
1 

Modeling the ecological status response of rivers to multiple stressors using machine 1 

learning: a comparison of environmental DNA metabarcoding and morphological data 2 

Juntao Fan a, Shuping Wang a, Hong Li b, c, Zhenguang Yan a, *, Yizhang Zhang a, d, Xin 3 

Zheng a, Pengyuan Wang a 4 

a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese 5 

Research Academy of Environmental Sciences, Beijing, 100012, China 6 

b Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK 7 

c UK Centre for Ecology & Hydrology, MacLean Building, Wallingford OX108 BB, UK 8 

d Chinese Research Academy of Environmental Sciences Tianjin Branch, Tianjin, 9 

300457, China 10 

* Corresponding author. 11 

E-mail address: zgyan@craes.org.cn (Z. Yan). 12 

13 



2 

ABSTRACT 14 

Understanding the ecological status response of rivers to multiple stressors is a 15 

precondition for river restoration and management. However, this requires the 16 

collection of appropriate data, including environmental variables and the status of 17 

aquatic organisms, and analysis via a suitable model that captures the nonlinear 18 

relationships between ecological status and various stressors. The morphological 19 

approach has been the standard data collection method employed for establishing the 20 

status of aquatic organisms. However, this approach is very laborious and restricted to 21 

a specific set of organisms. Recently, an environmental DNA (eDNA) metabarcoding 22 

data approach has been developed that is far more efficient than the morphological 23 

approach and potentially applicable to an unlimited set of organisms. However, it 24 

remains unclear how well eDNA metabarcoding data reflects the impacts of 25 

environmental stressors on aquatic ecosystems compared with morphological data, 26 

which is essential for clarifying the potential applications of eDNA metabarcoding data 27 

in the ecological monitoring and management of rivers. The present work addresses this 28 

issue by modeling organism diversity based on three indices with respect to multiple 29 

environmental variables in both the catchment and reach scales. This is done by 30 

corresponding support vector machine (SVM) models constructed from eDNA 31 

metabarcoding and morphological data on 24 sampling locations in the Taizi River 32 

basin, China. According to the mean absolute percent error (MAPE) between the 33 

measured diversity index values and the index values predicted by the SVM models, 34 

the SVM models constructed from eDNA metabarcoding data (MAPE = 3.87) provide 35 

more accurate predictions than the SVM models constructed from morphological data 36 

(MAPE = 28.36), revealing that the eDNA metabarcoding data better reflects 37 

environmental conditions. In addition, the sensitivity of SVM model predictions of the 38 
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ecological indices for both catchment-scale and reach-scale stressors is evaluated, and 39 

the stressors having the greatest impact on the ecological status of rivers are identified. 40 

The results demonstrate that the ecological status of rivers is more sensitive to 41 

environmental stressors at the reach scale than to stressors at the catchment scale. 42 

Therefore, our study is helpful in exploring the potential applications of eDNA 43 

metabarcoding data and SVM modeling in the ecological monitoring and management 44 

of rivers. 45 
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1. Introduction 50 

River ecosystems are impacted by multiple environmental variables at both the 51 

catchment scale and reach scale simultaneously, and any of these variables lying outside 52 

of their normal range can become a stressor. These natural and anthropogenic stressors 53 

always interact and are directly or indirectly impacting ecological status (Mori et al., 54 

2019; Romero et al., 2018). For example, catchment scale stressors, such as increased 55 

impervious land use by humans, altere physical and chemical conditions of rivers such 56 

as increased nutrition through hydrological processes, affecting the structure and 57 

function of aquatic ecosystems (Bernhardt et al., 2012; Von Schiller et al., 2017). Here, 58 

aquatic communities play an important role in supporting ecosystem services, stability, 59 

and biodiversity, and their status can reflect the long-term cumulative effects of 60 

environmental stressors on aquatic ecosystems (Franzo and Del Negro, 2019). 61 

Therefore, biomonitoring is essential for assessing the impacts of human disturbance at 62 

the multiple scales of river basins. The standard approach that has been applied to river 63 

biomonitoring involves the sorting and morphological identification of aquatic 64 

communities, which is time-consuming and demands a high degree of taxonomic 65 

expertise (Pawlowski et al., 2018). However, the high-throughput amplicon sequencing 66 

of environmental DNA (eDNA) has recently provided a viable option for biomonitoring, 67 

which purified from substrates such as soil or water contains DNA fragments 68 

originating from organisms present in that environment (Cordier et al., 2017; Jarman et 69 

al., 2018; Mize et al., 2019; Visco et al., 2015). Moreover, a number of previous studies 70 

have shown that eDNA metabarcoding data can provide an accurate indication of 71 

environmental changes. For example, the relative abundance of operational taxonomic 72 

units (OTUs) indicative of plankton was demonstrated to have a significant negative 73 

correlation with river nutrient levels (Li et al., 2018a). The foraminifera diversity 74 
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inferred from eDNA metabarcoding data was found to have a significant positive 75 

correlation with the biodiversity in the benthic zone impacted by fish farming activities 76 

(He et al., 2019), and the distance from a wellhead in the ocean (Laroche et al., 2016). 77 

Benthic macroinvertebrates diversity inferred from eDNA metabarcoding data were 78 

also used to assess the freshwater quality (Fernandez et al., 2018; Hering et al., 2018). 79 

In addition, previous studies have shown that, compared with morphological 80 

classification, eDNA metabarcoding is a relatively simple and affordable method for 81 

assessing biodiversity on a large temporal and spatial scale without the need for time-82 

consuming microscopy analysis by experts (He et al., 2019; Ji et al., 2013). Taxonomic 83 

classification based on eDNA metabarcoding is usually more accurate than 84 

morphological identification, particularly for species with similar morphology and 85 

species with poor life cycle characteristics (He et al., 2019; Humbert et al., 2010). 86 

Furthermore, eDNA metabarcoding data can be easily reanalyzed to make it suitable 87 

for review by third parties (Ji et al., 2013). However, it remains unclear how well eDNA 88 

metabarcoding data reflects the impacts of environmental stressors on aquatic 89 

ecosystems in comparison with morphological identification data. Clarifying this issue 90 

will illuminate potential applications of eDNA technology in the monitoring and 91 

management of aquatic ecosystems. 92 

Understanding the response of river ecosystems to multiple stressors and identifying 93 

important stressors are prerequisites for conducting effective river restoration and 94 

management (Meissner et al., 2019; Zhang, 2019). Developing this understanding 95 

requires the analysis of biomonitoring data via a suitable model that captures the 96 

relationships between the status of ecosystems and various stressors. However, the 97 

interactions of multiple stressors produce a combined effect that can be equal to 98 

(additive), greater than (synergistic), or less than (antagonistic) the sum of each single 99 
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effect (Piggott et al., 2015). Indeed, the response of aquatic ecosystems to multiple 100 

stressors is typically nonlinear, which greatly complicates the development of accurate 101 

models (Jones et al., 2017). The modeling of nonlinear responses can be conducted 102 

using various methods, including mathematical/physical models, statistical models, and 103 

data-driven models (Al-Mukhtar, 2019; Choubin et al., 2018; Park et al., 2015). 104 

However, the complexity of relationships between ecological status and multiple 105 

stressors limits the application of mathematical/physical models, and statistical models 106 

also suffer from disadvantages, such as poor generalizability due to relatively small 107 

sample sizes (Cui and Gong, 2018; Varoquaux, 2018). The development of machine 108 

learning (ML) over the past few years has provided a new approach for quantifying 109 

these nonlinear relationships (Torija and Ruiz, 2015). At present, ML models have been 110 

widely used in the prediction of environmental or ecological indicators. For example, a 111 

Bayesian belief network (BBN) was applied to model the combined effects of land use 112 

change and climate change on the status of macroinvertebrates and fish in freshwater 113 

bodies (Olson, 2018). In addition, artificial neural networks (ANNs), the support vector 114 

machine (SVM) and generalized regression neural network, were used for predicting 115 

chlorophyll-a concentrations in freshwater, and the results demonstrated that these data-116 

driven ML methods achieved better prediction performance than conventional 117 

statistical methods (Marvuglia et al., 2015; Park et al., 2015). The SVM method is 118 

particularly advantageous for modeling nonlinear response relationships because the 119 

SVM is good for solving high-dimensional and nonlinear problems, while avoiding the 120 

difficulties associated with determining the network structure and local minima of the 121 

solutions, and provides good generalizability and relatively good prediction 122 

performance under small sample size conditions (Vapnik, 1999). These advantages have 123 

made SVM outperform other ML methods, e.g., standard ANNs, random forest (RF) 124 
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classifiers, and boosted trees (BT) classification, in the prediction of soil organic carbon, 125 

clay content, and pH (Rossel and Behrens, 2010; Were et al., 2015) and chlorophyll-a 126 

(Park et al., 2015) in some regions. Therefore, the SVM is well suited for modeling the 127 

relationships between the ecological status of rivers and multiple stressors. 128 

The present study compares the ability of eDNA metabarcoding data and 129 

morphological identification data to reflect the nonlinear impact of multiple 130 

environmental stressors on aquatic ecosystems by employing both sets of data in SVM 131 

models corresponding to three ecological indices (i.e. observed species, Shannon 132 

Wiener index, and Simpson index), which were commonly used in biodiversity 133 

assessment inferred from eDNA metabarcoding or morphological data. As such, the 134 

present work helps to explore the potential applications of eDNA technology in the 135 

monitoring and management of aquatic ecosystems. In addition, the sensitivity of SVM 136 

model predictions of the ecological indices to individual catchment-scale and reach-137 

scale stressors is evaluated, and the stressors having the greatest impact on the 138 

ecological status of rivers are identified. 139 

 140 

2. Materials and methods 141 

2.1. Study area 142 

The study area was the upstream area of the Taizi River basin (122°23’E–122°53’E, 143 

40°28’N–41°39’N) in northeastern China. The location and characteristics of the study 144 

area are illustrated in Fig. 1. A previous study demonstrated that the ecological status 145 

of the Taizi River in this area was relatively good because the majority of the land in 146 

the upstream area was covered by forests, and the intensity of human activities was 147 

relatively low (Fan et al., 2015). The primary aquatic organisms of the Taizi River, 148 

particularly those species most sensitive to environmental stressors, such as clean-type 149 
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fishes (Lampetra morii and Odontobutis Obscurus) and macrobenthos (Epeorus melli 150 

and Cambaroides dauricus), are mainly distributed in the upper reaches of the river. All 151 

of these organisms play an important role in maintaining the health of the aquatic 152 

ecosystem. However, the urbanization process in the region and the acceleration of 153 

human activities in recent years, such as agriculture and mining, have resulted in water 154 

shortages, the deterioration of water quality, habitat damage, loss of biodiversity, and 155 

the reduction of ecological functions. 156 

 157 

Fig. 1. Map of the study area incorporating the upper area of the Taizi River basin at 158 

the time of sample collection in October, 2018. The 24 sampling sites and different 159 

types of land use in the sub-basins are indicated, and the location of the study area 160 

relative to the national boundary of China is shown in the inset. 161 

 162 

2.2. Ecological and environmental data collection 163 

The 24 sites sampled during October 2018 (Fig. 1) were located in the mainstem and 164 

tributaries of the upstream area of the Taizi River basin. Surface water was sampled 165 

using sterile bottles. One liter per site was used for eDNA metabarcoding analysis. 166 
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Three independent extractions of 300 mL were obtained from each one-liter water 167 

sample within 6 h after sampling by filtering across a Millipore 0.22 μm hydrophilic 168 

nylon membrane. The membrane discs containing captured eDNA were placed in 5.0 169 

mL centrifugal tubes, and were instantly frozen and stored at −20°C until DNA 170 

extraction. For morphological identification, phytoplankton samples were collected at 171 

each sampling site by dragging a nylon mesh with a pore size of 64 μm under the water 172 

surface for about 2 min. The water sample concentrated in the drip tube of the net was 173 

collected in a 50 mL sample bottle and fixed using Lugol's solution. 174 

Environmental variables considered include catchment-scale variables (i.e., land use 175 

data) and reach-scale variables (i.e., physicochemical parameters). Land use data were 176 

extracted from an analysis of Spot Image data obtained with a 2.5 m resolution. The 177 

proportion of land use types (i.e., forest, agriculture, urban, and industrial) was 178 

determined for the region of the catchment upstream of each sampling site contributing 179 

to the sample characteristics and for a 250 m impact zone adjacent to the studied river 180 

segment. Ten physicochemical indicators were selected, including electrical 181 

conductivity (EC), dissolved oxygen (DO), pH, biological oxygen demand over 5 days 182 

(BOD5), permanganate index (CODMn), total phosphorus (TP), ammonia nitrogen 183 

concentration (NH3-N), total nitrogen (TN), suspended sediment (SS), and volatile 184 

phenol (VP). The work of (Fan et al., 2015) and Chinese Quality Standards for Surface 185 

Water Resources (Ministry of Water Resources, 1994) established thresholds not to be 186 

exceed to assure high ecological status for these physicochemical parameters. These are 187 

given as follows: EC = 400 μs/cm, DO = 7.5 mg/L, BOD5 = 3 mg/L, CODMn = 2 mg/L, 188 

NH3-N = 0.15 mg/L, TN = 0.2 mg/L (which was only considered in lake or reservoir 189 

samples), TP = 0.02 mg/L, VP = 0.002 mg/L, SS = 20 mg/L, pH = 6.5~8.5. 190 

 191 
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2.3. eDNA metabarcoding and morphological identification 192 

Phytoplankton is the target taxonomic group of eDNA metabarcoding and 193 

morphological identification. Total eDNA was extracted using the cetyl 194 

trimethylammonium bromide (CTAB) method combined with the Zymo DNA Clean & 195 

Concentrator kit (Zymo Research Corp, Irvine, USA) (Yuan et al., 2015). The 196 

concentration of eDNA was determined using a NanoDrop One microvolume 197 

ultraviolet-visible (UV-vis) spectrophotometer (Thermo Fisher Scientific, Carlsbad, 198 

USA). The eDNA was used as templates for the polymerase chain reaction (PCR) 199 

method with 18S rRNA gene primers 18SV9F (5'-CCCTGCCNTTTGTACACAC-3') 200 

and 18SV9FR (5'-CCTTCNGCAGGTTCACCTAC-3') (Amaral-Zettler et al., 2009; De 201 

Vargas et al., 2015). The 18S rRNA gene primers were used because phytoplankton 202 

diversity including the cryptic diversity in environmental samples can be indicated by 203 

sequencing of 18S rRNA gene, and the SILVA datasets offered the 18S primer 204 

opportunity to assess distribution patterns of phytoplankton species (Treusch et al., 205 

2012). The purified PCR products were added with 8-base sequence tags corresponding 206 

to each sample. High throughput sequencing was conducted using a MiSeq sequencing 207 

platform (Illumina, San Diego, USA). All low-quality sequencing data points with 208 

adaptors, ambiguous bases, low complexity, and those having average quality scores 209 

less than 20 were discarded using the UPARSE pipeline (Edgar, 2013). The OTUs were 210 

determined at the ≥97% identity level (Edgar, 2013). Taxonomic annotation analysis 211 

was performed using the Qiime2 pipeline (Caporaso et al., 2010) with respect to the 212 

SILVA-119 reference database. The remaining high-quality data were transformed to 213 

relative proportions before conducting subsequent statistical analysis. 214 

For morphological identification, samples were concentrated and precipitated, and 215 

the sample volume was adjusted to 20–50 mL. The concentrated sample was then 216 
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shaken uniformly, and 0.1 mL of the sample was immediately placed in a counting box 217 

for morphological identification. The phytoplankton taxa in each sample were 218 

identified under a 10 × 40 microscope. However, if a high concentration of diatoms 219 

were observed, the sample was sealed and identified under a 10 × 100 microscope. The 220 

specimens were identified to species level through microscopy and taxonomic experts 221 

consultation. The reference used to identify phytoplankton is the Freshwater Alage of 222 

China – Systematics, Taxonomy and Ecology (Hu and Wei, 2006). 223 

 224 
2.4. SVM model development 225 

The ecological status of the samples was evaluated according to the obtained eDNA 226 

metabarcoding and morphology identification data based on three widely used 227 

ecological indices, i.e., observed species (Kefford et al., 2011), Shannon Wiener index 228 

(Strong, 2016), and Simpson index (Keylock, 2005). The abbreviations and ecological 229 

significance of each of these indices are listed in Table 1. The values for these ecological 230 

indices obtained from the eDNA metabarcoding and morphology identification data 231 

were employed as the response/dependent variables in their respective SVM models. 232 

The catchment-scale variables and reach-scale variables were input to the respective 233 

SVM models as the independent variables. 234 

 235 
Table 1 236 

List of ecological indices with abbreviations and ecological significance. 237 

Ecological 

index/Response 

variables 

Abbreviations in 

eDNA 

metabarcoding 

Abbreviations in 

morphological 

identification 

Ecological significance 

Observed 

species  

Species _E Species _M Number of species or OTU 

observed. 

Shannon Wiener 

index 

Shannon _E Shannon _M The species/OTUs richness and 

evenness of the community, but 

predominantly sensitive to richness. 
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Richness increases with increasing 

index value. 

Simpson index Simpson _E Simpson_M The species/OTUs richness and 

evenness of the community, but 

predominantly sensitive to 

evenness. Evenness increases with 

increasing index value. 

 238 

The SVM was applied for nonlinear regression analysis to establish the response of 239 

the ecological indices to the multiple environmental variables. Here, the input data were 240 

mapped initially into a higher-dimensional feature space via a kernel function (i.e., a 241 

linear kernel, polynomial kernel, radial basis kernel, and Gaussian kernel), and then 242 

linear regression was performed in the high-dimensional feature space to obtain the 243 

nonlinear regression effect in the original space (Balfer and Bajorath, 2015; Bouboulis 244 

et al., 2015). The specific kernel function applied was selected by cross-validation 245 

(Piette and Moore, 2018). 246 

The regression performance of the SVM depends on the appropriate selection of 247 

parameter values, including cost (c), epsilon (ε), and gamma (γ), where both c and ε are 248 

employed to establish the penalty coefficient, which represents the error tolerance of 249 

the regression analysis, and γ determines the distribution of the data after it is mapped 250 

to the new feature space. Here, the number of support vectors decreases with increasing 251 

γ, which affects the speed of training and prediction. The values of these parameters are 252 

optimized using a loop traversal algorithm (Cherkassky and Ma, 2004). Normalization 253 

was applied to all independent variables to ensure that the indicator values were 254 

comparable. 255 

The generalization ability of the model was verified by 8-fold cross validation, where 256 

the dataset was divided into 8 subsets, and each subset was employed as the testing set 257 

once, while the remaining 7 subsets were used as the training set. Accordingly, this 258 
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process was repeated 8 times. The prediction error of each model was evaluated based 259 

on the mean absolute percent error (MAPE), which is calculated for n samples as 260 

follows: 261 

  (1) 262 

where Observedt is the observed value and Predictedt is the predicted value. Then, the 263 

model with the smallest MAPE value was selected as the optimal model. 264 

Sensitivity analysis was applied to determine the environmental variables that most 265 

greatly influenced the model predictions of the ecological indices. This was conducted 266 

using the one-factor-at-a-time (OAT) approach. Here, the MAPE values of the model 267 

predictions were obtained with one environmental variable omitted at a time, while the 268 

other environmental variables were held constant. Then, the impact of each 269 

environmental variable on the model prediction was evaluated according to the absolute 270 

value of the difference between the MAPE obtained with and without that variable, 271 

which is denoted herein as ΔMAPE. Accordingly, the sensitivity of the ecological index 272 

predictions to an environmental variable increases with increasing ΔMAPE. 273 

 274 

3. Results 275 

3.1. Environmental conditions in catchment and reach scales 276 

All the environmental variables have become stressors, which are marked with “+” 277 

in Table 2. Spatial analysis showed that almost all sites were under the selected 278 

catchment-scale stressors, and the downstream sites (e.g., s19, s15 and s22) were under 279 

more reach-scale stressors than the upstream sites (Table 2). We note that the proportion 280 

of forest land use in the catchment scale (0.268–0.910) is greater than that in the 250 m 281 

buffer zone (0.092–0.566). However, the proportion of agriculture land use in the 250 282 

m buffer zone (maximum value of 0.596) is greater than that in the catchment scale 283 
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(maximum value of 0.265), which indicates that agricultural disturbance is greater in 284 

the riparian zone than at the catchment scale, while urban and industrial disturbances 285 

have opposite behaviors. Table 2 also indicates that, TN and VP were the reach-scale 286 

variables with the highest number of sites exceeding the thresholds. 287 

 288 

Table 2 289 

List of environmental variables included in the modeling and spatial distribution of sites 290 

with corresponding stressors. Stressors, i.e., catchment-scale variables impacted by any 291 

artificial land use types (i.e., agriculture, urban and industrial land use), and reach-scale 292 

variables with values less than or greater than the threshold values representing high 293 

environmental status established by the work of (Fan et al., 2015) and Chinese quality 294 

standards for surface water resources (Ministry of Water Resources, 1994), are marked 295 

with “+”.  296 

Environmental variables  
Abbreviations

(Units) 
Ranges 

Sites with 

corresponding 

stressors 

Catchment-scale variables 

Forest land use (catchment 

scale) 
+ 

F_cat 

(proportion) 
0.268–0.910 All sites 

Forest land use (250 m buffer 

zone) 
+ 

F_buf 

(proportion) 
0.092–0.566 All sites 

Agriculture land use (catchment 

scale) 
+ 

A_cat 

(proportion) 
0.018–0.265 All sites 

Agriculture land use (250 m 

buffer zone) 
+ 

A_buf 

(proportion) 
0.000–0.596 

All sites except 

s19, s21, s16, s20 

Urban and industrial land use 

(catchment scale) 
+ 

U_cat 

(proportion) 
0.016–0.646 All sites 

Urban and industrial land use 

(250 m buffer zone) 
+ 

U_buf 

(proportion) 
0.011–0.520 All sites 

Reach-scale variables 

Electrical conductivity + 
EC 

(μs/cm) 
142.47–655.33 

s19, s13, s14, 

s21, s15, s17, 
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s20, s22 

Dissolved oxygen + 
DO 

(mg/L) 
7.02–14.26 s22 

pH + pH 7.84–8.98 
s19, s12, s10, 

s02, s20 

Permanganate index + 
CODMn 

(mg/L) 
0.48–5.72 

All sites except 

s10, s03, s11 

Five-day biochemical oxygen 

demand 
+ 

BOD5 

(mg/L) 
0.75–8.41 

s04, s14, s15, 

s16, s18, s24 

Ammonia nitrogen + 
NH3-N 

(mg/L) 
0.12–3.87 

All sites except 

s05, s03, s07, 

s06, s01, s02 

Total nitrogen + 
TN 

(mg/L) 
1.55–6.75 All sites  

Total phosphorus + 
TP 

(mg/L) 
0.004–0.223 

s19, s04, s14, 

s06, s21, s23, 

s15, s09, s16, 

s24, s20, s22 

Suspended sediment + 
SS 

(mg/L) 
1.56–35.33 s15, s01, s08 

Volatile phenol + 
VP 

(mg/L) 
0.004–0.112 All sites 

 297 

3.2. Ecological status derived from eDNA metabarcoding and morphological data 298 

A total of 67 18S rRNA gene libraries were analyzed according to the methodology 299 

presented in Subsection 2.3, which resulted in a total of 2,305,498 high-quality 300 

sequences, and a total of 6,635 OTUs. The number of OTUs in each sample was 301 

distributed between 477–2,661 (Table S1). The result of taxonomic group distribution 302 

of OTUs showed that approximately 83% eukaryotic sequences were annotated as 303 

phytoplankton (Fig. 2), which confirmed that the phytoplankton can be indicated by 304 

sequencing of 18S rRNA gene. Therefore, the eDNA metabarcoding data and 305 

morphological data are comparable in this study. 306 
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 307 

Fig. 2. Percentage of the sequences assigned to each of taxonomic groups. 308 

An analysis of the relative abundances of the top 15 orders and families of organisms 309 

for the three replications of the 67 samples were shown in Fig. S1 and S2, respectively. 310 

However, approximately 70% of sequences cannot be assigned to genus level because 311 

the limitation of reference information in the SILVA database. Analysis of top 15 312 

families of organisms indicated that the Mediophyceae, Ochromonadales and 313 

Chlorodendrales accounted for approximately 17.5%, 9.9% and 5.4% of all taxa, 314 

respectively. Analysis of variance (ANOVA) results indicated that no significant 315 

differences were observed for the relative family abundances among the sample 316 

replications (p > 0.05). 317 

The OTU compositions of the different samples were analyzed according to beta 318 

diversity to reflect differences between samples using principal component analysis 319 

(PCA). Here, PCA uses variance decomposition to reflect the differences between 320 

multiple sets of data on a two-dimensional coordinate graph, where the coordinate axes 321 

are two eigenvalues that reflect the variance to the greatest extent. As such, samples 322 

with similar compositions were clustered in the PCA graph, as shown in Fig. 3A based 323 

on the sampling locations illustrated in Fig. 3B, which also showed the Shannon_E 324 

values for the individual sampling locations and the land use types of the study area. 325 

Phytoplankton
83%

Zooplankton
7%

Microorganism
8%

Protist
2%
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The results indicated that significant differences exist between the sampling sites of 326 

upstream tributaries (e.g., s3, s2 and s1) and the sampling sites of the middle and lower 327 

mainstem, while differences were also observed between the urban (e.g., s22, s21, and 328 

s19) and mountainous sections (e.g., s6, s2, and s5) of the mainstem. However, the some 329 

sites were impacted by the reservoir located in the mainstem of upstream (e.g. s04 and 330 

s08). The spatial distribution of Shannon_E values presented the same pattern, where 331 

the Shannon_E value tended to gradually decrease with increasing disturbance from 332 

human activity from the upstream to the downstream regions, as reflected by increasing 333 

urban and industrial land use. 334 

 335 

 336 

Fig. 3. (a) Principal component analysis graph for all samples based on the beta 337 
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diversity derived from eDNA metabarcoding data and (b) the spatial distribution of 338 

ecological status based on the Shannon Wiener index. 339 

 340 

The diversity values measured according to the observed species, Shannon Wiener 341 

index, and Simpson index derived from eDNA metabarcoding and morphological 342 

identification data were normalized and compared, and the results were given in Fig. 343 

4A, B, and C, respectively, for sample locations s01–s24. The results in Fig. 4A 344 

indicated that in most sites, the observed species values obtained based on eDNA 345 

metabarcoding were higher than the values based onmorphological data, because OTUs 346 

contained a greater number of taxa information. This difference decreased in the 347 

Shannon Wiener and Simpson index values, which demonstrated that the data obtained 348 

by the two methods reflect similar richness and evenness characteristics of community 349 

composition in most sampling sites (Fig. 4B and C). Fig. 4A also showed that 8 sites 350 

out of 24 were higher for morphological data than eDNA metabarcoding data, and most 351 

of these sites are located in the downstream of study area (e.g. s15, s18, s19 and s24), 352 

where a large number of Cyclotella meneghiniana were detected in morphological data. 353 

Cyclotella meneghiniana is a typical indicator of water pollution (Duong et al., 2008). 354 

This was proved by Fig. 4B and C, which showed that the Shannon and Simpson indices 355 

derived from morphological data were relatively low at these downstream sites. 356 

However, the ecological indices derived from eDNA data showed better consistency at 357 

these sites, which indicated that the difference between eDNA metabarcoding and 358 

morphological data may become larger in polluted river sections. 359 

 360 
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 361 

Fig. 4. Comparison of the three ecological index values derived from eDNA 362 

metabarcoding and morphology identification data. 363 

 364 

3.2. Predictive performances and sensitivity analysis of SVM models 365 

After optimizing the model parameters (c = 10000, ε = 0.2, and γ = 0.025) according 366 

to the methodology presented in Subsection 2.4, the nonlinear regression analysis 367 

results obtained by the SVM models for the three indices (Species_E, Shannon_E, 368 

Simpson_E) derived from eDNA metabarcoding data and the three indices (Species_M, 369 

Shannon_M, Simpson_M) derived from morphological identification data are 370 

presented in Fig. 5. The results indicated that, with the exception of Species_M (squared 371 

correlation coefficient R2 = 0.66), the SVM models achieved good prediction 372 

performance, with R2 values that were all greater than 0.80. 373 
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 374 

Fig. 5. Nonlinear regression fitting plots of the support vector machine (SVM) models 375 

for the measured values and predicted values of the three ecological indices. 376 

 377 

The minimum values of MAPE for all samples (MAPE_ALL) and the minimum 378 

values of MAPE for the test samples (MAPE_TEST) obtained by 8-fold cross-379 

validation indicated the accuracy of different models (Table 3). The results indicated 380 

that the MAPE_ALL values of the three most accurate SVM models obtained from 381 

eDNA metabarcoding data were in the order of Species_E > Shannon_E > Simpson_E, 382 

and the MAPE_ALL values of the three most accurate SVM models obtained from 383 
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morphology identification data exhibited an equivalent pattern. Nevertheless, the SVM 384 

models constructed from the eDNA metabarcoding data had MAPE values that were 385 

much smaller than those of the models constructed from the morphological 386 

identification data whether based on MAPE_ALL or MAPE_TEST values. This 387 

indicated that the models constructed from eDNA metabarcoding data were more 388 

accurate than those constructed from the morphological identification data. 389 

 390 

Table 3 391 

Results of model selection using 8-fold cross-validation for each ecological index given 392 

in terms of the minimum values of MAPE for all samples (MAPE_ALL), and the 393 

minimum values of MAPE for the test samples (MAPE_TEST). 394 

Ecological index MAPE_ALL MAPE_TEST 

Index derived from eDNA metabarcoding data 

Species _E 9.06 6.72 

Shannon_E 5.14 4.14 

Simpson_E 1.33 0.75 

Index derived from morphology identification data 

Species _M 183.96 49.57 

Shannon_M 25.61 15.50 

Simpson_M 25.37 20.00 

 395 

The sensitivity of each ecological index to multiple stressors were varying (Table 4). 396 

For Species_E, the largest value of ΔMAPE = 1.12 was obtained for SS, indicating that 397 

the Species_E prediction was most sensitive to this variable. For Shannon_E, the largest 398 

value of ΔMAPE = 0.47 was obtained for SS, indicating that the Shannon_E prediction 399 

was most sensitive to this variable. For Simpson_E, the largest value of ΔMAPE = 0.05 400 

was obtained for DO, indicating that the Simpson_E prediction was most sensitive to 401 
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this variable. Likewise, we can determine that the Species_M prediction was most 402 

sensitive to DO (ΔMAPE = 21.79), the Shannon_M prediction was most sensitive to 403 

VP (ΔMAPE = 2.17), and the Simpson_M prediction was most sensitive to VP 404 

(ΔMAPE = 2.13). We also note from Table 4 that the magnitudes of the ΔMAPE values 405 

for the ecological indices obtained from DNA metabarcoding data are much smaller 406 

than those obtained from morphological identification data. 407 

 408 
Table 4 409 

Results of sensitivity analysis based on the change in MAPE values (ΔMAPE) for all 410 

samples with respect to the individual environmental variables. 411 

Environmental 

variables 

Species 

_E 

Shannon_

E 

Simpson_

E 

Species 

_M 

Shannon_

M 

Simpson_

M 

ΔMAPE 

Catchment-scale variables 

F_cat 0.13 0.04 0 3.19 0.16 0.02 

F_buf 0.62 0.44 0.03 15.47 1.59 0.18 

A_cat 0.62 0.09 0 3.69 0.78 0.31 

A_buf 0 0.07 0.01 4.67 0.55 0.07 

U_cat 0.1 0.11 0.04 4.87 0.07 0.42 

U_buf 0.29 0.01 0 4.2 0.62 0.16 

Reach-scale variables 

EC 0.36 0.02 0.03 1.34 0.15 0.14 

DO 0.16 0.35 0.05 21.79 0.06 0.29 

pH 0.15 0.08 0.03 1.84 0.68 0.28 

CODMn 0.14 0.04 0 8.27 0.13 0.47 

BOD5 0.24 0.16 0.02 0.68 0.11 1.39 

NH3-N 0.22 0.02 0.03 2.01 0.32 0.8 

TN 0.34 0.19 0.04 0.63 1.12 0.64 
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TP 0.28 0.07 0.01 0.8 0.05 0.47 

SS 1.12 0.47 0.02 14.22 0.72 0.34 

VP 0.35 0.12 0.02 11.99 2.17 2.13 

 412 

The variations in the ΔMAPE values for the ecological indices obtained from DNA 413 

metabarcoding and morphological identification data are more clearly shown in Fig. 414 

6A. We note that, among all six ecological indices, DO, SS, and VP are the three 415 

environmental variables in the reach scale that most greatly affect the index value 416 

predictions. These are followed by F_buf, the variable in the catchment scale. A 417 

comparison of the average ΔMAPE values obtained for the environmental variables 418 

shown in Fig. 6B indicate that, with the exception of Shannon_M, the environmental 419 

variables at the reach scale have a greater impact on the ecological indices than those 420 

at the catchment scale. 421 
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 422 

Fig. 6. (a) ΔMAPE values for each environmental variable in the sensitivity analysis 423 

and (b) a comparison of sensitivities between catchment and reach scale environmental 424 

variables. 425 

 426 

4. Discussion 427 

4.1. SVM model development and validation 428 

The SVM models increase our understanding of the non-linear relationships between 429 

ecological status and multiple stressors on the one hand and the sensitivity of the 430 

ecological status to each stressor on the other. More importantly, the MAPE and high 431 
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R2 values obtained by the SVM models demonstrate quantitatively that eDNA 432 

metabarcoding data provide modeling results that were more indicative of 433 

environmental degradation compared with morphological identification data. However, 434 

we must note that OTUs contained more taxa information than species, which may 435 

increase the uncertainty of the model comparison. However, the greater the number of 436 

OTUs does not necessarily mean the better model performance, because a larger data 437 

may also bring noise for modeling (Lu et al., 2018). In many biodiversity surveys and 438 

assessments, the concept of OUTs diversity has been roughly equated with the concept 439 

of species diversity (Caron and Hu, 2019), because OUTs use 3% sequence difference 440 

to distinguish species, which is an accepted standard in molecular biology techniques 441 

(Schloss and Handelsman, 2005). Previous study also showed that eDNA 442 

metabarcoding and morphological macroinvertebrate metrics are positively correlated 443 

and indicate the same key gradients in stream condition (Emilson et al., 2017).  444 

Furthermore, this kind of uncertainty can be reduced by using some ecological 445 

indices (e.g. the Simpson and Shannon-Weiner indices), which represent the relative 446 

diversity of taxa. These indices have all been normalized before modeling, and the 447 

results showed that the normalized values of these ecological indices are relatively 448 

consistent in most sampling sites (Fig. 4). Therefore, the uncertainty of the model due 449 

to different classification levels can be reduced. In addition, our results were obtained 450 

with a relatively small training dataset, and increasing the number of samples or 451 

applying a larger sampling area can lead to the process of refining our predictive models. 452 

This is supported by a previous study, which has shown that the accuracy and stability 453 

of predictions increased exponentially with increasing sample size regardless of the 454 

type of ML algorithm adopted (Cui and Gong, 2018). 455 

 456 
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4.2. Ecological response derived from eDNA metabarcoding and morphological 457 

identification data to multiple stressors 458 

Although the ecological indices obtained from morphological identification data 459 

exhibited good response relationships with multi-scale stressors, the models 460 

constructed from eDNA metabarcoding data provided better accuracy, as shown in 461 

Table 3. This is because the effective eDNA sequencing information includes a large 462 

number of intact and fragmentary organisms, and even includes the DNA information 463 

of many historically existing organisms. This is supported by a previous study, which 464 

found that the DNA information of some species may exist in water for up to one month 465 

after the removal of DNA release sources (Li et al., 2018b). In addition, it has been 466 

shown that eDNA metabarcoding data provide more integral information regarding 467 

biology, including the taxa and even the potential bioindicators of pollution, for 468 

example, the OTUs that dominate eDNA datasets in high mercury concentration do not 469 

need to be assigned taxonomically, which are typically overlooked in morphological 470 

identification (Frontalini et al., 2018). In conclusion, the biodiversity information 471 

contained in eDNA data is massive, and the large volume of data available may alleviate 472 

model prediction uncertainties caused by sample size limitations to some extent. 473 

It is worth noting that eDNA metabarcoding data are not able to provide some 474 

information available from morphological identification data. For example, eDNA 475 

metabarcoding data provides no information regarding the morphological deformations 476 

of target organisms, which are often found in highly polluted environments, and are 477 

commonly used as evidence for heavy metal pollution (Yanko et al., 1998). Therefore, 478 

eDNA metabarcoding data cannot replace morphological analysis when studying the 479 

response of a particular species, but methods to detect change population of one or 480 

multiple organisms to environmental stressors by eDNA metabarcoding are developing, 481 
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such as screening for functional genes, which may enable the eDNA metabarcoding to 482 

assess toxicological information (Zhang et al., 2019). This will widen the application 483 

of eDNA metabarcoding in environmental sciences. 484 

 485 

4.3. Sensitivity differences with respect to catchment and reach scale stressors 486 

The sensitivity analysis results indicated that DO, SS, VP, and F_buf have the greatest 487 

impact on the model predictions of diversity indices, and that environmental variables 488 

at the reach scale are more influential than that at the catchment scale, as shown in Table 489 

4 and Fig. 6. This greater sensitivity of ecological status to reach-scale stressors can be 490 

explained by noting that disturbances in land use at the catchment scale affect the 491 

aquatic ecological status by generating non-point source pollutants, such as fertilizers, 492 

pesticides, and sewage irrigation, that enter water bodies, resulting in increased 493 

nutrition, bacteria, toxicity, and harmful substances, which means that the changes at 494 

the reach scale affect the ecological status of rivers directly (Meador and Goldstein, 495 

2003; Piggott et al., 2012). 496 

The DO is directly decreased under these degradating conditions (Mineau et al., 2015) 497 

Moreover, DO has been shown to be a key variable impacting the status of many aquatic 498 

species because it can affect the tolerance limit of organisms (Marshall and Elliott, 499 

1998). In addition, sites with the highest DO level have also been shown to have the 500 

highest aquatic species diversity (Wilhm and McClintock, 1978). A previous study has 501 

also demonstrated that SS is critical to phytoplankton communities because 502 

phytoplankton growth requires photosynthesis, and light intensity in the photic zone 503 

has a significant negative correlation with SS (Van Duin et al., 2001). Finally, we note 504 

that urban and industrial land use in the urban section of the study area increased 505 

significantly since the work of (Fan et al., 2015), and this can be expected to have 506 
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released toxic chemicals from industrial pollution, such as VP, into water bodies. In this 507 

regard, the photosynthetic activity parameters of algae have been shown to have a 508 

negative dose-response relationship to phenol toxicity (Kottuparambil et al., 2014). 509 

Therefore, VP represents another critical environmental variable impacting the status 510 

of many aquatic species. 511 

 512 

5. Conclusion 513 

The present study compared the ability of eDNA metabarcoding data and 514 

morphological identification data to reflect the nonlinear impact of multiple 515 

environmental stressors on aquatic ecosystems by employing both sets of data in SVM 516 

models corresponding to three ecological indices (i.e. observed species, Shannon 517 

Wiener index, and Simpson index). Analysis of the environmental variables at the 518 

catchment and reach scales of the study area indicated that most of the variables 519 

exceeded their natural thresholds at some of the sampling sites, and became a complex 520 

of simultaneously interacting stressors affecting the ecological status of the river. The 521 

SVM models constructed from eDNA metabarcoding data (MAPE = 3.87) provided 522 

more accurate predictions than the SVM models constructed from morphological 523 

identification data (MAPE = 28.36), revealing that the eDNA metabarcoding data better 524 

reflected ecological conditions. As such, the present work helps to explore the potential 525 

applications of eDNA technology in the monitoring and management of aquatic 526 

ecosystems. In addition, the sensitivity of SVM model predictions of aquatic ecosystem 527 

diversity to catchment-scale and reach-scale stressors was evaluated, and the stressors 528 

having the greatest impact on the ecological status of rivers were identified. These 529 

results indicated that the model predictions were more sensitive to the environmental 530 

variables at the reach scale than those at the catchment scale. In addition, DO, SS, VP, 531 



29 

and F_buf were found to be the most influential variables impacting the ecological 532 

status of the river. 533 
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