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Low Complexity Optimization of the Asymptotic

Spectral Efficiency in Massive MIMO NOMA
Lucinda Hadley and Ioannis Chatzigeorgiou

Abstract—Massive multiple-input multiple-output (MIMO)
technology facilitates huge increases in the capacity of wireless
channels, while non-orthogonal multiple access (NOMA) ad-
dresses the problem of limited resources in traditional orthogonal
multiple access (OMA) techniques, promising enhanced spectral
efficiency. This work uses asymptotic capacity computation re-
sults to reduce the complexity of a power allocation algorithm for
small-scale MIMO-NOMA, so that it may be applied for systems
with massive MIMO arrays. The proposed method maximizes
the sum-capacity of the considered system, subject to power
and performance constraints, and demonstrates greater accuracy
than alternative approaches despite remaining low-complexity for
arbitrarily large antenna arrays.

Index Terms—Non-orthogonal multiple access (NOMA),
multiple-input multiple-output (MIMO), ergodic capacity, power
allocation, asymptotic eigenvalue distribution.

I. INTRODUCTION

The demand for fast data links has increased rapidly over

the last two decades as a result of an increasing number of

users and devices. Moreover, there is a need for adaptable

and scalable technologies to meet the diverse requirements of

the internet of things (IoT). Fifth generation (5G) and sixth

generation (6G) networks must be able to support increased

multi-terabyte per second data traffic, while maintaining a high

quality of service in terms of security, reliability and delay [1].

A key facilitator of the increased spectral efficiency (SE)

seen between third and fourth generation mobile networks was

the use of multiple-input multiple-output (MIMO) technology.

MIMO enables dramatic increases in SE by exploiting spatial

diversity [2] and can be extended by using even more antennas

in ‘massive MIMO’ (MM). In 2018, a line of products with

MM capability was approved by the Federal Communications

Commission. These included 64-antenna arrays, such as the

Ericsson AIR 6468. Similar products, including the Huawei

AAU and Nokia Airscale, have also been launched with

Huawei quoted as saying at the 2019 Mobile World Congress

that “95% of their current commercial shipments has either 32

or 64 antennas” [3]. It is speculated that antenna arrays with

dimensions of order 103 or even 104 could be used in future

designs in so called ‘supermassive MIMO’. MM is therefore

of critical importance in industry and large-scale arrays are a

topic of great interest in current research [1].

Rate optimization of a wireless network requires knowledge

of the theoretical SE of its channels. In 1999 Telatar’s ground-
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breaking work introduced the use of asymptotic properties

of random matrices, in particular the limiting distributions of

their eigenvalues, in computing the asymptotic SE of MIMO

channels [4]. In 2004, [5] and [6] demonstrated some ways

of generalizing the result, but the work was premature with

respect to small-scale MIMO, whose capacity is more easily

computed using the celebrated ‘log-det’ result [7]. With the

recent introduction of MM, however, the analysis of very large

random matrices is required, and the use of asymptotic results

has resurfaced. The last several years have seen methods, such

as free probability theory, used to compute the asymptotic

eigenvalue distributions (AEDs) of a wider class of MIMO

channel matrices [8]–[10].

Another method for enhancing SE is to share spectrum

more effectively. Non-orthogonal multiple access (NOMA)

is an emerging technology that shows promise in this area.

Traditional NOMA uses the power domain to discriminate

between signals (although a code-domain implementation of

NOMA has also been proposed) [11]. Unlike orthogonal

multiple access (OMA) methods, such as time and frequency

division multiple access (TDMA and FDMA), which split

the respective resources (spectrum and time) into ‘orthogonal’

frequency bands and time slots, NOMA serves multiple users

in a single resource block (band or slot), thus enabling massive

connectivity. This, along with the mitigating effect of using

successive interference cancellation (SIC) to remove unwanted

signals and improve the signal-to-interference-plus-noise ratio

(SINR), results in increased SE [12]. NOMA is considered

fairer than alternative multiple access schemes as it prioritizes

the experience of cell-edge users with weaker channel connec-

tions. Moreover, it reduces average latency compared to OMA

since users do not have to wait for specific slots [13].

Due to early results demonstrating its potential, NOMA al-

ready features in the 3GPP-LTE-A standard and was proposed

for inclusion in the 5G New Radio (NR) [14]. Ultimately,

NOMA was not included in 5G NR as a work-item, but was

earmarked for use beyond 5G because the capacity benefits

were considered to be outweighed by the implementation

complexity [15], [16]. Therefore, it is necessary to increase

the capacity benefits in relation to the complexity in order to

make NOMA a viable option, and the use of massive antenna

arrays is an obvious strategy. For the multi-user case in which

the base station is equipped with multi-antenna arrays, while

the user devices have a single antenna, [17] compares some

user-pairing algorithms and investigates a new method for

maximizing throughput, while in [18] the authors demonstrate

the superior capacity of MIMO-NOMA over MIMO-OMA for

communication between a multi-antenna receiver and clusters
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of multi-antenna destinations. This is extended to massive-

MIMO NOMA (MM-NOMA) in [19], which shows that a non-

regenerative relay system where the base station is equipped

with up to 500 antennas, outperforms a traditional MIMO-

NOMA arrangement.

In this work we consider a low-complexity power allocation

algorithm for two-user power-domain NOMA in which MM

arrays are employed at all nodes and signals can be separated

using superposition coding (SC) at the transmitter and SIC

at the receiver. We assume that the transmitter has access to

statistical channel state information (CSIT) only and we aim

to maximize the ergodic capacity subject to power and rate

constraints. This non-convex optimization problem was ad-

dressed for the case of small-scale MIMO by implementing a

suboptimal algorithm and comparing it to the optimal bisection

method in [20]. We extend the work to consider arbitrarily

large MM arrays and demonstrate that it is possible to reduce

the complexity of the bisection method further, by combining

it with Telatar’s method of asymptotic capacity computation,

without loss of optimality. As far as the authors are aware, this

approach has not previously been considered for this scenario.

Notations: (·)† denotes the conjugate transpose, Tr(·) rep-

resents the matrix trace, IN denotes the N×N identity matrix

and E(·) is the expectation.

II. SYSTEM MODEL

Consider the open-loop MIMO system given in Fig. 1,

where a source S transmits data to two users simultaneously

using NS antennas and user i receives using Ni antennas,

where i ∈ {1, 2}. The signal vectors x1 and x2 are transmitted

to user 1 and user 2 and the diagonal power allocation

matrices are Q1,Q2 ∈ CNS×NS at each user respectively,

where Tr(Qi) is the total power allocated to user i. Both

signals occupy the same frequency and time slot but their

transmit power varies, as is the usual convention for NOMA

transmission. User 1 and user 2 are taken to be the ‘weak

user’ and ‘strong user’, respectively. This could occur, for

example, when S is a base station, user 1 is at the cell-edge and

user 2 is near the center of the cell. It was determined in [20,

Lemma 2] that uniform power allocation across each user’s

antennas results in optimal performance. Therefore, hereafter

we will consider the case where the diagonal entries of Qi

are all equal and replace each Qi with the constant scalar

pi = Tr(Qi)
NS

, which represents the power allocated to the

desired signal of user i per antenna at the source.

User 1 and user 2 receive signals y1 and y2 respectively,

which can be expressed as:

y1 =
√
p1 H1x1 +

√
p2 H1x2 + n1, (1)

y2 =
√
p1 H2x1 +

√
p2 H2x2 + n2, (2)

where xi is the NS×1 vector of the transmitted signal carrying

the message for user i, and yi is the Ni × 1 vector of the

signal received by user i. Matrices Hi ∈ CNi×NS have random

complex entries distributed as CN (0, σ2
Hi

), which model flat

Rayleigh fading. Each entry of Hi, denoted by hi
jk , represents

the channel gain between the kth transmit antenna of S and

the jth receive antenna of user i. We assume that σ2
H1

< σ2
H2

S H2

H1

user 1 

user 2

Figure 1: Broadcast MM-NOMA system model using SIC.

because user 1 is the weak user. Finally, the Ni × 1 vector ni

models the normalized additive white Gaussian noise across

the corresponding channel.

Since we are using NOMA, the source simultaneously

communicates with the users using the same resource block,

and their signals are multiplexed by allocating a different

transmission power, pi, for each user’s signal, at each antenna.

Because the weaker user is allocated more power, it is able

to decode the message by treating the interference from the

other user’s signal as noise. Define C1 and C2 as the SEs of

user 1 and user 2 respectively. We will set a minimum rate

constraint of C1 > R0 for the weak user and assume that the

SINR of the weak user’s signal is always smaller at the weak

user than it is at the strong user so that

C1 ≤ log2

∣

∣
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which guarantees successful SIC detection at the strong user.

This means that the strong user can decode the weak user’s

message and subtract it from the overall signal in order to

decode its own message [21].

The weak user decodes its own signal, x1, while interpreting

the interference caused by x2 as noise. The achievable ergodic

SEs are therefore given by:

C1 =EH1

(

log2
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∣

∣

∣
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†
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∣

)

− EH1

(
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∣
IN1
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†
1
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∣

∣

)

, (4)

C2 =EH2

(

log2

∣

∣

∣IN2
+ p2H2H

†
2

∣

∣

∣

)

. (5)

III. OPTIMIZATION PROBLEM

The optimization problem of maximizing the combined

SE of the two users, subject to power and minimum rate

constraints, can be formulated as:

max
p1,p2≥0

C1(p1, p2) + C2(p2),

s.t.
C1(p1, p2) ≥ R0

(p1 + p2)NS ≤ pmax,

(6)

where pmax denotes the total available power at the source, R0

is the minimum SE required for reasonable performance at the
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Table I: Optimal bisection algorithm‡

Initialize p2,min = 0, p2,max = pmax

while p2,max - p2,min > ǫ do

Set p*2 = (p2,min + p2,max)/2,

p*1 = pmax - p*2.

Calculate C1(p*1,p
*
2).

If C1(p*1,p
*
2)< R0, set p2,max = p*2;

Else, set p2,min = p*2.

end while

Output: p1 = p*1, p2 = p*2.
‡ pmax in the algorithm is set equal to pmax/NS as per (6).

weak user and C1(p1, p2) and C2(p2) refer to the SEs defined

in (4) and (5) respectively, written in terms of the optimization

variables p1 and p2.

In [20] the authors develop an optimal and suboptimal

method of solving the problem. Since the function C1 + C2

increases with p2, the optimal solution is on the boundary of

the feasible region. In particular, it occurs when p1 is as small

as possible while ensuring that C1 > R0. This p1 can be

found using repeated bisection as shown in Table I, where ǫ is

reduced for greater precision. The suboptimal method relies on

an approximation of C1 and is successful for MIMO systems

with NS, Ni ≤ 4. However, the optimality of the results using

this method deteriorates as the numbers of antennas at each

end of the communication link increase.

In this paper, we demonstrate how to reduce the com-

plexity of the optimal bisection method by computing C1

using the asymptotic eigenvalue distribution of the channel

matrices, thus improving the accuracy of the optimization for

MM-NOMA systems.

IV. THEORY

Let Gβ ∈ CNr×Nt be a random matrix, where the limit

of the ratio Nt

Nr
is β as both Nt and Nr tend to infinity, and

Xβ = GβG
†
β ∈ CNr×Nr . When the entries of Gβ conform

to certain distribution rules and α is a scalar, a ‘log-det’

expression, 1
Nr

log2 |INr
+ αXβ | can be expressed in terms

of the AED, fXβ
(x), of Xβ . Using this result, the SE of a

channel modeled as Gβ can then be written in terms of the

AED of Xβ as [5]:

CAsy
αXβ

= Nr






lim

Nt,Nr→∞
Nt
Nr

→β

1

Nr

log2 |INr
+ αXβ |







= Nr






lim

Nt,Nr→∞
Nr
Nt

→β

1

Nr

Ni
∑

i=1

log2
(

1 + αλXβ
(i)
)







= Nr

∫ ∞

0

log2 (1 + αx) fXβ
(x) dx, (7)

where λXβ
(i) is the ith eigenvalue of Xβ .

There are many existing works in which the main result has

been to compute the AEDs of non-standard channel matrices,

usually with the aim of applying (7) to compute their capacity.

For example, Pan et al. [8] use free probability theory to

compute the AED of massive MIMO channel matrices with

transmit and receive correlation. Hadley et al. [10] derive

the AED of the combined channels in the second hop of

a multi-relay system, while Diaz and Pérez-Abreu [9] find

the AED for more generalized block matrices. Shlyakhtenko

[22] shows how to extend existing results to find the AED of

band Gaussian matrices used to model independent but non-

identically distributed Gaussian channels.

In this paper, the channels are modeled as having entries

distributed as CN (0, σ2
Hi

), which is the canonical model for

single-user narrowband MIMO channels [5], and so we make

use of the following result.

Definition 1: The AED of Xβ = GβG
†
β as Nt, Nr → ∞

and Nt

Nr
→ β, where Gβ ∈ CNr×Nt is a standard Gaussian

random matrix with entries distributed as CN (0, 1), is given

by the Marçenko-Pasteur distribution [5]:

fXβ
(x) =

√

(x− a)+ (b− x)+

2πβx
+

(

1− 1

β

)+

δ(x), (8)

where a =
(

1−√
β
)2

, b =
(

1 +
√
β
)2

, (z)+ = max(0, z)
and δ(x) is the Dirac-delta function.

Our aim is to find C1 and C2, as given in (4) and (5). Now

our channel matrices Hi can be written as σiGβi
, where we

have substituted β = βi into Definition 1 so that HiH
†
i =

σ2
iXβi

. Therefore, to find C1 and C2 in closed form, we can

apply (7) to obtain:

C1 = log2 |IN1
+ c1Xβ1

| − log2 |IN2
+ c2Xβ1

|
= CAsy

c1Xβ1

− CAsy
c2Xβ1

=

∫ ∞

0

log2

(

1 + c1x

1 + c2x

)fXβ1
(x)

dx

= log2





e
Q2,1

c2 (1 + c1 −Q1,1)
β1(1 + c1β1 −Q1,1)

e
Q1,1

c1 (1 + c2 −Q2,1)
β1(1 + c2β1 −Q2,1)



 (9)

C2 = CAsy
c3Xβ2

=

∫ ∞

0

log2 (1 + c3x) fXβ2
(x)

= log2

(

(1 + c3 −Q3,2)
β2 (1 + c3β2 −Q3,2)

e
Q3,2

c3

)

, (10)

where c1 = (p1 + p2)σ
2
1 , c2 = p2σ

2
1 , c3 = p2σ

2
2 , fX(x) is

given by (8) and, for notational convenience, we have set:

Qρ,q =
1

4

(
√

cρ

(

1 +
√

βq

)2

+ 1−
√

cρ

(

1−
√

βq

)2

+ 1

)2

.

V. RESULTS AND DISCUSSION

In this section we compare: (i) the bisection algorithm

described in [20], which relies on the traditional method of

capacity computation given in (4) and (5) and finds the optimal

power allocation, (ii) the suboptimal algorithm also derived in

[20] which omits the need for repeated bisections but still

relies on computing the expectation over multiple realizations

of the determinant of a matrix, and (iii) the bisection method
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Figure 2: Sum-capacity vs total transmission power

using our asymptotic capacity equations (9) and (10) in placec

of the traditional method. For the sake of simplicity, we have

considered the cases where NS = Ni = N in our results.

Fig. 2 plots the total available power pmax against the

maximized sum of the ergodic capacities of the two users

obtained using (6), which we shall denote by Cmax. We fixed

σ2
H1

= 20 dB, σ2
H2

= 5 dB and R0 = 2 bps/Hz. Both the

asymptotic and suboptimal methods appear to achieve very

close to optimal performance for smaller MIMO arrays of 4×4
antennas, however, as we increase the number of antennas the

suboptimal method becomes less efficient. On the other hand,

the asymptotic approach is able to match the optimal result

perfectly regardless of the array size. The suboptimal result

is also shown to be less accurate for systems with low power

availability, while the asymptotic approach is unaffected.

Fig. 3 plots the minimum rate requirement of the weak user

against Cmax with σ2
H1

= 20 dB, σ2
H2

= 1 dB, pmax = 4 W

for various antenna array sizes. The range of values of R0 is

restricted by the assumption given in (3), however for larger

MIMO arrays this restriction is reduced. We see that the

asymptotic approach is optimal for any rate restraint whereas

the suboptimal method deteriorates significantly when the rate

requirement of the weak user increases and that the degree of

the deterioration increases with N .

Fig. 4 plots the channel gain of the weak user against Cmax,

for σ2
H1

= 20 dB, pmax = 4 W, R0 = 2 bps/Hz and various

antenna array sizes. Again, the performance of the suboptimal

method suffers for larger antenna arrays, most significantly

in the case where the channel gain of the weak user is very

small compared to that of the strong user, σ2
H1

<< σ2
H2

, which

would happen when the strong user was very near to the base

station while the weak user was very remote. As before, the

asymptotic approach remains accurate in all cases.

Next we consider the computational complexity, which

depends on the number of antennas (for which we will

consider the case where NS 6= Ni), the number of iterations

used to compute the expectations involved in the optimal

and suboptimal methods K , and the number of bisections M

required for the optimal and asymptotic methods.

The optimal bisection method is the most complex. It
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Figure 4: Sum-capacity vs channel gain of weak user

involves looping through the computation M times and com-

puting C1 K times in each loop to find the expectation. The

complexity order of calculating C1 is O(N1!) since the most

complex operation is taking the determinant of the N1 × N1

matrix
[

IN1
+ (IN1

+ (p2H1H
†
1)

−1)p1H1H
†
1

]

in (4) (recall

that Hi ∈ CNi×NS). The overall complexity order of this

method is O(KMN1!), where we note that increasing NS and

N2 does increase the complexity, but the complexity order is

dominated by N1.

In comparison the asymptotic approach also loops over

the capacity computation M times but computes the capacity

using the closed form in (9), for which the complexity is

invariant with respect to NS, Ni, K and M , thus the overall

complexity order of this method is O(M).
Finally, the complexity of the suboptimal approach does not

require looping through M bisections, however it still involves

computing the expectation over K iterations of a computation

involving the determinant of an N1 × N1 matrix, thus it has

complexity order O(KN1!).
We note that the complexity order of the determinant

computation can be reduced from O(N1!) to as little as

O(N2.81
1 ) using the methods in [23][Theorem 6.6]. However,

the implementation of these methods is beyond the scope of
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this paper. We have used the Matlab function det, which

relies on the LU decomposition method for calculating the

determinant and has complexity order O(N3
1 ), which gives

complexity orders O(KMN3
1 ), O(M) and O(KN3

1 ) for the

respective methods.

We compare the time complexity of the three approaches

for increasingly large antenna arrays in Fig. 5. Note that we

fixed K=10 for the expectation calculations. Experimentation

demonstrated that accurate results for the considered range

of N are observed if the number of bisections is at least

M = 13 for ǫ = 0.001 (ǫ is used in Table I). With K and M

fixed, the complexity of the optimal and suboptimal methods

depends only on the number of antennas, as is corroborated

by Fig. 5. In agreement with our calculations, the complexity

of the asymptotic approach remains constant regardless of the

size of the antenna array.

VI. CONCLUSIONS

We have used asymptotic analysis to extend the results of

[20] and demonstrated how best to allocate power resources

to achieve optimal sum-capacity for an MM-NOMA system.

We have demonstrated that the proposed asymptotic approach

performs optimally for arbitrarily large antenna arrays while

the accuracy of the suboptimal method of [20] decreases

significantly with size for arrays larger than 4× 4. Moreover,

we have shown that the suboptimal method deteriorates in the

cases of (i) low total power availability (ii) high minimum rate

requirement at the weak user and (iii) significant difference

between channel gains of users. The asymptotic method,

on the other hand, agrees with the optimal method and is

unaffected by these changes. Finally, we have demonstrated

that the complexity of the asymptotic algorithm is lower than

that of the optimal and suboptimal approaches regardless of

array size. We conclude that the proposed power optimization

method is superior for MM-NOMA.
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