach on top of the DX-MAN
Platform [9], and we used the Blockchain as the underlying
data space for persisting parameter values while leveraging the
capabilities provided by these decentralized platforms, such
as performance, security and auditability. Furthermore, the
Blockchain ensures that every service is the owner of its own
data, while data provenance is provided to discover data flows
(i.e., how data is moved between services) or to find out
how parameters change over time. In particular, we defined
three smart contracts using Hyperledger Composer 0.20.0 for
executing transactions on Hyperledger Fabric 1.2. We do not
show the source code due to space constraints, but it is available
at .

The DX-MAN platform provides an API to support the
three phases of a DX-MAN system lifecycle: design-time,
deployment-time and run-time. Composite service templates
only contain algebraic data connectors, as they represent a
general design with multiple workflows. Using API constructs,
a designer chooses a workflow and defines custom data
connectors (and perhaps data processors) for every composite
service involved. Data processor functions are defined by
designers using API constructs.

The Algorithm 1 analyzes the data connectors defined
at design-time, in order to construct the readers map at
deployment-time. In particular, the map is a Java HashMap
where the keys are reader parameter UUIDs and the values are
lists of writer parameter UUIDs. After getting the map for a
given workflow, reader parameters (with their respective list
of writers) are stored as assets in the Blockchain by means of
the transaction CreateParameters.

At run-time, exogenous connectors pass control using CoAP
messages. In particular, an invocation connector performs five
steps to invoke an operation, as shown in Fig. 6. Although
the rest of exogenous connectors behave similarly, they only
perform the first two steps. First, the invocation connector
uses the transaction readParameters to read all input values
from the Blockchain. For a given input, the Blockchain reads
values directly from the writers list. As there might be multiple
writer parameters, this transaction returns a list of the most
recent input values that were updated during the workflow

execution. Hence, a timestamp is set whenever a parameter
value is updated. readParameters returns an exception if there
are no input values. Output values are written onto the data
space as soon as they are available, even before control reaches
data consumers. Thus, having concurrent connectors (e.g., a
parallel connector) may lead to synchronization issues during
workflow execution. To solve this, control flow blocks in the
invocation connector until all input values are read.

Inv. Conn Operation
Impl

1 Read Input Values
Input Values

Invoke
Output
ValuesWrite Output

Values

Data
Space

3
42

5

Fig. 6. Steps for the invocation of an operation implementation.
Once all inputs are ready, the invocation connector invokes

the implementation of an operation by passing the respective
input values. Then, the operation performs some computation
and returns the result in the form of outputs. Finally, the invo-
cation connector writes the output values onto the Blockchain
using the transaction updateParameters.

An UpdateParameterEvent is published whenever a new
parameter value has been updated. During deployment, the
platform automatically subscribes data processor instances to
the events produced by the respective writer parameters. Thus,
a data processor instance waits until it receives all events,
before performing its respective designer-defined computation.
Although our current implementation supports only mappers
and reducers, more data processors can be introduced using
the semantics of a data processor presented in Sect. III, e.g.,
we can add a shuffler to sort data by key.

Our approach enables transparent data exchange as data
routing is embodied in the Blockchain. Thus, reader parameters
are not aware where the data comes from, and writer parameters
do not know who reads the data they produce. Furthermore,
the map generated by the Algorithm 1 avoids the inefficient
approach of passing values through data connectors during
workflow execution. Thus, exogenous connectors and data
processors read data directly from parameters who only write
values onto the Blockchain. Undoubtedly, this enables a
transparent decentralized data exchange.

VI. EVALUATION

In this section, we present a comparative evaluation between
distributed data flows and decentralized data flows for a DX-
MAN composition. In the former approach, data is passed
over the network through data connectors, whereas the second
approach is our solution. Our evaluation intends to answer two
major research questions: (A) Does the approach scale with the
number of data connectors? and (B) Under which conditions
is decentralized data exchange beneficial?

As a DX-MAN composition has a multi-level hierarchical
structure, an algebraic data connector passes a data value
vertically in a bottom-up way (for inputs) or in a top-down
fashion (for outputs) while a custom data connector passes
values horizontally or vertically. For our evaluation, we only
consider vertical routing through algebraic data connectors.
Mp = {λj |λj ∈ R} is the set of network message costs for

vertically routing the value of a parameter p, where λj is the

cost of passing that value through an algebraic data connector
j. Likewise, Γp and ωp are the costs of reading and writing
the value on the data space, respectively.

Equations 1 and 2 calculate the total message cost of routing
a value with a distributed approach. In particular, equation 1
is used for input values, whilst equation 2 is used for output
values. As the decentralized approach does not pass values
through data connectors, the total message cost of routing the
value of p is Γp for inputs, and ωp for outputs.

Γp +

|Mp|−1∑
j=0

λj (1)

ωp +

|Mp|−1∑
j=0

λj (2)

Fig. 7 depicts the DX-MAN composition that we consider for
our evaluation, which has three levels, three atomic services
and two composite services. The composites ServiceD and
ServiceE have three and five data connectors, respectively. Fig.
7 shows that a data connector has a λj∈[0,7] cost of passing a
value over the network. Then, the vertical routing sets for the
parameters are MA0 = {λ3}, MA1 = {λ4}, MB0 = {λ0, λ5},
MB1 = {λ1, λ6} and MC0 = {λ2, λ7}.

i A0
opA

A1o
ServiceA

i B0
opB

B1o
ServiceB

i C0
opC

ServiceC

i B0
opB

B1o i C0
opC

i A0
opA

A1o i B0
opB

B1o i C0
opC

Service
D

Service
E

λ3 λ4
λ5 λ6 λ7

λ2λ1
λ0

Fig. 7. DX-MAN composition for the evaluation of our approach.
For clarity, we assume that the DX-MAN composition

interacts with an external application through a shared data
space. So, we can ignore the cost of passing data between
the application and the composition. The costs of reading the
inputs A0, B0 and C0 are ΓA0, ΓB0 and ΓC0, respectively, and
the costs of writing the outputs A1 and B1 are ωA1 and ωB1,
respectively.

Suppose that a specific workflow requires the invocation
of the operations opA and opC. Using a distributed approach
would require passing and reading values for two inputs, and
returning and writing one output value. Therefore, according to
equations 1 and 2, the total message cost would be λ3 + λ4 +
λ2+λ7+ΓA0+ωA1+ΓC0. Remarkably, the total message cost
using the decentralized approach would be ΓA0 + ωA1 + ΓC0.

A. RQ1: Does the approach scale with the number of data
connectors?

We conducted an experiment that dynamically increases
the number of data connectors of the DX-MAN composition
depicted in Fig. 7. The experiment is carried out in 100000
steps with ΓA0 = ωA1 = ΓB0 = ωB1 = ΓC0 = 1.

For each step of the experiment, we add a new parameter
in a random atomic operation. As a consequence of algebraic

composition, another parameter is added in the respective com-
posite operation and a data connector links these parameters.

In this experiment, we particularly compare the cost of the
distributed approach vs. the cost of the decentralized approach.
Rather than computing the costs for the invocation of specific
operations, we compute the total costs for the DX-MAN

composition using ΓA0 +ωA1 +ΓB0 +ωB1 +ΓC0 +
7∑
j=0

λj . Fig.

8 shows that the costs grow linearly with the number of data
connectors, and that the decentralized approach outperforms its
counterpart by reducing costs by a factor of 2.67 in average.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20000 40000 60000 80000 100000

To
ta

l
C

o
st

 o
f

M
e
ss

a
g

e
s

Number of Data Connectors

Distributed Data Flow
Decentralized Data Flow

Fig. 8. Impact of increasing the number of data connectors in a DX-MAN
composition.

B. RQ2: Under which conditions is decentralized data ex-
change beneficial?

We conducted an experiment of 100000 steps to see the
benefit of the decentralized approach as the number of levels
of the composition increases. We particularly consider the total
costs for the input A0 and we assume that ΓA0 = 1. At each

step, the number of levels is increased by 1 and
|MA0|−1∑
j=0

λj

by 0.0004. Thus, increasing the sum of vertical costs means

that

|MA0|−1∑
j=0

λj

|MA0| = 1 and increasing the number of levels by 1
means that |MA0| is also increased by 1. The improvement
rate of the decentralized data exchange is 1− ΓA0

(ΓA0+
|MA0|−1∑

j=0
λj)

.

Fig. 9 shows the results of this experiment, where it is clear
that the benefit of the decentralized approach becomes more
evident as the number of levels of the composition increases.
This is because the number of data connectors increases with
the number of levels and so the cost of the distributed approach.
The only way a distributed approach would outperform the
decentralized one is when the cost of performing operations on
the data space is more expensive than the total cost of passing
values vertically. In particular, for our experiment the DX-MAN

composition gets a benefit only if ΓA0 <
|MA0|−1∑
j=0

λj .

VII. RELATED WORK

To the best of our knowledge, there are no solutions to
enable decentralized data flows in IoT systems. In this section
we present SOA-based solutions as they are applicable to IoT.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

Im
p

ro
v
e
m

e
n
t

R
a
te

Number of Levels

Fig. 9. Impact of increasing the number of levels in a DX-MAN composition.

We classified our findings into three categories, depending on
the composition semantics the approaches are built on: orches-
tration (with central control flows and decentralized data flows),
decentralized orchestration, data flows and choreographies.

Approaches belonging to the first category [10], [1] partially
separate data from control so as to enable P2P data exchanges.
To do so, an orchestrator coordinates the exchanges by passing
data references alongside control. Thus, extra network traffic is
introduced as data references (and acknowledge messages) are
transferred over the network. These approaches are typically
based on proxies that keep data, thus representing an issue for
things with low disk space. By contrast, DX-MAN does not
require any coordinator for the data exchange, and exogenous
connectors do not store data. Besides, exogenous connectors do
not exchange references, thanks to the separation of concerns.

Only few approaches discuss data decentralization using
the semantics of decentralized orchestration. [11] stores data
and control in distributed tuple spaces which may become
a bottleneck in IoT environments that continuously generate
huge amount of data. [3] solves that issue by storing references
instead of values. However, references are needed because data
is mixed with control. Moreover, [3] requires the maintenance
of tuple spaces for passing references and databases for storing
data. DX-MAN only reads and writes onto the data space.

Although distributed data flows [12] allocate flows over
different things, there is a master engine that coordinates data
exchange for slave engines. Hence, this approach introduces
extra network hops as data is passed among multiple engines.
Although Service Invocation Triggers [2] exchange data directly,
they rely on workflows that do contain loops and conditionals.
This limitation arises from the fact that it is not trivial to
analyze data dependencies when control is mixed with data.

A choreography describes interactions among participants
using decentralized message exchanges (a.k.a. conversations).
Workflow participants [13], pass data among multiple engines
leading to network degradation. Although services may ex-
change data through direct message passing, they are not
reusable because data and control are mixed [6]. [4] uses peers
to exchange data and invoke services, thus separating control
and computation. However, peers pass data alongside control
according to predefined conversations, leading to the issues
discussed in [5]. Although [14] proposes the separation between

control and data for choreographies, it uses a middleware which
may potentially become a central bottleneck.

VIII. CONCLUSIONS

In this paper, we presented an approach on top of DX-
MAN to enable decentralized data flows in IoT systems. At
design-time, the algebraic semantics of DX-MAN enables a
well-defined structure of data connections. As data connections
are not mixed with control flow structures, then an algorithm
smoothly analyzes data connections at deployment-time. The
result is a mapping between reader parameters and writer param-
eters, which prevents passing values through data connectors.
In our current implementation, the Blockchain embodies this
mapping to manage data values at run-time.

DX-MAN is currently the only service model that provides
the separation between data flow, control flow and computation;
thus, allowing a separate reasoning, monitoring, maintenance
and evolution of these concerns. In particular, separating data
flow from control flow prevents passing data alongside control
among exogenous connectors, and enables the use of different
technologies to handle data flows and control flows separately.

Our experiments confirm that our approach scales well with
the number of data connectors and the number of levels of a
DX-MAN composition. They also suggest that our approach
provides the best performance when the cost of performing
operations on the data space is less than the cost of passing data
over the network. Thus, our approach is extremely beneficial
for IoT systems consisting of plenty of services.

REFERENCES

[1] A. Barker et al., “Reducing Data Transfer in Service-Oriented Archi-
tectures: The Circulate Approach,” IEEE Trans. Serv. Comput., vol. 5,
no. 3, pp. 437–449, 2012.

[2] W. Binder et al., “Service invocation triggers: a lightweight routing
infrastructure for decentralised workflow orchestration,” Int. J. High Perf.
Comp. and Net., vol. 6, no. 1, pp. 81–90, 2009.

[3] M. Sonntag et al., “Process space-based scientific workflow enactment,”
Int. J. Business Proc. Integr. and Man., vol. 5, no. 1, pp. 32–44, 2010.

[4] A. Barker et al., “Choreographing Web Services,” IEEE Trans. Serv.
Comput., vol. 2, no. 2, pp. 152–166, 2009.

[5] M. Hahn et al., “Data-Aware Service Choreographies Through Transpar-
ent Data Exchange,” in Web Eng., ser. Lect. Notes Comp. Sci. Springer
Int. Pub., 2016, pp. 357–364.

[6] D. Arellanes and K. Lau, “Analysis and Classification of Service
Interactions for the Scalability of the Internet of Things,” in IEEE ICIOT,
2018, pp. 80–87.

[7] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in IEEE SOCA, 2017, pp. 125–132.

[8] ——, “Algebraic Service Composition for User-Centric IoT Applications,”
in ICIOT 2018, ser. Lect. Notes Comp. Sci. Springer Int. Pub., 2018,
pp. 56–69.

[9] D. Arellanes and K. Lau, “D-XMAN: A Platform For Total Compo-
sitionality in Service-Oriented Architectures,” in IEEE SC2, 2017, pp.
283–286.

[10] D. Liu, “Data-flow Distribution in FICAS Service Composition Infras-
tructure,” 2002.

[11] D. Wutke et al., “Model and Infrastructure for Decentralized Workflow
Enactment,” in Proc. Symp. on Appl. Comp. ACM, 2008, pp. 90–94.

[12] N. K. Giang et al., “Developing IoT applications in the Fog: A Distributed
Dataflow approach,” in IOT, 2015, pp. 155–162.

[13] G. Decker et al., “BPEL4chor: Extending BPEL for Modeling Chore-
ographies,” in IEEE ICWS, 2007, pp. 296–303.

[14] M. Hahn et al., “TraDE - A Transparent Data Exchange Middleware for
Service Choreographies,” in On the Move to Meaningful Internet Syst.,
ser. Lect. Notes Comp. Sci. Springer Int. Pub., 2017, pp. 252–270.

