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Abstract

This thesis considers the network capacity design problem with demand uncertainty

using the stochastic, robust and distributionally robust stochastic optimization ap-

proaches (DRSO). Network modeling in itself has found wide areas of application in

most fields of human endeavor. The network would normally consist of source (ori-

gin) and sink (destination) nodes connected by arcs that allow for flows of an entity

from the origin to the destination nodes.

In this thesis, a special type of the minimum cost flow problem is addressed, the

multi-commodity network flow problem. Commodities are the flow types that are

transported on a shared network. Offered demands are, for the most part, unknown

or uncertain, hence a model that immune against this uncertainty becomes the focus as

well as the practicability of such models in the industry. This problem falls under the

two-stage optimization framework where a decision is delayed in time to adjust for the

first decision earlier made. The first stage decision is called the ”here and now”, while

the second stage traffic re-adjustment is the ”wait and see” decision. In the literature,

the decision-maker is often believed to know the shape of the uncertainty, hence we

address this by considering a data-driven uncertainty set. The research also addressed

the non-linearity of cost function despite the abundance of literature assuming linear-

ity and models proposed for this.

This thesis consist of four main chapters excluding the ”Introduction” chapter and

the ”Approaches to Optimization under Uncertainty” chapter where the methodolo-

gies are reviewed. The first of these four, Chapter 3, proposes the two models for the

xi



Robust Network Capacity Expansion Problem (RNCEP) with cost non-linearity. These

two are the RNCEP with fixed-charge cost and RNCEP with piecewise-linear cost. The

next chapter, Chapter 4, compares the RNCEP models under two types of uncertain-

ties in order to address the issue of usefulness in a real world setting. The resulting

two robust models are also comapared with the stochastic optimization model with

distribution mean. Chapter 5 re-examines the earlier problem using machine learn-

ing approaches to generate the two uncertainty sets while the last of these chapters,

Chapter 6, investigates DRSO model to network capacity planning and proposes an

efficient solution technique.
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In the beginning God... Gen 1:1

Chapter 1

Introduction

1.1 Overview

The requirement for the efficient allocation of limited resources with its inherent chal-

lenge has always been a part of human activities and it’s as old as human existence.

Different generations have had to deal with this within their limit of available tools

and resources, human, societal and technological development. The requirement for

this gave birth to the division of labor during the industrial revolution occasioned by

the coal power. Thus allocating limited resources appropriately and efficiently among

competing needs is what we call optimization. Hence, an optimization framework can

be defined as the tools, techniques and process around the efficient resource allocation

and sharing of resources. The field of optimization has never been ’cast in stone’ or

perhaps no stone has been able to confine this field rather it has been an ever expand-

ing and increasingly relevant field in almost all areas of human endeavor.

Worthy of note also, is that the field has grown to be almost all inclusive of profes-

sionals that cut across different fields of endeavor, from psychology to engineering.

This field has thus engendered a lot of opportunities in different areas of its applica-

tion. In this work, the optimization framework is applied to the Network Capacity Ex-
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pansion Problem using stochastic programming and robust optimization approaches.

Network in itself is an offshoot of the work that began with Leonhard Euler (1736) in

his study of the bridges of Königsberg [80]. Ever since, this has exploded and evolved

to many other areas and fields of endeavor. Network theory has thus grown into a

vibrant and robust field covering wide area of applications. Its legacy is rooted in

mechanics, engineering and applied mathematics as well as the contemporary field of

operational research. These have helped to model many aspect of human activities and

engagements arising from real world [2]. Some of these areas are social networks, bi-

ological (genetic) networks, computer networks, power networks, transportation net-

works (airline, rail, waterways), supply chain networks, water supply networks, gas

pipeline networks and communications networks. This subject area can be traced back

to the early works of Gustav Robert Kirchhoff [87] who developed the concept of tree

in relation to electric current flow in network circuit: how to efficiently and effectively

transport flow of electric current in the electric network and circuit, building on the

work of Leonhard Euler in 1736, the father of graph theory and topology [2, 80]. Sev-

eral breakthrough results in graph theory were made in the middle of the 20th century

closely linked with the developments in computing technology, such as [66, 65] and

[62].

Network theory is able to model the interaction between complex systems in such

a way that allows a better understanding of such systems. It provides a uniform lan-

guage of expression for wide variety of systems despite differences in composition,

nature and domain. Models generally provide a system or mechanism that allows a

representation of real word problem with mathematical objects like arcs and nodes.

Network problems seek to find the most efficient way to transfer some items or en-

tity from one location to another in a network. The movement of these entities is

what allows for the flows in networks, while the entity are usually refereed to as the

commodities. Network flow problem will typically consists of origin and destination

2



nodes with several routes or links that allow for the flow of entity from the origin to

destination nodes.

The network flow problem of this thesis falls under a special type of the minimum

cost flow problem known as the minimum cost multicommodity flow problem. This

is a network flow problem where many commodities are routed through shared re-

sources in the underlying network. Commodities are characterized by the type of

flow and different origination-destination pairs. In a typical communication network,

the commodities will be the different traffic types: voice, data, video and short mes-

saging service (sms). The objective here just like for any minimum cost flow network,

is to minimized the total cost of routing the different class of flows from the origins to

satisfy demands at the destinations. The origin is also referred to as the supply node

and the destination as the demand node.

1.2 A Typical Network Flow Representation

Network flow models can be represented as a directed graph G = (V ,A) where v ∈ V

represents the set of nodes in the network and a ∈ A represents the set of directed arcs

connecting the nodes in the network. (sk, tk) represent the origin-destination pairs for

a set of commodities k ∈ K with dk being the demand from sk to tk. The model below

is representation of a network capacity design problem. ua is the installed capacity on

arc a while xa is the capacity expansion on a with incremental unit capacity cost ca

and fka is the flow of commodity k on arc a. δ+(v) and δ−(v) are sets of outgoing and

incomings arcs at node v respectively.

min
∑
a∈A

caxa (1.1)

3



s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka =


−dk if v = sk

dk if v = tk

0 otherwise

∀k ∈ K, v ∈ V (1.2)

∑
k∈K

fka ≤ ua + xa ∀a ∈ A (1.3)

fka ≥ 0 ∀k ∈ K, a ∈ A (1.4)

xa ≥ 0 ∀a ∈ A (1.5)

The model objective (1.1) is to minimize the cost of additional network capacity while

constraint (1.2) is the flow conservation and constraint (1.3) sets the flow bound as the

sum of installed and expanded capacity.

1.3 The Structure and Contributions of Thesis

This thesis is made up of seven chapters which include the Introduction chapter while

Chapter 2 reviews the literature and optimization approaches to addressing uncer-

tainty. The rest of thesis is made up of four main chapters that relate to the general

area of the research thrust, ”The robust and stochastic approaches to network capac-

ity design and expansion under demand uncertainty”, while Chapter 7 concludes this

work. Each of these four chapters is a separate and independent piece of research

paper which is already in or submitted for publication. These chapters are a bit dif-

ferent from the actual papers in terms of the specific journal requirements that relates

to formatting and for Chapter 3, also in terms of content where the computational re-

sults have been extended. The chapters arrangement reflects progress made over time,

Chapter 3 being my first paper and Chapter 6 the last paper.

A number of contributions has already been listed in each of the research papers pre-

sented in Chapter 3 to Chapter 6. The focus of this thesis is to develop a practical work-

4



ing models that can find significant industry adoption among practitioners leveraging

on the latest advancement in mathematical programming and optimization. The aim

is to bridge the gap between academic exercise and industry practicability.

Chapter 3 addresses the issue of the non-linearity of the cost function in practice, con-

trary to the vast assumption in the literature of linearity. It proposes two non-linear

cost models to addressing this vis-a-vis (i) a linear cost with a fixed charge that is

triggered if any arc capacity is modified, and (ii) its generalization that is piecewise-

linear in added capacity. As expected the mixed-integer programs that result from

these models are more computationally demanding compared to that with linear cost

models but solutions are found to be beneficial in practice. This paper has now been

published in the proceeding of 19th Symposium on Algorithmic Approaches for Transporta-

tion Modeling, Optimization, and Systems (ATMOS 2019) as [69] and was also presented

at this conference.

In Chapter 4, we delved into the practicality of existing uncertainty models in the

industry by practitioners. Hence, to address this, we consider a network design and

expansion problem where capacity investment decisions are made in order to meet the

demand of uncertain future traffic. Three approaches were considered with compar-

ison made based on the computational result and these three are (i) using a discrete

uncertainty set (ii) using a polyhedral uncertainty set and (iii) using the mean of a per-

commodity fitted zero-inflated uniform distribution. Whereas the first two models

are used as part of a robust optimization setting, the third model represents a sim-

ple stochastic optimization setting. The results show that discrete uncertainty is more

practicable. This paper was presented at the 30th European Conference on Operation Re-

search (EURO2019) and now published as a technical report in ArXiv online repository

as [68].
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Chapter 5 addresses the problem raised earlier in Chapter 4 using machine learning

algorithms while developing a new formulation for the network design and expansion

problem using a path based formulation. We employ clustering to generate a discrete

uncertainty set, and supervised learning to generate a polyhedral uncertainty set. Per-

formance of the resulting robust solutions for these two types of models were then

compared on real-world data. The computational result shows that solutions based

on discrete uncertainty generated by clustering outperform solutions based on poly-

hedral uncertainty generated by supervised learning on all performance metrics. This

paper has been submitted for publication in Journal of the Operational Research Society

(JORS) and is also available as a technical report in ArXiv online repository as [70].

Chapter 6 presents the model and algorithm for solving the network design and ex-

pansion problem using the distributionally robust stochastic optimization framework.

This alternative becomes imperative with growing criticism of the robust optimization

approach in the area of solution conservatism for not leveraging on the distributional

knowledge of the uncertain variable. The solutions from the resulting efficient algo-

rithm were compared to the solutions from robust optimization approach and shows

that the DRSO model to be a better model in terms of both the in-sample and out of

sample performance. This is published as a technical report in ArXiv online repository

as [60].

Chapter 7 concludes the thesis and provides direction for possible future research pur-

suit.
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Chapter 2

Approaches to Optimization under

Uncertainty

2.1 Introduction

This research is focused on the area of robust and stochastic optimization approaches

to network capacity expansion under demand uncertainty [5] [112] [114] [51]. Making

decision under uncertainty is as old as human existence where choices and decisions

are often made in full uncertainty. Blaise Pascal’s famous Wager, marked the first for-

mal application of this in order to maximize expectation, part of the Penses published

in 1670 [110]. Daniel Bernouli, in 1728, proposed a new theory, expected utility [21],

while Adam Smith [120] has now been credited as the first academic or philosopher

to make a distinction between uncertainty and risk [38]. [85] and [88] pioneered the

economics of uncertainty and ambiguity.

However, in operations research, it was [56] and [39] who pioneered uncertainty in

real world decision making. This laid the foundation for both stochastic programming

and optimization under probabilistic constraints. This assumes the complete knowl-

edge of the probability distribution of the random variables or uncertain data. Over
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the years a number of stochastic optimization theories and tools have been developed

which have made stochastic programming a powerful and potent tool in optimiza-

tion. However, the assumption of the full distribution knowledge of every data in the

uncertain variable, in real world, seems to be far from truth as decision makers rarely

have this information. Moreover it has also been found that computational challenges

do come up that lead to hard optimization problem, which are so difficult to solve, see

[84] and especially in the case of multi-stage which are ”notoriously” difficult to solve

with feasible solutions often a hard problem to find, see [45]. [101, 102] showed that

two-stage optimization problems are NP hard.

The limitations of stochastic programming make the need for an alternative approach

to decision making under uncertainty highly imperative [34]. The framework for this

alternative approach was pioneered by [121] who laid the ground work for the robust

optimization approach. Here, the framework does not assume the knowledge of any

probability distribution but rather that the uncertain data lie within a predetermined

bounded and convex set which is often referred to as the uncertainty set (”scenario

set”) [77]. A feasible solution and preferably near optimal for all possible realizations

of the data in this predetermined set is termed a robust solution [20]. Hence, the robust

seeks to maximize the worst-case utility while the stochastic programming seeks to

maximize the average utility. The robust thus uses the worst-case oriented approach

while the stochastic uses the average case approach.The last 20 years have witnessed

a renewed interest in this framework which was led by the works of [17], [73] and [90]

and followed by [32] with many other collaborators and researchers. All these have

made robust optimization arguably a powerful tool to reckon with for addressing and

handling uncertainty decision models [5].

Uncertainties arise for a number of reasons, namely: uncertainty about the future,

measurement and computation errors and implementation errors [14]. Among re-
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searchers and practitioners, aside stochastic programming, and robust optimization,

uncertainties are also dealt with using stochastic dynamic programming and the method-

ology of sensitivity analysis (SA). The SA is largely used to test the ”robustness” of an

optimal solution and it is a ”post-mortem” tool [18]. SA is used when the optimiza-

tion model is deterministic hence limited to infinitesimal changes in data perturbation.

Sensitivity analysis, therefore, becomes insufficient in the face of large perturbation

affecting data [73]. Intervals programming/arithmetic is also another proposed to ad-

dress uncertainty, see [14].

It is worth mentioning that robust optimization framework and stochastic program-

ming approach could be viewed as complementary approaches to addressing data

perturbation as they both try to answer the same question but obviously in different

ways [15]. For instance, applications in waves theory, signal processing and radio

propagation which are stochastic in nature, with fairly known probability distribution

would easily fit into the stochastic programming approach which has also been ap-

plied in capacity allocation problems. The capacity allocation can also be addressed

under robust optimization framework.

The rest of this chapter is organized as follows. Section 2.2 presents the robust op-

timization methodology with its literature review. In Section 2.3, the mathematical

formulation of the robust network capacity expansion problem is presented. In Sec-

tion 2.4, the stochastic programming approach is presented. Section 2.5 discusses the

distributionally robust stochastic optimization framework which combines the robust

with the stochastic approach.
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2.2 Robust Optimization Methodology and Review

In this section, a review of the robust optimization approach is carried out in more

detail being one of the tools to be used in addressing the network capacity expansion

problem. Robust optimization can be thought of as a framework that produces an

uncertainty-immune solution to an uncertain problem [18]. There are different ways

of implementation in the robust optimization framework and these are dependent on

the way data uncertainty is treated: ”unknown-but-bounded” uncertainty or as ran-

dom symmetric uncertainty. In the former, the true value of the uncertain parameter

lies within a closed range of the nominal value, while in the latter, the true value is ob-

tained from the nominal value by random perturbation [18, 20]. However, [90] use the

uncertainty as a set of bounded scenarios in what is referred to as the scenario based

set.

2.2.1 Classic Robust Optimisation

Consider the linear optimization (LO) problem of the form below;

min
x
{cTx : Ax ≤ d} (2.1)

where xxx ∈ Rn is decision or design vector, ccc ∈ Rn is a given vector of the coefficient of

the objective function, A ∈ Rm×n is the constraint matrix and ddd ∈ Rm is a given right

hand side of the constraint [19].

The data associated with A and ddd in real life are uncertain in most of the cases and

a vector xxx satisfying all possible realizations of the data in the uncertainty set Ξ given

below will be the robust feasible solution to the LO problem.

Ax ≤ d ∀ξ ≡ [A, d] ∈ Ξ (2.2)

10



Hence we call the problem below the Robust Counterpart (RC) of the original LO

problem [17].

min
x
{cTx : Ax ≤ d ∀ξ ≡ [A, d] ∈ Ξ} (2.3)

In this RC, xxx ∈ Rn is a vector of decision variable and ccc ∈ Rn denotes a vector of certain

coefficients while A ∈ Rm×n is given matrix of uncertain coefficient, and ddd ∈ Rm is a

given uncertain vector belonging to an uncertainty set Ξ ⊂ Rm×n × Rm .

In the event that vector ccc in the objective function is also uncertain, the robust coun-

terpart becomes:

min
x,t
{t : t ≥ cTx : Ax ≤ d ∀ξ ≡ [c, A, d] ∈ Ξ} (2.4)

where A ∈ Rm×n, ccc ∈ Rn and ddd ∈ Rm are uncertain coefficients belonging to an uncer-

tainty set Ξ ⊂ Rm×n × Rm × Rn with xxx ∈ Rn and t ∈ R [16].

The instance above is a case of a single-stage optimization problem where all the deci-

sion variables need to be chosen before the actual realization of the uncertain data and

fits perfectly to the ”here and now” decision but can still fail to model the ”wait and

see” delayed decision of a multi-stage optimization problem, see [15].

2.2.2 Two-Stage Robust Optimization

A two-stage robust optimization problem is a typical case of a multi-stage optimiza-

tion problem. In this case, the assumption of ”here and now” in the single stage op-

timization considered in the previous subsection can be relaxed to accommodate the

realistic ”wait and see” decision which seems the normal occurrence in real life sit-

uation. This two-stage robust optimization was adapted from two-stage stochastic

process where the second stage adjustment is referred to as a recourse.

The two-stage problems are generally characterized by the following events;
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X The decision-maker selects the ”here and now”, the first stage, variables.

X He observes the realisation of the uncertain coefficients.

X He chooses the ”wait and see” or the second stage variables after learning of the

outcome of the random event.

A typical two-stage Robust optimisation also known as Adjustable Robust Optimi-

sation (ARO) problem can be parameterized in the model below [16];

min
x,y(ξ)
{cTx : Ax+By(ξ) ≤ d ∀ξ ≡ [A,B, d] ∈ Ξ} (2.5)

where Ξ is a non-empty convex compact set containing all possible values of the un-

certain data while ccc, the cost coefficient vector, is assumed to be not uncertain. Equa-

tion 2.5 now yields the adjustable robust counterpart (ARC) detailed below;

min
x

cTx (2.6)

s.t. ∀(ξ ≡ [A,B, d] ∈ Ξ) ∃y : Ax+By ≤ d; (2.7)

x ∈ X (2.8)

In the above equations, xxx ∈ Rn1 represents the first stage decision vector, the ”here and

now” variable, which has to be made before the realization of the uncertain data ξ ∈ Rl

with uncertainty set Ξ ⊂ Rl, yyy ∈ Rn2 represents the second stage decision, the ”wait

and see”, which have to be made after the actual data realisation, A ∈ Rm×n1 is the

uncertain coefficient matrix of the ”here and now” decision, B ∈ Rm×n2 is the recourse

coefficient matrix borrowing from two-stage stochastic programming, X ⊆ Rn1 is the

feasible polyhedral set of the first stage decision.

The state ofB determines the type of two-stage robust optimization. In equation Equa-

tion 2.7 above, where B is uncertain coefficient matrix, unrestricted second stage or
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free recourse, is typical of dynamic recourse [114]. If B becomes a certain matrix, re-

stricted or perhaps fixed, then we have a case of a fixed, static or oblivious recourse.

However, dynamic recourse has been found generally to be computationally intractable

and NP-hard, see [114, 102]. This challenge inherently makes the alternative of a re-

stricted recourse a viable option. It was [16] that first introduce this concept in multi-

stage robust optimization. In this paper, they addressed this challenge by restricting

the second stage adjustable recourse to be an affine functions of the uncertain data,

thereby introducing the concept of Affine Decision Rule (ADR). This restriction onB is

what allowed for the framework of Affinely Adjusted Robust Counterpart (AARC). In

general, decision rules provide a means to model adjustability of variables and hence

are restriction on the decision-making policy. This framework is also applicable to the

general multi-stage optimisation problem.

The key advantage here is that the resulting Affinely Adjustable Robust Counterpart

is computationally tractable exhibiting the properties of classical robust counterparts.

This affine dependency used a concept of dynamically controlled feedback system

where a linear feedback is used as a controller to adjust for the desired output. This is

not surprising as ADR was first proposed by [39] many years back in the framework of

multi-stage stochastic programming [15]. Also, [114] cited [12] to an earlier usage of re-

strictive recourse in robust network design without relating to two-stage optimisation.

There are other rules apart from this affine decision rule with detailed treatment in [15]

and these are Piece-Wise Affine Decision Rule, Separable Decision Rule and Quadratic

Decision Rule. These alternatives are seemingly more sophisticated rules in this deci-

sion rules family and are already being investigated by researchers and practitioners

to improve on the flexibility, performance and limitation of the linear ADR. Linear

decision rule, like the AARC, has been found to be suboptimal in certain situations
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despite its optimality in other areas, hence the motivation for other variants of ADRs

[28]. The search so far seems to have yielded desired result with improvement re-

ported over linear ADR in such investigations. These variants include the piecewise

decision rule which was introduced by [75] and [27], the segregated deflected linear

decision rules by [45], the extended affinely adjustable robust counterpart by [46] and

the constant decision rule on partition uncertainty set by [24] with further extension

into multi-stage robust mixed integer problem by [25].

2.2.3 Choice of Uncertainty

The main purpose of robust optimization is to produce an uncertainty- immune solu-

tion, hence the choice of uncertainty model becomes a key consideration. There are

several uncertainty models, from the Soyster’s box uncertainty set to the Bertsimas’

Gamma uncertainty set, regarding this which will now be discussed.

X Scenario Uncertainty. This is simply a finite set of scenarios. Given as Ξ =

{ξ1, , , , ξK}, where ξk ∈ Rl, k = 1, · · · , K. This uncertainty set is equivalent to a poly-

tope with extreme points ξ1, . . . , ξK for most classes of robust optimisation problems

[90, 15].

X Ellipsoidal Uncertainty. This can be given as intersection of many finite ellip-

soids. This can be denoted as Ξ = {ξ ∈ Rl :
√∑l

i=1 ξ
2
i /σ

2
i ≤ Ω}where Ω ≥ 0 [17, 74].

X Polyhedral Uncertainty. This can be viewed as the intersection of a finite num-

ber of (closed) half-spaces. This can be represented as Ξ = {ξ ∈ Rl : V ξ ≤ b}for some

matrix V ∈ Ri×l and right-hand side b ∈ Ri [15, 77].

X Hose Model (Polyhedral model) . This model, which is specific for network de-

sign, represents the demands as the upper bounds on traffic nodes. The symmetry

form is given as Ξ = {ξ ∈ Rl
+ : ξii = 0,

∑
j∈V (ξij + ξji) ≤ bi, i ∈ V } where bi is a bound

on the sum of the incoming and outgoing traffic on node i and l = |V | × |V | [98, 64].

X Cardinal Constrained or Γ Uncertainty. This is a type of polyhedron that en-

codes the budget of uncertainty as a cardinal constraint. A typical representation is as
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Ξ = {d ∈ Rl :
∑

i∈V̄ d|di − d̄i|/hie ≤ Γ, d̄− h ≤ d ≤ d̄+ h}

where V̄ = {i ∈ V : hi > 0}. l = V and Γ denotes the maximum number of demand

that are allowed to vary from the nominal values, d̄, while h is the bound on the nom-

inal value [32, 4].

X Budget Constraint Uncertainty. This is a slight modification to the Γ model and

can be represented by Ξ = {d ∈ Rl :
∑

i∈V πidi ≤ π0, d̄− h ≤ d ≤ d̄+ h}

where d̄ ± h is the uncertainty bound and πd ≤ π0 is the combined allowed ”budget”

for uncertainty [4].

The RC also, is equivalent to a linear program (LP) where the uncertainty set is a

polyhedron but becomes a conic quadratic program (quadratic constraint convex) un-

der an ellipsoidal uncertainty set and can be solved in polynomial time. Moreover, the

size of the RC is always polynomial in or bounded by a polynomial in the dimension

of the original problem [17, 19]. Also, under an ellipsoidal uncertainty set, the RC of

conic quadratic problem (CQP) or second order cone problem (SOCP) becomes a semi-

definite problem (SDP) and the RC of an SDP is typically an NP-hard problem which

is difficult to solve but approximately tractable and still solvable [30]. A feasible LO is

computationally tractable where the uncertainty set meets minimal convexity require-

ment [17]. A feasible and bounded LO is always solvable and a polynomially solvable

is also computationally tractable. It’s polynomial solvable if there exist a polynomial

time solution algorithm [15].

2.2.4 Robust Optimisation of Network Problems

Capacity expansion in telecoms is increasingly becoming a key strategic function within

the planning and design responsibility. The explosion in demand for data with its as-

sociated applications and service at a lower telecom service rate has made it impera-

tive for mobile operators to provide this additional capacity at an acceptable quality of

service (QoS) while minimizing capital expenditure (CAPEX) investment. The field of
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radio communications and data/telecom network in particular has seen increased use

of optimisation frameworks to address some of the challenges inherent in this technol-

ogy and associated services [6, 13].

For networks, the long term strategic network planning can be viewed as the first

stage ”here and now”, while the traffic redistribution and the consequent capacity ex-

pansion that occurs after the realisation of the traffic demand pattern would be the

second stage ”wait and see” adjustment decision, applying the [16] adjustable robust

solution framework. The second stage adjustment relates to the concept of traffic en-

gineering in network planning and design. This problem is a special case of a more

general formulations of network design under uncertain demands and possibly un-

certain travel times with a single commodity and multiple sources and sinks or with

multiple commodities with single source and a single sink for each commodity. Un-

restricted second stage recourse in robust network design is called dynamic routing

[43]. The framework partitions the optimization variables into two sets: part of them

must fix their values before the uncertainty is revealed while the rest of them can ad-

just themselves according to the values taken by the uncertain parameters. Most of the

application of Adjustable Robust Optimisation have focused on approximations that

put a restriction on the recourse.

Apparently, a special type of recourse restriction based on a specific type of uncer-

tainty model, known as the Hose model, had been proposed independently by [61]

and Fingerhut et al. [64] for Asynchronous Transfer Mode (ATM) and broadband traf-

fic network. These also introduce the concept of static routing which [12] applied

under their generalized polyhedral model using a column and constraint algorithm.

The polyhedral model assumes that the demand traffic matrix belongs to a polytope

set. Static routing fixes the routing for all possible realization of the demand traffic as

well as the flow ratio split among these paths. [3] considered the radio network load-
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ing problem (RNL) with static routing under the hose model, [107] looked at Network

capacity expansion under demand and cost uncertainty referencing [17], [89] consid-

ered the robust network design problem with static routing applying the works of [32]

and lately, [111] used a cutting plane algorithm while taking into consideration the

uncertainty in unmet demand outsourced cost.

On the affine routing space, there are a quite number of applications of ADR to net-

work related problems. [109] introduce the affine routing in the their robust network

capacity planning, [114] and [6] using particular uncertainty sets. As earlier identified

by [28], the observed sub-optimality of ADR in certain scenarios makes the pursuit of

exact solution attractive, hence new investigations into solving the exact are already

being pursued.

For a linear constraint with polytopic uncertainty, the boundary of the set can be de-

fined by the finite number of its extreme points. These are location points of a polyhe-

dron that cannot be represented as convex combination of other points. According to

Minkowski’s theorem, the polytope of these set is thus the convex hull of its extreme

points [12, 19]. So a method/algorithm that is able to generate the extreme point will

definitely be a preferred one for solving the unrestricted ARC but the number of ex-

treme points could be prohibitive and hence could be difficult to consider all the de-

mand constraints of each point.

Despite this obvious challenge, recent works in the area of decomposition algorithms

have helped overcome this barrier with promising and encouraging results reported so

far using some algorithms. The Benders decomposition algorithm together with Kel-

ley’s cutting plane method is gradually becoming a potent tool to completely extract

the full benefit of multi-stage optimization framework and especially the adjustable

robust (two-stage) optimization model with extreme points generated on the fly. The
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decomposition algorithm uses the dual solution of the second stage (subproblem) de-

cision to construct the value function of the first (master problem) [132]. The first

attempt at a fully free recourse two-Stage optimization in Radio Network design prob-

lem was by [98] who applied a variant of branch and cut algorithm for exact solution

to the splittable unrestricted recourse Network flow problem. Thereafter, [132] solved

a general two-stage robust optimization problem using column and constraint gener-

ation (RCG) procedure and compared the latter numerically to row generation (RG).

Recently, [5] present the general decomposition using the column-and-row generation

and row generation algorithm.

2.3 Mathematical Formulation for the Robust Network

Design Problem (RNDP)

2.3.1 Description

Robust Optimisation framework in particular has been implemented for Radio Telecom-

munications service in the area of Network Design and Expansion which falls under

the two-stage optimisation problems. This helps to model effectively, decisions that

are delayed in time as earlier stated. There are three closely related problems under

the Radio Network problem and these are the Radio Network Design Problem (RND),

the Radio Network Loading Problem (RNL) and the Virtual Private Network Problem

(VPN). The RNL is a RND where the link capacities are restricted to be integers while

the VPN is a RND with static routing and non splittable traffic flows [98].Another

closely related area is the survivable network design (SND) which in this case allows

for a robust network design in the face of node or edge failure [126].

The focus of this work is on Robust Network Capacity Expansion under demand un-
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Figure 2.1: An example of a network with nodes V = {a, b, c, d, e, f, g} with installed
capacity xa on links a ∈ A, and single-commodity demand from node s1 = a to node
t1 = g.

certainty for a multi-commodity flow problem. This can be represented by a directed

connected graph G = (V ,A) denoting a communications network topology. The Fig-

ure 4.3 is an example of a directed network with |V| = 7, |A| = 10. On each of the links

a ∈ A, capacities xa can be installed which costs ca per unit. A set of commodities

K represents potential traffic demands. More precisely, a commodity k ∈ K corre-

sponds to node pair (sk, tk) and a demand dk ≥ 0 for traffic from sk ∈ V to tk ∈ V . A

multi-commodity flow is basically a collection of flows, one for each commodity in K.

The actual demand values are considered to be uncertain and depend on the uncer-

tain parameters ξ ∈ Ξ that can take any value in a predetermined uncertainty set. For

the moment we assume that the demand vector ddd ∈ R|K| corresponding to the demand

values dk, k ∈ K lies in a given polytopeD ⊂ R|K| without explicitly specifyingD. The

actual multi-commodity flow, in any case, depends on the realization of the demand

d ∈ D.

The robust network capacity expansion problem is to find a minimum-cost for instal-

lation of integral capacities while satisfying all traffic demands dk for k ∈ K such that

actual flow does not exceed the link capacities independently of the realization of de-

mands in D. In this respect, robust network capacity expansion is a two-stage robust
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program with recourse, following the more general framework described by [16]. The

capacity of edge a, xa is the first stage decision variable, which has to be fixed before

observing a demand realization d. Thereafter, the routing vector f , the second stage

decision variable, is adjusted to compensate for gap in the first stage decision. Let

δ+(v) and δ−(v) be the sets of outgoing and incoming links at node v, respectively. The

problem can now be formulated as the following integer linear program below, a radio

network design problem (RNDP);

min
∑
a∈A

caxa (2.9)

s.t.
∑

a∈δ−(v)

fka (ξ)−
∑

a∈δ+(v)

fka (ξ) =


−dk(ξ) if v = sk

dk(ξ) if v = tk,

0 otherwise

v ∈ V, k ∈ K, ξ ∈ Ξ (2.10)

∑
k∈K

fka (ξ) ≤ xa a ∈ A, ξ ∈ Ξ (2.11)

f ,x ≥ 0 (2.12)

Demand dk is the traffic demand usually in Erlang for voice traffic for instance while

the function fk is the traffic flow or traffic routing. The goal, as earlier stated, is to min-

imize the total cost of capacity installation represented by the function (2.9) subject to

flow conservation constraints (2.10) while constraints (2.11) impose that the amount of

flow does not exceed the link capacity. The flow here is called dynamic routing since

there is no further restriction on the routing and depends on the demand realization ξ

which thus make the optimization problem intractable.

The decomposition algorithm, however, can be used to address this dynamic rout-

ing flow problem so as to generate the extreme points of the uncertain polytope on the

fly [5]. A different approach was used earlier by [114] for a problem with a limited
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number of extreme points. Alternatively, a restriction could be placed on the routing,

yielding a simple function of ddd which was also used in [114] for a larger number of

extreme points.

2.3.2 Robust Network Capacity Expansion Problem Model (RNCEP)

A number of models were considered for investigation in addressing the topic of the

research and the following model was finally proposed. In this model, referred to as

RNCEP, unmet demand activates the required and optimal capacity upgrade on the

existing network installed base, ua. Hence, replacing constraint (2.11) in the RNDP,

contraints (2.9 - 2.12), with the below constraint results in the RNCEP model.

∑
k∈K

fka (ξ) ≤ xa + ua a ∈ A, ξ ∈ Ξ (2.13)

where constraint (2.13) imposes that the amount of flow does not exceed the sum of

the installed and added link capacity. Constraint (2.12) imposes no upper limit on

the added capacity xa as this is needed to meet the offered traffic ddd. However, upper

bound could well be imposed if there is a constraint on the available capital budget.

Also in our application, the continuous nature of this variable suffices in this instance

as capacities are installed as bulk capacities in modules or boards.

Applying the framework of Affine Decision Rule (ADR) to the above RNCEP in con-

straint (2.10), the routing variable is thus restricted to be an affine function of the un-

certainties, expressed as;

fka (ξ) = yk0
a +

∑
h∈K

ykha d
h(ξ), a ∈ A, k ∈ K (2.14)

where the variable yk is the fraction of traffic demand routed which for static routing

defines the routing table (the new decision variable). Other rendition of this RNCEP
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[114] is by introducing a restriction on the second stage recourse thus known as static

or oblivious routing which enforces fk to be to be a linear function of ξ

fka (ξ) = ykad
k(ξ), a ∈ A, k ∈ K (2.15)

The static and affine routing RNDs are easier to solve than the original RND since the

problem can now be reformulated as a static robust optimisation which can be solved

by dualization.

2.4 Stochastic Programming

2.4.1 Overview

Stochastic programming as mentioned earlier in Section 2.1 is an approach used to

model optimization problems with uncertain data. Most decisions in real life are made

under uncertainty, basically all the variables in the decision process are unknown and

even if these are known, they are not to certainty. This approach thrives on the be-

lief or assumption that the underlying distribution of the random parameter is known

or can be accurately estimated [45]. Though it was [40] who first introduced the con-

cept of probabilistic constraints (chance constraint) in mathematical programming, the

concept of stochastic programming dates back to [56] and [10]. A linear program (LP)

where some of the variables are best described using random variables result in a

stochastic linear program (SLP). Hence, Stochastic programming can be seen as an in-

novative combination of the traditional mathematical programs and stochastic models

thus drawing upon traditional operations research optimization techniques [82].

Stochastic programming need to be differentiated from stochastic optimization which

is basically optimization methods for minimizing or maximizing an objective function

when randomness is present [79]. Stochastic programming can also be grouped as a

single stage or multistage models. The most popular of the multistage is the two-stage
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stochastic programming. Stochastic programming has come under criticism of late for

its too conservative approach and seemingly unrealistic assumption of the real world

instances, see [34].

2.4.2 A Simple Stochastic Programming Model

Consider the linear optimization (LO) problem of the form below;

LO = min
x
{cTx : Ax ≤ d} (2.16)

where xxx ∈ Rn is decision or design vector, ccc ∈ Rn is a given vector of the coefficient

of the objective function, A ∈ Rm×n is the constraint matrix and ddd ∈ Rm is a given

right hand side of the constraint. The formulation below will describe the stochastic

programming problem for this LO where the expectation is taking w.r.t the random

parameter ξ ≡ [c, A, d] ∈ Ξ

min
x

EF[{cTx : Ax ≤ d}] (2.17)

where F is the ”true” probability distribution.

2.5 Distributionally Robust Stochastic Optimization

2.5.1 Motivation

This renewed interest in the distributionally robust stochastic optimization (DRSO)

framework stems from the limitations of the stochastic programming and of recent,

that of robust optimization approach. The fact that DRSO approach has earlier been

implemented by [118] in his min max news-vendor inventory problem and by [131]

in his extension to minimax stochastic model, even before [121] robust optimization

debut, is a pointer to the huge success of the robust framework. Despite the robust

optimization computational tractability for wide arrays of problem instances in pro-
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viding feasible solutions, it has come under criticism of late for its inability to take

advantage of the underlying probability distribution of the random variable when it’s

available. In such instance, the robust framework produces overly conservative solu-

tion [75]. Stochastic programming has also been found to result in computationally

intractable solutions as the dynamic models that result from this approach default to

Monte Carlo approximations for its solution algorithm which is the case for problems

with high number of scenarios [58].

The distributionally robust framework seeks to take advantage of both the probability

information of the stochastic programming and the robustness of robust optimization

paradigm. This brings us to the concept of risk and ambiguity in the seminal work of

[88] where uncertainty is classified as risk, if the probability information is known and

as ambiguity if this distribution is uncertain or unknown. In this sense, stochastic pro-

gramming tends to address risk while robust optimization deals with ambiguity [33].

The need to evaluate decision makers preference over these two uncertainty types es-

pecially in the era of growing big data and business analytics has made the case for

this new approach even the more compelling.

This DRSO approach does not assume to know the true distribution of the random

variable but rather, that this lies within a family of distributions which is character-

ized by its support and moments information. This approach therefore tries to find

a solution that is feasible for the worst case probability distribution in the family of

distributions thus leveraging on the robust optimization framework. In the context of

this new approach, the aim is to arrive at a distributionally robust solution with re-

spect to the family of distributions. This is taking maximum expectation with respect

to the worst probability distribution in this family of distributions. Although the true

probability may not be known, decision makers are able to partially characterize this

from domain knowledge or perhaps from historical data with support, mean and co-
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variance [129].

The family of distributions is referred to as the ambiguity set in the same spirit with

the uncertainty set in the robust optimization framework. The implication here is that

the true distribution is now also subjected to uncertainty within this ambiguity set.

2.5.2 A Simple Distributionally Robust Stochastic Model

The resulting distributionally robust stochastic optimization problem can be repre-

sented below as;

(DRSO) min
x

(
sup
P∈P

EP[{cTx(ξξξ) : Ax(ξξξ) ≤ ddd}]
)

(2.18)

The above is an evaluation of the worst case expectation over ambiguity set P given

that ξξξ follows a probability P. The true probability F, though unknown, lies within

this ambiguity set. This set is as represented by the below for a support S, mean µµµ and

covariance Σ.

P(S,µµµ,Σ) =

P ∈ P

∣∣∣∣∣∣∣∣∣∣
P(ξξξ ∈ S) = 1

EP[ξξξ] = µµµ

EP[(ξξξ − µµµ)(ξξξ − µµµ)T ] � Σ

 (2.19)

This above is called the cross-moment ambiguity set by [33] while [129] introduced the

standardized ambiguity sets. Different versions have been studied in the earlier liter-

ature [130, 113, 58]. These are generally solved by relaxation to semidefinite problem

(SDP) or via a partial cross moment approximation [59]. On the other hand [96] did ig-

nore the information on the covariance and rather used the variance of the distribution

as shown below, see also [33];
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P(S,µµµ,Σ) =

P ∈ P

∣∣∣∣∣∣∣∣∣∣
P(ξξξ ∈ S) = 1

EP[ξξξ] = µµµ

EP[(ξk − µk)2] = σ2
k,∀k ∈ [K]


where σ2

k, k ∈ [K] is the variance of ξi and K be the number of elements in the vector.

P(ξ ∈ S) = 1, represent the probability of ξξξ being in the set S, a closed convex set

known as the support, evaluated on the distribution P, where P is the set of all proba-

bility measures on the measurable space (RK ,B) with B the Borel σ-algebra on RK .

If we restrict the ambiguity setP in (2.19) to discrete probability measures then the am-

biguity set for the discrete case can be represented as below, ignoring the information

on the covariance, in line with [96];

P(S,µµµ,σσσ) =

p
pp ∈ [0, 1]N×K

∣∣∣∣∣∣∣∣∣∣

∑
i∈[N ] p

k
i = 1, ∀k ∈ K∑

i∈[N ] p
k
i · dki = µk, ∀k ∈ K∑

i∈[N ] p
k
i · (dki )2 = µ2

k + σ2
k, ∀k ∈ [K]


where ppp is a discrete probability distribution of the random variable ddd with support

points indices i ∈ [N ] and support points dki .
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And God said, Let there be light... Gen 1:3

Chapter 3

Robust Network Capacity Expansion

with Non-linear Costs

Abstract. The network capacity expansion problem can be considered one of the key net-

work optimization problems practitioners are expected to regularly face in present

and future. There is an uncertainty associated with the capacity expansion problem in

the future traffic demand, which we address using a scenario-based robust optimiza-

tion approach. In most literature on network design, the costs are assumed to be linear

functions of the added capacity, which is not true in practice. To address this, two non-

linear cost functions are investigated: (i) a linear cost with a fixed charge that is trig-

gered if any arc capacity is modified, and (ii) its generalization that is piecewise-linear

in added capacity. The resulting mixed-integer programming model is developed

with the objective of minimizing the costs, which leads to a more computationally-

demanding model than the one with linear costs. We implement the model using a

general purpose solver and numerical experiments have been carried out for four net-

work structures taken from the online SNDlib database, with 26–39 nodes, 84–172 arcs,

and 67–1,482 commodities. We show in a wide variety of scenarios that networks of

realistic sizes can be designed using non-linear cost functions on a standard computer

in a practical amount of time within negligible suboptimality. For instance, when con-
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sidering the fixed charge cost under two demand scenarios, the model can be solved

68.54% of 480 instances to optimality within the time limit of 4,000sec. Although solu-

tion times increase in comparison to a linear-cost or to a non-robust model optimized

for the expected traffic demand, we find solutions to be beneficial in practice. We

further illustrate that including additional scenarios approximately follows the law of

diminishing returns, indicating that little is gained by considering more than a handful

of scenarios. Finally, we show that the results of a robust optimization model (with an

increasing number of scenarios) compare favourably to the traditional deterministic

model optimized for the best-case, expected, or worst-case traffic demand, suggesting

that it should be used whenever computationally feasible.

Keywords: Robust Optimization; Network Design; Network Capacity Expansion;

Non-linear Cost; Traffic and Transport Routing

3.1 Introduction

The demand for capacity in mobile wireless networks has seen an ever-growing trend

in the last couple of decades and growth rate is expected to be even higher going

into the future. This demand is fueled by the dramatic mobile traffic increase caused

by the increasing availability of smartphones and other wireless devices using cloud

services, social networks, Internet of things, voice over IP or video on demand. In a

recent mobility report, [63], smartphones subscription are set to double the 2015 figure

by 2022 to an all time high of over 6.8 billion representing over 76% of global mobile

devices. According to [52], the global mobile data is expected to grow to 49 exabytes

per month by 2021, at a compound annual growth rate of 47% from 2016 to 2021. This

explosion in demand for data is coming at a lower cost rate. This means that in order

to provide an acceptable quality of service, capacity will need to be regularly extended

with optimal investment in capital expenditure. This balancing act vis-à-vis demand
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(traffic volume), quality of service and capital expenditure has made network capac-

ity expansion a key strategic function resulting in billions of USD in global telecoms

investment.

Similar capacity expansion challenges are present to network designers and opera-

tors in other types of networks as well, such as the Internet, transport networks, power

grid, etc. The network capacity expansion problem can hence be considered one of the key

network optimization problems practitioners are expected to regularly face in present

and future.

Network design and capacity planning/expansion process is of strategic nature. It

thus needs to be decided far ahead of time based on the estimation of future traffic

demand. This planning also comes with an operational context. Projection for future

traffic volume is usually done using traffic measurements and population statistics in

combination with other marketing data. This often results in a large discrepancy be-

tween planned and actual carried traffic volume and distribution. According to [6], the

difference could be as large as 10%. In the developed economies, the prevalent error in

the design is traffic overestimation, resulting in over-dimensioned networks with ad-

verse cost implications. In the developing economies, the error has been mostly traffic

underestimation where the demand outstrips supply with adverse quality of service

implication. Hence, the re-forecasting and re-planning becomes a continuous exer-

cise using the traffic measurements and off-the-shelf traffic optimization tools which

are based on the concept of deterministic mathematical programming which assumes

that the traffic demand is estimated without error.

3.1.1 Contributions and Paper Structure

In order to have a network that is robust to the uncertainty in estimated traffic de-

mand, this uncertainty needs to be factored in already during the planning and design

process, which we address using a scenario-based robust optimization approach. This

methodology is geared towards producing results that are insensitive to the uncertain
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demand, by considering several possible demand variation scenarios, and solves the

problem considering two separate time stages, where in the first stage we determine

the capacity expansion and in the second stage demand scenarios are realized. The

resulting mixed-integer programming model is developed with the objective of mini-

mizing the costs.

In most literature on network design, the costs are assumed to be linear functions

of the added capacity, which is not true in practice. Real-world costs typically follow

a volume discount regime which is reflected by a non-linear function. Hence, the cost

function associated with network design and capacity upgrade may not be linear as

such. This can be attributed to the volume discount nature of bulk buy where the

customer wants to gain some cost advantage while supplier is assured of an agreed

minimum order volume over a time period. To address this, two non-linear cost func-

tions are investigated: (i) a linear cost with a fixed charge that is triggered if any arc

capacity is modified, and (ii) its generalization that is piecewise-linear in added capac-

ity.

To the best of our knowledge, this is the first paper that includes non-linear cost

functions in the robust network capacity planning problem. This extension leads to a

more computationally-demanding model than the one with linear cost, and the par-

ticular contributions of our paper are as follows:

• we show in a wide variety of scenarios that networks of realistic sizes can be

designed using non-linear cost functions on a standard computer in a practical

amount of time within negligible suboptimality;

• we present the benefits of considering a robust optimization model (even with

two scenarios) instead of the traditional deterministic model optimized for the

expected traffic demand;

• we present the benefits of considering non-linear costs instead of the usual linear

costs which are non-realistic;
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• we illustrate that including additional scenarios approximately follows the law

of diminishing returns, indicating that little is gained by considering more than a

handful of scenarios in as much we don’t expect an infinite number of scenarios

for an optimal solution;

• we show that the results of a robust optimization model (with an increasing num-

ber of scenarios) compare favourably to the traditional deterministic model opti-

mized for the best-case, expected, or worst-case traffic demand, suggesting that

it should be used whenever computationally feasible.

The rest of this paper is organized as follows. Section 6.1 presents a literature re-

view of related research. In Section 3.3, we then introduce the problem description of

robust network capacity expansion and mathematical models. Experimental results

using networks from the SNDLib (see [108]) are discussed in Section 5.4. Finally, Sec-

tion 3.5 concludes our work and points out future research directions.

3.2 Literature Review

In this section, we give a review of related literature on robust network design and net-

work design under non-linear cost functions. In particular for the latter topic, research

has been limited.

3.2.1 Robust Optimization in Network Design

In robust optimization, we assume that all possible data scenarios are given in the

form of an uncertainty set. For general surveys, we refer, e.g., to [67, 74]. The classic

approach as pioneered in [14] aims at finding a solution that is feasible for all scenarios

from the uncertainty set, while optimizing a worst-case performance. This approach

is relaxed through two-stage robust optimization, where not all decisions need to be

taken in advance, see [16, 15]. Instead, one distinguishes between ”here and now”
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decisions that need to be fixed in advance, and ”wait and see” variables that are de-

termined once a scenario has been revealed. Two-stage robust optimization problems

are also known as adjustable robust counterparts (ARC). A general two-stage robust

optimisation problem is of the following form ([16]):

min
x∈X ,y(ξ)

{cTx : Ax+By(ξ) ≤ d ∀ξ ≡ [A,B, d] ∈ Ξ} (3.1)

where Ξ is a set containing all possible scenarios of the uncertain data and the cost

coefficient vector ccc is assumed to be not uncertain, without loss of generality. In this

setting, X ⊆ Rn represents the decision space for the first-stage variables, and y(ξ)y(ξ)y(ξ) ∈

Rk represents the second stage decision, which has to be made after the actual data

realization. The matrix B ∈ Rm×k is the recourse coefficient matrix.

Adjustable robust optimization has been applied to radio telecommunication ser-

vices in the area of network design and expansion. This helps to model decisions that

are delayed in time, e.g., traffic needs to be routed only once the demand scenario

is known. Three closely related problems are the radio network design problem, the

radio network loading problem and the virtual private network problem ([98]).

In telecoms, the long term strategic network planning can be viewed as the first

stage ”here and now” decision making, while the traffic redistribution that occurs after

the realisation of the traffic demand pattern would be the second stage ”wait and see”

adjustment decision. The second stage adjustment, also called recourse, thus relates to

the concept of traffic engineering in radio network planning and design. This prob-

lem is a special case of more general formulations of network design under uncertain

demands and possibly uncertain travel times with a single commodity and multiple

sources and sinks or with multiple commodities with single source and a single sink

for each commodity. Unrestricted second stage recourse in robust network design is

called dynamic routing, see [43]. Most applications of adjustable robust optimization

have focused on approximations that put a restriction on the recourse.
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A special type of recourse restriction based on a specific type of uncertainty model,

known as the hose model, has been proposed independently by [61] and [64] for an

asynchronous transfer mode and broadband traffic network. They also introduce the

concept of static routing, which [12] applied under their generalized polyhedral uncer-

tainty model using a column and constraint generation algorithm. Static routing fixes

the traffic routing for all possible realization of the demand as well as the flow ratio

split among these paths. [3] considered the radio network loading problem with static

routing under the hose model, while [107] investigated network capacity expansion

under demand and cost uncertainty. [89] considered robust network design problems

with static routing applying the ideas of [32]. Lately, [111] used a cutting plane algo-

rithm while taking into consideration the outsourcing costs for unmet demand.

Some papers use an affine decision rule to restrict the recourse decisions, thus cre-

ating a tractable robust counterpart. [109] introduced affine routing in the their robust

network capacity planning model, while [114] and [6] used polyhedral uncertainty

sets.

The sub-optimality of affine decision rules in certain scenarios (see [28]) makes the

pursuit of exact solutions attractive. Recent works in the area of decomposition algo-

rithms, such as Benders decomposition, have shown promising results. The first at-

tempt at a fully free recourse two-stage optimization in radio network design problem

was by Sara [98] who applied a variant of branch and cut algorithm for exact solution

to the splittable unrestricted recourse network flow problem. Thereafter, [132] solved

a general two-stage robust optimization problem using column and constraint gener-

ation procedure and comparing the latter numerically to row generation. Recently, [5]

present a general decomposition using a column and row generation, and row gener-

ation algorithm.
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3.2.2 Related Work on Non-linear Cost Functions

In general, routing costs, transportation costs or capacity costs can be a non linear

functions of traffic flows. The non-linear costs we focus on in this work are given as a

concave function which reflects the economies of scale present in a telecommunication

network. However, non-linear routing costs could well be a convex function in a ca-

pacitated network scenario, where users pay more for increasing traffic congestion so

as to allow for a balanced traffic distribution in the network with efficiency in the use

of network resources. This can be viewed as a cost penalty in order to alleviate con-

gestion. In the following, we review literature on fixed-charge costs (where there is a

one-time cost associated with changing the capacity of an arc), and piecewise-linear

costs.

Fixed-Charge Cost Models

In a network with fixed-charge costs, costs are not just linear in the amount of in-

stalled capacity of an arc, but also include the initial outlay cost incurred to make this

arc available. In this setting, one needs to pay a fixed initial cost in addition to the

arc expansion cost. The fixed costs could be the installation costs, cabinet outlay costs,

additional energy or utility costs and line replacement costs. Applications are found

in wide areas of network design problems and not limited to energy networks, trans-

portation and communication. A survey is provided by [93] that demonstrate many

applications in logistics, transportation and communications. The fixed-charge cost

network design problem (FCND) has been found to be NP-hard, see [93, 104].

Literature on the FCND has concentrated on solution algorithms for the different

model variants. [76] introduced a relax and fix heuristic for the uncapacitated FCND.

[49, 50] addressed the multi-commodity capacitated FCND using a cutting plane al-

gorithm with an improvement on the mixed-integer programming (MIP) formulation.

A dual ascent approach was used by [81] for finding near optimal solutions extending

on the earlier work of [8] for uncapacitated networks. However, [71] was able to show
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that Herrmann et al’s approach was incorrect and proposed a modification. Despite

this correction, Gendron claims that this procedure is still not effective as it provides

a less tight bound compared to the linear programming relaxation. [53] presented a

detailed and elaborate survey on the use of Benders decomposition to solving a wide

range of FCND’s which includes two facility networks. This can be viewed as a two-

commodity network with a variant that introduces a quality of service measure, see

[94]. In [1], a heuristic approach for separating and adding violated partition inequal-

ities was implemented.

[123] solved a FCND using a variant of Benders decomposition which they referred

to as the Bender-and-cut technique; a combination of Benders cut and polyhedral cut

implemented in a branch and bound algorithm. They showed that the performance for

the FCND changes significantly over a wide range of traffic demands. It was observed

that Benders cuts are more effective for high traffic volume while polyhedral cuts (cut

set inequalities) are more effective in low traffic volume situations. The two types of

cut were both found to be effective in medium traffic volume situation.

The closest work to our model is [103]. Here, they formulate a robust network

design problem with both transportation cost and demand uncertainty. Investment

in arc capacity is modeled as a binary decision (i.e., expansion or no expansion). The

model is approximated using an affine decision rule.

Piecewise-Linear Cost Models

The piecewise-linear cost model (PLC) can be used to model costs with economies

of scale. In general, optimization problems involving PLC arise in domains including

transportation, communications networks, large scale integrated circuits, supply chain

management and logistics planning. They are usually modeled as MIPs, see [122]. The

problem has been proven to be NP-hard for general concave cost objective functions,

see [78].

As is the case for fixed-charge costs, most literature in this domain tends to focus
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on solution algorithms, see [55]. A continuous relaxation technique for solving net-

work design with piecewise-linear costs was presented by [104]. A number of solu-

tion techniques were presented in [93], which include an adjacent extreme point search

heuristic, branch and bound procedures and dynamic programming with Benders de-

composition for convex costs. This paper also highlighted the extreme difficulty in

solving the concave cost problem and the sub-optimality of Benders decomposition

in this scenario. [78] noted that exact techniques based on dynamic programming

and branch and bound are only efficient for specific subclasses of the problem. How-

ever, [127] noted that PLC modeled as a MIP can be solved with general purpose MIP

solvers leveraging on technology advancement in solver development.

A number of MIP model formulations exist for piecewise-linear functions. The

names for these were unified in [127]. These are Incremental or Delta (Inc) by [97],

Multiple Choice Model (MCM) by [8], Convex Combination Model (CC) by [57], Spe-

cial Ordered Set Type II (SOS2) by [9], Disaggregated Convex Combination Model

(DCC) by [99], Logarithmic Disaggregated Convex Combination Model (DLog) by

[83] and [128], and Logarithmic Covex Combination Model (Log) by [128]. [54] did

a comparison of three of these models (Inc, MCM and CC), and showed their equiv-

alence for piecewise-linear problems defined over bounded polyhedra. [127], on the

other hand, provided a performance comparison of the new and existing models with

extension to lower semi-continuous piecewise-linear functions. In terms of execution

speed, they recommended the use of MCM or Inc for small number segments and Log

or Dlog for large segments. It was also established that Dlog, DCC and MCM can

be used for lower semi-continuous functions. [122] made modifications to the stan-

dard MIP models for piecewise-linear functions with a locally ideal formulation. This

modification results in superior computational performance that is 40 times faster, on

average, to arrive at optimal solutions.
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3.3 Problem Formulation

The problem under consideration is a multi-commodity network design problem where

capacities are to be added on top of existing ones on a subset of arcs, with the aim of

minimizing the total cost involved and so that routing of traffic for the different com-

modities over the arcs subject to design and network constraints is possible. Providing

this capacity should be such that it allows for robustness in the network’s ability to re-

spond to varying uncertain traffic demands. We call this problem the Robust Network

Capacity Expansion Problem (RNCEP). We first introduce the basic problem version with

linear costs, before introducing two non-linear cost extensions.

3.3.1 RNCEP with Linear Costs

A communications network topology can be represented by a directed connected graph

G = (V ,A). Each of the arcs a ∈ A has an original capacity ua. The original capacity

on each arc a can be expanded at a cost ca per each additional unit of capacity. A set of

commoditiesK represents potential traffic demands. A commodity k ∈ K corresponds

to node pair (sk, tk) ∈ V × V and a demand dk ≥ 0 for traffic from sk to tk. The actual

demand values are considered to be uncertain and depend on random scenarios ξ ∈ Ξ.

We assume a finite set Ξ = {ξ1, . . . , ξN} of possible demand scenarios and write dk(ξ)

for the demand of pair (sk, tk) in scenario ξ.

The robust network capacity expansion problem then is to find a minimum-cost

installation of additional capacities while satisfying all traffic demands dk(ξ) for all

k ∈ K and all ξ ∈ Ξ. In this respect, RNCEP is a two-stage robust program. The

additional capacity we install on arc a ∈ A is denoted by xa and is a first stage decision

variable, which has to be fixed before observing a demand realization ξ ∈ Ξ. Once the

demand scenario ξ becomes known, traffic is routed through a multi-commodity flow

with variables fka (ξ).

Let δ+(v) and δ−(v) denote the sets of outgoing and incoming arcs at node v ∈ V ,
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respectively. The problem can now be formulated as the following linear program.

min
∑
a∈A

caxa (3.2)

s.t.
∑

a∈δ−(v)

fka (ξ)−
∑

a∈δ+(v)

fka (ξ) =


−dk(ξ) if v = sk

dk(ξ) if v = tk

0 otherwise

∀v ∈ V , k ∈ K, ξ ∈ Ξ (3.3)

∑
k∈K

fka (ξ) ≤ ua + xa ∀ξ ∈ Ξ, a ∈ A (3.4)

fka (ξ) ≥ 0 ∀k ∈ K, ξ ∈ Ξ, a ∈ A (3.5)

xa ≥ 0 ∀a ∈ A (3.6)

Objective function (3.2) is to minimize the total cost of capacity expansion subject to

flow conservation constraint (3.3), while constraint (3.4) imposes that the amount of

flow does not exceed the sum of existing and added arc capacity. For an easy reference,

all the notation is also listed in Section 3.6.

3.3.2 RNCEP with Fixed-Charge Costs

We now introduce an extension of the previous model, where a fixed charge occurs if

the capacity of an arc is modified. To this end, let pa be this fixed charge associated

with arc a ∈ A. The resulting cost function is illustrated in Figure 3.1.

We introduce a new variable ha ∈ {0, 1} to denote if the capacity of arc a is modi-

fied. The RNCEP with fixed-charge costs can then be formulated as the following mixed-

integer program:

min
∑
a∈A

(caxa + hapa) (3.7)
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Figure 3.1: Illustration of cost function in RNCEP with fixed-charge cost.

s.t.
∑

a∈δ−(v)

fka (ξ)−
∑

a∈δ+(v)

fka (ξ) =


−dk(ξ) if v = sk

dk(ξ) if v = tk

0 otherwise

∀v ∈ V , k ∈ K, ξ ∈ Ξ (3.8)

∑
k∈K

fka (ξ) ≤ xa + ua ∀ξ ∈ Ξ, a ∈ A (3.9)

xa ≤Maha ∀a ∈ A (3.10)

fka (ξ) ≥ 0 ∀k ∈ K, ξ ∈ Ξ, a ∈ A (3.11)

xa ≥ 0 ∀a ∈ A (3.12)

ha ∈ {0, 1} ∀a ∈ A (3.13)

Here, Ma for all a are constants that are sufficiently large not to restrict the solution.

For instance, taking any Ma ≥ maxξ∈Ξ

∑
k∈K d

k(ξ) for all a is valid.

3.3.3 RNCEP with Piecewise-Linear Cost

We further extend the RNCEP by introducing a piecewise-linear cost function. To this

end, we apply the multiple choice model (MCM), a general piecewise-linear model,

as mentioned in the literature review. We assume that for every arc, there are up to

S segments with different slopes in the cost function. Let us write S = {1, . . . , S}.
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Figure 3.4: Illustration of the cost function in RNCEP with piecewise-linear costs.

For every arc a and segment s, let bsa denote the load breakpoint, with an additionally

defined b0
a := 0. Let csa denote the cost slope of segment s, and psa its y-intercept.

Figure 3.4 illustrates these parameters.

In addition to the variables of RNCEP, we introduce two new sets of auxiliary vari-

ables. Variables hsa are binary variables that select the cost segment where the added

capacity xa falls in. Variables xsa denote the amount of capacity that is added within

each cost segment. This gives the following mixed-integer programming formulation

for the RNCEP with piecewise-linear costs:

min
∑
s∈S

∑
a∈A

(csax
s
a + hsap

s
a) (3.14)

s.t.
∑

a∈δ−(v)

fka (ξ)−
∑

a∈δ+(v)

fka (ξ) =


−dk(ξ) if v = sk

dk(ξ) if v = tk

0 otherwise

∀v ∈ V , k ∈ K, ξ ∈ Ξ

(3.15)∑
k∈K

fka (ξ) ≤ xa + ua ∀ξ ∈ Ξ, a ∈ A

(3.16)
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xa =
∑
s∈S

xsa ∀a ∈ A

(3.17)

bs−1
a hsa ≤ xsa ≤ bsah

s
a ∀a ∈ A, s ∈ S

(3.18)∑
s∈S

hsa ≤ 1 ∀a ∈ A

(3.19)

xa ≤Ma

∑
s∈S

hsa ∀a ∈ A

(3.20)

fka (ξ) ≥ 0 ∀k ∈ K, ξ ∈ Ξ, a ∈ A

(3.21)

xsa ≥ 0 ∀a ∈ A, s ∈ S

(3.22)

xa ≥ 0 ∀a ∈ A

(3.23)

hsa ∈ {0, 1} ∀a ∈ A, s ∈ S

(3.24)

3.4 Experimental Results

We have implemented the fixed-charge cost model and the piecewise-linear cost model

using instances from the SNDLib library by [108]. Network parameters characteristics

on the four considered networks from SNDLib are presented in Table 3.1.

Models were implemented using Julia and Gurobi version 7.5 on a Lenovo desktop

machine with 8 GB RAM and Intel Core i5-6500 CPU at 2.50Ghz on 4 Cores. While we

used the same machine for all experiments, Windows 7 enterprise OS 64-bit was used

for the fixed-charge cost model, and Windows 10 OS 64-bit was used for the piecewise-
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Table 3.1: Network parameters characteristics (rounded to integers)

Network Janos26 Janos39 Sun27 Node39

Number of nodes |V| 26 39 27 39
Number of arcs |A| 84 122 102 172
Number of commodities |K| 650 1,482 67 1,471
Base demand dk (mean±SD) 123±198 69±243 28±16 5±2
Base demand dk (5-number summary) 12:40:60:100:1,516 1:10:22:54:5,204 4:16:28:40:56 2:3:4:6:12
Original capacity ua (mean±SD) 64±0 1,008±0 40±0 160±0
Unit capacity expansion cost ca (mean±SD) 468±225 313±162 19±10 23±11

linear cost model. In Gurobi, we have used a time limit of 4000s for each problem

instance and optimality is achieved once the optimality gap is below 0.01%.

3.4.1 Experimental Setup

Both the fixed-charge cost and the piecewise-linear cost models were implemented

with one scenario (single-scenario) and with two scenarios (double-scenario). The

base demand scenario was provided from the SNDLib library, which we have ran-

domly modified to generate additional demand scenarios. The amount of modifica-

tion is controlled by a parameter λ, the maximum deviation of modified demand from

the base demand. The parameter λ is chosen to be a fraction of the mean base demand

d̂; we consider λ = round(0.3d̂) and λ = 2 · round(0.3d̂), corresponding to small un-

certainty and large uncertainty, respectively. The value is then used as a bound for

uniformly generating the modified demands around the base demand of every arc.

Note that it can happen that a particular demand becomes negative, which is accom-

modated by switching the origin and destination nodes, and which further implies

that a demand between two nodes can actually increase (in its absolute value) even if

a negative random number was added to the base demand.

We take Ma := 2 maxξ∈Ξ

∑
k∈K d

k(ξ) for all a. We have found in our experiments

(not reported here) that taking larger Ma results in shorter solution time, although

taking a too large Ma results in an imprecise solution.

We summarize the experimental setup in Table 3.2. For each of the four networks,
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Table 3.2: Experimental setup for generating 120 problem instances for each network.

Parameters # options Options

Number of scenarios 2 1 (single) / 2 (double)
Scenario variability λ 2 0.3d̂ / 0.6d̂
Fixed-charge factor P 3 0 / 10 / 100
Number of runs 10 —

Table 3.3: Proportion of instances not solved to optimality within the time limit
(rounded to one decimal).

Network Janos26 Janos39 Sun27 Node39

Total 0.0% 24.2% 35.0% 66.7%

P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 12.5% 100.0%
P = 100 0.0% 72.5% 92.5% 100.0%

Single-scenario 0.0% 15.0% 28.3% 66.7%
Double-scenario 0.0% 33.3% 41.7% 66.7%

we consider the single-scenario and the double-scenario case, as well as small and

large uncertainty. Additionally, for fixed-cost models we use three different fixed-

charge factors P . These are used to calculate the fixed charges pa of arc a by setting

pa = Pca. With P = 0, we recover the basic linear cost model without fixed charge. All

networks and parameter settings are run 10 times to reduce variability in the results.

In total, this gives 4 · 2 · 2 · 3 · 10 = 480 optimization problem instances that need to

be solved for the fixed charge case. For the piecewise-linear case, we follow the same

setup with 4 · 2 · 2 · 10 = 160 instances. Each arc has three cost segments where the cost

of each segment is calculated as ratio of the nominal arc cost. This gives segment costs

as csa = ca · rs where r ∈ {1.00, 0.90, 0.75}. The breakpoints are derived from the load

points while each of intercept is calculated from the breakpoint and segment’s slope.

3.4.2 Results for RNCEP with Fixed-Charge Cost

Single- and Double-Scenario Results

Table 3.3 summarizes the results of the 480 problem instances, reporting the proportion

of instances that were not solved to optimality within the time limit. We can see the opti-
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Table 3.4: Single-scenario results (rounded to one decimal).

Janos26 Janos39 Sun27 Node39

Optimality gap P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 0.0% 7.7±2.9%
P = 100 0.0% 0.3±0.6% 5.0±2.8% 51.9±4.8%

Solution time P = 0 6.5±0.5 156.9±17.0 0.3±0.1 536.4±82.2
P = 10 7.4±0.6 227.1±86.0 201.7±201.4 4,000.1±0.0
P = 100 10.8±2.1 3,120.9±1,088.0 3,694.8±815.9 4,000.1±0.1

Capacity added P = 0 268,698±23,970 331,864±57,041 3,043±271 1,194±357
P = 10 270,931±23,195 329,330±54,751 2,925±412 1,204±281
P = 100 275,409±23,476 321,808±53,261 3,652±447 1,167±357

Table 3.5: Double-scenario results (rounded to one decimal).

Janos26 Janos39 Sun27 Node39

Optimality gap P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 0.1±0.2% 11.0±1.8%
P = 100 0.0% 1.3±0.5% 10.8±1.4% 57.1±3.3%

Solution time P = 0 88.4±25.1 1,285.6±349.5 1.2±0.2 2,256.6±317.9
P = 10 92.2±21.0 2,373.9±770.5 1,729.0±1,418.2 4,000.2±0.1
P = 100 189.0±57.7 4,000.3±0.2 4,000.1±0.1 4,000.2±0.1

Capacity added P = 0 278,358±8,988 363,225±26,348 4,399±304 1,185±154
P = 10 278,031±7,857 367,324±18,522 4,635±329 1,286±254
P = 100 282,467±9,830 368,547±19,887 5,668±503 1,236±254

mization performance of problem instances in total, for different values of P , and for

different number of scenarios. This performance measure gives a high-level summary

of the hardness of particular instances. We can conclude that the instances become

harder to solve as P increases, and/or as the number of scenarios increases.

Other performance metrics are presented in more detail in Table 3.4 and Table 3.5,

where each cell gives an average and standard deviation from a sample of 20 prob-

lem instances. Optimality gap refers to the sub-optimality estimated and reported by

Gurobi using the built-in procedure for lower-bounding the objective. Solution time is

the time reported by Gurobi, capped by the time limit. Capacity added is the overall

network capacity added on top of the original capacity (which can be calculated as

|A|ua from Table 3.1).

Interestingly, network Sun27 shows large variability in solution time, for both single-

scenario and double-scenario settings. While with P = 0 it is the quickest to solve out
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of all networks, for larger values of P it is roughly similar to Janos39, despite dealing

with a smaller number of commodities. On the other hand, solution time of Janos26 is

affected very little by different values of P . Because of highly non-symmetric distribu-

tions of solution time, we present these in boxplots at logarithmic scale in Figure 3.5

and Figure 3.6, for the single- and double-scenario settings, respectively, which pro-

vide a deeper insight into this performance measure. The single-scenario boxplots

show large variability, including outliers, for Janos39 and Sun27 with P = 10 and

P = 100. This variability explains why the optimality gap of Sun27 is much higher

in case P = 100 than that of Janos39, despite only a small proportion of instances is

reported to be solved to optimality.

Comparing the solution time reported in Table 3.4 and Table 3.5, the double-scenario

model, as expected, takes longer to solve to optimality as the goal here is to factor in

robustness into the solution. On average, this double-scenario model resulted in 7.39%

additional capacity across the networks for instances that were solved to optimality.

The increase in solution time is illustrated in the boxplots in Figure 3.5 and Figure 3.6,

and the average across the networks for instances that were solved to optimality is

828.24%.

It is also interesting to note that capacity added is highly network dependent. The

capacity of Janos26 and Janos39 is expanded dramatically due to the high variability

in the demand, which for some commodities significantly exceeds the original capac-

ity (see Table 3.1). On the other hand, the demands in Sun27 and Node39 are small

compared to the original capacity, so the capacity added is relatively small.

Not reported elsewhere is the effect of scenario variability λ: the solution time

becomes smaller if the uncertainty is larger, i.e., on the average for all the networks

and parameter settings, the 0.6d̂ variability results in lower solution times than for the

0.3d̂ variability. This was also found to be the trend when looking at single networks.

This is summarized in Table 3.6.

Overall, it is possible to solve most of the problem instances to optimality within
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Figure 3.5: Single-scenario solution times. Figure 3.6: Double-scenario solution times.

the time limit, and even most of those not solved to optimality report very small opti-

mality gap. The only settings that would significantly benefit from an increased time

limit are Sun27 at P = 100 and Node39 at P = 10 and P = 100. The solution time

on the average increases with the total number of variables the solver has to deal with

for the different instances. The solver was able to solve problems with up to approxi-

mately 350,000 variables to optimality within the time limit.

Effect of Number of Scenarios

While the previous discussion focused only on single- and double-scenario instances,

it is also of interest to understand how an increased number of scenarios, which leads

to a more robust solution by better covering the demand uncertainty, affects the perfor-

mance measures. Considering more scenarios is expected to lead to a solution which

in practical terms guarantees the network ability to accommodate a higher level of

demand variation, increases the network resilience, provides additional capacity, in-

Table 3.6: Effect of higher λ on solution time.

Solution Time Single Scenario Double Scenario

λ = 0.3d̂ 527.31 3,010.85
λ = 0.6d̂ 346.62 2,299.23

% Improvement 34.3% 23.6%
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Table 3.7: Results on network Janos26 with fixed-charge cost (P = 10) for different
numbers of scenarios.

# Scenarios Cost ∆Cost Added Capacity ∆Added Capacity Time (sec.) ∝Time

1 (optimistic) 83,001,184 -10.9% 192,610 -9.2% 8 1x

1 (expected) 93,115,940 — 212,104 — 8 —
2 127,483,886 36.9% 292,893 38.1% 59 8x
3 129,804,380 39.4% 298,131 40.6% 376 50x
4 130,264,516 39.9% 300,426 41.6% 768 102x
5 130,271,550 39.9% 300,492 41.7% 1,080 143x
6 130,461,776 40.1% 300,913 41.9% 3,124 413x
7 130,753,454 40.4% 301,598 42.2% 2,488 329x
8 131,206,186 40.9% 301,936 42.4% 4,456 589x
9 131,254,563 41.0% 301,715 42.2% 8,869 1173x

1 (pessimistic) 200,592,832 115.4% 456,182 115.1% 8 1x

creases availability, and improves efficiency and overall quality of the network.

To illustrate that, we have tested network Janos26 with fixed charge P = 10. We

have started with a single-scenario instance, where the base scenario considered re-

flects the expected demand (this is the original demand from SNDLib). We have then

generated and gradually added additional scenarios by randomly perturbating all the

demands of the base scenario within ±λ, in the large uncertainty setting (λ := 0.6d̂).

For comparison, we have also considered the optimistic instance, which is a single-

scenario instance in which the demand is generated by subtracting λ from the ex-

pected demand on every arc. This instance expands the capacity of the network to

satisfy only the smallest demand scenario, and would be almost surely unable to sat-

isfy the realized demand. Finally, we have considered the pessimistic instance, which

is a single-scenario instance in which the demand is generated by adding λ to the ex-

pected demand on every arc. This instance expands the capacity of the network to

satisfy all the possible demand scenarios.

The results are presented in Table 3.7. These results are representative; similar

results were obtained when we replicated the experiment with other randomly gener-

ated scenarios. The key observations are as follows:

• By gradually expanding the set of scenarios, the cost (our minimization objec-
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tive) non-decreases;

• The added capacity follows a similar trend, but is not necessarily monotone (cf.

8 vs 9 scenarios);

• The solution time (reported in seconds and as a multiple of the expected scenario

instance) increases exponentially;

• Expansion by adding more scenarios approximately follows the law of dimin-

ishing returns in both the cost and added capacity: the increase is highest when

expanding from 1 (expected) scenario to 2 scenarios (which includes the expected

scenario and one randomly generated), with only a minor increase when consid-

ering more than 3 scenarios, indicating the value of considering a robust opti-

mization approach even with few scenarios;

• The increase in both the cost and added capacity is dramatic (36.9%) when ex-

panding from 1 (expected) scenario to 2 scenarios (which includes the expected

scenario and one randomly generated), indicating that optimizing the network

based on the expected scenario (i.e. on point forecasts) only may be an inappro-

priate approach, leading to a large amount of unsatisfied realized demand;

• Optimizing the network for the pessimistic scenario is very expensive (the in-

crease in both the cost and added capacity is about 115% compared to the ex-

pected scenario), indicating the value of considering a robust optimization ap-

proach even with few scenarios;

• Optimizing the network for the optimistic scenario leads to savings (the decrease

in both the cost and added capacity is about 10% compared to the expected sce-

nario), but may not be acceptable in practice if the consequences of having prac-

tically no satisfied realized demand are non-negligible;

These results provide an indication of the ability of our model to become more

robust by including more demand scenarios. The solution time of solving our model

48



Table 3.8: Solution results for piecewise-linear cost.

Single-Scenario Sun27 Janos26 Janos39 Node39

Optimality Gap 0.00% 2.90% 10.43% 22.43%
Solution time 653.67±640.84 4000.22±0.11 4000.22±0.06 4000.16±0.04
Capacity Added 2,863±539 276,172±26,036 335,258±58,895 1,472±574

Double-Scenario

Optimality Gap 1.43% 6.73% 37.44% 77.99%
Solution time 4000.04±0.01 4000.21±0.23 4000.10±0.03 4000.12±0.04
Capacity Added 4,380±278 296,354±11,398 472,889±110,491 4,117±2,601

with 20 scenarios using Gurobi to the same precision would likely be of a few weeks.

We note that Gurobi was able to deal with up to approximately 200 scenarios for this

network without giving an out-of-memory error, however, it would be unlikely to

compute a close-to-optimal solution in a reasonable amount of time.

3.4.3 Results for RNCEP with Piecewise-Linear Costs

Next we consider the robust network capacity expansion problem with piecewise-

linear costs. The experimental result summary is presented in Figure 3.7, showing

the proportions of instances solved to optimality (Optimal), not solved to optimality

within the time limit but returning a non-optimal solution (Non-Optimal), and not

solved to optimality within the time limit but returning no solution due to still being in

the root relaxation phase (Root Relaxation). The results indicate that solving problem

instances with piecewise-linear costs is significantly more difficult compared to using

fixed-charge costs.

Overall, 12.5% of all problem instances were solved to optimality within the time

limit, 77.5% returned a non-optimal solution, and 10% were timed out already during

the root relaxation. None of the double-scenario problem instances reached optimality

within the time limit. Only one of the networks, Sun27, reached optimality and this

was for all the problem instances in the single-scenario case. Two networks, Janos39

and Node39, had instances timing out under the root relaxation phase.

Table 3.8 presents more detailed results of this model for each network. The opti-
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Figure 3.7: Solution results summary for piecewise-linear cost

mality gap is further illustrated in Figure 3.8, Figure 3.10, and Figure 3.11, indicating

that the optimality gap may be acceptable because of small values and small variabil-

ity for Sun27 and Janos26 in the single-scenario setting and for Sun27 in the double-

scenario setting. Better solutions can of course be achieved by increasing the time

limit, which would be recommendable in the remaining settings.

The optimality gap provides insight into the increased difficulty of solving these

problem instances, which also translates into longer solution time. It takes at least

512% more time to solve the double-scenario models compared to the single-scenario

using Sun27 network, which is the easiest setting considering its very low optimality

gap of 1.43% for the double-scenario instances. The boxplot in Figure 3.9 considers

network Sun27 and suggests that there is a much higher variability in solution time if

we consider more variable demand scenarios. A further analysis was performed on

the solution time using the paired sample t-Test which indicates no significant differ-

ence between solution time returned by 0.3d̂ and 0.6d̂ with a t-statistic of −0.2047 and

a p-value 0.8423.

3.5 Conclusions

In this paper, a robust approach to network capacity expansion with non-linear cost

functions was investigated. We developed robust models with fixed-charge costs and
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with piecewise-linear costs. They were implemented on four networks taken from the

SNDlib, [108], with results compared to using linear costs. In the experimental setup,

a number of possible parameter configurations was considered, including different

demand variability and fixed-charges.

The fixed-charge cost model was able to solve problem instances with up to ap-

proximately 300,000 variables within the time limit of 4000s, and is able to handle

problem instances with over 9 million variables, corresponding to 200 demand sce-

narios for Janos26, memory-wise. The number of variables associated with most com-

plex network Node39 can also explain the reason for the inability to solve to opti-

mality within the time limit, especially in the double-scenario setting. Similarly, the

piecewise-linear cost solution reaching optimality within the time limit also depends

on the number of variables, which is affected by the network complexity and the num-

ber of cost segments.

When further increasing the number of scenearios, we have found that results fol-

low a law a diminishing returns. While objective values and added capacity change

little beyond five scenarios, computation times increase considerably. This is an indi-

cator that already few scenarios suffice to find solutions that are robust against uncer-

tainty in demand. The next pursuit will be to further improve the solution time for

these models by developing specialised algorithms.
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And God said, Let there be light... Gen 1:3

Appendix

3.6 Notation

V Set of nodes
A Set of arcs
K Set of commodities
ua Original capacity on arc a
δ−v Set of incoming arcs at node v
δ+
v Set of outgoing arcs from node v
sk Origin node for commodity k
tk Destination node for commodity k
dk Demand for commodity k

Table 3.9: Common notation
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ca Cost per unit of added capacity on arc a
pa Fixed charge associated with arc a
ha Binary (design) variable that selects arc a to include in the solution
fka Flow variable of commodity k on arc a
xa Capacity expansion variable on arc a

Table 3.10: RNCEP with fixed-charge costs parameters and variables

S Set segments S
bsa Load breakpoints where bs−1

a & bsa are the lb and ub on segment s
csa Cost for segment s on arc a which is also the slope for the segment
psa Fixed cost component of the piecewise function of segment s on arc a
hsa Binary variable that selects the segment where x falls in
fka Flow variable of commodity k on arc a
xsa Expansion variable on arc a for price segment s

Table 3.11: RNCEP with piecewise-linear costs parameters and variables
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The fear of the Lord is the beginning of wisdom...
Prov. 9:10

Chapter 4

A Comparison of Models for Uncertain

Network Design

Abstract. To solve a real-world problem, the modeler usually needs to make a trade-off

between model complexity and usefulness. This is also true for robust optimization,

where a wide range of models for uncertainty, so-called uncertainty sets, have been

proposed. However, while these sets have been mainly studied from a theoretical

perspective, there is little research comparing different sets regarding their usefulness

for a real-world problem.

In this paper we consider a network design problem in a telecommunications con-

text. We need to invest into the infrastructure, such that there is sufficient capacity for

future demand which is not known with certainty. There is a penalty for an unsatis-

fied realized demand, which needs to be outsourced. We consider three approaches

to model demand: using a discrete uncertainty set, using a polyhedral uncertainty

set, and using the mean of a per-commodity fitted zero-inflated uniform distribu-

tion. While the first two models are used as part of a robust optimization setting, the

last model represents a simple stochastic optimization setting. We compare these ap-

proaches on an efficiency frontier real-world data taken from the online library SNDlib

and observe that, contrary to current research trends, robust optimization using the
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polyhedral uncertainty set may result in less efficient solutions.

Keywords: network design; robust optimization; optimization in telecommunications

4.1 Introduction

Network design models have found wide application in the planning, design and op-

erations management of transportation, power & energy distribution, supply chain

logistic and telecommunications networks. Usually, they are based on mixed-integer

programming models, and many such models have been developed over the decades

for network design and expansion problems, see, e.g., [93, 100, 22].

In telecommunications for instance, network design models can be used to curb

congestion and to provide an acceptable quality of service to the subscribers. Effort

to provide an acceptable service has resulted in capital expenditure of billions of USD

in global telecoms investment. Optimization of investments has thus attained a key

strategic role in this industry. Moreover, these decisions need to be made well ahead

of time based on a forecast of future traffic demand.

Unfortunately, traffic demand has proven to be difficult to predict accurately. In

order to factor in this uncertainty and design a network that is immune to traffic

variability, robust optimization approaches have been proposed. For this purpose,

a number of uncertainty models have already been developed and investigated (see

[74, 15, 23]). The drawback of classic approaches, however, is that the uncertainty set

is assumed to be given, i.e., the decision maker can advise us how the uncertainty is

shaped. Moreover, an inappropriate choice of uncertainty set may result in models

that are too conservative or in some cases computationally intractable. As the decision

maker cannot be expected to make this choice in practice, data-driven and learning

approaches have been recently proposed (see [29, 41]).

To the best of our knowledge, we follow this approach for the first time for network
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design problems, by comparing which uncertainty set actually fits real-world data. We

compare two robust optimization approaches for a network capacity expansion model

with outsourceable demand (see, e.g., [22, 11]). In this setting, we need to invest into

the network infrastructure now, so that each commodity can be routed to satisfy its

uncertain demand later. Demand which cannot be satisfied is outsourced, which is

modeled through a linear penalty on its amount.

The two approaches under consideration are (1) a discrete uncertainty set which as-

sumes that all demands are in closed form; and (2) a polyhedral set with wider range of

possible scenarios which results in a heuristic mix-integer program to solve the result-

ing robust problem. These two are compared on real-world data taken from SNDlib

and also compared with performance of a third model outside the robust framework,

a simple stochastic optimization approach.

The rest of this paper is organized as follows. Section 4.2 presents a literature re-

view of related research. In Section 4.3, we introduce the problem description of ro-

bust network capacity expansion with outsourcing and mathematical models for both

the discrete and polyhedral uncertainty sets with detailed construction of the robust

counterparts. Experimental results and main findings using data from the SNDlib (see

[108]) are discussed in Section 4.4. Finally, Section 4.5 concludes our work and points

out future research directions.

4.2 Literature Review

The study of uncertainties in decision problems has resulted in two broad areas of re-

search, namely stochastic (see, e.g., [36]) and robust (see, e.g., [15]) optimization frame-

works. While the stochastic approach usually assumes that a probability distribution

of the uncertain data is known with precision, the robust approach assumes that the

uncertain data lies within a predetermined set. The renewed interest in the latter can

be attributed to the works of [17] and [73] with many other collaborators.
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The two frameworks also have a dynamic context, where a part of the decision

has to be made after the realization of the uncertain data. This is known as two-stage

stochastic and robust optimization. Depending on the context, two-stage robust prob-

lems are also known as adjustable robust counterparts (ARC). Here, the decision vari-

ables are partitioned into two sets: the non-adjustable ones (”here and now” decisions)

which must be fixed in advance before the realization of the uncertainty sets and the

adjustable ones (”wait and see” decisions), which are computed after the uncertain

parameters are revealed ([16]).

As the ARC is more representative of real life situations where decisions are made

over multiple periods, this framework has attracted interest from the research com-

munity. However, its general form is known to be computationally intractable, which

has led to an approximate model using affine decision rules (ADR). In this affine ad-

justable robust counterpart (AARC), the adjustable part of the decision is assumed to

be an affine linear function of the uncertain data ([16]). This emulates a linear feedback

as a controller to adjust for the desired output.

Just like in many other fields, robust optimization has found increasing use and

application in the network design area. [4] considered a two-stage robust network

flow problem under demand uncertainty following the work of [16], while [109] in-

troduced affine routing in the their robust network capacity planning model. [107]

looked at network capacity expansion under both demand and cost uncertainty. [89]

considered a robust network design problem with static routing in the setting of [32].

[114] apply the AARC to robust network design with polyhedral uncertainty and [6]

used a refined version of ADR in their robust capacity assignment for networks with

uncertain demand. Recently, [111] used a cutting plane algorithm while taking into

consideration the uncertainty in unmet demand outsourced cost.

Regarding uncertainty sets, polyhedral sets are most frequently used in radio net-

work design, along with hose models from the works of [61, 64], budget uncertainty

by [4] and cardinal constrained uncertainty by [32], and interval uncertainty among
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others.

Little research compares these models. [4] compared their single-stage robust model

using budget uncertainty with a scenario-based two-stage stochastic approach. [41]

constructed different uncertainty sets from real world data and compared performance

within and outside sample for shortest path problems. Our focus is to compare the dis-

crete and the polyhedral uncertainty sets in network capacity expansion, to arrive at

which one better fits real-world data, while also comparing to the performance of a

simple stochastic model using the mean demand.

4.3 Problem Description

We consider a multi-commodity network flow design problem where incremental ca-

pacities are installed in response to uncertain traffic demand. The problem is modeled

in a way that allows for capacity expansion such that routing of traffic for the differ-

ent commodities over the arcs subject to design and network constraints is possible

while minimizing the total cost involved. We refer to this model as the robust network

capacity expansion problem (RNCEP).

4.3.1 The Basic RNCEP

The network under consideration can be represented by a directed graph, G = (V ,A).

Each of the arcs a ∈ A has an original capacity ua. The original capacity on each arc a

can be upgraded at a cost ca per each additional unit xa of capacity. There is a set of

commodities K = {1, . . . , K} =: [K] which need to be routed across the network, each

commodity k ∈ K consisting of a demand dk ≥ 0, a source node sk ∈ V , and a sink

node tk ∈ V . Additionally, let σ be the cost of not satisfying one unit of demand over

the planning horizon (i.e., by outsourcing it). If all demands are known, the nominal
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network capacity expansion problem can then be formulated as follows:

min
∑
a∈A

caxa + σ
∑
k∈K

dk − ∑
a∈δ−(tk)

fka +
∑

a∈δ+(tk)

fka


+

(4.1)

s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka ≥ 0 ∀k ∈ K, v ∈ V \ {sk, tk} (4.2)

∑
k∈K

fka ≤ ua + xa ∀a ∈ A (4.3)

fka ≥ 0 ∀k ∈ K, a ∈ A (4.4)

xa ≥ 0 ∀a ∈ A (4.5)

Here, [y]+ denotes max{0, y}, while δ+(v) and δ−(v) are the sets of the outgoing and

incoming arc at node v ∈ V , respectively. Variables fka denote the flow of commodity

k ∈ K along edge a ∈ A, while xa models the amount of capacity being added to

arc a. The objective function (4.1) is to minimize the sum of capacity expansion cost

and outsourcing costs. Constraints (4.2) are a variant of flow constraints, where we

allow an arbitrary amount of flow to leave the source node sk. Through the objective,

only the flow arriving in tk is counted. It is allowed to diminish the flow outside of sk

and tk; note that there is an optimal solution where this does not happen. We do not

assume equality in Constraints (4.2) to apply our robust optimization approach in the

following section. Finally, Constraints (4.3) model the capacity on each edge.

The actual demand values ddd are uncertain, and can take any value in a predeter-

mined uncertainty set U . The two sets under consideration in this work are the discrete

uncertainty set, which can be represented as U = {ddd1, . . . , dddN}, and the polyhedral uncer-

tainty set, which can be represented as U =
{
ddd ∈ RK

+ : V ddd ≤ bbb, dk ∈ [dk, dk]
}

.

The robust network capacity expansion problem then is to find a minimum instal-

lation cost of additional capacities while satisfying all potential traffic demands such

that actual flows do not exceed cumulative link capacities whatever the realization of

demands in U . Thus, the RNCEP is a two stage robust problem with recourse applying
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the general framework of [16]. The capacity expansion represented by variables xxx is

the first stage decision variable which has to be fixed before the realization of ddd ∈ U .

Once the uncertain demand data is revealed, the traffic adjustment takes place by rout-

ing a multi-commodity flow with second stage variable fka (ddd). This can be modeled as

follows:

min
∑
a∈A

caxa + max
d∈U

σ
∑
k∈K

dk − ∑
a∈δ−(tk)

fka (ddd) +
∑

a∈δ+(tk)

fka (ddd)


+

(4.6)

s.t.
∑

a∈δ−(v)

fka (ddd)−
∑

a∈δ+(v)

fka (ddd) ≥ 0 ∀k ∈ K, ddd ∈ U , v ∈ V \ {sk, tk}

(4.7)∑
k∈K

fka (ddd) ≤ ua + xa ∀ddd ∈ U , a ∈ A

(4.8)

fka (ddd) ≥ 0 ∀k ∈ K, ddd ∈ U , a ∈ A

(4.9)

xa ≥ 0 ∀a ∈ A

(4.10)

Here, we have modified Constraints (4.1-4.5) to take all scenarios into account. Being a

robust model, we consider the worst-case costs in Objective (4.6), while all constraints

need to hold for all scenarios ddd ∈ U . In the following, we reformulate the general

model (4.6-4.10) for specific uncertainty sets.

4.3.2 Robust Optimization with Discrete Uncertainty

Model

Let U = {ddd1, . . . , dddN} be a discrete uncertainty set, where N is the number of sce-

narios. In this case, variables fka (ddd) become fk,ia for all i ∈ [N ]. The robust objective

function (4.6) is reformulated using additional variables hk,i := [dik −
∑

a∈δ−(tk) f
k,i
a +
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∑
a∈δ+(tk) f

k,i
a ]+ for k ∈ K, i ∈ [N ], and τ := maxi∈[N ]

∑
k∈K h

k,i. The problem then

becomes:

min
∑
a∈A

caxa + στ (4.11)

s.t. τ ≥
∑
k∈K

hk,i ∀i ∈ [N ] (4.12)

hk,i ≥ dik −
∑

a∈δ−(tk)

fk,ia +
∑

a∈δ+(tk)

fk,ia ∀i ∈ [N ], k ∈ K (4.13)

∑
a∈δ−(v)

fk,ia −
∑

a∈δ+(v)

fk,ia ≥ 0 ∀k ∈ K, i ∈ [N ], v ∈ V \ {sk, tk} (4.14)

∑
k∈K

fk,ia ≤ ua + xa ∀i ∈ [N ], a ∈ A (4.15)

fk,ia ≥ 0 ∀k ∈ K, i ∈ [N ], a ∈ A (4.16)

hk,i ≥ 0 ∀k ∈ K, i ∈ [N ] (4.17)

xa ≥ 0 ∀a ∈ A (4.18)

Here, Constraints (4.14) and (4.15) correspond to Constraints (4.7) and (4.8), whereas

the additional Constraints (4.12) and (4.13) are used to ensure variables τ and hk,i have

the intended effect. Note that, as we minimize, the maximum operator can be ex-

pressed by using ≥-constraints over the set.

Constructing Data-Based Discrete Uncertainty

To construct discrete uncertainties uncertainties, we assume that scenarios

R = {rrr1, . . . , rrrN}

of real demands with rrri ∈ RK
+ are given, along with the respective source and sink

nodes. The trivial approach would be to use directly U = R. However, previous

research (see [41]) has shown that this may result in an overfitting to the available
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data. Instead, we consider different scalings. For a fixed commodity k ∈ K, let N ′ ≤ N

denote the absolute frequency that ri,k > 0 over all i ∈ [N ]. Then

r̂k =
1

N ′

∑
i∈[N ]

ri,k

be the average of the demand scenarios for each k ∈ K. For a given λ ∈ [0, 1], we set

di,k(λ) = λri,k + (1− λ)r̂k and

U(λ) =
{
ddd1(λ), . . . , dddN(λ)

}
.

The case λ = 0 means that we ignore uncertainty and use the average case, while λ = 1

uses the original demand scenariosR.

4.3.3 Robust Optimization with Polyhedral Uncertainty

Model

We now assume the demand uncertainty is given through a general polyhedron of the

form below as opposed to any special polyhedral type like the Γ-uncertainty,

U =
{
ddd ∈ RK

+ : V ddd ≤ bbb, dk ∈ [dk, dk]
}

where V = (vik) is a matrix in RM×K and bbb is a vector in RM (i.e., there are M linear

constraints on the demand vector). To find a tractable robust counterpart, we apply

the framework of affine decision rules (ADR) by restricting the flow variables to be

affine functions of the uncertainty, i.e.,

fka (ddd) = φka +
∑
`∈K

Φk,`
a d`
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with φka and Φk,`
a being unknown coefficients of the affine linear function in ddd. We now

consider each constraint and the objective of problem (4.6-4.10) and reformulate them

using strong duality.

By substituting for fka (ddd), the flow constraints (4.7) become:

∑
a∈δ−(v)

(
φka +

∑
`∈K

Φk,`
a d`

)
−
∑

a∈δ+(v)

(
φka +

∑
`∈K

Φk,`
a d`

)
≥ 0 ∀k ∈ K, v ∈ V\{sk, tk}, ddd ∈ U ,

which is equivalent to

∑
a∈δ−(v)

φka−
∑

a∈δ+(v)

φka ≥
∑
`∈K

 ∑
a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a

 d` ∀k ∈ K, v ∈ V\{sk, tk}, ddd ∈ U .

(4.19)

For each k ∈ K, v ∈ V \ {sk, tk}we can write the worst-case problem as

max
∑
`∈K

 ∑
a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a

 d`

s.t.
∑
`∈K

vi`d` ≤ bi ∀i ∈ [M ] [αk,vi ]

d` ≤ d` ∀` ∈ K [β
k,v

` ]

− d` ≤ −d` ∀` ∈ K [βk,v
`

]

We now consider the dual of this linear optimization problem. In brackets behind ev-

ery constraint of the primal problem, we have listed the corresponding dual variable.

The dual problem then becomes

min
∑
i∈[M ]

biα
k,v
i +

∑
`∈K

(dlβ
k,v

` − d`βk,v` )

s.t.
∑
i∈[M ]

vi`α
k,v
i + β

k,v

` − βk,v` ≥
∑

a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a ∀` ∈ K

αk,vi ≥ 0 ∀i ∈ [M ]
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β
k,v

` ≥ 0 ∀` ∈ K

βk,v
`
≥ 0 ∀` ∈ K.

By applying strong duality, we can conclude that the optimal objective value of this

dual problem is equal to the worst-case of the right-hand side of Constraint (4.8).

Overall, Constraint (4.7) is replaced by the following set of constraints and vari-

ables:

∑
a∈δ−(v)

φka −
∑

a∈δ+(v)

φka ≥
∑
i∈[M ]

biα
k,v
i +

∑
`∈K

(dlβ
k,v

` − d`βk,v` ) ∀k ∈ K, v ∈ V \ {sk, tk}

∑
i∈[M ]

vi`α
k,v
i + β

k,v

` − βk,v` ≥
∑

a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a ∀k, ` ∈ K, v ∈ V \ {sk, tk}

αk,vi ≥ 0 ∀i ∈ [M ], k ∈ K, v ∈ V \ {sk, tk}

β
k,v

` ≥ 0 ∀k, ` ∈ K, v ∈ V \ {sk, tk}

βk,v
`
≥ 0 ∀k, ` ∈ K, v ∈ V \ {sk, tk}

We follow a similar procedure for the other constraints. Constraint (4.8) can be rewrit-

ten as ∑
k∈K

(
φka +

∑
`∈K

Φk,`
a d`

)
≤ ua + xa ∀d ∈ U , a ∈ A

The subproblem

max
∑
`∈K

(
∑
k∈K

Φk,`
a )d`

s.t. ddd ∈ U

has the same structure as before. Using dual variables πai , ρ
a
` , ρ

a
`
, we can replace Con-

straint (4.8) with the following:

∑
k∈K

φka +
∑
i∈[M ]

biπ
a
i +

∑
`∈K

(d`ρ
a
` − d`ρa` ) ≤ ua + xa ∀a ∈ A
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∑
i∈[M ]

vi`π
a
i + ρa` − ρa` ≥

∑
k∈K

Φk,`
a ∀` ∈ K, a ∈ A

πai ≥ 0 ∀i ∈ [M ], a ∈ A

ρa` ≥ 0 ∀a ∈ A, ` ∈ K

ρa
`
≥ 0 ∀a ∈ A, ` ∈ K

We now consider the positivity constraint (4.9). This becomes

φka +
∑
`∈K

Φk,`
a d` ≥ 0 ∀k ∈ K, a ∈ A, ddd ∈ U

Using duality with variables ξk,ai , ζ
k,a

` , ζk,a
`

we replace Constraint (4.9) with the follow-

ing:

φka ≥
∑
i∈[M ]

biξ
k,a
i +

∑
`∈K

(d`ζ
k,a

` − d`ζk,a` ) ∀k ∈ K, a ∈ A

∑
i∈[M ]

vi`ξ
k,a
i + ζ

k,a

` − ζk,a` ≥ −Φk,`
a ∀k, ` ∈ K, a ∈ A

ξk,ai ≥ 0 ∀k ∈ K, a ∈ A, i ∈ [M ]

ζ
k,a

` ≥ 0 ∀k, ` ∈ K, a ∈ A

ζk,a
`
≥ 0 ∀k, ` ∈ K, a ∈ A

Finally, we consider the objective function (4.6). We need to solve the following prob-

lem:

max
∑
k∈K

dk − ∑
a∈δ−(tk)

(
φka +

∑
`∈K

Φk,`
a d`

)
+

∑
a∈δ+(tk)

(
φka +

∑
`∈K

Φk,`
a d`

)
+

s.t.
∑
`∈K

vi`d` ≤ bi ∀i ∈ [M ]

d` ≤ d` ∀` ∈ K

− d` ≤ −d` ∀` ∈ K
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We introduce new variables zk ∈ {0, 1} to remove the positivity bracket from the ob-

jective.

max
∑
k∈K

dk − ∑
a∈δ−(tk)

(
φka +

∑
`∈K

Φk,`
a d`

)
+

∑
a∈δ+(tk)

(
φka +

∑
`∈K

Φk,`
a d`

) zk

s.t.
∑
`∈K

vi`d` ≤ bi ∀i ∈ [M ]

d` ≤ d` ∀` ∈ K

− d` ≤ −d` ∀` ∈ K

zk ∈ {0, 1} ∀k ∈ K

We set z′k,` := d`zk and get

max
∑
k∈K

z′kk − ∑
a∈δ−(tk)

(
φkazk +

∑
`∈K

Φk,`
a z′k`

)
+

∑
a∈δ+(tk)

(
φkazk +

∑
`∈K

Φk,`
a z′k`

)
s.t.

∑
`∈K

vi`d` ≤ bi ∀i ∈ [M ] [qi]

z′k` ≤ d` ∀k, ` ∈ K [rk`]

z′k` ≤ d`zk ∀k, ` ∈ K [sk`]

d` + d`zk − z′k` ≤ d` ∀k, ` ∈ K [tk`]

d` ≤ d` ∀` ∈ K [u`]

− d` ≤ −d` ∀` ∈ K [v`]

zk ∈ {0, 1} ∀k ∈ K [wk]

z′k` ≥ 0 ∀k, ` ∈ K

By relaxing constraints zk ∈ {0, 1} to zk ∈ [0, 1] for a conservative approximation and

dualizing the problem, we arrive at

min
∑
i∈[M ]

biqi +
∑
k∈K

∑
`∈K

d`tk` +
∑
`∈K

d`u` −
∑
`∈K

d`v` +
∑
k∈K

wk
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s.t.
∑
i∈[M ]

vi`qi −
∑
k∈K

rk` +
∑
k∈K

tk` + u` − v` ≥ 0 ∀` ∈ K

−
∑
`∈K

d`sk` +
∑
`∈K

d`tk` + wk ≥
∑

a∈δ+(tk)

φka −
∑

a∈δ−(tk)

φka ∀k ∈ K

rk` + sk` − tk` ≥ 1k=` +
∑

a∈δ+(tk)

Φk,`
a −

∑
a∈δ−(tk)

Φk,`
a ∀k, ` ∈ K

qi ≥ 0 ∀i ∈ [M ]

rk`, sk`, tk` ≥ 0 ∀k, ` ∈ K

u`, v`,w` ≥ 0 ∀` ∈ K

Overall, we get the following affine adjustable robust counterpart to Problem (4.6-

4.10):

min
∑
a∈A

caxa + σ

∑
i∈[M ]

biqi +
∑
k∈K

∑
`∈K

d`tk` +
∑
`∈K

d`u` −
∑
`∈K

d`v` +
∑
k∈K

wk


s.t.

∑
i∈[M ]

vi`qi −
∑
k∈K

rk` +
∑
k∈K

tk` + u` − v` ≥ 0 ∀` ∈ K

−
∑
`∈K

d`sk` +
∑
`∈K

d`tk` + wk ≥
∑

a∈δ+(tk)

φka −
∑

a∈δ−(tk)

φka ∀k ∈ K

rk` + sk` − tk` ≥ 1k=` +
∑

a∈δ+(tk)

Φk,`
a −

∑
a∈δ−(tk)

Φk,`
a ∀k, ` ∈ K

∑
a∈δ−(v)

φka −
∑

a∈δ+(v)

φka ≥
∑
i∈[M ]

biα
k,v
i +

∑
`∈K

(dlβ
k,v

` − d`βk,v` ) ∀k ∈ K, v ∈ V \ {sk, tk}

∑
i∈[M ]

vi`α
k,v
i + β

k,v

` − βk,v` ≥
∑

a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a ∀k, ` ∈ K, v ∈ V \ {sk, tk}

∑
k∈K

φka +
∑
i∈[M ]

biπ
a
i +

∑
`∈K

(d`ρ
a
` − d`ρa` ) ≤ ua + xa ∀a ∈ A

∑
i∈[M ]

vi`π
a
i + ρa` − ρa` ≥

∑
k∈K

Φk,`
a ∀` ∈ K, a ∈ A

φka ≥
∑
i∈[M ]

biξ
k,a
i +

∑
`∈K

(d`ζ
k,a

` − d`ζk,a` ) ∀k ∈ K, a ∈ A

∑
i∈[M ]

vi`ξ
k,a
i + ζ

k,a

` − ζk,a` ≥ −Φk,`
a ∀k, ` ∈ K, a ∈ A
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xa ≥ 0 ∀a ∈ A

qi ≥ 0 ∀i ∈ [M ]

rk`, sk`, tk` ≥ 0 ∀k, ` ∈ K

u`, v`,w` ≥ 0 ∀` ∈ K

αk,vi ≥ 0 ∀i ∈ [M ], k ∈ K, v ∈ V \ {sk, tk}

β
k,v

` , βk,v
`
≥ 0 ∀k, ` ∈ K, v ∈ V \ {sk, tk}

πai ≥ 0 ∀i ∈ [M ], a ∈ A

ρa` , ρ
a

`
≥ 0 ∀a ∈ A, ` ∈ K

ξk,ai ≥ 0 ∀k ∈ K, a ∈ A, i ∈ [M ]

ζ
k,a

` , ζk,a
`
≥ 0 ∀k, ` ∈ K, a ∈ A

Constructing Data-Based Polyhedral Uncertainty

Constructing a polyhedron that contains the demand scenarios R can be considered

as an optimization problem on its own. We would like to determine constraint coef-

ficients (vi1, . . . , viK , bi) that determine a polyhedron U such that the distance of R to

the boundary of U with respect to a norm ‖ · ‖ is as small as possible.

Recall that the distance between a point ppp and a hyperplane (a1, . . . , aK , b) is given

through
|
∑

i∈[K] aipi − b|
‖aaa‖∗

where ‖ · ‖∗ is the dual norm of ‖ · ‖. An optimization model to determine U is hence:

min
∑
i∈[N ]

min
j∈[M ]

(bj −
∑
k∈[K]

ri,kvjk)

s.t.
∑
k∈[K]

ri,kvjk ≤ bj ∀i ∈ [N ], j ∈ [M ]

‖vvvj·‖∗ = 1
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where vvvj· denotes the jth row of V . While such an approach is useful for low-dimensional

data (i.e., few commoditiesK), it is less efficient for high-dimensional data. In fact, the

additional lower and upper bounds [dk, dk] may already suffice to determine a polyhe-

dron where every point inR is on its boundary. Therefore, we also consider randomly

generated hyperplanes. To this end, we sample each vik randomly uniformly from

[0, 1]. Then we set

bi := max
j∈[N ]

∑
k∈[K]

vikr
j,k

to find a tight constraint. In particular, we always contain the sum-constraint where

vik = 1/K for all k ∈ [K].

4.3.4 Stochastic Optimization with Distribution Mean

Model

Let ddd be the vector of mean demands of distributions fitted independently to every

commodity using demand scenarios R = {rrr1, . . . , rrrN}. We reformulate Problem (4.1-

4.5) using only this single mean demand scenario. To linearize the positivity brackets

[·]+, we introduce variables hk for every commodity k ∈ K. The problem then becomes:

min
∑
a∈A

caxa + σ
∑
k∈K

hk

s.t. hk ≥ d
k −

∑
a∈δ−(tk)

fka +
∑

a∈δ+(tk)

fka ∀k ∈ K

∑
a∈δ−(v)

fka −
∑

a∈δ+(v)

fka ≥ 0 ∀k ∈ K, v ∈ V \ {sk, tk}

∑
k∈K

fka ≤ ua + xa ∀a ∈ A

fka ≥ 0 ∀k ∈ K, a ∈ A

hk ≥ 0 ∀k ∈ K

xa ≥ 0 ∀a ∈ A
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Generating Data-Based Distribution Mean

The demand for the stochastic optimization model is generated from the demand sce-

narios R using the mean of the zero-inflated uniform distribution in the following

way. For a fixed commodity k ∈ K, let N ′ ≤ N denote the absolute frequency that

ri,k > 0 over all i ∈ [N ]. To fit a uniform distribution, set

rkmin = min
i∈[N ]:ri,k>0

ri,k and rkmax = max
i∈[N ]

ri,k

and the mean of the uniform distribution is r̄k = 1/2(rkmin + rkmax). The remaining

absolute frequency, N − N ′, is considered for observing a zero demand, yielding the

mean demand of the zero-inflated uniform distribution d
k

= rkN ′/N .

4.4 Computational Experiments

4.4.1 Setup

The aim of our experiments is to determine which model gives the best solution to

uncertain network design in terms of the measured performance metrics. On the

one hand, the discrete uncertainty model is simpler than the polyhedral uncertainty

model, and we can expect it to be solvable using more commodities, thus giving a

more detailed description of the uncertainty. The polyhedral model on the other hand

will use less commodities, but has a more complex description of the uncertainty avail-

able. As noted in the literature review (Section 4.2), polyhedral models are popular in

current research.

We consider the following experimental setup to address our question. Using a

data set of real-world scenarios, we separate it into a training set and an evaluation

set. We construct different uncertainty sets only based on the training set, and solve

the resulting robust (or stochastic) optimization problems. We then only keep the here-

and-now part of the solution, i.e., the decision xxx on the infrastructure investment. This
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Table 4.1: Experimental Setup

Experiment Nr of σ values σ values nr λ values λ values Nr of hyperplanes

Discrete1 2 12,450 and 24,900 11 0.0 to 1.0
Discrete2 11 0 to 24,900 2 0.5 and 1.0

Stochastic 11 0 to 24,900 1 1.0
Polyhedral1 11 0 to 24,900 1
Polyhedral2 8 0 to 17,430 2
Polyhedral3 7 0 to 14,940 7

investment is then assessed on the evaluation set by calculating optimal flows for each

scenario. As the first-stage investment costs are already fixed, the flow problem only

aims at minimizing the outsourced demand. We then compare investment costs and

outsourced demand for all models.

The experimental setup is summarized in Table 4.1. The Discrete1 experiment fixes

two σ values for varying values of λ, while the Discrete2 experiment fixes λ for varying

values of σ. The Polyhedral1 experiment uses a polyhedron with only one constraint

(the sum-constraint) for all eleven values of σ, Polyhedral2 uses a polyhedron with

two hyperplanes and eight values for σ, while Polyhedral3 uses a polyhedron with

eight hyperplanes and seven possible σ values. The reduced choice for σ values with

increasing number of hyperplanes was due to increased computation times.

The Discrete1 experiment therefore has to solve 22 optimization models, and each

of these 22 results was then evaluated on each of the demand scenarios from the eval-

uation set. The same was carried out for the other five experiments. The choice of

σ, which represent the penalty for unmet demand, was a key consideration for these

models and hence in the experimental setup. If σ is too small there is incentive for

unmet demand where almost all demand are outsourced with no addition of new

installed capacity to the network while with a large σ, the incentive is for negative vi-

olation of the constraint which encourages the deployment of new network capacity.

Several values of σ were tested in a preliminary experiment using discrete uncer-

tainty, see Table 4.2. Based on the outcomes, the value range for σ was selected, taking

the 95th percentile of the capacity cost distribution into account.
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Table 4.2: Impact of σ on outsourced demand.

Objective Commodity Capacity Add Sol Time Outsourced D Penalty(σ)

530,226.88 400 0.00 199.56 127,254.45 100
5,302,268.77 400 0.00 127.48 127,254.45 1,000

49,191,424.59 400 2,191.83 443.11 99,409.83 10,000
68,676,799.21 400 16,139.27 372.44 13,262.58 20,000
72,391,760.98 400 18,151.57 575.90 6,074.70 30,000
74,113,211.23 400 19,736.41 455.89 2,335.66 40,000
74,479,094.31 400 20,873.46 378.29 0.00 50,000

In total, over 34, 000 numerical experiments were carried out according to the setup.

Models were implemented using Julia and Gurobi version 7.5 on a Lenovo desktop

machine with 8 GB RAM and Intel Core i5-65 CPU with 2.50GHz using Windows 10

OS 64-bit. In Gurobi, we have used a time limit of 9000s for each problem instance and

optimality is achieved once the optimality gap is below 0.01%.

4.4.2 Data

We tested the discrete, polyhedral and stochastic models using network data instances

taken from the online SNDlib library1, see [108]. The particular network data consid-

ered in this work is Germany-50 with 50 nodes and 176 directed arcs (we also included

arcs in opposite directions). There are three levels of aggregation for real-world traffic

measurement data available. These are one full day (in 5 minute intervals), one full

month (in 1 day intervals) and one whole year (in 1 month intervals).

For our experiment, we focus on the full day dataset, consisting of N = 288 sce-

narios. The peak demand of 7, 649.83 was recorded at 3pm for the demand profile,

see Figure 4.1. We separate the scenarios into a training set consisting of 24 scenar-

ios, which is generated by taking every 12th demand scenario (i.e., one scenario per

hour), and the evaluation set consisting of the remaining 264 scenarios. We refer to the

training set as MS-24.

Each scenario has a different number of commodities, see Figure 4.2. Some of the

1See http://sndlib.zib.de
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Figure 4.1: A full day demand profile.
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Figure 4.2: A full day commodities pro-
file.

Table 4.3: Impact of choice of K on the presorted original data.

Options with MS-24 Commodity % of Original Data Captured

All Demand 300 97.48%
All Demand 400 98.88%
All Demand 450 99.25%
All Demand 500 99.50%
All Demand 900 99.88%

demand values were found to be very small. While the 99th percentile of all demand

values is 0.415, some values are in the range of 10−6. To simplify the optimization

problems, we sort the commodities in descending order of demand and then choose

a fixed value of commodities for all demand scenarios that covers over 98% of the

original demand data, which is the case for 400 commodities. Table 4.3 shows the

different numbers of commodities against the percentage of original data captured in

the streamlined data. This approach was implemented instead of allowing for varying

commodities per demand scenario and allows us to consider all significant demands

values while discarding very low ones, thus significantly reducing the average num-

bers of commodities per demand scenario.

We observed that a model based on a polyhedron with 400 commodities computed

from the training set demand matrix could not be solved in reasonable time, hence

the polyhedron was generated for a reduced number of commodities to allow for an

optimal solution in a reasonable amount of time that will encourage its practical us-

age in the industry. Instead, we work with K = 20 that captures the top commodities
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in the training set. This reflects that the more complex the model for the uncertainty,

the harder becomes the optimization model itself, and the less data we can use for

building our sets. This trade-off is investigated in our experiments. Additionally,

our polyhedrons were calcualted using the random constraint sampling method from

Section 4.3.3, as lower and upper bounds already gave an optimal solution to the op-

timization approach for constructing polyhedra.

4.4.3 Computational Results

We consider the performance of the capacity expansion solutions on the evaluation

scenarios. We used four metrics on these 264 scenarios: The average, the maximum,

the average of the worst 10% (known as conditional-value-at-risk, or CVaR), and the

standard deviation. Note that all these measures were calculated for scenarios that

were not known to the models at the time of solution.

We first of all note that all polyhedral models Polyhedral1 to Polyhedral3 gave the

same results, so we do not differentiate between them in the following. In Figure 4.3 to

Figure 4.6, the four metrics are shown against the first-stage investment costs for two

values of σ (i.e., using Discrete1). As expected, increasing σ results in building more

capacity in the network and hence reducing the amount of demand being outsourced.

This is true for both robust the stochastic models. For the discrete uncertainties, net-

work capacity built increases with increasing value of λ from 0 (ignoring uncertainty)

to 1 (using the real demands) for a fixed σ value.

In Figure 4.7 to Figure 4.10, varying penalty values σ were considered for the three

models while fixing λ for the discrete uncertainty model (using Discrete2). The out-

sourced demand τ decreases with an increase in σ value. The implication of higher

penalty is that overall risk is minimized deploying additional infrastructure in capac-

ity for the network rather than outsourcing demand. In Figure 4.5 and Figure 4.9, the

CVaR was observed to decrease with increasing robustness of the models. Figure 4.4

seems to be providing almost the same information as the CVaR, and it turned out that
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Figure 4.3: Mean outsourced demand.
Discrete model uses varying values of λ.
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Figure 4.4: Maximum outsourced de-
mand. Discrete model uses varying val-
ues of λ.
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Figure 4.5: CVaR of outsourced demand.
Discrete model uses varying values of λ.
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Figure 4.7: Mean outsourced demand.
All models use varying values of σ.
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Figure 4.8: Maximum outsourced de-
mand. All models use varying values of
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Figure 4.9: CVaR of outsourced demand.
All models use varying values of σ.
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Figure 4.10: Standard deviation of out-
sourced demand. All models use varying
values of σ.

the two metrics are highly correlated having a correlation coefficient of 0.9993 with a

gradient of approximately 1 as shown in Figure 4.11. Though the analysis done was

for the discrete model, the same result is consistence with that from the other two

models.

Ideally, a good solution is in the bottom left corner of these plots. We note that

some of the points corresponding to polyhedral models are dominated, and so are the

stochastic solutions. The discrete model produces the best trade-off solutions between

investment and outsourcing. For instance in Figure 4.9, with the same link capacity

investment of $40 million, the stochastic model has a higher CVaR figure. The data

point line for this discrete model with λ = 0.5 is below that for the stochastic model
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y = 0.9992x + 403.99
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Figure 4.11: CVaR of outsourced demand and max outsourced demand correlation.

and this can bee seen in Figure 4.7 to Figure 4.10. Hence, the discrete model provides

the best compromise between a too simple and a too complex approach for the data

under consideration.

4.5 Conclusion

In the robust optimization literature, the shape of uncertainty is often an assumption

made without any grounding in actually available data. This also holds for network

expansion problems, where polyhedral models have been popular. In this paper, we

considered the question whether such an approach leads to solutions which perform

well on unseen data, i.e., what kind of uncertainty sets are most appropriate for our

model.

We developed robust (using discrete and polyhedral uncertainty sets) and stochas-

tic approaches to a multi-commodity network capacity expansion problem with the

option of demand outsourcing. These models were implemented for a real-world net-

work data taken from the SNDlib and their results were subsequently compared.

In the experimental setup, a number of penalty values for demand outsourcing

were considered while also varying the robustness of the discrete model with different

sizes of the uncertainty set. Increasing the penalty results in additional capital expen-

diture for network capacity build as this reduces the amount of demand outsourced
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as well as the conditional-value-at-risk (CVaR). However, of these three models, the

robust model with discrete uncertainty set produced the best trade-off solutions on all

performance metrics. It was also observed that the discrete set seems easy to generate

(as expected, since the original data is already in this form), the model is simple and

produces optimal result faster. Robust model with polyhedral uncertainty set, on the

other hand, is more complex and with more options to describe data, and it results

in computationally more challenging problems. In our case, the extra effort associ-

ated with polyhedral model may not be really worth it in the end. Surprisingly, the

simple stochastic optimization model which we have used for benchmarking was rel-

atively competitive, and thus might be appropriate for use in more complex situations

in which the uncertainty-based robust models are computationally intractable.

79



80



..the knowledge of the Holy One is understanding.
Prov. 9:10

Chapter 5

A Comparison of Data-Driven

Uncertainty Sets for Robust Network

Design

Abstract. We consider a network design and expansion problem, where we need to

make a capacity investment now, such that uncertain future demand can be satisfied as

closely as possible. To use a robust optimization approach, we need to construct an un-

certainty set that contains all scenarios that we believe to be possible. In this paper we

discuss how to actually construct two common models of uncertainty set, discrete and

polyhedral uncertainty, using data-driven techniques on real-world data. We employ

clustering to generate a discrete uncertainty set, and supervised learning to generate

a polyhedral uncertainty set. We then compare the performance of the resulting ro-

bust solutions for these two types of models on real-world data. Our results indicate

that polyhedral models, while being popular in the recent literature, are less effec-

tive than discrete models both in terms of computational burden and solution quality

regardless of the performance measure considered (worst-case, conditional value-at-

risk, average).
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5.1 Introduction

Operations Research approaches have found wide application in the planning, design

and operations management of transportation, power and energy distribution, supply

chain logistics and telecommunications networks. In particular, many types of opti-

mization models have been developed over the last decades for network design and

expansion problems, see, e.g., [93, 100, 22].

In telecommunications, for instance, network design models can be used to curb

congestion and to provide an acceptable quality of service to the subscribers. Effort

to provide an acceptable service has resulted in capital expenditure of billions of USD

in global telecoms investment. Optimization of investments has thus attained a key

strategic role in this industry. Moreover, these decisions need to be made well ahead

of time based on a forecast of future traffic demand.

Unfortunately, traffic demand has proven to be difficult to predict accurately. In or-

der to factor in this uncertainty and design a network that is immune to traffic variabil-

ity, robust optimization approaches have been proposed. For this purpose, a number

of uncertainty models have already been developed and investigated (see [74, 15, 23]).

The drawback of classic approaches, however, is that the uncertainty set is assumed

to be given, i.e., the decision maker can advise on how the uncertainty is shaped.

Moreover, an inappropriate choice of uncertainty set may result in models that are too

conservative or in some cases computationally intractable. As the decision maker can-

not be expected to make this choice in practice, data-driven and learning approaches

have been recently proposed (see [29, 41]).

This paper contributes to this recent line of research proposing a clustering ap-

proach to generate discrete uncertainty sets from real data viewed as a set of scenarios.

82



We use the K-means clustering method which results in aggregating similar scenarios

into clusters and representing each cluster of scenarios by its centroid, with the inten-

tion to reduce the problem complexity on the one hand, and to become less dependent

on data noise on the other hand.

The basic network design problem that we consider in this paper is as follows.

Given an undirected graph G = (V , E) and currently installed capacity ue for each

edge e ∈ E , we would like to determine an amount of capacity xe to be installed

additionally. For each edge e, we are given investment cost ce per unit of additionally

installed capacity. As the graph is undirected, the direction flow is not relevant for

our model, and we define K = {{i, j} : i, j ∈ V , i < j} as the set of commodities,

where each commodity k is identified by an unordered pair of nodes {i, j} between

which a given demand needs to be satisfied. Let dk be the demand corresponding to

commodity k ∈ K, and let Pk be the set of simple paths in G connecting the nodes of

the commodity. The aim is to find capacities xxx such that all demands are fulfilled and

the capacity expansion costs are as small as possible. Formally, the baseline model can

thus be written as follows.

min
∑
e∈E

cexe (5.1)

s.t.
∑
p∈Pk

fkp ≥ dk ∀k ∈ K (5.2)

∑
k∈K

∑
p∈Pk:e∈p

fkp ≤ ue + xe ∀e ∈ E (5.3)

xe ≥ 0 ∀e ∈ E (5.4)

fkp ≥ 0 ∀k ∈ K, p ∈ Pk (5.5)

The variables fkp model the amount of flow along path p for commodity k. Here,

Constraints (5.2) ensure that a sufficient amount of flow is transported along all paths

connecting source and sink of commodity k ∈ K, while Constraints (5.3) model that

each edge needs to provide sufficient capacity. Instead of using a path-based formula-
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tion, it is also possible to use a model with flow variables for every edge in the network

(see, e.g., [72]). In this paper, we focus on the path-based formulation, as it performed

better in our computational experiments.

In practice, the demand ddd changes over time and is not known precisely. Thus, a

two-stage model is required, where we decide now where to build how much capacity

(the strategic decision xxx), and we can decide where to route the flow once the demand

is known (the operational decision fff ). Let us assume that a set U can be constructed

that contains all demand scenarios ddd that we would like to take into account for our

planning. The two-stage robust network design problem is then to solve

min
∑
e∈E

cexe (5.6)

s.t.
∑
p∈Pk

fkp(ddd) ≥ dk ∀k ∈ K, ddd ∈ U (5.7)

∑
k∈K

∑
p∈Pk:e∈p

fkp(ddd) ≤ ue + xe ∀e ∈ E , ddd ∈ U (5.8)

xe ≥ 0 ∀e ∈ E (5.9)

fkp(ddd) ≥ 0 ∀k ∈ K, p ∈ Pk, ddd ∈ U (5.10)

In this setting, fkp has become a function that depends on the scenario ddd. Note that in

Constraint (5.7) dk is an element of ddd, thus is also scenario-dependent.

Robust optimization in general has found increasing use and application in the

network design area. [4] considered a two-stage robust network flow problem under

demand uncertainty following the work of [16], while [109] introduced affine routing

in the their robust network capacity planning model. [107] looked at network capacity

expansion under both demand and cost uncertainty. [89] considered a robust net-

work design problem with static routing in the setting of [32]. [114] considered robust

network design with polyhedral uncertainty and [6] robust capacity assignment for

networks with uncertain demand. [111] used a cutting plane algorithm while taking

into consideration the uncertainty in unmet demand outsourced cost.
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Regarding uncertainty sets, polyhedral models are most frequently used in radio

network design, along with hose models from the works of [61, 64], budget uncertainty

by [4], cardinal constrained uncertainty by [32], and interval uncertainty, among oth-

ers. Little research compares these models of uncertainty. [4] compared their single-

stage robust model using budget uncertainty with a scenario-based two-stage stochas-

tic approach. [41] constructed different uncertainty sets from real world data and com-

pared performance within and outside sample for shortest path problems.

In this paper we present the following contributions:

• We propose and develop a clustering approach (using the well-known K-means

clustering data mining method) to generate discrete uncertainty sets from real

data for a network design and network expansion problems; We use this ap-

proach to calculate the cluster centroids for real-world data taken from SNDlib

(see [108]) and use these centroids to define a discrete uncertainty set which is

used to compute the optimal network expansion;

• We compare this solution to the solution obtained using the state-of-the-art ap-

proach of modelling uncertainty using a polyhedral set, where constraints on

the demand are given as hyperplanes generated dynamically using supervised

learning (a machine learning method). To the best of our knowledge, this is for

the first time that such a comparison is done for network design problems;

• For the real-world dataset we consider, we find in our numerical experiments

that solutions based on discrete uncertainty found by clustering outperform so-

lutions based on polyhedral uncertainty found by supervised learning when us-

ing high risk-adverse performance metrics such as maximum or CVaR0.95 of un-

satisfied demand. This is less clear for less risk-averse metrics such as expected

value or CVaR0.75 of unsatisfied demand, but the clustering approach is still su-

perior in most cases. At the same time, solutions based on discrete uncertainty

found by clustering can be computed two orders of magnitude faster than those
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based on polyhedral uncertainty found by supervised learning.

The rest of this paper is organized as follows. As the problem data is the center

point of our research, we first discuss this in Section 5.2. In particular, we describe

how to construct uncertainty sets U from the data. We then introduce models for

robust network design for both discrete and polyhedral uncertainty sets in Section 5.3.

Experimental results are discussed in Section 5.4. Finally, Section 5.5 concludes our

work and points out future research directions.

5.2 Problem Data and Uncertainty Set Construction

We focus on the Abilene network based on data from the SNDlib (see [108]). It consists

of 12 nodes connected by 15 edges, see Figure 5.1, which spread over the US. With 12

nodes, there exist 12 · 11/2 = 66 =: κ different commodities.

Data was collected by Yin Zhang1 in 5 minute intervals between 01.03.2004 and

10.09.2004 with some breaks in between. Table 5.1 shows the number of measurements

that are available for each month. Note that one day can give 288 measurements in

5 minute intervals. Based on this number, we also show the maximum number of

possible measurements that can be achieved each month, but note that not all data is

available.

1
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Figure 5.1: Abilene network topology.

We use an arbitrary set of T measurements for the purpose of model training. The

rest of the data is then used for the evaluation of results. This means the training data
1http://www.cs.utexas.edu/˜yzhang/
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Month 03 04 05 06 07 08 09
# Measurements available 4,032 6,048 8,928 8,640 8,928 8,640 2,880
# Measurements possible 8,928 8,640 8,928 8,640 8,928 8,928 8,640

Table 5.1: Numbers of available measurements for each month.

consists of T demand scenarios, each being a κ-dimensional vector of reals. The total

demand per scenario, i.e., the sum of demand over all commodities, for months May-

August which provide the most complete sets of data measurements, is presented in

Figure 5.2.

We now discuss how to generate discrete and polyhedral uncertainty sets based on

the training data points. Let D = {ddd1, . . . , dddT} denote this training set. For a discrete

uncertainty set Ud, where each scenario is explicitly listed, a natural approach is set-

ting Ud = D. But it has been shown (see [41]) that this can lead to an overfitting effect,

such that the resulting robust solutions do not perform well on out-of-sample data

points. Furthermore, it is desirable to control the degree of conservatism. We there-

fore propose a clustering approach to generate discrete uncertainty sets. We aggregate

similar scenarios together, with the intention to reduce the problem complexity on the

one hand, and to become less dependent on data noise on the other hand. Scenario ag-

gregation based onK-means clustering has been applied as an approximation method

also to robust min-knapsack problems, see [42]. Let UdK denote a discrete uncertainty

set derived from a K-means clustering of the set D. Then on the one boundary case,

UdT = D, i.e., we contain the original set of training points as a special case, and on the

other boundary case, Ud1 consists of only the average case scenario.

We show a simple example in Figure 5.3. In Figure 5.3a, we plot a subset of the

training data, restricted to two arbitrarily chosen dimensions (recall that every com-

modity corresponds to a dimension of the demand vector). In Figure 5.3c, we show a

discrete uncertainty Ud5 set based on a K-means clustering with K = 5 centers, which

captures the training data only in a rough manner. WithK = 20 (see Figure 5.3e), most

features of the data have been captured.
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(b) Demand profile for month 06.
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(c) Demand profile for month 07 (training set).
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(d) Demand profile for month 08.

Figure 5.2: Total demand in the Abilene network.
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(a) Subset of training data D.
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(b) Training data with added noise
data in red.
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(c) A K-means clustering with K = 5
in red.
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(d) Polyhedron with M = 4 hyper-
planes.
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(e) A K-means clustering with K =
20 in red.
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(f) Polyhedron with M = 20 hyper-
planes.

Figure 5.3: Illustration of methods to generate discrete and polyhedral uncertainty on
a subset of training data restricted to two dimensions (note the logarithmic scale of the
axes).
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We now consider the case of polyhedral uncertainty,

UpM =
{
ddd ∈ Rκ

+ : V ddd ≤ bbb, dk ∈ [dk, dk]
}

where V = (vik) is a matrix in RM×κ and bbb is a vector in Rκ (i.e., there are M linear con-

straints on the demand vector). As the number of constraintsM will have a significant

impact on the solution time of the resulting robust model, we would like to find only

few constraints which describe the training data D well. To this end, we apply a tech-

nique similar to supervised learning in machine learning. We generate a set of noise

data points, which we would like to distinguish from the original training data by

placing hyperplanes that put as many original points on one side, and as many noise

points on the other side as possible. This trade-off is adjusted dynamically: for the

first hyperplane, there is a high penalty for original points that are classified as noise.

This way, we find an outer description of the data, which results in large and conser-

vative uncertainty sets. This penalty is reduced over time, so that later hyperplanes

become less conservative and cut away outliers in the training data. Noise points are

generated by randomly increasing values of single training data points, and randomly

using values from other data points in single dimensions with low probability.

In Figure 5.3, we use the same data as for the clustering example to illustrate this

process. The random noise is shown as red points in Figure 5.3b. The first four hyer-

planes we generate are given in Figure 5.3d. It can be seen that they form an outer ap-

proximation of the data, removing only few outliers in the process. With an increasing

number of hyperplanes M , the polyhedron UpM becomes smaller and less conservative

(see Figure 5.3f).
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5.3 Robust Models

We now discuss how to reformulate the general model (5.6-5.10) for specific uncer-

tainty sets UdK and UpM .

5.3.1 Discrete Uncertainty

Let UdK = {ddd1, . . . , dddK} be given. As this set is discrete, we can simply write fkp(ddd) = f ikp

for all ddd = dddi ∈ UdK . We write [K] := {1, . . . , K} in the following. The resulting compact

optimization model is then given as follows:

min
∑
e∈E

cexe (5.11)

s.t.
∑
p∈Pk

f ikp ≥ dik ∀k ∈ K, i ∈ [K] (5.12)

∑
k∈K

∑
p∈Pk:e∈p

f ikp ≤ ue + xe ∀e ∈ E , i ∈ [K] (5.13)

xe ≥ 0 ∀e ∈ E (5.14)

f ikp ≥ 0 ∀k ∈ K, p ∈ Pk, i ∈ [K] (5.15)

5.3.2 Polyhedral Uncertainty

Rewriting fkp(ddd) in a compact form is less straightforward for continuous uncertainty

sets than in the previous, discrete case. We apply the well-known affine decision rules

(also known as affine adjustable robust counterpart) approach, see [16]. To this end,

we restrict fkp(ddd) to be an affine linear function in ddd by writing

fkp(ddd) = φkp +
∑
`∈K

d`Φkp`

Here, φkp ≷ 0 and Φkpl ≷ 0 are new decision variables. By using affine decision rules,

we restrict the set of feasible solutions, and thus form a conservative approximation to
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the original problem.

By substituting the fkp(ddd) variables in (5.6-5.10) and rearranging terms, the problem

becomes:

min
∑
e∈E

cexe (5.16)

s.t.
∑
p∈Pk

φkp ≥ max
ddd∈Up

M

∑
`∈K

(
1`=k −

∑
p∈Pk

Φkp`

)
d` ∀k ∈ K

(5.17)∑
k∈K

∑
p∈Pk:e∈p

φkp + max
ddd∈Up

M

∑
`∈K

(∑
k∈K

∑
p∈Pk:e∈p

Φkp`

)
de` ≤ ue + xe ∀e ∈ E

(5.18)

φkp + min
ddd∈Up

M

∑
`∈K

Φkp`d` ≥ 0 ∀k ∈ K, p ∈ Pk

(5.19)

xe ≥ 0 ∀e ∈ E

(5.20)

φkp ≷ 0 ∀k ∈ K, p ∈ Pk

(5.21)

Φkpl ≷ 0 ∀k ∈ K, p ∈ Pk, ` ∈ K

(5.22)

The inner maximization and minimization problems can then be reformulated using

linear programming duality. As an example, consider Constraint (5.17) for a fixed

k ∈ K. The value of the right-hand side is

max
∑
`∈K

(
1`=k −

∑
p∈Pk

Φkp`

)
d` (5.23)

s.t. V ddd ≤ bbb (5.24)

d` ∈ [d`, d`] ∀` ∈ K (5.25)
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As UpM is polyhedral, this is a linear program, the dual of which is

min
∑
i∈[M ]

biαi +
∑
`∈K

(d`β` − d`β`) (5.26)

s.t.
∑
i∈[M ]

vi`αi + β` − β` ≥ 1`=k −
∑
p∈Pk

Φkp` ∀` ∈ K (5.27)

ααα,βββ,βββ ≥ 0 (5.28)

By weak duality, any feasible solution to (5.26-5.28) gives an upper bound on the value

of (5.23-5.25). Thus we can substitute the formulation (5.26-5.28) into Constraint (5.17)

to reach an equivalent linear reformulation. Repeating this process for all constraints,

the robust network extension problem with polyhedral uncertainty can be rewritten

in the following way:

min
∑
e∈E

cexe

s.t.
∑
p∈Pk

φkp ≥
∑
i∈[M ]

biαki +
∑
`∈K

(d`βk` − d`βk`) ∀k ∈ K

∑
i∈[M ]

vi`αki + βk` − βk` ≥ 1`=k −
∑
p∈Pk

Φkp` ∀k, ` ∈ K

∑
k∈K

∑
p∈Pk:e∈p

φkp +
∑
i∈[M ]

biπei +
∑
`∈K

(d`ρe` − d`ρe`) ≤ ue + xe ∀e ∈ E

∑
i∈[M ]

vi`πei + ρe` − ρe` ≥
∑
k∈K

∑
p∈Pk:e∈p

Φkp` ∀e ∈ E , ` ∈ K

φkp ≥
∑
i∈[M ]

biξkpi +
∑
`∈K

(d`ζkp` − d`ζkp`) ∀k ∈ K, p ∈ Pk

∑
i∈[M ]

vi`ξkpi + ζkp` − ζkp` ≥ −Φkp` ∀k, ` ∈ K, p ∈ Pk

xe ≥ 0 ∀e ∈ E

φkp ≷ 0 ∀k ∈ K, p ∈ Pk

Φkp` ≷ 0 ∀k ∈ K, p ∈ Pk, ` ∈ K

αki ≥ 0 ∀i ∈ [M ], k ∈ K
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βk`, βk` ≥ 0 ∀k, ` ∈ K

πei ≥ 0 ∀e ∈ E , i ∈ [M ]

ρe`, ρe` ≥ 0 ∀e ∈ E , ` ∈ K

ξkpi ≥ 0 ∀k ∈ K, p ∈ Pk, i ∈ [M ]

ζkp`, ζkp` ≥ 0 ∀k, ` ∈ K, p ∈ Pk

5.4 Experiments

5.4.1 Setup

The aim of the experiments is to analyze the performance of solutions to the robust

network design problem using discrete and polyhedral uncertainty sets, respectively.

We set all existing capacities ue to be zero, so that the effect of model choice becomes

more visible.

Using the data described in Section 5.2, we focus on the four months from be-

ginning of May until end of August which provide the most complete sets of data

measurements. We based the training set on an arbitrarily chosen month, 07, which

consists of 8,928 demand scenarios, but we removed outlier scenarios, which are de-

fined as the top 2% of scenarios with regard to total demand, leaving us with T = 8, 750

scenarios in the training set. The corresponding cut-off value is shown in Figure 5.2c

as a horizontal blue line.

We calculate solutions based on the training set derived from month 07 measure-

ments and then evaluate them on all the scenarios from the training set and from the

three other months (05, 06, 08), minimizing unsatisfied demand. Only the first-stage

xxx-part of a solution is used for evaluation.

For discrete uncertainty, we calculate solutions based on clusterings with K = 100

up to K = 8, 600 in steps of 100, and in addition using all T = 8, 750 training scenarios

(a total of 87 optimization problems and solutions). Clusters are calculated using the
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kmeans function of SciPy 1.2.1 under Python 3.7.

For polyhedral uncertainty, we placed hyperplanes using the dual annealing

function from SciPy. We generate 140 hyperplanes this way. They are collected in

28 polyhedra, where polyhedron i uses all hyperplanes of polyhedron i − 1, and five

more in the order that they were generated. In total, this means that 28 optimization

problems with polyhedral uncertainty are solved.2

For a better comparison, the 87+28 solutions are then also scaled up and down uni-

formly by multiplying the corresponding xxx vector with a factor λ = 0.5 up to λ = 1.5

(with step size 1/40). The reason to also consider these scaled versions is because, by

construction, solutions based on polyhedra will be more conservative than those based

on clusterings. By scaling solutions up and down, a more comprehensive comparison

becomes possible.

Each of these (87+28)·41 solutions is then evaluated by calculating an optimal flow

for each of the 8750 training scenarios and each of the 8928 + 8640 + 8928 evaluation

scenarios. In total, this means that over 166 million linear programs are solved for the

evaluation by employing parallelization over ten CPU processors. As there may not be

sufficient capacity available to route all demand, we minimize the unsatisfied demand

in each optimization problem. The corresponding model to evaluate solutions xxx for a

fixed scenario ddd is as follows:

min
∑
k∈K

hk

s.t. hk ≥ dk −
∑
p∈Pk

fkp ∀k ∈ K

∑
k∈K

∑
p∈Pk:e∈p

fkp ≤ ue + xe ∀e ∈ E

xe ≥ 0 ∀e ∈ E

2All linear programs were solved using Cplex 12.8 on a virtual Ubuntu server with ten Xeon CPU
E7-2850 processors at 2.00 GHz speed and 23.5 GB RAM using only one core each and spreading the
jobs over ten CPU cores.
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fkp ≥ 0 ∀k ∈ K, p ∈ Pk

where hk denotes the unsatisfied demand in commodity k. Note that the cost of a

solution only depends on the choice of xxx. Additionally, for each month, we calculate

four measures to characterize the performance of a solution with regard to unsatisfied

demand: average, CVaR0.75 (i.e., the average unsatisfied demand over the 25% largest

values), CVaR0.95, and the maximum.

5.4.2 Results

We first discuss the performance of solutions on the training set (month 07) in the left

column of Figure 5.4. On the horizontal axis, we show the costs of solutions, while the

vertical axis shows the four measures of unsatisfied demand. Each point corresponds

to a solution (87 black squares corresponding to the discrete uncertainty solutions, 28

blue crosses corresponding to the polyhedral uncertainty solutions). The lines show

the performance of the scaled solutions.

Consider Figure 5.4g. By construction, we know that the discrete uncertainty so-

lution with Ud8750 has zero unsatisfied demand on the training set, and is the cheapest

possible solution to do so. Most polyhedral solutions use conservative outer approx-

imations of the training data and thus also have zero unmet demand, but at higher

costs. We can also see that solutions that use fewer clusters or more hyperplanes

become less conservative, allowing unsatisfied demand at lower solution costs. The

behaviour we see in Figure 5.4g is to be expected by design. The open question is

whether it can also be observed on evaluation data.

Figures 5.4a, 5.4c and 5.4e show the average, CVaR0.75, and CVaR0.95 performance

on the training set, respectively. Here the differences between both types of solution

are much less pronounced; we see that blue and black lines overlap, indicating a sim-

ilar performance of solution types.

Compare this performance to the right-hand column of Figure 5.4, where the per-

96



 0

 10

 20

 30

 40

 50

 60

 70

 800  1000  1200  1400  1600

A
v
 U

n
s
a

t 
D

e
m

a
n

d

Cost

Cluster
Poly

(a) Training set, average values.
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(b) Month 08, average values.

 0

 50

 100

 150

 200

 250

 300

 800  1000  1200  1400  1600

C
V

a
R

7
5

 U
n

s
a

t 
D

e
m

a
n

d

Cost

Cluster
Poly

(c) Training set, CVaR0.75 values.
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(d) Month 08, CVaR0.75 values.
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(e) Training set, CVaR0.95 values.
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(f) Month 08, CVaR0.95 values.
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(g) Training set, maximum values.
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(h) Month 08, maximum values.

Figure 5.4: Results for training set and month 08.
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formance on month 08 is presented. The order of magnitude of unsatisfied demand

has increased for each type of solution: whereas in Figure 5.4g we can reach zero un-

satisfied demand, the same solutions have between five and seven thousand units of

maximum unmet demand in Figure 5.4h. But the relative performance between the

solution types is similar. Whereas solutions based on polyhedral uncertainty gener-

ally have a higher degree of robustness at higher investment costs, it is possible to

scale solutions based on clustered data up to reach solutions with a similar degree of

robustness at lower costs. This is particularly visible for the high risk-adverse mea-

sures in Figures 5.4f and 5.4h, whereas these performance differences are less clear-cut

for the less risk-adverse measures in Figures 5.4b and 5.4d.

Figure 5.6 in Appendix 5.5 shows the results for months 05 and 06, where the same

observations apply as for month 08.

In terms of solution quality, i.e., trade-off between investment costs and unsatisfied

demand, we thus find the following result: Solutions based on discrete uncertainty

found by clustering outperform solutions based on polyhedral uncertainty found by

supervised learning when using high risk-adverse performance metrics such as maxi-

mum or CVaR0.95 of unsatisfied demand. This is less clear for less risk-adverse metrics

such as expected value or CVaR0.75 of unsatisfied demand, but the clustering approach

is still superior in most cases.

We now consider the time required to solve the corresponding robust optimiza-

tion models. Figure 5.5 shows the Cplex solution time for discrete and for polyhedral

uncertainty, which depends on the size of the uncertainty set (note the two different

horizontal axes and the logarithmic vertical axis).

It can be seen that even the largest discrete model (that uses all training scenarios

directly) is still easier to solve than the smallest polyhedral model (using five hyper-

planes in addition to the lower and upper bounds). So this experiment reveals that

using discrete uncertainty sets not only results in a better solution quality, they are

also easier to solve.
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Figure 5.5: Solution times for discrete and polyhedral uncertainty.

5.5 Conclusions

In the robust optimization literature, frequently both discrete and polyhedral uncer-

tainty sets are being used. In this paper we compared the resulting solutions using

real-world data for a network expansion problem. We describe how to construct un-

certainty sets based on clustering the training data using a well-known data mining

technique, and by separating training data from noise using a well-known machine

learning method. In our computational study we found that solutions based on dis-

crete uncertainty models outperform solutions based on polyhedral models in most

performance metrics, and are also easier to compute. The strong performance of dis-

crete uncertainty sets is in line with evidence from the experiment on shortest path

data performed in [41]. This also indicates that the current network design literature,

which has a strong focus on polyhedral models, may benefit from considering simple

discrete models more.

One reason for this observation may be that the raw data itself does not have a

convex shape, and thus an approximation by a convex polyhedron is inadequate. Po-

tentially, a robust optimization approach can use an uncertainty set U that is the union

of multiple polyhedra. While for one-stage min-max problems it holds that optimiz-

ing with respect to U or its convex hull is equivalent, this is not the case for two-stage
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problems. Two-stage network design with an uncertainty set that is the union of poly-

hedra may therefore have the potential to reach better solutions than by using a single

polyhedron as model for the uncertainty. However, such an approach will come at

additional computational cost.
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Appendix

Additional Experimental Results
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(a) Month 05, average values.
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(b) Month 06, average values.
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(c) Month 05, CVaR0.75 values.
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(d) Month 06, CVaR0.75 values.
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(e) Month 05, CVaR0.95 values.
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(f) Month 06, CVaR0.95 values.
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(g) Month 05, maximum values.
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(h) Month 06, maximum values.

Figure 5.6: Results for months 05 and 06.
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Chapter 6

An Efficient Approach to

Distributionally Robust Network

Capacity Planning

Abstract. In this paper, we consider a network capacity expansion problem in the con-

text of telecommunication networks, where there is uncertainty associated with the

expected traffic demand. We employ a distributionally robust stochastic optimization

(DRSO) framework where the ambiguity set of the uncertain demand distribution is

constructed using the moments information, the mean and variance. The resulting

DRSO problem is formulated as a bilevel optimization problem. We develop an ef-

ficient solution algorithm for this problem by characterizing the resulting worst-case

two-point distribution, which allows us to reformulate the original problem as a con-

vex optimization problem. In computational experiments the performance of this ap-

proach is compared to that of the robust optimization approach with a discrete un-

certainty set. The results show that solutions from the DRSO model outperform the

robust optimization approach on highly risk-averse performance metrics, whereas the

robust solution is better on the less risk-averse metric.
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6.1 Introduction

Uncertainty has been recognized as a reality of our day-to-day living where choices

are often made under partial or unknown information. Hence mitigating against un-

certainty in decision making has always been a key business driver. In operations

research, frameworks have been developed that help to address decision making un-

der uncertainty in two broad areas, namely the stochastic and the robust optimization

approaches.

In the stochastic approach, we assign probabilities to the random variables by as-

suming that the probability distribution of these variables or uncertain data is known

or can be accurately estimated from historic data [45]. A drawback of this approach

is that in real life, the probabilities are often not available or correctly estimated. Ro-

bust optimization on the other hand addresses the problem of data uncertainty by

assuming that the data lie within a closed set [17]. It provides an uncertainty immune

solution for the worst case of the uncertain data set. Whereas in the robust optimiza-

tion approach, we optimize the worst-case objective, in the stochastic optimization

approach we optimize relevant statistical measures, e.g. expectation, median, CVaR

etc. Ignoring the probability information has been a main criticism of the robust ap-

proach which may produce an overly conservative solution [44]. Despite the limita-

tions of these two approaches, network design problems under demand uncertainty

using these approaches have been frequently considered. Network design has a strate-

gic role within the planning function of most organizations. The task is to ensure the

highest quality of design while efficiently balancing the requirement of just enough

capacity with the capacity investment cost. [93, 100] provide a survey of the network

design models as well as a unifying framework for many of such models. Network
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design has found application in many areas, such as transportation, supply chain,

communications, and social networks.

[125] showed that stochastic just like robust optimization models are often NP-

hard, and even the deterministic network design model itself may be difficult to solve

for problems of industrial size. [106] investigated the heuristic methods based on

Monte Carlo sampling techniques, stochastic approximation (SA) and sample aver-

age approximation (SAA), in their attempt to find a robust stochastic solution. On

the other hand, [7] compared the result of the deterministic model to the stochastic

model using a standard commercial solver while they proposed the use of heuristics

or relaxation methods to solve large-scale problems. [124] determined the quality of

the deterministic solutions for a stochastic multi-commodity network design prob-

lem and conclude that this solution can be used to find a good heuristic solution to

the stochastic multi-commodity network design model. The deterministic solution is

hence contained in the stochastic solution and using it as a skeleton improves results

with as much as 97% of the initial loss recovered. The framework consists of solving

a deterministic network design problem, extracting the discrete variables, fixing them

in the stochastic model and then solving a stochastic linear problem.

[117] solved a supply chain network design problem using sample average ap-

proximation and combined this with an accelerated Benders decomposition algorithm

to solve a problem with a large number of scenarios. [35] also study a supply chain

network, which was solved using SAA combined with a Benders decomposition algo-

rithm. [86] formulate a distribution network as a two-stage design problem and solve

this using a MIP methodology called the TSMIP.

Literature abounds on the application of robust optimization to network planning

and design following the seminal work of [121] and [14, 91, 90, 73, 17, 31, 32] among

many others. Of particular importance is the work of [16] which introduced the ad-

justable robust framework that addresses two-stage decision problem where the net-

work planning and design problem is situated. [4] applied this to network flow design
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problem under demand uncertainty, a two stage problem which allows the control

of the conservatism of the solution via a parameterized budget uncertainty set, [107]

studied the network capacity problem under both demand and travel time uncertainty

for a multi-commodity flow problem with single source and sink per commodity while

[109] introduced affine routing concept in their robust capacity planning model under

demand uncertainty using path-based formulation and of recent, [69] addressed non-

linearity of cost function in robust network capacity expansion problem. Also, there

have been work towards exact solution with [98] being the forerunner while others are

[132, 26, 111, 5] using different types of decomposition algorithms.

In this paper, to address the drawback of the two approaches, we leverage on

their respective strengths and investigate a distributionally robust stochastic stochastic

(DRSO) approach to a multi-commodity network design problem, where the probabil-

ity distribution itself is affected by ambiguity. This combination of robust and stochas-

tic optimization for a network capacity planning problem is then analyzed with re-

spect to time of execution, resource usage and applicability in a real world setting

This approach has found increasing application in diverse areas/field since its in-

troduction by [118] in his min-max solution of an inventory problem. [113] used this

approach in the mean-covariance of the uncertain data distribution to derive a robust

solution approach for a max-min and min-max stochastic problem without recourse.

[58] in their work on distributionally robust stochastic programming develop a model

that combines the distribution and moment of the uncertain data. They show that

their model outperforms the naive approximated stochastic model proposed by [113].

However, a polynomial-time algorithm for the larger range of utility functions con-

sidered in [113] was beyond the scope of their work. [75] on the other hand develop

a tractable approximation to a distributionally robust optimization problem. Unlike

most min-max stochastic programs, the expectation of recourse variable was included

in their model.

[95] applied the distributionally robust framework to solve an electric vehicle bat-
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tery swapping station location problem. They also validate the accuracy of this so-

lution against that of the SAA and were able to show that it provides a good ap-

proximation to the SAA. [47] proposed a new reformulation and approximation for

solving the distribution robust shortest path problem building on their earlier work

[48]. A unifying framework was proposed by [129] for modeling and solving distri-

butionally robust optimization problems based on standardized ambiguity sets which

encompasses many sets from the literature. They identify conditions under which this

framework is tractable and develop a tractable conservative approximation for prob-

lems that violate these conditions. [33] developed a framework for solving adaptive

distributionally robust linear optimization problem.

This paper presents the following contributions: We consider an uncertain network

capacity expansion problem and develop an efficient algorithm to its distribution-

ally robust counterpart by characterizing the resulting two point distribution using

Richter-Rogonski’s theorem [115, 116]. We compare the quality of solutions from this

algorithm to the solutions obtained from a discrete robust approach. It is observed

from our numerical experiments that solutions found by the DRSO algorithm outper-

form solutions from the robust optimization approach on highly risk-averse perfor-

mance metrics.

The model from the literature that is the most similar to ours, but with a flow cost,

can be found in [105]. While their approach resulted in a computationally challeng-

ing solution approach (including the discretization of continuous values), the model

presented here is considerably easier to solve.

The rest of this paper is organized as follows. In Section 6.2, we describe the general

distributionally robust stochastic optimization concept. Section 6.3 explains the robust

network design problem we consider. In Section 6.4, our efficient formulation of the

distributionally robust problem is developed. We first focus on the single-commodity

case and then extend results to the multi-commodity case. In Section 6.5, the exper-

imental setup and computational result are discussed. Finally, Section 6.6 concludes

107



our work and points out future research directions.

6.2 Distributionally Robust Stochastic Optimization

Distributionally robust stochastic optimization is a data-driven modeling methodol-

ogy for optimization under uncertainty. It encompasses aspects from both robust and

stochastic optimization, frameworks that are complementary to each other though dif-

fering in their approaches to addressing the uncertainty [15].

Robust optimization provides a framework to immunize against uncertainty that

is believed to lie within a closed and bounded set known as the uncertainty set, while

the stochastic optimization framework assumes that the probability distribution of the

parameter uncertainty is known. However, in real world applications, ”true” distri-

bution knowledge is never completely known but at most can only be estimated from

available data [119]. On the other hand, one of the major attractiveness which has re-

sulted in the explosion of research into the robust framework is its tractability to a wide

range of challenging problems. Nevertheless, this methodology also faced criticism for

its inability to factor in the distribution knowledge of the underlying uncertain data,

leading to overly conservative solutions [129, 44].

Uncertainty can be viewed as risk when the probability distribution is known or as

an ambiguity otherwise [33]. Neither of these two approaches is suitable to deal with

ambiguity from the perspective of decision theory. However, combining the uncer-

tainty set of the robust approach with the probability distribution from the stochastic

approach produces a more potent methodology that is able to handle both risk and

ambiguity. Hence, under the distributionally robust stochastic framework, the prob-

ability distribution is also subjected to uncertainty. The aim is to find a decision such

that for any possible probability distribution from the ambiguity set, the stochastic

constraints of the model are satisfied.

In the era of growing data-driven applications, moments that constitute the am-
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biguity are estimated in the face of limited historical data. [118] was the first to ap-

ply this methodology in his min-max proposal to the newsvendor problem where the

”true” distribution, though not known completely, is only characterized by its mean

and standard deviation and belongs to a class of probability distributions with the

same mean and standard deviation. The distributionally robust stochastic approach

hence seeks to maximize the expectation by considering the worst case distribution in

this probability distributions class also known as the ambiguity set.

6.3 Problem Description

Planning for capacities to be added in networks is a major strategic problem in most

telecommunication organizations. Usually, this decision is made under uncertainty of

the future traffic demand. As with most strategic roles, this often involves large capi-

tal expenditure investment. Hence, in this paper, we consider a multi-commodity net-

work demand flow problem, where additional capacities are added to accommodate

uncertain traffic demands while minimizing the total cost involved subject to design

constraints.

6.3.1 Basic Network Expansion Problem

The problem can be represented by a directed graph G = (V ,A) which denotes the

network of interest. Each of the arcs a ∈ A has an original capacity ua which can

be upgraded at a cost ca per incremental unit of capacity. A set of commodities K =

{1, . . . , K} need to be routed across the network with each commodity k ∈ K consist-

ing of a demand dk ≥ 0, a source node sk ∈ V , and a sink node tk ∈ V . Additionally,

let φ be the cost of not satisfying one unit of demand over the planning horizon (i.e.,

by outsourcing it). Under complete demand certainty, the nominal network capacity
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expansion problem can then be formulated as:

min
∑
a∈A

caxa + φ
∑
k∈K

dk − ∑
a∈δ−(tk)

fka +
∑

a∈δ+(tk)

fka


+

(6.1)

s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka ≥ 0 ∀k ∈ K, d ∈ U , v ∈ V \ {sk, tk}

(6.2)∑
k∈K

fka ≤ ua + xa ∀a ∈ A

(6.3)

fka ≥ 0 ∀k ∈ K, d ∈ U , a ∈ A

(6.4)

xa ≥ 0 ∀a ∈ A

(6.5)

Here, [y]+ denotes the positive part max{0, y}, while δ+(v) and δ−(v) are the sets of the

outgoing and incoming arc at node v ∈ V , respectively. Variables fka denote the flow

of commodity k ∈ K along edge a ∈ A, while xa models the amount of capacity being

added to arc a. The objective function (6.1) is to minimize the sum of capacity ex-

pansion cost and outsourcing costs. Constraints (6.2) are a variant of flow constraints,

where we allow an arbitrary amount of flow to leave the source node sk. Through

the objective, only the flow arriving in tk is counted. Finally, Constraints (6.3) which

model the capacity on each edge ensure that amount of flow does not exceed the sum

of initial and added capacity.

6.3.2 Robust Problem Formulation

Since the actual demand values ddd = (d1, . . . , dK) ∈ RK
+ are uncertain, we assume here

that they can take any value in a predetermined uncertainty set U , which can be rep-

resented as U = {ddd1, . . . , dddN}. The network capacity expansion problem using the
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robust optimization framework is to minimize the cost of capacity investment and

the worst-case costs of outsourced (unsatisfied) demand while satisfying the network

constraints. The robust network design for uncertainty set U is hence:

min
∑
a∈A

caxa + max
ddd∈U

φ
∑
k∈K

dk − ∑
a∈δ−(tk)

fka (ddd) +
∑

a∈δ+(tk)

fka (ddd)


+

(6.6)

s.t.
∑

a∈δ−(v)

fka (ddd)−
∑

a∈δ+(v)

fka (ddd) ≥ 0 ∀k ∈ K, ddd ∈ U , v ∈ V \ {sk, tk}

(6.7)∑
k∈K

fka (ddd) ≤ ua + xa ∀ddd ∈ U , a ∈ A

(6.8)

fka (ddd) ≥ 0 ∀k ∈ K, ddd ∈ U , a ∈ A

(6.9)

xa ≥ 0 ∀a ∈ A

(6.10)

with a scenario ddd being the demand vector over all commodities. As before, φ is a

penalty parameter for uncovered demand (e.g., outsourcing costs). We can send as

much flow as we like, but flow cannot appear outside the source, and sending insuf-

ficient flow creates a penalty. The constraints (6.1)-(6.5) have been updated to take

uncertainty into account, hence the worst case is considered in constraints (6.6). The

positive part [·]+ in the objective can be easily linearized using additional variables

τ k ≥ 0 and constraints τ k ≥ dk −
∑

a∈δ−(tk) f
k
a (ddd) +

∑
a∈δ+(tk) f

k
a (ddd) for all k ∈ K. The

inner maximum can be linearized in an analogous way.
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6.4 Distributionally Robust Stochastic Problem Formu-

lation

6.4.1 Single-Commodity Case

The single commodity network design problem with outsourcing can be modeled as

below. Notice that we drop the subscript k from dk, sk and tk, because we assume a

single commodity problem, i.e., K = 1;

min
∑
a∈A

caxa + φmax
P∈P

EP
[
d− d̃

]
+

(6.11)

s.t.
∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa = 0 ∀v ∈ V\{s, t} (6.12)

∑
a∈δ−(t)

fa −
∑

a∈δ+(t)

fa = d̃ (6.13)

∑
a∈δ−(s)

fa −
∑

a∈δ+(s)

fa = −d̃ (6.14)

fa ≤ ua + xa ∀a ∈ A (6.15)

fa ≥ 0 ∀a ∈ A (6.16)

d̃ ≥ 0 (6.17)

xa ≥ 0 ∀a ∈ A (6.18)

In this formulation, d̃ is the amount of demand that we intend to satisfy. We consider

the problem as a bilevel optimization problem, where first the network owner makes

his decision of the amount of demand he wishes to satisfy, and then nature chooses

a probability distribution for the demand which maximizes the expected unsatisfied

demand. So the second level problem (nature’s problem) is

max
P

EP
[
d− d̃

]
+

(6.19)

s.t. EP
[
d
]

= µ (6.20)
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EP
[
d− µ

]
2 = σ2 (6.21)

This means we consider all probability distributions P over d that have the same mean

µ and variance σ2. We denote this set as P . We can thus rewrite the DRSO problem as

min
(xxx,fff,d̃)∈X

∑
a∈A

caxa + φN(d̃)

where N(d̃) denotes the value of the inner nature’s problem, and X the set of feasible

solutions with respect to xxx, fff and d̃.

6.4.2 Model Reformulation

Lemma 6.1. Let some first-stage solution (xxx,fff, d̃) be fixed. The optimal objective value of

nature’s problem can then be written as

N(d̃) =


1/2

(
µ− d̃+

√
(d̃− µ)2 + σ2

)
if d̃ > µ2+σ2

2µ

µ− d̃ µ2

µ2+σ2 if d̃ ≤ µ2+σ2

2µ

(6.22)

Proof. A proof of the result can be found in [92] . Recall thatN(d̃) = maxP∈P EP[max(d−

d̃, 0)]. It can be shown that there is a worst-case distribution that is a two-point distri-

bution, which follows from the Richter-Rogonski theorem [115, 116]. For the sake of

completeness, we present a proof in Appendix 6.6.

An example for the shape of function N(d̃) is presented in Figure 6.1.

Lemma 6.2. The function N(d̃) is convex.

Proof. The first derivative of N with respect to d̃ is

∂N

∂d̃
=


1
2

[
d̃−µ√

(d̃−µ)2+σ2
− 1

]
if d̃ > µ2+σ2

2µ

− µ2

µ2+σ2 if d̃ ≤ µ2+σ2

2µ
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Figure 6.1: Example shape of N(d̃) with µ = 10 and σ2 = 100. In this case, (µ2 +
σ2)/2µ = 10.

and the second derivative is

∂2N

∂d̃2
=


σ2

2((d̃−µ)2+σ2)
3
2

if d̃ > µ2+σ2

2µ

0 if d̃ ≤ µ2+σ2

2µ

Note that the first derivative is continuous, as

1

2

 µ2+σ2

2µ
− µ√

(µ
2+σ2

2µ
− µ)2 + σ2

− 1

 =
1

2

 σ2−µ2
2µ√

(µ
2+σ2

2µ
)2 − (µ2 + σ2) + µ2 + σ2

− 1


=

1

2

 σ2−µ2
2µ√

(µ
2+σ2

2µ
)2
− 1

 =
1

2

[
σ2−µ2

2µ

µ2+σ2

2µ

− 1

]
=

1

2

[
σ2 − µ2

µ2 + σ2
− 1

]
=

1

2

[
− 2µ2

µ2 + σ2

]
= − µ2

µ2 + σ2
,

and it is non-decreasing. Hence, the function is convex.

We now introduce some additional notation. Let F (d̃) be the objective value of the

DRSO problem for fixed value of d̃. Then,

F (d̃) = min
(xxx,fff)∈X(d̃)

∑
a∈A

caxa + φN(d̃)

where as before, N(d̃) is the objective of the adversary problem, and X(d̃) is the set of
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vectors xxx and fff that give a flow value d̃. We rewrite this to

F (d̃) = φN(d̃) +G(d̃)

where G(d̃) = min(xxx,fff)∈X(d̃)

∑
a∈A caxa.

Theorem 6.1. The function F (d̃) is convex.

Proof. We show that G(d̃) is a convex function in d̃. This, together with the fact that

N(d̃) is convex due to Lemma 6.2, implies that their sum, F (d̃) is also convex.

Consider the function G′(d̃), where

G′(d̃) = min
∑
a∈A

caxa + ψ ·

∣∣∣∣∣∣d̃−
∑

a∈δ−(t)

fa +
∑

a∈δ+(t)

fa

∣∣∣∣∣∣ (6.23)

s.t.
∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa = 0 ∀v ∈ V\{s, t} (6.24)

fa ≤ ua + xa ∀a ∈ A (6.25)

fa ≥ 0 ∀a ∈ A (6.26)

xa ≥ 0 ∀a ∈ A (6.27)

for a large value ψ ≥
∑

a∈A ca. Let (xxx′, fff ′) be an optimal solution to G′(d̃) and assume

that ∆ := |d̃ −
∑

a∈δ−(t) f
′
a +

∑
a∈δ+(t) f

′
a| > 0. Then we can increase each x′a by ∆ to

find a new solution where there is sufficient capacity to outsource no demand at all.

As increasing the capacity this way increases the costs by ∆
∑

a∈A ca and ψ >
∑

a∈A ca,

we have constructed a new solution that is feasible and has no higher objective value

that (xxx′, fff ′). Hence there is an optimal solution to G′(d̃) that meet exactly a demand of

d̃. Therefore, G′(d̃) = G(d̃).

Recall that if a function f1(x, y) is convex in (x, y) and C is a convex set, then

f2(x) = inf
y∈C

f1(x, y)
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is convex as well [37]. Therefore, G(d̃) = G′(d̃) = min(xxx,fff,d̃)∈X
∑

a∈A caxa + ψ · |d̃ −∑
a∈δ−(t) fa +

∑
a∈δ+(t) fa|with X represented by constraints (6.24-6.27) is convex.

We can use Theorem 6.1 to solve the single-commodity DRSO problem efficiently.

For a fixed value d̃, we evaluate F (d̃) by solving G(d̃) as a linear program and N(d̃)

using the formula provided in Equation 6.22. We can now apply standard convex

optimization methods (in our experiments we use the Nelder-Mead method) to solve

mind̃ F (d̃) to optimality.

6.4.3 Extension to the Multi-Commodity Case

In this setting, we assume that the demand at each of the origin-destination pairs

(sk, tk) is affected by a different distribution. In particular, we have mean µk and vari-

ance σ2
k for each k ∈ K. The nature problem in this case becomes:

max EP

[∑
k∈K

[dk − d̃k]+

]
(6.28)

s.t. EP
[
dk
]

= µk ∀k ∈ K (6.29)

EP
[
dk − µk

]2
= σ2

k ∀k ∈ K (6.30)

The DRSO problem can now be written as

min
∑
a∈A

caxa + φ ·N(d̃dd) (6.31)

s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka = 0 ∀k ∈ K, v ∈ V\{sk, tk} (6.32)

∑
a∈δ−(tk)

fka −
∑

a∈δ+(tk)

fka = d̃k ∀k ∈ K (6.33)

∑
a∈δ−(sk)

fka −
∑

a∈δ+(sk)

fka = −d̃k ∀k ∈ K (6.34)
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∑
k∈K

fka ≤ ua + xa ∀k ∈ K, a ∈ A (6.35)

fka ≥ 0 ∀k ∈ K, a ∈ A (6.36)

xa ≥ 0 ∀a ∈ A (6.37)

where N(d̃dd) denotes the multi-dimensional version of nature’s problem as defined by

equations (6.28)-(6.30).

Corollary 6.1. The optimal solution for nature’s problem defined by equations (6.28)-(6.30)

can be expressed as

N(d̃dd) =
∑
k∈K

N(d̃k) (6.38)

Proof. This extends lemma 6.1 using the linearity of the expectation on the one hand,

and the decomposability of nature’s problem on the other hand. We have

N(d̃dd) = max
P∈P

EP

[∑
k∈K

[dk − d̃k]+

]

= max
P∈P

∑
k∈K

EP

[
[dk − d̃k]+

]
=
∑
k∈K

max
P∈P

EP

[
[dk − d̃k]+

]
=
∑
k∈K

N(d̃k)

which proves the result.

Moreover, it can be easily verified that N(d̃̃d̃d) is convex, as it is a sum of convex

functions. However, this extension, constraints (6.31)-(6.37), is not quite exact and

should be seen as an approximation.
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6.5 Experiments

6.5.1 Setup

Our models were implemented using a real-world network from the SNDLib library

(see [108]), the Nobel-US network with 14 nodes and 42 arcs. A sample of 10, 000 de-

mand scenarios was generated to form our reference set, sampling i.i.d from a gamma

distribution with shape 4 and scale 5 while discarding negative demands and any

demand above 50. Three instances of 20 source-sink node pairs were randomly gen-

erated for the test network; commodity set A, commodity set B and commodity set C.

We then sample training sets for the optimization models. Commodities A and B use

the same set of 60 scenarios. For commodity C, we sample a separate set of 60 scenar-

ios. These are used as discrete uncertainty sets for the robust model, and to compute

the empirical mean and the variance for the DRSO model.

The solutions found by the two optimization models are then evaluated with de-

mands from the reference set using 5,000 scenarios. The whole experimental setup

is repeated 21 times for commodities A and B, and 20 times for commodity C. We

provide an overview on the experimental setup in Table 6.1.

The cost of capacity allocation to the arc is randomly generated using a normal dis-

tribution with mean 40 and variance 36, while the penalty of unsatisfied or outsourced

demand was set to 130 using 10(N − 1), where N is the number of arcs.

Table 6.1: Experimental setup.

Experiment Commodity # Repetitions # Evaluation per Solution Total # Evaluation

DRSO Model A, B 21 5,000 210,000
Robust Model A, B 21 5,000 210,000
DRSO Model C 20 5,000 100,000
Robust Model C 20 5,000 100,000

The results of the two models are recorded as the in-sample results where the first-

stage investment cost of the objective value (Cap. Inv) is the cost of deploying capacity

and O/S demand is the outsourced (unsatisfied) demand, which when multiplied by
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the unit penalty cost (φ) gives the second-stage outsourcing costs of the objective value.

The performance of the evaluation model is reported in terms of mean outsourced de-

mand (E[O/S]), expected maximum outsourced demand(E[max O/S]), average out-

sourced demand over the worst 5% values (CVaR95), average outsourced demand

over the worst 25% values (CVaR75) and the mean satisfied demand E[d̃]. The first

of these metrics, the E[O/S], is a low risk measure while the rest three are high risk

measures. The two models were implemented using Julia and Gurobi version 7.5 on

a Lenovo desktop machine with 8GB RAM and Intel Core i5-65 CPU with 2.50GHz

using Windows 10 (64-bit) OS.

The results of the two models, DRSO and Robust, are evaluated in-sample and

out-sample using the below model. This seeks to calculate an optimal flow for a fixed

scenario ddd while minimizing the expected outsourced demand τ k in each commodity

k ∈ K, due to lack of adequate capacity. As the first-stage investment is already fixed,

we fix the xxx solution in this model.

min
∑
k∈K

τ k

s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka = 0 ∀k ∈ K, v ∈ V\{sk, tk}

∑
a∈δ−(tk)

fka −
∑

a∈δ+(tk)

fka = d̃k ∀k ∈ K

∑
a∈δ−(sk)

fka −
∑

a∈δ+(sk)

fka = −d̃k ∀k ∈ K

τ k ≥ dk − d̃k ∀k ∈ K∑
k∈K

fka ≤ ua + xa ∀k ∈ K, a ∈ A

fka ≥ 0 ∀k ∈ K, a ∈ A

d̃k ≥ 0 ∀k ∈ K

τ k ≥ 0 ∀k ∈ K
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For each xxx solution, 5, 000 evaluations are done and the outsourced demand together

with satisfied demand are recorded for each evaluation.

6.5.2 Computational Results

Table 6.2 presents a high level summary of the experimental results. Recall that three

instances of 20 S-T pairs were used, which are denoted as commodities A, B and C in

the table. Each row of results under commodities A and B in the table is the average

of 21 instances while the ones under commodity C is the average of 20 instances of

different 60 demand samples. The first three columns results are the in-sample opti-

mization result while the next two are the out-of-sample evaluation result. The av-

erage (E[O/S]), the maximum (E[Max O/S]), average of the largest 5% (CVaR95) and

average of largest 25% (CVaR75) are calculated from the 5, 000 evaluation results for

the outsourced demand as the out-of-sample results. While for the satisfied demand,

only the average (E[d̃]) is calculated.

Table 6.2: Comparing the two models under two commodities.

Commodity A Tot. Inv Cap. Inv O/S Dem E[O/S] E[d̃] Cap Add Unit Cost

Robust 44,679.05 32,641.54 92.60 70.91 372.02 842.09 38.76
DRSO 41,830.77 18.671.69 178.15 159.75 267.28 484.99 38.50

Commodity B

Robust 43,548.63 28,685.06 114.33 86.22 355.32 730.25 39.29
DRSO 41,081.28 19,255.14 167.89 150.49 280.37 489.35 39.35

Commodity C

Robust 50,878.38 29,226.48 166.55 132.37 281.68 705.39 41.43
DRSO 47,290.23 11,734.21 273.51 261.79 141.53 283.55 41.38

In the following, we focus on the evaluation for commodity type A. Results for

commodity types B and C can be found in Appendix B 6.6 and Appendix C 6.6, re-

spectively.

From Table 6.2, it is observed that DRSO solutions build less capacity compared to

the robust solutions for all demand instances and hence a lower capital investment,

both in terms of total investment and capacity investment. The capacity investment
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is the cost of adding capacity, the first term of the objective function, while the total

investment is the objective value of the optimization problem. The observation seems

valid irrespective of the commodity and data set used. For commodity A, the robust

solution builds approximately 74% more capacity than the DRSO solution (50% and

150% more in case of commodity B and C, respectively). Though this result is the

average over all demand instances, it is also true for each single demand instance, see

Figure 6.5c.

Table 6.3: Robust model results for commodity type A.

In Sample Out of Sample

Inst. Cap. Inv. O/S Demand E[O/S] E[Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 32,589.64 97.48 72.91 562.76 407.99 231.40 378.76 832.84
2 34,600.41 77.58 59.55 525.62 369.93 199.51 385.59 894.49
3 33,855.56 78.89 65.59 558.41 402.72 219.72 375.00 873.30
4 34,166.13 75.71 60.50 525.91 378.00 204.94 376.94 885.85
5 34,445.25 88.87 64.67 545.86 391.37 215.37 370.99 888.71
6 33,818.93 90.58 65.47 542.46 387.26 215.31 387.39 870.78
7 32,527.15 95.14 75.24 561.43 411.77 239.97 364.20 838.04
8 31,603.34 106.24 74.96 561.52 407.47 232.43 372.81 809.27
9 32,173.50 103.65 77.82 561.57 405.88 231.07 370.11 834.15

10 29,153.00 99.19 91.97 585.70 437.79 264.62 355.20 751.48
11 29,642.85 118.30 82.57 578.90 423.41 250.96 350.37 768.80
12 29,848.79 124.09 86.77 579.68 423.98 245.93 354.20 773.85
13 31,146.65 106.54 75.19 561.82 410.03 239.60 363.83 805.23
14 32,925.94 80.73 67.86 551.43 396.82 222.27 363.21 853.06
15 33,431.34 90.17 67.58 555.29 403.51 228.90 374.53 858.36
16 33,160.00 90.34 68.89 544.42 390.52 216.68 369.76 854.61
17 30,910.42 93.55 75.41 579.02 424.54 246.26 352.29 799.72
18 35,969.65 74.46 52.75 524.08 368.39 190.02 395.79 925.42
19 33,415.01 84.78 67.08 540.52 387.26 212.55 384.07 860.78
20 30,853.02 93.20 78.69 574.63 425.13 248.80 358.67 795.68
21 35,235.78 75.03 57.68 515.23 363.10 200.72 408.72 909.52

Table 6.3 and Table 6.4 present the results for each demand instance for the robust

and DRSO solutions respectively. For the same demand instance, the DRSO solution

invests less in capacity, which can be expected since it takes the distribution informa-

tion of the random variable into consideration unlike the robust model. The DRSO

solution is less conservative in this regards, whereas the robust solution plans for the

worst observed realization of the random variable. The DRSO solution is therefore

cost efficient, building only the needed capacity based on the distribution information
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Table 6.4: DRSO model results for commodity type A.

In Sample Out of Sample

Inst. Cap. Inv. Nature d̃ E[O/S] E[ Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 19,066.17 176.23 300.70 154.02 698.87 543.18 356.25 278.11 495.16
2 19,577.97 171.08 297.69 150.88 688.22 532.53 350.41 279.93 506.00
3 16,785.07 185.68 267.71 173.22 726.25 570.56 383.89 254.52 437.08
4 20,276.51 162.84 307.05 142.09 677.09 521.40 339.98 286.83 529.02
5 17,372.72 192.30 271.26 176.06 728.31 572.62 385.63 246.74 452.77
6 17,882.24 183.66 283.42 168.07 716.15 560.46 373.48 261.94 463.40
7 19,125.03 170.55 292.95 154.98 704.27 548.58 361.60 271.78 495.25
8 17,633.05 197.36 275.90 169.89 717.59 561.90 376.29 258.67 459.89
9 17,282.82 195.63 261.69 180.33 737.88 582.19 395.31 237.93 442.80

10 19,688.38 161.49 292.87 151.62 700.52 544.83 359.57 274.50 507.90
11 19,001.74 172.63 298.09 152.80 697.06 541.37 354.93 274.36 495.37
12 21,012.66 162.36 317.59 136.45 670.18 514.49 332.53 292.79 547.64
13 16,316.88 202.74 264.19 184.32 735.38 579.69 392.82 246.14 424.59
14 18,998.62 172.22 291.80 152.49 704.37 548.68 361.77 268.54 497.03
15 20,174.18 166.03 304.22 144.64 695.35 539.66 352.67 282.83 523.39
16 22,007.06 144.70 318.79 132.10 680.78 525.08 338.10 298.47 569.06
17 19,207.57 172.70 296.34 151.61 700.80 545.11 358.26 269.02 503.15
18 19,184.25 176.21 292.80 156.95 706.77 551.08 364.10 261.23 500.53
19 19,023.42 173.25 296.49 153.29 688.88 533.19 352.03 276.72 493.69
20 15,879.57 198.35 257.87 185.17 741.70 586.01 399.03 243.59 412.61
21 16,609.68 203.07 260.61 183.82 738.96 583.26 396.28 248.14 428.43

which lowers the investment cost, while the robust solution seems to take the more

pessimistic route. Comparing each demand instance, the penalty cost of outsourced

demand is lower for the robust solution, which is attributed to the fact that it builds

for the worst case.

Evaluating the performance of the optimization solution, which is reported by the

out-sample performance in Table 6.3 and Table 6.4, the expected unsatisfied demand

and expected satisfied demand are lower compared to the DRSO solution. All other

high-risk metrics are higher for the DRSO solution. The first four metrics are derived

from the expected unsatisfied demand which explains this observation while the sat-

isfied demand on the other hand is a function of the capacity already installed for

which the DRSO solution is less conservative. However, this simple comparison may

not fully explain the performance of the models, hence we will rely on the charts pre-

sented in Figure 6.2 to Figure 6.5. The capacity investment, on the horizontal axis, is

compared with the four expected unsatisfied demand metrics in Figure 6.2a to Fig-
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(d) CVaR75 unsatisfied demand.

Figure 6.2: Expected unsatisfied demand mean and risk measures (commodity A).

Each of these four charts gives the same observation: Solutions based on the robust

model,at higher investment cost, are revealed to be generally more robust than solu-

tions based on DRSO model, which are at lower investment region. For an unexpected

surge in traffic, the solution based on robust model will be more able to accommo-

date this surge compared to the DRSO solution, as its expected outsourced demand

is lower. However, in order to allow for a fair comparison of these two models and

to be sure this observation is consistent for both models in all the investment regions,

we scale a robust solution up towards the DRSO solutions area while scaling down a

DRSO solution towards the robust solutions area using expected unsatisfied demand
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that is presented in Figure 6.2a. This scaling, which was also used in [70], is carried

out using a representative data point for each model. We scale the xxx solution in the di-

rection of interest and re-evaluate with the out-of-sample set. In personal experience,

this is also common in the industry, where an optimal solution is scaled up or down

during planning iteration, thus allowing for a comprehensive comparison of the two

models in all the investment regions. The DRSO xxx solution is multiplied by a factor of

λ = 1.0 to λ = 1.8, where λ is the scaling factor, with a scale interval of 0.08, to scale up

the solution towards the high investment area while the robust solution is multiplied

by a factor of λ = 1.0 to λ = 0.5, with a scale interval of 0.05, to scale down the solution

towards the low investment area. The result of this scaling is as shown in Figure 6.3

which to the contrary shows that for highly risk-averse metrics (maximum and CVaRs

of expected unsatisfied demand), solutions based on the DRSO model are in fact bet-

ter, having a higher degree of robustness with increasing capacity investment even for

high investment. However, for the less risk-averse metric (expected unsatisfied de-

mand), the robust model gives a better solution at higher investment region but with

comparable performance for lower investment cost. This observation is consistent for

the other two commodities B and C, see Figure 6.7 and Figure 6.10 in the appendix.

Next we compare the unsatisfied demand (in-sample) to the expected outsourced

demand (out-of-sample) for these two models to see which of these gives a better

estimate. The charts in Figure 6.4a to Figure 6.4e present these results and they show

that the DRSO results produce a far better estimate and hence a better predictor of the

input variables under data uncertainty. On the average the input/output ratio of the

unsatisfied demand (in-sample) to the expected unsatisfied demand (out-of-sample) is

around 10.3% (commodities B and C respectively are 10.3% and 4.29%) for the DRSO

model, while for the robust model, this is as high as 23.43% (commodities B and C

respectively are 24.59% and 20.52%). Also, regression analysis in Figure 6.4a shows

that 93% variation in the estimate is explained by the in-sample result for the DRSO

model while for the robust model this is approximately 71%, see Figure 6.4b. The result
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Figure 6.3: Performance metric scaling (commodity A).

follows the same pattern for the maximum expected unsatisfied demand with respect

to the unsatisfied demand in Figure 6.4c for DRSO with R2 = 0.8121 and Figure 6.4d

for the robust model with R2 = 0.6048.

A similar trend is also observed for the satisfied demand (d̃) metric with an I/O gap

of 7.35% (commodities B and C respectively are 7.23% and 4.20%) while the regression

result in Figure 6.4e shows that 94.10% (commodities B and C respectively are 94.78%

and 98.83%) variation in the expected satisfied demand (E[d̃]) is explained by the in-

sample result, which means that 5.90% variation in the expected satisfied demand is

not due to the in-sample satisfied demand.

Although the robust solutions follow a pessimistic route and build more capacity
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Figure 6.4: Results of out-of-sample prediction (commodity A).
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for the same demand instances, there is no observed significant difference in the av-

erage unit cost of capacity for these two models irrespective of commodity type and

data set, see Table 6.2. For commodity A, for instance, with average unit capacity cost

of 38.50 for the DRSO solutions and 38.76 for the robust solutions.

Additional insight on this is provided by Figure 6.5a, which compares the unit

cost per instance and by Figure 6.5b, which shows similar linear relationship between

capacity and investment for the two models. However, if the capacity installed is com-

pared to the total investment cost, the unit cost of robust solutions becomes cheaper.
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Figure 6.5: Investment efficiency (commodity A).

127



6.6 Conclusions

In this paper an efficient approach to distributionally robust network capacity plan-

ning under demand ambiguity was proposed. In this approach, we formulate the

problem as bilevel optimization, where the worst-case distribution can be character-

ized by a two-point distribution. This allows us to reformulate the problem as a convex

optimization problem, where we need to search over the demand d̃ddwe intent to satisfy.

We then solve this new model using Nelder-Mead algorithm, a convex optimization

method.

In order to evaluate the quality of our new approach, the resulting model was

compared with the robust approach model on the Nobel-US network taken from the

SNDlib[108] database on a number of performance metrics. Our computational result

show that solutions from the DRSO model outperform those from the robust model

on all high risk-averse performance metrics. Even in the area of solution robustness

and quality where the later is generally of a higher robustness, the result scaling shows

that solutions from DRSO outperform the robust model in this area on the high risk

measures. The robust, however, performs better on the low risk-averse metric.

One interesting result which was also reported earlier by [105] using a different

metric is the prediction accuracy of the DRSO model with over 90% expected result

variability explained by model result whereas the Robust model cannot be relied upon

having a prediction accuracy of approximately 57% and higher. It was also noted that

despite the performance difference, the actual unit cost of capacity for this two model

is not significantly different.

Moreover, the solutions based on the DRSO were found to be less conservative

when compared to Robust model, irrespective of the observed demand instance, data

set used and the commodity type, with lower total and capacity investment.
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The LORD by wisdom, founded the earth...
Prov 3:19

Appendix

Appendix A: Proof of lemma 6.1

Proof. First suppose that d̃ ≤ µ2+σ2

2µ
.

Here, Nature is characterized by a two point distribution defined by a one-sided Cheby-

shev inequality below;

T =


0 w.p. σ2

σ2+µ2

σ2+µ2

µ
w.p. µ2

σ2+µ2

(6.39)

with mass σ2

σ2+µ2
at 0 and vice-versa. Hence, Nature becomes,

N(d̃, χ1) = (χ1 − d̃)

(
µ2

σ2 + µ2

)
where χ1 is the upper support, hence;

N(d̃) =

(
σ2 + µ2

µ
− d̃
)(

µ2

σ2 + µ2

)
N(d̃) = µ− d̃

(
µ2

σ2 + µ2

)

Suppose now that d̃ > µ2+σ2

2µ
. Let χ2 be the upper support point of nature’s distribution.

Nature objective function can be written as:

N(d̃, χ2) = (χ2 − d̃)(1− q), (6.40)
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where q is probability mass on lower support point. We can express q in terms of χ2

using the fact that

χ2 = µ+ σ

√
q

1− q
,

which gives

q =
(χ2 − µ)2

σ2 + (χ2 − µ)2
.

which can be derived from the following two equations, where α is the lower support

point ;

pα + (1− p)χ2 = µ

pα2 + (1− p)χ2
2 = µ2 + σ2

Then, Equation 6.40 becomes;

N(d̃, χ2) = (χ2 − d̃)

(
1− (χ2 − µ)2

(χ2 − µ)2 + σ2

)
(6.41)

The value of χ at the root maximizes the above function. To this end, the first

derivative of N w.r.t χ is

∂N

∂χ2

= −σ
2(χ2

2 − 2d̃χ2 + 2µd̃− µ2 − σ2)

(χ2
2 − 2µχ2 + σ2 + µ2)2

,

Setting ∂N
∂χ2

= 0, produces a root at χ2 = d̃+
√

(d̃− µ)2 + σ2 which when substituted in

Equation 6.41 gives

N(d̃) =

(
d̃+

√
(d̃− µ)2 + σ2 − d̃

)1−

(
d̃+

√
(d̃− µ)2 + σ2 − µ

)2

(
d̃+

√
(d̃− µ)2 + σ2 − µ

)2

+ σ2


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Simplifying the above equation and re-arranging terms result in the below;

N(d̃) = 1/2

(
µ− d̃+

√
(d̃− µ)2 + σ2

)

and this completes the proof of Equation 6.22.

N(d̃) =


1/2

(
µ− d̃+

√
(d̃− µ)2 + σ2

)
when d̃ > µ2+σ2

2µ

µ− d̃
(

µ2

µ2+σ2

)
when d̃ ≤ µ2+σ2

2µ

Appendix B: Results for commodity type B.

We present additional results for commodity type B in a similar way to the presenta-

tion of results for commodity type A in the main text. Table 6.5 and Table 6.6 show key

metrics for the 21 repetitions using the robust and the DRSO model, respectively.

Figure 6.6, Figure 6.7 and Figure 6.8 correspond to Figure 6.2, Figure 6.3 and Fig-

ure 6.4 using commodity type B instead of A.

Results indicate an overall similarity to the results reported in Section 6.5 on pages

120-128 with the same conclusion as commodity type A.

Appendix C: Results for commodity type C.

We present additional results for commodity type C in a similar way to the presenta-

tion of results for commodity type A in the main text. Table 6.7 and Table 6.8 show

key metrics for the 20 repetitions using the robust and the DRSO model, respectively.

Results of commodity C also aligns with that of commodities A and B.

Figure 6.9, Figure 6.10 and Figure 6.11 correspond to Figure 6.2, Figure 6.3 and

Figure 6.4 using commodity type B instead of A.
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Table 6.5: Robust model results for commodity type B.

In Sample Out of Sample

Inst. Cap. Inv. O/S Demand E[O/S] E[Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 26,955.23 138.21 94.47 614.68 458.99 272.58 342.28 682.99
2 27,340.83 122.58 95.06 592.60 436.90 259.98 358.40 690.01
3 27,966.59 109.42 88.49 601.61 445.92 262.78 349.14 698.86
4 30,966.21 96.20 73.17 569.72 414.03 232.73 356.59 787.31
5 27,081.86 135.60 93.40 600.58 444.89 262.61 342.51 698.33
6 32,108.77 98.27 71.99 540.65 384.96 212.76 384.38 824.14
7 25,174.15 144.43 109.13 615.47 459.78 280.33 340.72 627.89
8 28,144.28 125.35 85.90 588.84 433.15 250.75 363.18 717.50
9 33,905.19 84.59 62.63 531.42 375.74 206.53 394.00 871.49

10 25,598.99 127.12 101.55 622.91 467.21 284.64 329.08 656.61
11 30,395.00 100.40 73.78 554.45 399.09 223.45 379.72 774.90
12 29,084.16 112.90 84.14 583.00 427.31 244.61 358.90 743.51
13 30,291.89 109.15 80.03 567.86 412.16 235.45 352.00 764.24
14 27,374.82 111.42 87.46 593.87 438.18 254.00 356.60 701.42
15 28,590.93 112.90 82.91 593.14 437.45 251.73 351.84 731.89
16 30,027.87 95.84 75.90 560.51 404.82 226.01 367.25 764.01
17 27,506.54 111.69 92.84 603.45 447.76 266.75 337.79 703.11
18 27,813.21 121.74 89.64 593.74 438.04 253.97 354.84 709.47
19 31,422.87 100.67 78.99 550.96 395.27 218.36 357.05 800.68
20 26,886.16 118.71 95.24 619.57 463.88 278.46 341.75 685.73
21 27,750.82 123.86 93.98 594.73 439.04 260.02 343.73 701.20

Table 6.6: DRSO model results for commodity type B.

In Sample Out of Sample

Inst. Cap. Inv. Nature d̃ E[O/S] E[ Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 17,917.30 197.00 272.84 169.65 726.73 571.04 384.06 252.57 450.22
2 20,356.05 156.43 316.57 140.34 683.00 527.31 340.33 293.09 513.17
3 19,387.54 164.77 292.85 153.23 706.72 551.03 364.05 273.34 491.20
4 18,059.27 191.98 271.09 173.10 728.48 572.79 386.11 241.03 460.61
5 19,949.98 166.55 306.07 144.27 693.50 537.81 350.83 279.57 515.17
6 21,042.16 153.28 319.69 132.98 679.88 524.19 337.21 289.33 538.45
7 20,756.93 149.48 323.17 133.46 676.40 520.71 333.73 299.24 527.19
8 19,641.00 171.67 310.38 146.93 689.19 533.50 346.52 292.60 494.15
9 19,625.72 161.37 310.06 143.92 689.51 533.82 346.83 291.45 494.48

10 19,318.96 153.30 305.69 145.59 693.88 538.19 351.21 283.81 493.99
11 18,554.09 179.70 291.15 158.88 708.42 552.73 366.19 263.01 471.08
12 15,903.68 203.29 267.32 186.02 732.25 576.56 389.58 253.73 401.86
13 16,550.21 197.09 275.00 175.14 724.57 568.88 382.16 258.62 420.55
14 17,326.99 183.18 280.58 166.19 718.99 563.29 376.65 254.37 448.43
15 18,206.14 177.24 290.24 161.64 709.33 553.64 366.66 268.19 469.62
16 20,826.06 139.73 329.30 131.07 670.27 514.58 327.60 303.62 529.05
17 20,943.80 152.76 323.21 133.57 676.36 520.66 333.68 301.89 526.64
18 21,479.18 146.50 332.86 127.91 666.71 511.02 324.06 309.97 542.32
19 19,553.38 159.83 314.98 142.59 684.59 528.89 342.11 296.98 498.68
20 20,173.40 156.14 312.15 142.32 687.42 531.73 344.75 287.68 510.07
21 18,786.10 164.48 309.88 151.53 689.69 534.00 347.02 293.73 479.52
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Figure 6.6: Expected unsatisfied demand mean and risk measures (commodity B).
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Figure 6.7: Performance metric scaling (commodity B).
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Figure 6.8: Results of out-of-sample prediction (commodity B).
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Table 6.7: Robust model results for commodity type C.

In Sample Out of Sample

Inst. Cap. Inv. O/S Demand E[O/S] E[Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 26,956.58 179.10 136.73 684.56 529.60 339.64 276.26 647.25
2 32,347.16 161.78 130.64 634.36 479.54 296.79 279.20 794.22
3 30,172.88 149.01 119.10 659.10 504.14 313.73 282.00 725.67
4 28,334.37 172.10 137.63 667.46 512.50 325.54 273.43 686.66
5 35,453.89 120.88 98.17 594.81 439.86 257.32 320.85 851.52
6 30,982.87 152.36 119.19 664.96 510.01 320.93 293.67 749.94
7 25,591.28 195.04 159.70 690.12 535.33 353.75 264.98 616.11
8 25,347.46 209.66 156.05 706.55 551.59 363.42 246.95 609.26
9 30,205.32 184.27 132.04 651.36 496.41 317.62 275.19 727.79

10 27,130.79 166.38 143.88 698.51 543.55 353.33 266.32 656.16
11 29,966.64 150.23 126.10 649.42 494.47 309.78 285.65 722.97
12 30,664.61 146.39 123.74 648.96 494.00 305.39 291.40 742.28
13 30,595.65 154.07 129.73 641.56 486.60 302.37 296.50 739.28
14 32,529.85 149.01 109.24 628.82 475.08 292.77 310.60 781.49
15 28,710.56 150.83 129.56 674.99 520.03 329.21 279.38 692.88
16 28,970.35 167.93 133.26 655.04 500.08 316.23 308.97 703.85
17 29,124.96 169.75 134.52 658.81 504.96 323.99 283.71 698.58
18 24,216.81 191.10 163.21 717.45 562.50 371.64 249.18 590.91
19 31,721.36 171.99 119.38 627.87 472.94 292.73 281.83 759.90
20 25,506.27 189.19 145.45 706.33 551.37 360.61 267.52 610.99

Table 6.8: DRSO model results for commodity type C.

In Sample Out of Sample

Inst. Cap. Inv. Nature d̃ E[O/S] E[ Max O/S] CVaR95 CVaR75 E[d̃] CapAdd

1 12,363.99 268.29 152.98 258.35 842.53 687.58 496.72 146.54 294.04
2 5,571.67 345.44 59.95 332.11 929.18 774.23 583.37 65.39 136.01
3 13,259.41 259.92 165.58 247.00 829.93 674.97 484.12 157.41 321.55
4 7,897.34 309.18 105.22 301.23 888.37 733.42 542.56 101.94 186.84
5 12,396.05 285.00 146.38 258.36 839.87 684.91 494.06 142.81 299.13
6 11,576.99 263.34 151.77 261.03 843.09 688.14 497.28 147.41 283.31
7 11,152.00 270.66 148.23 267.12 847.28 692.33 501.47 136.14 266.95
8 14,153.71 249.28 174.53 237.78 820.98 666.03 475.17 162.31 344.49
9 9,627.59 282.76 134.52 276.63 858.54 703.58 512.73 129.57 234.24

10 10,393.15 287.02 126.55 272.23 861.08 706.13 515.27 126.03 249.93
11 10,305.45 284.76 131.37 275.49 861.32 706.36 515.51 130.22 252.57
12 8,650.82 311.90 105.36 295.17 882.67 727.72 536.86 106.36 214.13
13 14,760.43 242.42 189.52 229.55 805.94 650.98 460.13 178.94 355.27
14 10,207.56 295.88 132.09 276.41 860.33 705.37 514.52 125.09 248.92
15 15,725.45 240.47 176.62 231.30 813.68 658.73 467.87 173.52 381.58
16 12,809.80 261.85 160.46 253.39 835.05 680.10 489.24 154.27 312.61
17 14,626.78 243.12 186.55 230.40 808.96 654.00 463.15 171.96 353.18
18 13,876.73 245.18 173.35 241.13 822.12 667.17 476.31 159.20 336.01
19 13,628.69 262.00 175.23 236.30 815.98 661.03 470.17 165.27 327.33
20 11,700.59 261.69 158.25 254.83 836.88 681.93 491.07 150.23 272.91
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Figure 6.9: Expected unsatisfied demand mean and risk measures (commodity C).
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Figure 6.10: Performance metric scaling (commodity C).
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Figure 6.11: Results of out-of-sample prediction (commodity C).
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Hear the conclusion of the whole matter: Fear God...
Eccl. 12:13

Chapter 7

Conclusion

Network design and capacity planning, strategic business decisions do require inno-

vative tools to be able to deliver on the best business objective. Business decisions and

especially that of strategic long term horizon are often made under varying degrees

of uncertainty, from partial to complete/full uncertainty. It then becomes imperative

that the tools to be used can incorporate uncertainty. Some of the tools that are avail-

able in the field of operations research have been investigated in the cause of this

thesis and especially as it relates to the practicality of their use in the industry. These

tools include stochastic programming, robust optimization and distributionally robust

stochastic optimization with a couple of machine learning approaches in the context

of a data-driven optimization approach. Two models of uncertainty set are considered

along with these tools and these are scenario and polyhedral uncertainty sets.

Different models based on these approaches were developed and compared on sev-

eral different problem types and objectives with performance comparison made on

the result of numerical computation experiments. In Chapter 3, the nonlinear cost

model to capacity planning was presented, this being the case in the real world as well

in the industry, in contrast to the generally assumed linear cost function in most of the

literature. This chapter discusses two types of this, the fixed charge cost model and the
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piecewise linear cost model. We show that a network of realistic sizes can be designed

and solved in a practical amount of time.

In Chapter 4 the choice of uncertainty is addressed in the context of real-world us-

ability from the wide array of uncertainty models proposed in the literature. This

becomes necessary as an inappropriate choice does lead to models that may be too

conservative or intractable. Robust models for network capacity expansion with out-

sourced demand are compared for two uncertainty types, discrete and polyhedral, as

well as for a deterministic stochastic based model. The performance result shows that

solutions based on the discrete uncertainty model performed the best on all metrics

while the stochastic optimization model, which is relatively competitive, may fit more

complex situations where the robust models are intractable.

Chapter 5 presents a machine learning extension of Chapter 4 where this is used for

the generation of the two uncertainty sets under consideration. A discrete uncertainty

set is generated using clustering, the K-means, while for a polyhedral uncertainty set,

a supervised learning technique is employed. A path-based formulation is imple-

mented for robust optimization, unlike the previous arc-based formulation. Compar-

ing the performance of the resulting solutions from these two models on real-world

data, the discrete uncertainty model still outperforms that of the polyhedral robust

model in terms of solution quality and computational burden on all measured perfor-

mance metrics.

Finally, Chapter 6 proposes a unifying approach, the distributionally robust stochastic

optimization (DRSO), a data-driven modeling methodology, to the network capacity

planning problem under demand ambiguity. The worst-case distribution is charac-

terized by a two-point distribution where the problem is represented as a bi-level op-

timization problem. The solutions from this model when compared with that from
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the robust optimization model, show the DRSO to be the better model for the high

risk-averse performance metrics. The robust on the other hand performed better on

the low-risk averse metrics. Also, the prediction accuracy of the DRSO is found to be

much better than the robust model.

In practice, traffic forecasting does precede any network capacity planning and de-

sign which entails strong collaboration between the marketing team and the network

design/performance team. However, these two functions are treated in silos within

the academic research community. It would be beneficial to practitioners, if future re-

search could look at combining these two in a single study, breaking up the current

silos, thereby looking at a possible hybrid model. In the era of big data, this becomes

even more imperative where machine learning approach could be employed.

One of the findings in this work is the better performance of the discrete uncertainty

set compared to the polyhedral set on actual world data. Apparently, literature before

now already concluded the polyhedral uncertainty set as the better model. The ques-

tion that comes to mind is, to what extent this new finding holds true, i.e., what are

the possible bounds and limits of this new observation? Hence, it would be worth the

while, if further research could be carried out using machine learning approach to see

how these compare on a wide array of networks, settings and real world data sets. It

would be fine also to know, to what extent is the shape of available data impacts on

this performance.

In our robust model to piecewise-linear cost problem, it was observed that the solu-

tion times increase considerably with increasing number of scenarios, hence one could

look at other algorithms, e.g Benders decomposition and hybrids or any other special-

ized algorithm, to speed up this computation time. In our piecewise-linear cost model,

the Multiple Choice Model(MCM) MIP formulation was used based on the review of
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existing literatures. This model too could be compared with the two next promising

ones, Disaggregated Convex Combination (DCC) and Logarithmic DCC (Dlog), and

compare the performance before going the route of speed enhancing algorithms. Al-

ternatively, other uncertainty types, polyhedral in particular, could be used with this

non-linear cost model to see how this compares to the scenario uncertainty set.

The result of the DRSO study shows that this model performs better on the high

risk metrics but not on the low risk one in comparison to the robust model. Though

any decision maker would prefer a model that results in lower capital outlay for the

same amount of expected traffic, which would ordinarily make DRSO the preference

in practice, however the poor performance on low risk adverse metrics would need

to be further investigated and where feasible addressed. What improvement can be

made to DRSO model that will ensure it outperforms on all the metrics? Performance

of different ambiguity sets could be compared as well as with the robust models also.

Future direction for the research study could also address the area of dynamic net-

work resource allocation optimization. Resource allocation optimization in a mobile

network has always generated interest for its network performance assurance role,

hence optimization of network performance becomes a continuous process with its

strategic inclination. This could still be combined with the Yield Management frame-

work to maximize revenue.
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Hear the conclusion of the whole matter: Fear God...
Eccl. 12:13
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canadien de mathématiques, 8(0):399–404.

[66] Fulkerson, D. R. and Dantzig, G. B. (1955). Computation of maximal flows in

networks. Naval Research Logistics Quarterly, 2(4):277–283.

[67] Gabrel, V., Murat, C., and Thiele, A. (2014). Recent advances in robust optimiza-

tion: An overview. European Journal of Operational Research, 235(3):471–483.

[68] Garuba, F., Goerigk, M., and Jacko, P. (2019a). A comparison of models for uncer-

tain network design. arXiv preprint arXiv:1901.03586v1.

151



[69] Garuba, F., Goerigk, M., and Jacko, P. (2019b). Robust network capacity expan-

sion with non-linear costs. In Cacchiani, V. and Marchetti-Spaccamela, A., editors,

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization,

and Systems, ATMOS 2019, September 12-13, 2019, Munich, Germany, volume 75 of

OASICS, pages 5:1–5:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[70] Garuba, F., Jacko, P., and Goerigk, M. (2019c). A comparison of data-driven un-

certainty sets for robust network design. arXiv preprint arXiv:2003.10507. In Publi-

cation.

[71] Gendron, B. (2002). A note on dual-ascent approach to the fixed-charge capaci-

tated network design problem. European Journal of Operational Research, 138:671–675.

[72] Gendron, B., Crainic, T. G., and Frangioni, A. (1999). Multicommodity capacitated

network design. In Telecommunications Network Planning, pages 1–19. Springer US.

[73] Ghaoui, L. E., Oustry, F., and Lebret, H. (1998). Robust solutions to uncertain

semidefinite programs. SIAM Journal on Optimization, 9(1):33–52.
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