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Abstract

How do labels impact object perception and enhance categorisation? This question has

been the focus of substantial theoretical debate, particularly in the developmental liter-

ature, with conflicting results. Specifically, whether labels for objects act as additional

perceptual features or instead as referential pointers to category concepts has been the

subject of intense debate. In this thesis, we attempted to shed a new light on this ques-

tion, combining empirical results on both infants and adults, and neurocomputational

models.

First, we developed a dual-memory neurocomputational model of long-term learning

inspired by Westermann and Mareschal’s (2014) model, to test predictions of the two

mains theories on labelling and categorisation on existing infant data, and to generate

predictions for a follow-up study. Our modelling work suggested that for the empirical

designs considered and age groups tested, labels were processed as object features, as

opposed to having a more referential role.

We then focused on explicitly testing potential attentional effects of auditory labels

during categorisation in an empirical study. More precisely, we studied the interac-

tion between feature salience, feature diagnosticity, and auditory labels, in a categori-

sation task. Surprisingly, we found that 15-month-old infants and adults could learn

labelled categories in which the salient feature (head of line-drawn novel animals) was

non-diagnostic of category membership, but the non-salient feature (tail) was, without

adopting a different pattern of looking compared to participants in a control group. Al-

though our data did not provide clear evidence for a true null effect, this finding was

once again more compatible with the theory that labels act as features, not referents.

This finding also led us to reconsider the use of eye movements and looking times as

a proxy for learning, as it seemed that participants could learn more without looking

more.

Given our empirical results on salience and diagnosticity of features, and given the

methodological differences in the handling of feature salience and diagnosticity in the

categorisation literature, we developed a simple auto-encoder model to further study the

impact of salience differences between features in the context of a categorisation task,

with or without a label. Our simulations suggested that bigger disparities in salience

between different features of an object can result in differences in terms of learning speed

and compactness of categories in internal representations, hinting that future empirical

studies should consider feature salience in their design.

Overall then, this thesis provides some evidence in favour of the labels-as-features

theory through the use of empirical eye-tracking data on infants and adults, and neu-

rocomputational modelling. This thesis further asks new questions on the importance

of feature salience in categorisation tasks, and the interpretation of eye movement and

looking time data in general.
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Chapter 1

Literature Review

To begin this thesis, we review the existing empirical and computational modelling

literature on categorisation and specifically on the effects of auditory labels on categori-

sation. First, we present the different theories for the effect of categorisation early in

development, the main focus of this thesis. We then present the converging evidence for

the role of category labels in adults. Finally, we briefly describe a few different mod-

elling approaches for human labelled categorisation, before extensively presenting the

neurocomputational model around which we will build our subsequent modelling work.

1.1 Labelling and Categorisation in Infants

From a very young age, infants learn to group objects into categories. They do so by

considering the features that are similar between objects within the same category only

and less similar to the features of other out of category items (Mareschal & French,

2000; Mareschal et al., 2000). To assess categorisation in pre-linguistic infants, a novelty

preference looking time procedure is usually conducted after a training phase (familiari-

sation or habituation): looking times between a within-category and an out-of-category

items presented together are recorded. The preference to either the familiar (within-

category) or novel (out-of-category) item according to different conditions has been well

documented (see Houston-Price & Nakai, 2004; Oakes, 2010, for a review). In short, the

more infants have encoded an item/category, the more likely they will be to look at a

more novel out of category item at test than a member of the previously familiarised cat-

egory. In habituation studies, in which the item/category is presented until a criterion of

lack of interest is reached as indicated by significantly shorter looking times to the screen,

infants are then expected to look more at the novel stimulus at test. On familiarisation

tasks, in which the item/category is presented for a fixed number of times, the meaning

of a novelty or familiarity preference is less clear. In such paradigms, if the familiari-

sation lasted long enough for infants to fully encode the stimuli, infants should exhibit

a novelty preference. Conversely, if they did not have enough time to fully encode the

stimuli during familiarisation, then infants should exhibit a familiarity preference for the

stimulus they have already partially encoded. As such, results in familiarisation stud-

ies should be analysed at different time frames during familiarisation to allow a more
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fine-grained analysis of the preference results, for example using the reduction in total

looking time between the beginning and end of the training as a measure of habituation.

It is also good practice to correct for natural preference for presented items, instead of

looking at preference against chance alone (e.g Oakes, 2010; Quinn, 2004).

Other paradigms can be used to test for categorisation learning in infants; although

they generally rely on the same intrinsic mechanisms and measures, they all shed a

different light on the processes at hand. Looking time studies are typically limited by

the available dimensions for the presentation of stimuli, and do not account for the

multimodal aspect of categorisation learning. Addressing this issue, paradigms exist

with 3D objects in place of 2D pictures, allowing for a richer manipulation and encoding

by the infant during the familiarisation phase, and in particular allowing researcher to

test for the importance of haptic information such as object texture during categorisation

(e.g. Graham & Diesendruck, 2010). For such paradigms, infants behaviour are recorded

on video and later coded by hand. A first straightforward way of using physical objects

is to replicate the structure of the visual familiarisation task described above: first

infants are familiarised with exemplars from different categories one at a time, then

are presented at test with a new exemplar from an old category and an entirely new

stimulus (e.g. Mandler & McDonough, 1993; Oakes et al., 1997; Oakes et al., 1991;

Younger & Furrer, 2003). Looking times are here replaced by handling and looking

behaviours. Another alternative offered by the use of physical objects is the possibility

to present infants with a set of objects belonging to two different categories, rather than

presenting them with one exemplar at a time (e.g. Rakison & Butterworth, 1998). This

paradigm is particularly interesting as it allows for more active comparisons between both

within-category and out-of-category exemplars. In this paradigm, touching sequence

and length of each manipulation can both be recorded and used as indices of infants’

cognitive processes. Typically, categorisation is evidenced by successive touching of

within-category exemplars, though earlier stages may involve more alternating between

the two categories than within-category successions (Oakes & Plumert, 2002), much in

the same way that both familiarity and novelty preference can both be seen in visual

preference studies depending on context. Finally, the use of physical objects allows

for functionality-based categorisation, where the experimenter shows a particular action

with an object to an infant, then presents the infant with an object of the same category

and a different category, and records whether or not the infant generalises the action to

the correct object (e.g. Mandler & McDonough, 1996; Träuble & Pauen, 2007). In the

rest of this thesis, we will focus on visual preference methods.

In addition to these studies of visual category learning, auditory features have also

been shown to impact categorisation. A first effect that has been documented is the

overshadowing of processing of visual features by auditory stimuli: when presented with

a visual and a non-linguistic auditory stimulus with simultaneous onset, 4-year-old chil-

dren preferentially attend to the auditory stimulus, reducing the amount of resources

devoted to the visual stimulus, thus leading to a poorer encoding of this visual stimulus

than in a silent presentation (Sloutsky & Napolitano, 2003). This effect arises from the
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earlier maturation of the auditory compared to the visual sensory system, given that

the auditory system starts functioning during the last trimester of gestation (Birnholz

& Benacerraf, 1983; Jusczyk, 2000). Auditory overshadowing has been replicated and

extended to auditory labels in 8- and 12-month-old infants; precisely, although auditory

stimuli enhanced attention as evidenced by total looking times, infants were more likely

to form categories in silence (Robinson & Sloutsky, 2007a). Further, this auditory over-

shadowing effect, as measured by differences in visual processing speed, disappeared in

14-month-old infants when using familiar sounds, namely, human speech, non-linguistic

sounds embedded in human speech in place of words, and non-linguistic sounds on which

infants were pre-familiarised (Robinson & Sloutsky, 2007b). Finally, it has been argued

that, initially, this auditory overshadowing might help categorisation by reducing the

level to which visual features of objects are represented, thus reducing the dissimilarities

between exemplars (Robinson & Sloutsky, 2004; Sloutsky & Robinson, 2008). Further,

in addition to this overshadowing effect, there is evidence that sounds in general enhance

attention overall, as measured by longer total looking times to stimuli when these stim-

uli are presented together with an auditory stimulus, compared to presented in silence

(e.g. Roberts & Jacob, 1991; Robinson & Sloutsky, 2007a). This might also help infants

encode objects and learn categories.

However, there is evidence that linguistic auditory inputs are more effective at helping

categorisation, even in pre-linguistic infants, compared to other auditory inputs, even

though auditory inputs in general enhanced infants’ attention (Balaban & Waxman,

1997). This facilitatory effect of human speech sounds has been extended to commu-

nicative sounds in general, such as content-filtered speech sounds (Balaban & Waxman,

1997), onomatopoeic sounds (Roy, 2003), or even chimpanzee vocalisations (Ferry et al.,

2013). Further, there is evidence that “meaningful” environmental sounds help categori-

sation, for example the sound of a dog barking would help forming a category for dogs

(Hendrickson et al., 2015). Additionally, category exemplars are often encountered in

real life with their corresponding name, and such labelling events have been shown to

specifically improve categorisation (e.g. Althaus & Westermann, 2016; S. A. Gelman &

Coley, 1991; Gliga et al., 2010; Graham & Poulin-Dubois, 1999; Plunkett et al., 2008).

Despite numerous studies on the question of the mechanisms by which such auditory

labels help categorisation in infants, no converging evidence has been found, and two

main theories still attempt to tackle this question: the labels-as-symbols theory, and the

labels-as-features theory (for an overview of this debate, see S. A. Gelman & Waxman,

2009; Sloutsky, 2009; Waxman & Gelman, 2009).

1.1.1 Labels-as-Symbols

On the labels-as-symbols account, label representations are from an early stage of devel-

opment qualitatively different from object representations, with labels acting as privi-

leged referential markers for categories in a top-down way (Waxman & Markow, 1995).

According to this theory, labels help infants to form categories by highlighting the diag-

nostic features of these categories, that is, features that are shared by within-category



4 A. CAPELIER-MOURGUY, NOVEMBER 2019

exemplars but not shared by out-of-category exemplars. For example, knowing that

both llamas and rabbits have four legs and are fluffy is not helpful to discriminate them

into two categories, while the long neck of llamas and the big ears of rabbits are both

diagnostic features for their respective categories. In the study that gave rise to this the-

ory, Waxman and Markow (1995) found that 12- to 13-month-old infants could reliably

form basic-level categories (e.g. cows vs. dinosaurs) without labels. They could how-

ever only form superordinate-level categories (e.g. animals vs. vehicles) when provided

with a label. Following this first study, it has been shown that the addition of a label

allowed 10-month-old infants to form categories they would not otherwise form, either

to group together into one category a set of items they would otherwise divide into two

categories (Plunkett et al., 2008), or alternatively to divide into two categories a set

of similar exemplars that were accompanied by two different labels (Althaus & Wester-

mann, 2016). A further two studies argued that infants grouped a set of dinosaurs into

one super-ordinate category only when hearing a linguistic label, but not when hearing

tones that reproduced the rhythm of the labelling phrases (Ferry et al., 2010; Fulkerson

& Waxman, 2007). However, these studies did not include a silent control condition,

and a subsequent replication attempt showed that infants formed the same category in

silence as they did when hearing a label, highlighting the importance of control condi-

tions to evidence a true effect (Chen & Westermann, 2012). Thus, the original results

are best explained as being due to tones blocking, but not labels allowing learning of the

category.

Recently, two studies used eye-tracking on 12-month-old infants to study the online

process of categorisation and how labelling impacted it, addressing the question of how,

not just how well, auditory labels affect infants’ categorisation (Althaus & Mareschal,

2014; Althaus & Plunkett, 2015a). In both studies, infants were familiarised with one set

of two-featured stimuli forming one category, either in silence or paired with a single label.

Importantly, both features were made equally salient for all stimuli, and one feature’s

shape varied more than the other’s. Those studies then demonstrated that the presence

of a label during familiarisation induced a focus on low-variability features early during

familiarisation (Althaus & Mareschal, 2014), and increased and sustained attention to

familiarised within-category versus novel out-of-category low-variability features in a

subsequent test phase in silence (Althaus & Plunkett, 2015a). The label here drove

infants’ attention towards the low-variability features, and changed how the category was

encoded in memory, with more importance being given to those low-variability features

in infants’ internal representations. These studies however assumed that infants did

form a category representation without explicitly testing for it by using two contrasting

categories and assessing successful learning of the category labels at test. They further

assumed that low-variability features represented diagnostic features, drawing on the

idea that diagnostic features are common to all members of a category, thus of relatively

low variability within the category. Thus, these studies leave open the question of

how labels would impact object representations when learning multiple categories with

clearly diagnostic features. Indeed, while diagnostic features might be of relatively low
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variability, low-variability features are not always diagnostic. For example, the tail that

dogs, cats, chimpanzees, and many other animals all share is of very low variability, but

is not diagnostic for any of those categories.

1.1.2 Labels-as-Features

Conversely, the labels-as-features theory assumes that label representations are inte-

grated into object representations (Sloutsky & Fisher, 2004). On this account, labels

have no special status, but contribute to object representations in the same way as other

features such as shape and colour: a dog is an animal with four legs, a tail, fur, a muzzle,

that barks, and is called ‘dog’. According to this theory, labels help categorisation in

infants by adding to the overall similarity between category exemplars, being a highly

reliable diagnostic feature. Crucially, this theory predicts that, with a similarity-based

categorisation mechanism, infants would need to consider all features to compute the

similarity between two items. Thus, this theory expects infants, in a categorisation task,

to remember individual exemplars and their particular features. On the opposite, with

a knowledge-based categorisation mechanism in which labels act as symbolic markers

highlighting diagnostic features, infants would only need to focus on those diagnostic

feature and could ignore the other, non-informative features. Further, infants would

not need to compute a precise similarity measure, and as such, could rely on a general,

prototypical representation for the diagnostic features. As a result, infants’ ability to

recall or recognise individual exemplars and their particular features should be drasti-

cally reduced. Sloutsky and Fisher (2004) first confirmed that infants were able to recall

particular category exemplars and their features, as predicted by their labels-as-features

theory. They further reproduced their empirical findings with a simple mathematical

model of inter-exemplar similarity treating the label as a feature amongst others, al-

though weighing more in the comparison process —in other words, the label was more

salient.

In a more recent paper supporting this theory (Deng & Sloutsky, 2012), 4- to 5-

year-old children were first familiarised with five-featured anthropomorphic stick figures

divided into two labelled categories. Importantly, the salient head was diagnostic of cat-

egory membership for all exemplars, and was animated to further increase its salience.

They then had to complete two tasks: infer a category label for a new exemplar (cate-

gorisation task), or infer a missing feature for a new labelled exemplar (induction task).

Crucially, in the induction task, some exemplars were given the label and most features

corresponding to one category (A), but exhibited a salient feature (the head) corre-

sponding to the opposite category (B). For these exemplars with a conflicting label and

head, the authors predicted that, if infants saw labels as symbolic markers, they would

infer category A, but if they saw labels as features, they would likely infer category B

in accordance with the head, a feature that was more salient and equally diagnostic

compared to the label. Their predictions were upheld, with infants consistently inferring

missing features as corresponding to the same category as the head.

Using the same categorisation/induction paradigm, another study showed that not
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only identical but merely similar auditory labels contributed to the judgement of within-

category similarity of 5-year-old children (Sloutsky & Fisher, 2012). More precisely, the

study considered the rate at which items that were more or less similar to a set of familiar

or trained category exemplars, were labelled as belonging to that same category. They

then compared this rate of category label inferences to the rate at which labels that were

more or less similar to a familiar or trained category label induced feature inferences

corresponding to that same category. They noted that those two rates were similar, that

is, between-exemplar similarity in terms of visual features or auditory labels had the

same impact on categorisation mechanisms, suggesting that labels are not different from

other object features.

While the labels-as-features theory does not make any assumptions of specific atten-

tional effects of labels, an important prediction of the labels-as-symbols theory is that

auditory labels will drive attention towards diagnostic features. Directly testing for this

effect, a study first familiarised 6- to 8-month-old infants with two labelled categories,

but halfway through the experiment changed the to-be-learned category to another cate-

gory where the previously diagnostic features were no longer relevant (Best et al., 2013).

If labels do direct attention towards diagnostic features, then we would expect infants to

exhibit a switch cost when the features they were previously focusing on are no longer

diagnostic. This was not the case however, suggesting that labels do not direct attention

towards diagnostic features as predicted by the labels-as-symbols theory.

Taking a closer look into attentional processes during category learning, was an

eye-tracking study on 8- to 12-month-old infants using the same five-featured category

prototypes as in Deng and Sloutsky (2012), and building two categories from those pro-

totypes by changing one feature at a time, including the salient head (Deng & Sloutsky,

2015). More precisely, they compared the effect on attention of hearing an auditory label

(label condition) and seeing the feet moving (motion condition), when learning one of

the two categories, the other only being used for contrast at test. Their main finding was

that infants learned the category only in the motion condition, not in the label condition,

a result conflicting with previous studies on categorisation in infancy, which all showed

a positive effect of labelling on category learning. This facilitatory effect of having a

dynamic visual feature was explained by an increase in distributed attention, as seen by

an increase in the number of visual shifts between different features. The authors further

claimed that labels failed to attract attention to commonalities. However, no one feature

was more diagnostic for category membership than any other in their stimuli, and as

such, there was no one feature that the label could have highlighted across exemplars.

Conversely, infants did exhibit longer looking to the head in the label condition, sug-

gesting that the label did drive attention to a feature that is arguably highly diagnostic

in real-life categories, a result that could thus be interpreted as evidence in favour of the

labels-as-symbols theory.

Overall then, studies addressing the question of the role of auditory labels in cate-

gorisation early in development have been myriad, using a variety of paradigms. This
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field is however still understudied, and possible explanations of the conflicting evidence

observed might lie in yet unknown effects. For example, it was suggested that the tim-

ing in the presentation of an auditory label and visual stimulus was more important

than earlier thought (Althaus & Plunkett, 2015b). In this study asynchronous presen-

tation of the visual stimulus followed by the label led to a positive effect of labelling

on categorisation abilities, whereas synchronous presentation of both stimuli led to an

auditory overshadowing like effect and the absence of a facilitatory effect of labelling on

categorisation.

Another such effect that has not been accounted for and thus has not been controlled

for consistently across studies is the salience of different features, with only one study

looking at salience maps of familiar stimuli and how 4- and 12-month-old infants’ looking

patterns compared to those salience maps (Althaus & Mareschal, 2012). However, this

study only revealed that throughout familiarisation infants looked less at the salient

features and more at other features. The authors explain this as attention being driven

by bottom-up processes at first, governed by the salience of different features, to become

more top-down controlled with an active information-seeking behaviour. However, this

result could be equally explained in terms of habituation to the better-encoded high-

salience features at the beginning, leading to a novelty preference looking at other less

salient features later on. Nonetheless, this study gave evidence that feature salience has

an impact on feature preference and encoding, and on categorisation. This result calls for

further studies addressing the question of the effect of auditory labels on categorisation

with feature salience as one of the controlled parameters of the design.

1.2 Labelling and Categorisation in Adults

If the question of the role of labels in infancy is still debated, it is generally agreed

upon that labels act as symbolic markers in adults. In an early study, Sloutsky et al.

(2001) noted that 4- to 5-year-old children responded reliably according to the labels-

as-features theory, 11- to 12-year-old children’s responses were more consistent with the

labels-as-symbols theory, and 7- to 8-year-old children were seemingly in a transitional

phase, with some participants responding in a feature-oriented fashion, while others were

more relying on the label. Further, most studies providing evidence for the labels-as-

features theory in infants contrasted these findings with evidence that adult controls

treated labels as symbolic category markers. For example, in the studies we mentioned

on infants that tested adults at the same time, adults exclusively relied on identical labels

to define categories (Sloutsky & Fisher, 2012), showed a switching cost when previously

diagnostic features became irrelevant (Best et al., 2013), and most adults made more

label-consistent feature inferences (Deng & Sloutsky, 2012). However, in this last study

some adults showed either head-consistent inferences or a mix of the two behaviours.

Studies have also been conducted specifically on adults to understand the mechanisms

by which labels act as symbolic markers to help categorisation.

First, it is clear that even redundant labels help adults to learn categories more effi-

ciently, both in terms of reaction times for category membership decisions, and in terms
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of quicker increase in accuracy compared to a control condition with no auditory label

(Lupyan et al., 2007). In a subsequent study, redundant labels were shown to increase

the detection speed of exemplars belonging to the corresponding category (Lupyan &

Spivey, 2010), hinting at a priming effect of auditory labels on category concepts.

One study looked more precisely into the priming effects of auditory labels and

other meaningful auditory cues such as the barking of a dog or the word “barking”

(Lupyan & Thompson-Schill, 2012). They showed that hearing a label activated category

representations in a more effective way and more consistently between subjects than

did other auditory cues, linguistic or not. This work was further extended to show

that participants, when hearing non-linguistic auditory cues, activated the concept of

a specific category exemplar in a specific sound-producing action, whereas participants

activated more general, decontextualised, category representations when hearing a label

(Edmiston & Lupyan, 2015). These results echo early evidence that category labels (e.g.

“dog”), but not labels relating to object features (e.g. “snout”), are treated differently

from other object features, visual or not (Yamauchi et al., 2007), and had a stronger

effect on the induction of a missing feature (Yamauchi & Yu, 2008).

Finally, tapping directly into cerebral processes, a study showed that inducing an

enhancement of the cerebral mechanisms linked with labelling improved the formation

of “sparse” categories, that is, categories defined by only a few diagnostic features (Perry

& Lupyan, 2016). Specifically, they enhanced labelling mechanisms by up-regulating ac-

tivity over Wernicke’s area, involved in language comprehension, via transcranial direct

current stimulation. Conversely, disturbing labelling mechanisms by down-regulating ac-

tivity over Wernicke’s area improved the formation of more multi-dimensional categories

with no fully diagnostic features (Perry & Lupyan, 2014).

1.3 Computational Models of Categorisation

Computational modelling is an essential tool in cognitive sciences, allowing us to imple-

ment theories and assumptions these theories make, test them in a controlled environ-

ment, and understand what aspects of the theories tested impact predictions in which

way. There are two philosophies when it comes to modelling: building complex models

of human cognition that account for a variety of task results, or building simpler models

that account only for a certain type of task. While complex models might seem more

appealing, their very complexity makes it hard to identify and understand the under-

lying mechanisms at play. For example, a recent deep neural network model replicated

the emergence of a shape bias in categorising information (Ritter et al., 2017). Precisely,

this result evidenced that a powerful regularity extractor, when extensively trained to

group real world stimuli into labelled categories, learned to give more importance to the

shape rather than colour of objects when building new categories in a subsequent test

phase. That is, there is a shape bias in the way humans structure real-life objects into

labelled categories. Crucially, this model does not explain if such a shape bias emerged

for one reason or another, and thus only replicates its existence without explaining it.

Conversely, simpler models might seem more limited, for example by the nature and size
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of their input, often not as ecological. Nonetheless, they allow us to understand what

aspects of the model lead to the observed results, and how changes in model parameters

might relate to different results and different aspects of the theory they are built on.

1.3.1 An Overview of Different Modelling Approaches

Many models have been used to study categorisation and the effects of labels on cate-

gorisation, ranging from self-organising maps (SOM; Mayor & Plunkett, 2010), simple

similarity-based mathematical models (SINC; Sloutsky & Fisher, 2004), clustering algo-

rithms (SUSTAIN; Love et al., 2004), connectionist models with objective encoding of

rules and features (ATRIUM/ALCOVE; Erickson & Kruschke, 1998; Kruschke, 1992),

and many others. They all give insights into different processes of categorisation, at

different levels of abstraction.

Sloutsky and Fisher (2004) proposed SINC, for “Similarity, INduction, and Catego-

rization”, a model that considered a simple view of categorisation, based on similarity.

In this model, objects were considered in terms of a fixed number of features (shape

of the head, eyes, ears, etc.), with a finite set of possible values for each feature. To

compare two objects, their similarity was computed based on the number of features

matching between them. Each feature could further have a different weight, meaning

that mismatches on different features would have more or less of an impact on the com-

puted similarity value. In this model, labels were treated like other features, weighing

more in the similarity decision. Although very simple and abstract, this model succeeded

in replicating a broad range of empirical studies. It thus suggests that categorisation is

to some extent a function of feature-by-feature similarity between encountered objects,

with labels acting on the same level as other features.

A more realistic model, combining a self-organising map with Hebbian learning, two

biologically plausible mechanisms, accounted for the developmental shift in the role of

labels, from treating them as features to seeing them as symbolic markers for categories

(Mayor & Plunkett, 2010). SOMs are used to encode complex, often multi-dimensional,

stimuli into a two-dimensional grid of neurons, with each neuron representing a particular

exemplar from the input space, and neighbouring neurons coding for similar exemplars

once the SOM is fully trained (Kohonen, 1990). Thus, the presentation of an input to a

SOM will activate a cluster of neurons depending on how similar their receptive field is to

the new input. Given two pre-trained SOMs with linguistic labels and objects typically

encountered by infants, this model could first generalise the link between a label and

the corresponding category after a single label-object presentation, and, over time rein-

force the link between label instances and object instances, so that labels slowly became

predictors of objects rather than merely associated with them. These associations were

learned via a Hebbian learning over the connections between the two SOMs, reinforcing

a connection when an object was presented together with a label to the model. Since

the Hebbian learning happened as a function of neuron activation, and since each input

(linguistic or visual) activated a cluster of neurons at different levels, this model slowly

learned to generalise those label-object connections into label-category connections. Al-
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though this model was limited by the size of the two SOMs, and the fact that they

both required background training before being connected, it provided evidence that a

simple model, based on biologically plausible components that are unimodal SOMs and

cross-modal Hebbian learning, could account for the developmental trajectory of the role

of labels in categorisation.

Crucially, these models of categorisation did not implement any attention mecha-

nisms, one of the key components thought to underlie infants’ and adults’ categorisa-

tion behaviours. The first model of categorisation to do so was ALCOVE (Attention

Learning COVEring map, Kruschke, 1992), combining an exemplar representation with

perceptron-inspired error-driven back-propagation learning over three layers. In this

model, stimuli were divided in multiple dimensions (height, colour, etc.), each of which

could have different values, and were coded by a separate input unit each whose ac-

tivation was the corresponding feature’s value. This input layer then propagated to a

hidden layer, in which each unit represented a previously encountered exemplar, with

a receptive field on each dimension in multidimensional psychological space. As such,

the model was initialised with no hidden units, and those were added one at a time as

the model encountered new exemplars. Then, those hidden units were activated by the

new stimulus depending on their similarity to this new stimulus; more precisely, their

receptive field over each input dimension responded with exponential decay. Crucially,

an attentional gating parameter shaped the width of all those receptive fields for each di-

mension, allowing the model to learn to give more or less importance to specific features,

effectively distorting its representation of the world. Finally, those hidden exemplar units

connected to a categorical decision output layer, making ALCOVE a supervised model

of category learning. All the parameters were then updated by backpropagation of the

error. Although this model initially used only previously encountered exemplars as hid-

den units, it could be initialised with a full covering grid of hidden units, simulating

long-term background knowledge.

In ATRIUM, a later model, ALCOVE was combined with a parallel rule-based cat-

egorisation model (Erickson & Kruschke, 1998). The two parallel networks competed

to make a categorisation decision, and thus learned for each input if a rule-based or an

exemplar-based approach was better suited for this type of input. These two models

(ALCOVE and ATRIUM) accounted for a great many categorisation task results. Par-

ticularly, ALCOVE replicated tasks that previous models had failed to replicate because

of their lack of an attention mechanism, for example when successful categorisation de-

pended on correlated dimensions of the input stimuli (Medin et al., 1982). ATRIUM

further replicated tasks in which some categorisation decisions were rule-based and oth-

ers exemplar-based, as is the case for example for the ‘mammal’ category in which most

exemplars can be categorised based on their similarity with other mammals, but whales

and dolphins call for a rule-based categorisation. However, a different set of parame-

ters was necessary for each result reproduction, reducing the model’s explanatory and

predictive power.

Another model inspired by ALCOVE, SUSTAIN (Supervised and Unsupervised STrat-
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ified Adaptive Incremental Network), was however able to address this shortcoming, re-

producing all the same data with a single set of parameters (Love et al., 2004). The key

difference between ALCOVE and SUSTAIN was that SUSTAIN replaced hidden exem-

plar units by ‘cluster neurons’. Those neurons were structurally similar to the exemplar

units we described earlier, with a receptive field over each dimension of the multidimen-

sional stimulus space. However, when an exemplar unit was added for each new stimulus

in ALCOVE, in SUSTAIN, cluster neurons were simply updated with every encountered

stimulus, to better fit the data. This model still learned incrementally, creating a new

cluster when encountering a new stimulus that could not be accounted for by the model,

and centring this new cluster on this new stimulus. Interestingly, this model could do so

either in a supervised or unsupervised way. When supervised, a new cluster was created

when a queried dimension (or a category label) was falsely predicted. When unsuper-

vised, a new cluster was simply added when the closest cluster to the new stimulus was

not close enough, or put differently, when the neuron representing this cluster was not

activated above a pre-determined threshold. SUSTAIN successfully replicated empirical

data from adults on supervised classification learning but also on a broader range of tasks

and conceptual functions linked to categorisation: learning categories at different levels

of abstraction, inferring a missing object feature when hearing a label, and unsupervised

category learning. Although SUSTAIN achieved a remarkable fit to human data, it re-

mained limited by its explicit coding of stimuli: the input data were not raw, but cut

into set features that could take only set values. Even though it is safe to assume that

humans visual processing is capable of extracting abstract features and representations

from visual inputs, this however meant that SUSTAIN was not autonomous, and was

limited by experimenter bias on the coding of explicit stimulus dimensions.

One type of model that partly addresses the problem of experimenter coding bias

are auto-encoders. Those models reproduce input patterns on their output layer by

comparing input and output activation after presentation of training stimuli and com-

puting the error between these two representations, then using this error to adjust the

weights between units using back-propagation (Rumelhart et al., 1986). One important

aspect of auto-encoders is that their hidden layers are of reduced size compared to their

input/output layers; thus, auto-encoders learn to compress information in the most ef-

fective, lossless way. In doing so, they essentially extract features from complex stimuli,

and are therefore well suited for categorisation tasks. Furthermore, the error-driven

learning of those models matches the idea that infants learn, when presented with a

novel stimulus, by comparing it to an internal representation of the same stimulus (e.g.

Charlesworth, 1969; Cohen, 1973). The bigger the discrepancy between representations,

the more need for information processing, and thus for a longer looking time, referred

to as a novelty preference (see Oakes, 2010; Quinn, 2004). Thereby, such neurocompu-

tational models have successfully captured looking time data from infant categorisation

tasks (Mareschal & French, 2000; Westermann & Mareschal, 2004), using error on the

network’s output layer as a proxy for infant looking times.

A recent model of categorisation in infancy was built as a dual-memory three-layered
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Figure 1: Structure of the Dual-Memory Network model without label output units
on the left (Westermann & Mareschal, 2012), and with label output units on the right
(Westermann & Mareschal, 2014).

auto-encoder neural network (Westermann & Mareschal, 2012, see Fig. 1). We discuss

this model further bellow.

1.3.2 Westermann and Mareschal’s Dual-Memory Model (2012, 2014)

This model consisted of two simple auto-encoders with three layers (input, hidden, and

output), coupled by and interacting through their hidden units. The two auto-encoders

had different learning rates, and implemented on an abstract level a short-term memory

(STM) and a long-term memory (LTM). The LTM component used a learning rate of

0,001 so that it encoded information relatively slowly; the STM used a learning rate

of 0,1 and encoded information relatively quickly. The two auto-encoders further inter-

acted through their hidden layers: those hidden layers were updated in parallel, receiving

activation from their input layer and from one another, until both hidden layers had con-

verged to a stable state (i.e. the change in their activation between two steps of the loop

fell under a pre-determined threshold). Activation was then propagated to each output

layer, and the difference between these outputs and the input (the network’s prediction

error) was used to update each network’s connection weights via backpropagation of this

error. Specifically, the horizontal connection from the LTM hidden units to the STM

hidden units were updated using the STM’s learning rate, and vice versa, so that the

influence of each component over the other was learned at the same rate as the rest

of the impacted network. This model was trained over a wide range of natural stim-

uli, to emulate to some extent infants’ background knowledge: 190 exemplars from 19

basic-level categories taken from 4 superordinate categories (furniture, animals, vehicles,

and humans), encoded through 19 meaningful features (based on object geometry and

characteristics). This model was first used to replicate empirical data on the effect of

background knowledge on pre-linguistic categorisation in young infants (Bornstein &

Mash, 2010), in which infants familiarised faster to new exemplars of a category in the

lab only if they had been habituated with different exemplars of this category at home

in a two-months-long background training phase.

This model was later extended to account for the effect of labels on categorisation

processes and its change over the course of development (Westermann & Mareschal,

2014, see Fig. 1). The training set for this extended model consisted of 208 exemplars
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from 26 natural categories, falling into the same four subordinate categories as previ-

ously, and encoded in the same way. This model represented labels as additional output

units on the LTM component only. This represented the empirical finding that infants

activate learned long-term label representations when encountering category exemplars

(Mani & Plunkett, 2010). Since the model did not have an input label to compare

to its prediction over those units, these units were used in a supervised way, and the

model had to learn to predict the correct category label depending on its input. Dur-

ing background training, those units were used only half of the time, accounting for

the fact that, in real life, objects are not reliably labelled in every instance on which

infants encounter them. Crucially, this model shed new light on the debate over the

role of labels on categorisation. Here, labels were not treated as other features but were

nonetheless embedded into object representations with those other features through the

process of backpropagation. Labels did not have an abstract attention-driving role ei-

ther. Nonetheless, when trained with labels, the model grouped categories into more

compact clusters, as represented in its hidden layer, than when trained in silence. In

other words, adding a label increased the perceived similarity between exemplars within

a category relative to between-category similarity, as predicted by the labels-as-features

theory, without treating the labels as other features. Thus, this model offered a new

compound-representations account to explain early and later labelled categorisation and

its developmental course.

In conclusion, we have seen that there is an ongoing debate on the role of verbal labels

for categorisation in infancy. On the one hand, the labels-as-symbols theory argues that

labels can actively guide categorisation by highlighting diagnostic features from an early

developmental stage. Conversely, the labels-as-features theory argues that labels are first

perceived as object features with no distinct role, and are simply a highly salient feature

that adds to the similarity between exemplars within a category. Finally, both theories

agree that labels have a more symbolic value in adults, acting as category markers, and

the compound-representations theory offers an account of this developmental switch,

supported by a neurocomputational model.

One key question that we raised in our literature review is that of the role of feature

salience in categorisation, and its possible interaction with auditory labelling. We will

attempt to answer this question later in this thesis, using empirical work on pre-linguistic

infants and adults, and neurocomputational modelling methods. Specifically, we will

study how categories in which a salient feature is non-diagnostic but non-salient features

are diagnostic are learned, and how adding an auditory label changes the way these

category are learned.

First, however, we extended the dual memory model with linguistic units described

above (Westermann & Mareschal, 2014) to implement the assumptions of the labels-

as-features theory. We validated this implementation by replicating existing empirical

data on infants, particularly, we teased apart two theories that were equally able to

explain the data: the initially implemented compound-representations theory, and the
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labels-as-features theory that we newly implemented. We further used this model to

make predictions for an ongoing follow-up empirical work. This first computational

work serves as a stepping stone to our thesis, allowing us to test the explanatory and

predictive power of this neurocomputational model architecture.
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Neurocomputational models capture the effect of learned

labels on infants’ object and category representations
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Lancaster University, UK

Abstract

The effect of labels on non-linguistic representations is the focus of substan-

tial theoretical debate in the developmental literature. A recent empirical study

demonstrated that ten-month-old infants respond differently to objects for which

they know a label relative to unlabeled objects. One account of these results is that

infants’ label representations are incorporated into their object representations, such

that when the object is seen without its label, a novelty response is elicited. These

data are compatible with two recent theories of integrated label-object represen-

tations, one of which assumes labels are features of object representations, and

one which assumes labels are represented separately, but become closely associated

across learning. Here, we implement both of these accounts in an auto-encoder neu-

rocomputational model. Simulation data support an account in which labels are

features of objects, with the same representational status as the objects’ visual and

haptic characteristics. Then, we use our model to make predictions about the effect

of labels on infants’ broader category representations. Overall, we show that the

generally accepted link between internal representations and looking times may be

more complex than previously thought.

Keyboards: connectionist model, representational development, label status, lan-

guage development, cognitive development

1 Introduction

The nature of the relationship between labels and non-linguistic representations has

been the focus of recent theoretical debate in the developmental literature. On the

labels-as-symbols account (Waxman & Gelman, 2009; Waxman & Markow, 1995), labels

are symbolic, conceptual markers acting as privileged, top-down indicators of category

membership, and label representations are qualitatively different to object representa-

tions. In contrast, the labels-as-features view assumes that labels have no special status;

rather, they contribute to object representations in the same way as other features

such as shape and color. More recently, Westermann and Mareschal (Westermann &

Mareschal, 2014) suggested a compound-representations account in which labels are en-

coded in the same representational space as objects and drive learning over time, but

do not function at the same level as other perceptual features. Rather, they become

closely integrated with object representations over learning and result in mental repre-

sentations for objects that reflect both perceptual similarity and whether two objects
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share the same label or have different labels. This approach therefore takes a middle

ground between the labels-as-symbols and the labels-as-features views in that labels do

not act at the same level as other object features (acknowledging that language is special

as in labels-as-symbols), but that an integrated object representation is formed through

the association between perceptual object features and labels (as in labels-as-features).

However, despite substantial empirical work (e.g. Althaus & Mareschal, 2014; Althaus

& Plunkett, 2015; Gelman & Coley, 1991; Gliga et al., 2010; Sloutsky & Fisher, 2004,

2012; Twomey & Westermann, 2017b; Westermann & Mareschal, 2014)) and a handful

of computational investigations (e.g. Gliozzi et al., 2009; Mirolli & Parisi, 2005; West-

ermann & Mareschal, 2014)), there is no current consensus as to the status of labels in

object representations, and the debate goes on.

A variety of studies have demonstrated that language does affect object encoding and

representations early in development. When and how in development this relationship

emerges is less clear. For example, labels can guide online category formation in infants

and young children (Althaus & Westermann, 2016; Graham & Poulin-Dubois, 1999;

Plunkett et al., 2008), and previously learned category representations affect infants’

online visual exploration in the lab (Bornstein & Mash, 2010; Hurley & Oakes, 2015),

but until recently the link between learned labels and category representations had

not been directly tested. Gliga et al. (2010) recently explored electroencephalogram

(EEG) neural responses to stimuli in 12-month-old infants presented with a previously

labeled object, a previously unlabeled object, and a new object. They found significantly

stronger gamma-band activity only in response to the previously labeled object, and this,

in line with previous EEG work, was interpreted as a marker of stronger encoding of this

object. Twomey and Westermann (2017b) extended this work by training 10-month-old

infants with a label-object mapping over the course of one week. Specifically, parents

trained infants with two objects during three-minute play sessions, once a day for seven

days, using a label for one of the objects, but not for the other. After the training

phase, infants participated in a looking time task in which they were shown images of

each object in silence. Testing the hypothesis that (previously learned) labels would

affect infants’ object representations, the authors predicted that infants should exhibit

different looking times to the labeled and unlabeled objects. Their predictions were

upheld: results showed a main effect of labeling, such that infants looked longer at the

previously labeled than the unlabeled object (see Fig. 1 for the original data).

These data shed light on the debate on the status of labels. Specifically, they support

both the labels-as-features and the compound-representations theories. On the labels-

as-features account, if a label is an integral part of an object’s representation, when the

label is absent there will be a mismatch between that representation and what the infant

sees in-the-moment (equally, a similar response would be expected when another of the

object’s features, for example color, differed from the learned representation). Since

infants are known to engage preferentially with novel stimuli (Fantz, 1964; Houston-

Price & Nakai, 2004), this mismatch will elicit a novelty response, indexed by increased

looking times to the previously labeled object. On the compound-representations view,
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Figure 1: Looking time results from Twomey and Westermann (2017b). Error bars
represent 95% confidence intervals.

seeing the previously labeled object would activate the label representation (Mani &

Plunkett, 2010). This active label representation would, in turn, lead to a priming-like

increase in looking time towards the previously labeled object (Baldwin & Markman,

1989; Mani et al., 2012; Mani & Plunkett, 2011).

Importantly, while the behavioral data presented in Twomey and Westermann (2017b)

support either of these views, they cannot differentiate between the two. Computational

models, on the other hand, allow researchers to explicitly test the mechanisms specified

by these theories against empirical data. Specifically, simple computational models, by

stripping back mechanisms to a minimum, allow us to precisely understand these mecha-

nisms and discover which ones are relevant and which ones are not (for similar arguments,

see McClelland, 2009; Morse & Cangelosi, 2017). Thus, here we implemented both ac-

counts in simple computational models to explore which of the labels-as-features and

compound-representations accounts best explains Twomey and Westermann’s (2017b)

looking time data.

2 Experiment 1

2.1 Model Architecture

We used a dual-memory three-layer auto-encoder model inspired by Westermann and

Mareschal (2014) to implement both the labels-as-features and the compound-represen-

tations theories. Such neurocomputational models have successfully captured looking

time data from infant categorization tasks (Mareschal & French, 2000; Twomey & West-

ermann, 2017a; Westermann & Mareschal, 2004, 2012, 2014). Auto-encoders reproduce

input patterns on their output layer by comparing input and output activation after pre-

sentation of training stimuli, then using this error to adjust the weights between units

using back-propagation (Rumelhart et al., 1986).

Our model consisted of two auto-encoders coupled by, and interacting through, their
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Figure 2: Structure of the Dual-Memory Network models: the Long-Term Memory is in
green (left), and the Short-Term Memory in yellow (right). Layer width corresponds to
number of units: 5 label, 10 visual, 8 haptic, and 15 hidden units. a) Labels-as-Features
model. b) Compound-Representations model.

hidden units. These two subsystems represented, on an abstract level, a short-term

(STM) and a long-term (LTM) memory component. This model has previously been

used to simulate the impact of infants’ background category knowledge acquired in ev-

eryday life (represented in long-term memory) on lab-based looking time experiments in-

volving in-the-moment knowledge acquired in familiarization-novelty-preference studies

(represented in short-term memory) (Westermann & Mareschal, 2014). It was therefore

well suited to simulate the effects of infants’ learning about objects and labels at home

on their subsequent looking behavior in the lab as in Twomey and Westermann (2017b).

The two auto-encoders had different learning rates: the LTM component used a

learning rate of 0.001 so that it encoded information relatively slowly; the STM used

a learning rate of 0.1 and encoded information relatively quickly. For the interaction

between the two networks’ hidden units, both hidden layers were updated in parallel,

receiving activation from their input layer and the other network’s hidden layer until

both hidden layers had converged to a stable representational state, with the lateral

interaction resulting in no further update in their activation. The weights from the

STM to LTM were treated as part of the LTM network and updated with a learning

rate of 0.001; similarly, the weights from the LTM to the STM were treated as part of

the STM network and updated with a learning rate of 0.1. Thus, the influence of the

other memory on each network was updated at the same rate as the rest of the network.

Both networks received identical input. The details for all the model parameters and

the full code are available on-line (https://github.com/respatte/LabelTime).

2.1.1 Labels-As-Features Model (LaF)

Fig. 2a depicts the LaF model. To represent the label as a feature that was equivalent

to all other features, we included it both at the input and the output level for both
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Figure 3: Encoding of stimuli, with overlapping units highlighted.

components. Thus, the label had exactly the same status as all other features in the

model’s representation.

2.1.2 Compound-Representations Model (CR)

Fig. 2b depicts the CR model. Here, labels are represented only on the output side of

the LTM network. Thus, in effect, the model learns to associate the perceptual object

description with the label. This approach reflects the empirical finding that presenting

an object to infants activates their (learned, long-term) representation of the label for

that object (Mani & Plunkett, 2010).

2.1.3 Stimuli

Our stimuli were encoded as sets of abstract binary features that were designed to reflect

the visual, haptic and label characteristics of the 3D object stimuli used in Twomey

and Westermann (2017b). Thus, our encoding can be interpreted as a list of dummy

variables that could generalize to alternative stimuli, coding for the presence/absence

of one particular dimension of the stimuli (e.g. “is made of wood”, “is red”, would be

plausible dimensions for the stimuli considered here).

Visual Input Twomey and Westermann’s (2017b) empirical study stimuli were two

small wooden toys: a castanet, and two wooden balls joined with a string. One toy was

painted red and the other blue, with color counterbalanced across children. Thus, the

stimuli were visually dissimilar, but both consisted of two wooden components connected

with string/elastic. To reflect the partial overlap in visual appearance of these objects,

we encoded the visual component of our stimuli as patterns of activation over 10 units;

each object had the same number of active units (6), with two out of the ten units active

for both objects to represent commonalities between stimuli (see Fig.3).

Haptic Input As well as visual experience, infants in Twomey and Westermann

(2017b) received haptic input when handling or mouthing the stimuli. We reasoned

that the degree of overlap in this input would vary between infants. Because both ob-

jects were wooden and presented simultaneously, infants would have experienced some

overlap in haptic experience with the objects. On the other hand, because the objects

had different affordances, this overlap would never have been total. Thus, we encoded

haptic input over eight units, with overlap varying randomly between two and six units

between simulations. Haptic stimuli were presented to the model simultaneously with

the visual stimuli and encoded in an identical fashion.
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Label Input Label input consisted of five binary units, activated (set to 1) for the

labeled object only. For the unlabeled object, the units were simply set to 0.

2.2 Procedure

In line with the experimental study in Twomey and Westermann (2017b), our proce-

dure consisted of two phases. First, to simulate the 3D object play sessions at home,

we trained the models with both objects, one with a label and one without a label

(background training). Then, we simulated the second, lab-based part of the study by

familiarizing the models with both objects without the labels to simulate the silent fa-

miliarization phase of the empirical study. Specifically, we ran each architecture in a

familiarization phase in which the label units were inactive for both stimuli: the label

inputs for the LaF architecture were set to zero, and the label outputs were ignored for

both architectures (therefore not contributing to network error nor impacting on further

weight updates).

To collect an amount of data consistent with infant studies, we ran a total of 40

model subjects for each architecture.

2.2.1 Play Sessions

To reflect the likely differences in playing time across children, the total number of

iterations for which the model received each stimulus during background training was

selected randomly from a normal distribution of mean 2000 and standard deviation

200. Stimuli were presented individually in alternating fashion. Although this does not

precisely reflect the rich, combined play with both objects for different times experienced

by infants, alternating the stimuli allows the model to learn more efficiently from a purely

computational point of view, and should not influence results, as different training orders

for the same stimuli asymptotically converge to the same solution.

2.2.2 Familiarization Training

Before familiarization training, we added noise to the STM’s hidden-to-output weights

(by adding a value in the range ±[0.1, 0.3] to the existing weight values) to simulate the

likely memory decay from infants’ final play session, which had taken place the previous

day. Then, the label input units were set to zero, and the output units ignored, not

taking them into account when computing network error and back-propagation. Haptic

input and output units were also set to zero, to reflect the absence of haptic experiences

in the lab experiment.

Familiarization then proceeded as follows: in line with Twomey and Westermann

(2017b), stimuli were presented in alternation for eight trials each. The familiarization

phase therefore consisted of 16 trials in total. The initial stimulus was counterbalanced

across simulations. In line with previous similar models, we used the network’s error on

the output of the STM component as an index of infants’ looking times (Mareschal &

French, 2000; Twomey & Westermann, 2017a; Westermann & Mareschal, 2012, 2014).
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Figure 4: Looking time results for Experiment 1 simulations. Error bars represent 95%
confidence intervals.

2.3 Results

Results from the familiarization phase for both simulations are depicted in Fig. 4. We

submitted STM error (looking time) to an omnibus linear mixed-effects model using the

R (3.4.4) package lme4 (1.1-17) (Bates et al., 2015) (full code available on GitHub).

The model with maximal random-effects structure that converged (Barr et al., 2013)

included fixed effects for trial (1-8), theory (Compound-Representations, Labels-as-

Features), condition (label, no label), and the trial-by-condition, theory-by-condition,

trial-by-theory, and trial-by-theory-by-condition interactions; and by-subject random

intercepts and slopes for trial and condition. The main effect of condition did not sig-

nificantly improve model fit according to a likelihood ratio test; all other fixed effects

analysis significantly improved model fit. Full details of the fitted fixed effect parameters

and the likelihood ratio tests are provided in Table 1.

To understand the interactions, we submitted looking time for each model to separate

mixed effects analyses, constructed in an identical fashion to the omnibus analysis. Full

details of the theory-specific analyses’ parameters are also given in Table 1. Overall,

the CR model’s looking time decreased rapidly across trials. There was a small but
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Table 1: Estimated Parameters for Experiment 1 Looking Times: Fixed Effects for
Global, CR, and LaF lmer Models

Global Model

Parameter Estimate SE X2 Pr(> X2)

Intercept 0.998 0.0327

Trial -0.104 0.0038 270.735 < .001

Condition (no label) 0.065 0.0230 3.185 .074

Trial × Condition -0.010 0.0040 30.712 < .001

Theory (LaF) 0.434 0.0463 30.412 < .001

Theory × Condition -0.294 0.0325 16.000 < .001

Trial × Theory -0.039 0.0054 7.342 .007

Trial × Theory × Condition 0.052 0.0056 82.828 < .001

LaF Model

Intercept 1.432 0.0312

Trial -0.143 0.0035 138.357 < .001

Condition (no label) -0.229 0.0218 17.381 < .001

Trial × Condition 0.042 0.0036 119.769 < .001

CR Model

Intercept 0.998 0.0343

Trial -0.104 0.0041 128.776 < .001

Condition (no label) 0.065 0.0242 2.549 < .001

Trial × Condition -0.010 0.0043 5.279 .022

significant improvement in model fit; an interaction between trial and condition, with

a slightly slower decrease in looking time in the label condition, but no main effect of

condition. Thus, the CR model did not capture the pattern of results in the empirical

study, in which infants looked longer at the previously labeled object. The LaF model’s

looking times also decreased across trials, and this model showed a strong effect of

label, with longer looking times towards the previously labeled object. The trial-by-

condition interaction also improved the model, with looking time towards the previously

labeled object decreasing faster to fall to a comparable level to the looking time to the

previously unlabeled stimulus. Although this interaction was not found in the empirical

data analysis, it is not uncommon for models to deviate from the precise patterns of

empirical data while capturing the overall pattern of interest. This is particularly the

case with the additional noisiness found in infant data; the empirical data analysis

might have failed to detect this interaction effect between trial and condition, due to

the noisiness and smaller sample size of infant studies naturally decreasing statistical

power. In the end, the LaF model captures Twomey and Westermann’s (2017b) main

empirical results of interest: when all else is held equal, teaching the LaF model a label

for one object but not another leads to longer looking times towards the previously
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labeled object in a subsequent, silent familiarization phase.

2.4 Discussion

In Experiment 1, we tested two possibilities for the relationship between labels and ob-

ject representations using a neurocomputational model to capture recent empirical data

(Twomey & Westermann, 2017b). The target data showed that previously learned labels

affect 10-month-old infants’ looking times in a silent familiarization phase, suggesting

that knowing a label for an object directly affects its representation, even when that

object is presented in silence. As noted by Twomey and Westermann (2017b), both

the compound-representations (CR) and labels-as-features (LaF) accounts predict some

effect of labels on object representations, and both theories could explain their empir-

ical data. To disentangle these two accounts, we implemented both theories in simple

dual-memory auto-encoder models inspired by Westermann and Mareschal (2014). In

our CR model, we instantiated labels on the output layer only. This model learned to

associate labels with inputs over time such that the presence of visual/haptic input for

an object would consistently activate the label, but nonetheless, label information was

separate from visual and haptic object information (Westermann & Mareschal, 2014).

In our LaF model, labels were represented on the input as well as on the output layers

in exactly the same way as the visual and haptic components of object representations

(Gliozzi et al., 2009; Sloutsky & Fisher, 2004). Only the LaF model captured the longer

looking to the previously labeled stimulus exhibited by the infants in Twomey and West-

ermann’s (2017b) empirical study.

These results offer converging evidence that labels may have a low-level, featural

status in infants’ early representations. In line with recent computational work (Gliozzi

et al., 2009; Westermann & Mareschal, 2014) we chose to explore such low-level accounts

using a simple associative model that could account for the nuances of recent empirical

data (Twomey & Westermann, 2017b). Our LaF model offers a parsimonious account

of Twomey and Westermann’s (2017b) results, in which looking time differences emerge

from a low-level novelty effect (Sloutsky, 2003; Sloutsky & Fisher, 2004; Sloutsky et

al., 2001), without the need to specify qualitatively different, top-down representations

(Fulkerson & Waxman, 2007; Waxman & Booth, 2003; Waxman & Gelman, 2009).

Specifically, as argued in Twomey and Westermann (2017b), and as implemented in

the LaF model, over background training the label is learned as part of the object

representation. Thus, when the object appears without the label there is a mismatch

between representation and reality. This mismatch leads to an increase in network error

for the previously labeled stimulus only, which has been interpreted in the literature as

a model of longer looking times (Mareschal & French, 2000; Twomey & Westermann,

2017a; Westermann & Mareschal, 2012, 2014). Further, these results delineate between

the two possible explanations for infants’ behavior in the empirical task; specifically, our

results support accounts of early word learning in which labels are initially encoded as

low-level, perceptual features and integrated into object representations.
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Figure 5: Example of two categories generated for Experiment 2 (first two dimensions
of a PCA). Hollow shapes represent the prototypes, used during the familiarization
(lab) phase, around which categories where constructed, and filled shapes represent
exemplars used during background training. We used Principal Component Analysis
(PCA) to reduce the dimensionality of the representational space in order to plot the
10-dimensional exemplars in a 2-dimensional space. The proportion of variance in the
original representation explained by each of the plotted dimensions is specified on the
axis labels.

3 Experiment 2

Overall, then, our LaF model offers a mechanism by which labels affect infants’ rep-

resentations of single objects. However, rather than one-to-one label-object mappings,

infants typically learn labels for categories of objects; for example, a child might learn

that their brown furry cuddly toy, the spotted animal in their picture book, and the

hairy, barking animal at Grandma’s are all referred to by the label ‘dog’. A question

that Twomey and Westermann’s (2017b) empirical study and the current computational

replication leave open, then, is whether the effect seen here would persist when consid-

ering richer categories rather than single objects. Thus, in Experiment 2 we extended

our LaF model to category learning to make testable predictions for future empirical

work. To this end, we trained our model with two object categories, one labeled and one

unlabeled, before testing the model on a new exemplar from each category in the same

way as in Experiment 1.

As our implementation of the CR model did not replicate the empirical results in

Experiment 1, we did not use it in Experiment 2 and instead focused on the LaF model.

3.1 Stimuli

In these simulations, stimuli consisted of two distinct categories with five exemplars each.

Four of the five exemplars for each category were used for background training, keeping

the remaining one as a novel within-category item for the simulated looking time phase.

To allow for convenient future empirical testing of our predictions (e.g. using pictures

in a storybook read at home as in Bornstein & Mash, 2010; Horst et al., 2011), we

removed the haptic units from the model. We constructed our categories around two

exemplars with one overlapping unit (out of the 10 visual units), and then randomly

adding noise to this exemplar, adding to the prototype values taken from a uniform
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Table 2: Estimated Parameters for Experiment 2 Looking Times: Fixed Effects for LaF
lmer Model

Parameter Estimate SE X2 Pr(> X2)

Intercept 1.348 0.029841

Trial -0.153 0.0045 113.490 < .001

Condition (no label) -0.350 0.0292 21.434 < .001

Trial × Condition 0.066 0.0052 138.707 < .001

distribution between -0.5 and 0.5. Thus, we ensured that both categories formed distinct

clusters in representational space, while making all exemplars within a category distinct

from each other (Fig. 5).

3.2 Procedure

Similar to Experiment 1 we first trained the model with exemplars of each category,

presented individually in alternating fashion, with timings drawn from a normal distri-

bution of mean 2000 and standard deviation 200. Which category was labeled and which

was unlabeled was counterbalanced across simulations.

We then presented the models with a familiarization phase in line with Experiment

1, in which the remaining exemplar for each category was presented without a label. As

in Experiment 1, this phase consisted of 16 interleaved trials of up to 40 iterations (eight

trials per category).

Again, to collect an amount of data consistent with infant studies, we ran a total of

40 model subjects.

3.3 Results

3.3.1 Looking Times

Using the same procedure as in Experiment 1, we fitted an omnibus linear mixed-effects

model to the STM network error (looking time) during familiarization. Results are

shown in Fig. 6. The final model included main effects of trial (1-8), condition (label, no

label), and a trial-by-condition interaction; the model also included by-subject random

intercepts, and random slopes for trial and condition. All fixed effects in this final

analysis significantly improved model fit according to a likelihood ratio test. Full detail

of the fitted fixed effect parameters are given in Table 2.

The model’s looking time decreased across trials (main effect of trial), and, as in

Experiment 1, the model showed longer looking times towards the previously labeled

category (main effect of condition), and a faster decrease in looking time towards this

category (trial-by-condition interaction). Thus, the LaF model predicted that when

trained with labeled and unlabeled categories rather than individual objects, infants

should again show a novelty response when viewing silently-presented exemplars of the

previously labeled category.
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Figure 6: Looking time results for the Experiment 2 simulations. Error bars represent
95% confidence intervals.

Table 3: Parameters for Experiment 2 Internal Representations: Fixed Effects for LaF
lmer Model

Parameter Estimate SE X2 Pr(> X2)

Intercept 1.635e-01 4.467e-03

Step 2.054e-03 1.321e-04 73.739 < .001

Condition (no label) 1.815e-02 6.837e-03 4.891 .027

Step × Condition (no label) -2.752e-04 8.009e-05 11.774 < .001

Figure 7: Evolution of mean distance in internal representations of the LTM during back-
ground training for Experiment 2 simulations. Shaded areas represent 95% confidence
intervals.

3.3.2 Internal Representations in the Model

A common way to look at a neural network’s “understanding” of the inputs it has

received is to examine the activation patterns in the hidden layer following encoding
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(Mareschal & French, 2000; Rogers & McClelland, 2004; Westermann & Mareschal,

2012, 2014). We recorded these hidden representations for the training stimuli during

background training every 100 iterations to investigate the development of memory rep-

resentations. In our model, the LTM corresponds to representations in memory, whilst

the STM corresponds to in-the-moment behaviors and perception; hence, we here ex-

amined the hidden units of the LTM network only. The mean within-category distances

are displayed in Fig. 7.

We then submitted the mean distance between exemplars of each category to a

mixed-effects model. We used the same model building principle as for the looking time

results previously discussed.

The final model included main effects of step (iteration number when recording,

divided by the recording interval of 100), a condition (label, no label), and a step-by-

condition interaction; the model also included by-subject random intercepts and slopes

for step and condition. All fixed effects in this final model significantly improved model

fit according to a likelihood ratio test. The estimates for the fitted parameters of the

fixed effects for this model are displayed in Table 3.

The mixed-effects model indicated that the within-category distance increased slowly

over time (main effect of step), with the distances between exemplars of the unlabeled

category being larger than the distances between exemplars of the labeled category (main

effect of condition), and with distances in the unlabeled category growing more slowly

than in the labeled category, after a quicker start (step-by-condition interaction). Thus,

the presence of a label associated with a category in our LaF model caused exemplars

of this category to be represented more closely together, and to be differentiated more

slowly than in the unlabeled category.

3.4 Discussion

In Experiment 2 we extended our LaF model, which captured the empirical data from

Twomey and Westermann (2017b) in Experiment 1, to a situation simulating infants’

learning about object categories. The model predicted similar looking time patterns

compared to those observed with single objects; that is, that infants should look longer,

in silence, at exemplars that belong to a category for which they know a label.

Examination of the LaF network’s hidden representations revealed that the labeled

category was more compact than the unlabeled category, making labeled exemplars

appear more similar to each other than unlabeled exemplars. The model nonetheless

learned to discriminate different exemplars of a same category, making the distance

between exemplars increase over time. The prediction that increased similarity between

exemplars of a category may be seen together with longer looking times is intriguing. The

reduced distances between exemplars of the labeled category in the model suggest that

exemplars should be perceived as more similar to each other than those of the unlabeled

category. If so, a new exemplar of this labeled category may be perceived as less novel

than a new exemplar of the unlabeled category, leading to longer looking times to the

latter. In contrast, however, the model predicts longer looking towards the previously
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labeled category exemplar, despite the reduced distance in internal representations. Our

interpretation of this counter-intuitive result is that, despite the labeled category being

more compact, the surprise effect of seeing an exemplar of this category without a label is

still stronger than the facilitatory effect of a reduced distance in representational space.

Notably, Westermann and Mareschal (W&M Westermann & Mareschal, 2014) used

a CR model to address a related issue, specifically the effect of labeling on children’s

longer-term category learning. In their model they found reduced looking times to novel

category exemplars for which a label was known compared to those with an unknown

label. The predictions made by our LaF model in Experiment 2 therefore diverge from

those of W&M: although the LaF model, like W&M, predicted that a category label

reduces within-category distance in mental representations, it predicted higher instead

of lower looking times for novel label-known category exemplars.

The reason for this difference likely relates to differences in stimuli and training

between W&M’s model and the current simulations. Specifically, W&M aimed more

broadly to model the transition from prelinguistic to language based processing in infant

development. W&M provided their model with a relatively rich background knowledge

of 208 exemplars drawn from 26 real-world basic level categories from four superordinate

categories that were encoded through 18 meaningful features (geometry, object charac-

teristics). In their simulation of label effects on object familiarization, the model first

received background training on 202 objects from all 26 categories, including two rabbits.

In the no-label condition no objects were labeled, and in the label condition encountered

objects were labeled half the time (accounting for the fact that objects are not reliably

labeled at every instance in which infants experience them). Then, the models were

familiarized on 6 novel rabbits. Under these circumstances, W&M found that the label

model familiarized faster to these stimuli than the no-label model.

In contrast, here we aimed to predict a controlled lab experiment, which involves

less naturalistic situations and stimuli, with a single age group. Thus our current model

learned only two categories and saw a single test stimulus for each. During background

training, objects from one of the categories were always labeled and objects from the

other category were never labeled. Conversely, W&M’s categories were perceptually

very broad, and overlapped with other categories. The introduction of labels in this

environment warped the representational space so that overlapping representations be-

came separated in accordance with the labels. In the simulations reported here, however,

the two categories were tight and non-overlapping, so that the effects of labels were far

more subtle. It is possible that the categories considered here are not sufficiently rich

and variable for the label to become detached from each object’s featural representation

across learning. Indeed, our categories are made of a handful of exemplars each, with

a limited number of features with low variability defining their belonging to a category,

which contrasts with real-world categories defined by more, and more variable features.

Finally, it may be the case that the effect of the label on infants’ category repre-

sentations varies with age, perhaps developing from a labels-as-features representation

to a compound-representations mechanism over time (Sloutsky et al., 2001). From this
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perspective, our model may simulate an earlier developmental stage (and mechanism),

than W&M. It is indeed possible that infants first perceive labels as object features and

form categories purely on a similarity basis, then slowly learn that labels are highly re-

liable predictors of category membership, even for less perceptually similar objects (e.g.

“furniture”, “animals”, or “toys” Sloutsky et al., 2001; Westermann & Mareschal, 2014).

Empirical studies with infants are currently underway to address this issue.

4 General Discussion

The current simulations demonstrate that a labels-as-features account can explain em-

pirical looking time data from 10-month-old infants pre-trained with one labeled and one

unlabeled 3D object. Further, the LaF model predicted that when trained with labeled

and unlabeled simple categories of objects, infants would exhibit longer looking times

to a novel exemplar of the previously labeled category presented in silence. Testing this

prediction experimentally is crucial; if confirmed, it would shed new light on catego-

rization studies in infants, stressing that the same mechanisms (here compacting the

representation of a category) might lead to very different, or even opposite behavioral

results depending on the nature and structure of stimuli used.

It is important to note that other computational work has explored the effect of

labeling on object representations in infants. Gliozzi et al. (2009) used a self-organizing

map (SOM Kohonen, 1990) architecture to capture empirical data from a categorization

task with 10-month-old children. Given that labels are represented as units in SOMs

in the same way as visual features, this model might capture Twomey and Wester-

mann’s (2017b) results for similar reasons to the success of the LaF model. However,

the two networks make very different assumptions about learning mechanisms, high-

lighting an important issue for both infancy research and computational work. Gliozzi

et al.’s (2009) model learns in an unsupervised way, strengthening associations between

units in its SOM using “fire together, wire together” Hebbian learning. In contrast, our

model learns by comparing what it “sees” to what it “knows” and updating its represen-

tations in proportion to any discrepancy. Thus, the current results are compatible with

an error-based learning account to development, in which infants learn by tracking mis-

matches between representation and environment (Heyes, 2017). Whether unsupervised

learning, error based learning, or some combination of both drives early development is

a profound theoretical issue outside the scope of the current paper; for now, we high-

light the importance of bearing in mind the link between the technical assumptions of a

computational model and the implications for (developmental) theory.

In an era of increasing enthusiasm for complex, deep neural networks capable of

learning to represent and label images, play (video) games, and many other tasks, it is

important to show that simplicity in modeling can be a distinct strength. In particular,

the simplicity of the architectures presented here produces a more transparent and in-

terpretable mechanism than a network with many hidden layers. There would, however,

be an obvious interest in the future in scaling up our work to increasingly complex –

and therefore realistic – learning environments, ultimately taking our model from the
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“friendly nursery” of our controlled setup and inputs into the real world. One important

question is, for example, if a labels-as-features network would naturally evolve to give less

and less importance to the input labels, effectively becoming a compound-representations

model on the basis of experience with the world. This would support the hypothesis that

infants learn through experience that labels are features with a higher predictive value

for categorization, and therefore stop experiencing them as input features of object but

learn to recall labels when presented with exemplar of known categories.

Finally, our simulations focused on two theories of the effect of labeling on category

formation, but did not address the labels-as-symbols theory (Waxman & Markow, 1995).

This theory assumes that labels are qualitatively different from other object features, and

act in a symbolic way to directly shift the attentional focus towards diagnostic features

that define a category. It is unclear how this theory could be implemented within the

current framework, as our models do not have an explicit attentional component, and the

very mechanism by which labels would highlight common features is not clearly defined

in the theoretical account. Additional work is needed, on the one hand to define the

precise mechanisms underlying this labels-as-symbols theory, and on the other hand to

translate them into a computational model that can be tested and evaluated rigorously.

Taken together with Twomey and Westermann Twomey and Westermann (2017b),

however, the current work demonstrates how language can shape object representation

and in this way, explain empirical results in infancy research.
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Chapter 3

Unmatched Feature Salience and

Diagnosticity

In the previous chapter, we extended an existing neurocomputational model to account

for the labels-as-features and compound-representations theories, and used it to test the

predictions of these theories and their fit to existing empirical data from 10-month-old

infants. Crucially, we provided evidence that the labels-as-features model was better able

to explain the empirical results, thus suggesting that 10-month-old infants view labels

in the same way as other features. We further used our model to predict results in an

ongoing follow-up empirical study.

Now that we have proven the validity of our neurocomputational model, we set out

to answer the main question we left open in our introductory chapter: how do visual

feature salience and auditory labels interact in shaping the way infants and adults explore

new stimuli during a categorisation task? To answer this question, we plan to combine

empirical and modelling results. We start in this chapter by presenting an empirical

study on 15-month-old infants and adults.
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Abstract

How do labels interact with objects in the process of category learning? This

question has gathered a lot of interest, particularly in developmental psychology.

Despite numerous studies and approaches, the role of labels in categorisation is

still unclear; the labels-as-features theory argues that labels are first seen as one of

the features of an object, whereas the labels-as-symbols theory considers labels to

be referential for categories from an early developmental stage. Here we directly

test the prediction of the latter theory that labels can drive attention to diagnostic

features of objects. We do so by presenting 15-month-old infants and a control adult

group, with categories where the salient feature (head) is non diagnostic, but a non-

salient feature (tail) is diagnostic of category membership. According to the labels-

as-symbols theory, we expected participants to shift their attention away from the

salient head and towards the diagnostic tail when hearing category labels, compared

to participants in a control condition. However we found that infants who heard

a label did not significantly differ from infants in a control group during training,

and still learned the label-category pairs as evidenced at test. These results provide

indirect evidence against the labels-as-symbols theory, and most importantly, add to

the converging evidence that looking behaviours are not a direct proxy for learning.

Keywords: development, labelling, categorisation, salience, diagnosticity

1 Introduction

Facing the complex world, infants have to bring the objects they encounter together into

categories to make the world simpler and reduce the cognitive charge it requires to live in

it. Infants automatically group together items that are similar, and separate items that

are dissimilar, slowly building up categories based on what they see (Mareschal & French,

2000; Mareschal et al., 2000). Category exemplars are often encountered together with

the name of the category spoken by a caregiver, and such naming events also have been

argued to improve categorisation (e.g. Althaus & Westermann, 2016; Gelman & Coley,

1991; Gliga et al., 2010; Graham & Poulin-Dubois, 1999; Plunkett et al., 2008). However,

the mechanism by which adding a spoken label improves categorisation processes in pre-

linguistic children remains unclear.

A first theory suggests that labels are separate from object representations and act as

referential pointers in a top-down way, inviting the listener to form categories (Waxman
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& Markow, 1995). A possible mechanism for this theory is that labels drive attention

towards diagnostic features, that is, features shared by all exemplars of the category

but not by out-of-category items. For example, knowing that both giraffes and zebras

have four legs and a long head is not helpful to discriminate them into two categories,

while the neck length of giraffes and the stripes of zebras are both diagnostic features

for their respective categories. Supporting this theory, studies have shown that adding

a label specifically allows infants to form categories that they would not otherwise form,

be it grouping two different sets of items into one category (Plunkett et al., 2008),

or separating one category into two when exemplars have different labels (Althaus &

Westermann, 2016). More recently, two eye-tracking studies showed that adding a label

to a set of objects directed infants’ attention towards features of low variability (Althaus

& Mareschal, 2014), and increased their importance in the representation of the objects

as shown by longer looking times towards those features of low variability in a subsequent

test phase (Althaus & Plunkett, 2015a).

A second theory argues that labels are features, part of the object representation

at the same level as other physical or auditory features: a dog is an animal with four

legs, fur, a tail, a dog face, and is called “dog” (Sloutsky & Fisher, 2004). In this

theory, labels simply facilitate categorisation by adding to the overall similarity of all

exemplars within a category, since they all share the same name in addition to other

features. In support of this theory is a study that contrasted categorisation and inference

tasks (Deng & Sloutsky, 2012). In both tasks, participants were familiarised with a

series of objects divided into labelled categories. A categorisation task then required

participants, when presented with a single object, to deduce its category (i.e. the label

that corresponded to the category), while an inference task required participants, when

being given an incomplete object and a label, to infer the missing feature. If the labels

act as a category markers, the expected behaviour in an inference task in which there is

a mismatch between the label and other features is that the inferred feature would be

of the category denoted by the label, and mismatching the other features –a result that

was not observed. Instead, this study showed that a mismatched label did not override

other features when inferring a missing feature.

Rather than having to choose between the two theories, there might be a develop-

mental change from the latter to the former (Sloutsky et al., 2001). Evidence suggests

that infants treat labels as features, relying on them only if no other highly salient and

diagnostic feature is available, while adults rely more if not solely on labels to form cat-

egories, suggesting that they perceive labels as category markers. Nonetheless, adults

might still, in some conditions at least, rely on labels as features rather than markers

(Deng & Sloutsky, 2012). A third view introduced recently can account for this evolu-

tion in time (Westermann & Mareschal, 2014). This compound-representations account

assumes that labels are encoded in the same representational space as other features,

but are not integrated to the object representations, only linked to them. In this way,

labels will first drive categorisation by adding to the within-category similarity. With

learning, over time, labels will become more closely associated to object representations,
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and act more like markers for categories, reducing the distance in representational space

between exemplars of the same category.

Despite the numerous studies conducted on this topic, few have focused specifically

on the online process of categorisation and effects of labels on this process. Rather,

studies have often focused on the behavioural results of categorisation tasks, for example,

successful categorisation or inference of a missing feature. Recently, some research has

focused on the online process, recording participants’ looking times towards different

object features during categorisation in silent or in labelling conditions. In two studies

with 8- and 12-month-old infants, labels were shown to drive attention to less variable

features of a set of objects, deemed “diagnostic” (Althaus & Mareschal, 2014; Althaus &

Plunkett, 2015a). However only one abstract category was presented, and the experiment

did not require participants to discriminate objects into two different categories. Thus,

the presence of an actual categorisation mechanism is not clear, and the results could

be explained by habituation to the different stimulus features and a novelty effect due

to the presentation of highly contrasting stimulus features, rather than a more global

object categorisation process. In another study using eye-tracking (Deng & Sloutsky,

2015), 8- and 12-month-old infants were presented with two labelled categories. Infants

showed no difference in looking towards any of the features due to the presence of a label;

in particular, the label did not drive attention to diagnostic features as predicted by the

labels-as-symbols theory. However, in this study all features were equally diagnostic and

thus there was no particular feature that the label could have highlighted, according to

the labels-as-symbols theory.

A related study with 8-year-old children and adults aimed to ascertain whether labels

help identification of similarities versus differences between category exemplars (Barn-

hart et al., 2018). Multiple contrasting conditions were presented within subjects: one

of the categories had no label associated with it (control condition), a second had the

same label for all exemplars (commonality condition), and a third had one specific label

for each exemplar (unicity condition). The authors argued that in the commonality con-

dition, the label should highlight commonalities between exemplars, when in the unicity

condition, it should highlight differences between exemplars, and the results confirmed

these predictions. However, it is possible that these two outcomes actually arise from the

same, single mechanism: the label should highlight diagnostic features for a category,

which means features that are both shared by all members of a category, and unseen

in out-of-category objects. In the above-described experiment, the results could come

from the fact that the commonality category was indeed formed as one category and the

label highlighted the common feature shared by all category exemplars, when items in

the unicity category where treated as belonging to many different sub-categories and the

label highlighted the diagnostic features that made them different to other exemplars

with different names.

Together, the existing research does not present a clear picture of how category labels

affect the attention to and processing of object features, and in particular, how labels

and feature salience interact in this process. In previous work, salience was either not
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accounted for, or was controlled by making all features equally salient. In the present

study we address the question of how category labels and feature salience interact in

guiding attention to object features and in category learning. To our knowledge, no study

has investigated whether or not a label can actively guide categorisation in categories

where low-salience, but not high salience, features are diagnostic. Testing infants and

adults allows us to look at how labels impact categorisation both early in development

and in expert speakers, to test the hypothesis that labels might first act as features

and take on a more referential role through development. In the current study, we

presented participants with a series of simple snake-like animals with two features: a

head (high salience) and a tail (low salience). Importantly, the high-salience head did

not indicate category membership but varied pseudorandomly during familiarisation. In

contrast, the low-salience tail was diagnostic of category membership. If labels drive

attention towards diagnostic features during familiarisation with category exemplars,

we expected that (a) participants who heard a label would, during the familiarisation

phase, look more and/or more quickly at the tail, and encode it more robustly, and

(b) participants who heard a label would form stronger categories. Additionally, in a

subsequent novelty preference test on infants contrasting familiarised features with new

features, we expected infants to exhibit preferential looking towards the new features

only if they encoded enough information about the old features during the familiarisation

phase (Houston-Price & Nakai, 2004).

2 Experiment 1

2.1 Methods

All materials used for this experiment are available online for inspection and replication

purposes1, including raw stimuli, the experiment script in Tobii Studio (version 2), raw

data, and analysis scripts in R.

2.1.1 Data Handling and Software Specifications

Data Handling A common measure in eye-tracking data analysis is the proportion of

looking at an area of interest (AOI). To account for the boundedness of proportion values,

we used the arcsine-root transformation of the proportion in our statistical models; for

ease of language, we use the term “proportion” to talk about this measure. However,

we plot raw proportion values only, for ease of visual interpretation.

Further, we discarded looks outside of our defined AOIs. This means that, for ex-

ample, the proportion of looking at the tail during the familiarisation trials is defined as

the time spent looking at the tail divided by the time spent looking at either the tail or

head, but not the total time spent looking at the screen during a trial.

Software Specifications All statistical results were obtained using R (version 3.6.1;

R Core Team, 2019). Analyses in this paper were conducted using (a) lme4 (version 1.1-

1https://osf.io/5yh67/
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17; Bates et al., 2015) to run Sample Theory Based (STB) (generalised) linear mixed-

effects models, lmerTest (version 3.0-1; Kuznetsova et al., 2017) to run ANOVA analyses

on those mixed-effect models, and emmeans (version 1.3.5.1; Lenth, 2019) to compute

estimated marginal means for those mixed-effects models, (b) eyetrackingR (version

0.1.8; Dink & Ferguson, 2018) to handle eye-tracking data and run bootstrapped cluster-

based permutation analyses, and (c) ggplot (version 2.2.1; Wickham, 2016) to plot

graphs from our data and ggeffects (version 2.4.1; Lüdecke, 2018) to compute and

plot estimated marginal effects from our models.

2.1.2 Participants

A total of 48 15-month-old infants (25 girls, M = 451.8 days, range 430-469 days)

provided data for the study. A further 17 participants were excluded for not meeting our

inclusion criteria (minimum 50% of looking on 50% of the familiarisation trials, n = 16),

or technical error (n = 1). Infants were randomly assigned to the label (n = 24) or the

no-label (n = 24) condition. All participants were English-learning monolingual infants

with no reported history of developmental delay.

2.1.3 Materials

Visual Stimuli Based on previous studies which demonstrate that infants have a

strong bias for looking at heads (Quinn et al., 2009), our stimuli consisted of simple

snake-like animals with two features only (a head and a tail) to ensure stimuli afforded

a “natural” non-uniform salience that all participants would share. Each feature varied

around two prototypes, and stimuli were created so that the head and tail dimensions

would be independent.

In the label condition, we defined two categories, accounted for by the low-salience

tail. Therefore, the tail varied consistently with the label, being fully diagnostic of the

category, while the head varied pseudorandomly with the label (i.e. there were multiple

heads of each type associated with each label).

Fig. 1 shows an example of a familiarisation stimulus. Fig. 2 displays all stimuli used

during familiarisation as pairs of features, with the horizontal line dividing the stimuli

into the labelled categories for this study, and the vertical dashed line dividing the two

categories depending on the two kinds of head. Fig. 3 displays test stimuli as pairs of

features.

Auditory Stimuli During the first half of the familiarisation phase, the carrier phrase

for the label/pronoun was “Look at [this]!” (no-label condition) or “Look at [the

Saldie/the Gatoo]!” (label condition), then “Can you see [this]?” (no-label condition) or

“Can you see [the Saldie/the Gatoo]?” (label condition) in the second half of the trials.

All phrases were recorded in infant-directed speech by a female native English speaker.

The labels “Gatoo” and “Saldie” were chosen to be phonetically plausible English

words that were not used in any previous studies. Those two words are actual words in
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Figure 1: Example of a stimulus used for categorisation.

Figure 2: Pairs of visual stimuli used for familiarisation, grouped by tail type (horizontal
line) and head type (vertical dashed line).
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Figure 3: Pairs of visual stimuli used for contrast (and word-learning) tests. New features
on the left, old features on the right.

Basque2, but this was not an issue since our sample consisted of monolingual English

infants only.

The volume for all recordings was normalised and further manually adjusted to obtain

equivalent hearing levels.

2.1.4 Procedure and Design

During the experiment, infants sat on their caregiver’s lap approximately 60cm from a

23 inch, 1920x1080 pixels presentation screen. Eye-tracking data were collected using a

Tobii X120 eye-tracker, calibrated using a child-friendly 9-point routine. No infant had

to go through the calibration phase more than once.

After calibration, the experiment began with a familiarisation phase consisting of

24 trials. Each trial started with an animal spiralling towards the centre of the screen

in silence from a top corner for 1500 ms and jiggling in the centre of the screen for a

further 1000 ms to capture infants’ attention. Next, the animal stopped moving and

a carrier phrase started for 1500 ms. The asynchronous presentation of the visual and

auditory stimuli was important as synchronous presentation can lead to an auditory

overshadowing effect: a preferential processing of the auditory signal over the visual

signal, rather than a processing of both auditory and visual information and integration

of those modalities together (Althaus & Plunkett, 2015b). The animal then remained

still for another 3000 ms, until it slid away to a bottom corner on the last 500 ms of the

trial. A full trial thus lasted for 7500 ms.

Successive trials presented animals belonging to alternating categories, and the first

category presented was counterbalanced between infants. The matching of a label to a

specific category was also counterbalanced between infants in the label condition. All

six animals from each category were presented in a random order, and this presentation

of 12 animals was repeated twice, leading to the full 24-trials familiarisation phase. The

direction that each animal was facing was randomised, and all the movements were made

so that the animal would be moving forward (e.g. an animal facing right would spiral in

from the top-left corner and slide out to the bottom-right corner). An attention getter

2for our keenest readers, the original words were gatu meaning “cat”, and zaldi meaning “horse”
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was presented after 8 and 16 trials.

Following familiarisation, the extent to which infants had encoded both features was

then measured using a preferential-looking paradigm. Infants saw “contrast” test trials

in which two animals were presented side by side, one with new exemplars of the features

presented during the familiarisation phase (hereafter “old features”), and one with an

old feature and an entirely new feature.

In total, there were three such contrast test trials: (a) a head contrast, presenting

an animal with an old tail and head next to an animal with an old tail and a new head,

(b) a tail contrast, presenting an animal with an old tail and head next to an animal

with a new tail and an old head, and (c) a relative contrast, presenting an animal with

an old tail and a new head next to an animal with a new tail and an old head. The

order in which the head and tail contrast trials were presented was counterbalanced

between infants, but the relative contrast was always shown last. An attention getter

was presented before each test trial to ensure infants were fixating centrally before the

onset of the trial, and the animals were always arranged so that the new feature would

be at the side of the display, not in the centre.

Finally, infants in the label condition were presented with four word-learning test tri-

als, in which they saw two animals side by side and heard “Look at the [Saldie/Gatoo]!”,

with label alternating between trials. Both types of old heads and old tails were pre-

sented on the screen for each trial, and those were the same as the old features that

were presented during contrast tests (i.e. old features that were not presented during

familiarisation). The naming order, horizontal arrangement, and facing of animals were

counterbalanced between infants. An attention getter was presented before each trial.

All test trials lasted for ten seconds or until infants looked away for more than two

seconds as judged by the experimenter.

2.2 Results

Analysis Structure We conducted two types of analysis in this report: testing aver-

age proportion looking during one or several time windows of a trial, and time-course

analysis. We also tested for other unique-per-trial values, however these tests followed

the same structure as tests on proportion looking.

For the tests of proportion looking, we used (generalised) linear mixed-effects re-

gression models fitted with maximal converging random-effects structure to estimate

parameters (Barr et al., 2013). For significance testing of those parameters, we used

type I ANOVA analyses with Satterthwaite’s method as implemented in lmerTest for

linear models, and commonly-used asymptotic Wald tests for generalised linear models.

For the time-course analyses, we used bootstrapped cluster-based permutation anal-

ysis as implemented in eyetrackingR with 100 ms time bins and t-test comparisons

between the two conditions (no-label, label); the choice of a t-test rather than a mixed-

effects model was due to the current implementation in eyetrackingR that did not allow

for the use of mixed-effects models when testing a between-subject factor as in our case.

To test different levels of other factors (e.g. first three trials against last three trials),
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Figure 4: Raincloud plot from the data of the proportion of looking at the tail after
label onset.

Parameter Model Output ANOVA Output
Estimate Std. Error F value Pr(> F )

(Intercept) 0.48 0.06
FstLstLast Trials 0.13 0.09 1.30 0.26
ConditionLabel 0.01 0.08 0.58 0.45
FstLst:Condition -0.12 0.12 0.96 0.33

Table 1: Parameter estimates and ANOVA results for the STB model on proportion
looking at the tail after label onset.

we simply ran an independent analysis on each level of this factor (or levels of their

interaction when using multiple factors); although this approach involved multiple com-

parisons, there was to our knowledge no straightforward way to test for multiple factors

directly.

2.2.1 Familiarisation

Proportion of Tail Looks We submitted proportion looking at the tail during the

3000 ms following label onset to a linear mixed-effects regression model. The model

included main effects of and interaction between the first/last three trials of the experi-

ment per participant (FstLst), and Condition (no-label, label). The model also included

random intercepts and slopes for FstLst by participant, and random intercepts by visual

stimulus. A summary of the model’s parameter estimates and ANOVA results for those

parameters are given in Table 1. A “raincloud” plot (Allen et al., 2019) of the data

is shown in Fig. 4. These plots include half a violin plot to understand the shape of

the data, individual data points to better understand the structure of the data, and a

boxplot to give some descriptive statistics at a glance.

Notably, none of the parameters reached significance: there was no evidence for a

difference in looking at the tail between the first few and last few trials in the no-label
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Figure 5: Time-course plot of the mean and SE of proportion looking at the tail.

Parameter Model Output ANOVA Output
Estimate Std. Error F value Pr(> F )

(Intercept) 6.56 0.21
FstLstLast Trials 0.30 0.31 2.28 0.13
ConditionLabel -0.34 0.29 1.80 0.19
FstLst:Condition 0.05 0.44 0.02 0.90

Table 2: Parameter estimates and ANOVA results for the STB model on first tail (AOI)
hit during familiarisation.

condition, and no evidence for a difference between infants in the no-label and label

condition at any point. In short, we cannot draw any strong conclusions from these

results.

Time-Course Analysis Testing more finely for differences in proportion looking at

the tail between conditions during the course of trials, we ran one bootstrapped cluster-

based permutation analysis each for the first three and last three trials. The data are

displayed in Fig. 5. No clusters were found to differ significantly from the null hypothesis:

at no point within the first three or last three trials did infants in the label condition

look significantly differently to the tail from infants in the no-label condition.

First Tail Look Another hypothesis we formulated was that infants would look more

quickly at the diagnostic feature when hearing a label compared to infants who did not

hear a label. To test this, we submitted the log-transformed time to first look at the

tail after the animal had stopped moving in to a linear mixed-effects regression model.

The model included main effects of and interactions between FstLst (first trials, last

trials) and Condition (no-label, label), as well as random intercepts and FstLst slopes by

participant. The model’s parameter estimates and ANOVA results for those parameters

are given in Table 2. A raincloud plot of the data is shown in Fig. 6.

Here again, no effect was found to be significant: there was no evidence for a difference

in time to first look at the tail between the first few and last few trials in the no-label
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Figure 6: Raincloud plot from the data of the time before first look at the tail.

condition, and no evidence for a difference between infants in the no-label and label

condition at any point.

2.2.2 Contrast Tests

Old-New Feature To test whether or not infants had encoded information from the

tails and heads they had been familiarised with, we focused our analysis on the head-

contrast and tail-contrast test trials. Out of the 48 participants who were included based

on our criteria on the familiarisation trials, only 47 infants provided data for at least one

trial, based on our per-trial inclusion criteria of looking at the screen 50% of the time:

23 in the no-label condition (of whom nine only contributed to the head contrast trial),

and 24 in the label condition (of whom eight only contributed to the head contrast trial).

In this analysis, we considered two AOIs only, old and new feature, leaving out the

centre of the screen which depicts two old features (either two heads in the tail-contrast,

or two tails in the head-contrast). We then tested the proportion of looking at the new

feature against chance, as a measure of novelty preference.

We submitted the chance-corrected proportion looking at the new feature to a linear

mixed-effects regression model. The model included main effects of and interaction be-

tween ContrastType (head contrast, tail contrast) and Condition (no-label, label). The

model further included random intercepts and slopes for ContrastType by participant.

However, we were here interested in knowing whether or not the average looking time to

the new feature in each group was significantly above chance. We thus report estimated

marginal means (EM means) for the model and Bonferroni-corrected p-values in Table 3.

A raincloud plot of the data can be seen in Fig. 7.

This post-hoc analysis suggests that only infants in the no-label condition had a

strong preference for the new tail. No other results were significant: we have no evidence

of a novelty preference for infants in the label condition, or for infants in the no-label
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Figure 7: Raincloud plot from the data of the proportion of looking at the new feature.

Group EM Mean 95% CI t Pr(> |t|)
No Label

Head 0.17 [−0.05, 0.38] 1.73 0.18
Tail 0.69 [0.41, 0.97] 5.66 < .000

Label
Head 0.02 [−0.21, 0.22] 0.22 1.00
Tail 0.20 [−0.08, 0.48] 1.60 0.23

Table 3: Estimated Marginal (EM) means per group and Bonferroni-corrected p-values
for the STB model.
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Figure 8: Time-course plot of the mean and SE of proportion looking at the target.
Carrier phrase starts at t = 0, vertical dashed lines mark label onset for the two carrier
phrases.

condition during head contrast trials.

However, we can see from the individual data points in the label-tail subplot that

the null result there does not reflect our data: rather than having infants in the label

condition all displaying equal looking to both the old and new tail, we clearly see a

bimodal distribution with most infants having either a strong preference for the old or

new tail. In other words, some infants exhibited a novelty preference (n = 8), while

others exhibited a familiarity preference (n = 4), and only two infants had no strong

preference.

2.2.3 Word Learning Tests

Next, we tested whether infants in the label condition had learned to match each label

to its corresponding category. To do so, we considered two AOIs only: the target animal

(with a tail matching the label), and the distractor animal (with the opposite set of

features). We then conducted a bootstrapped cluster-based permutation analysis on the

chance-corrected proportion of looking at the target over the course of the test trials.

A time-course plot of the data and clusters of significant difference from chance can be

seen in Fig. 8.

For this analysis, we chose t0 as being the carrier phrase onset rather than the label

onset. This choice was made post-hoc when noticing that infants started looking at the

target before labelling but after the carrier phrase started, which can be explained by

the fact that the carrier phrase for each label had slightly different phonetic properties.

Thus, while we cannot be sure that infants learned the labels matching each category,

we have evidence that infants matched the auditory cues in the carrier phrase to the

corresponding categories.

Finding that infants succeeded in learning these categories when we did not find

any evidence for differences in the familiarisation phase in terms of looking proportion

and first look to the diagnostic tail, or in the contrast test trials in terms of looking
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Figure 9: Raincloud plot from the data of the number of switches between AOIs.

more at a new tail, raised the question of how infants demonstrated learning on the

word-learning test trials despite a lack of evidence for learning elsewhere. We therefore

conducted further post hoc analyses on the familiarisation trials: number of switches

between AOIs, and first AOI looked at.

2.2.4 Additional Analyses

Number of Switches The number of switches between different features of an object

is commonly seen as a measure of distributed attention, which is believed to be linked to

better encoding (e.g. Bronson, 1991; Colombo et al., 1991; Jankowski et al., 2001; Rose

et al., 2003). Thus, a higher number of switches between the head and tail in the label

condition could explain how these infants managed to learn the label-category match.

We submitted the number of switches between AOIs per trial to a Poisson linear

mixed-effects regression model. The model included main effects of and interactions

between FstLst (first trials, last trials) and Condition (no-label, label), as well as random

intercepts and FstLst slopes by participant. The model’s parameter estimates and p-

values for those estimates can be found in Table 4. A raincloud plot of the data can be

seen in Fig. 9.

These results suggest that infants in the no-label condition made significantly fewer

switches on the last trials than on the first trials, and infants in the label condition did

not differ significantly from infants in the no-label condition during the first or last trials.

First AOI Look We submitted the first AOI (head or tail) looked at after the animal

had stopped moving in to a binomial linear mixed-effects regression model. The model

included main effects of and interactions between FstLst (first trials, last trials) and

Condition (no-label, label), as well as random intercepts and FstLst slopes by partici-

pant. The model’s parameter estimates and p-values for those estimates can be found
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Parameter Model Output ANOVA Output
Estimate Std. Error z value Pr(> |z|)

(Intercept) 0.77 0.10 7.61 ¡.000
FstLstLast Trials -0.37 0.14 -2.67 0.01
ConditionLabel 0.06 0.14 0.43 0.66
FstLst:Condition -0.16 0.19 -0.84 0.40

Table 4: Parameter estimates and ANOVA results for the STB model on number of
switches between AOIs during familiarisation.

Parameter Model Output ANOVA Output
Estimate Std. Error z value Pr(> |z|)

(Intercept) -1.74 0.35 -4.93 ¡.000
FstLstLast Trials 0.04 0.62 0.07 0.95
ConditionLabel 0.47 0.45 1.02 0.31
FstLst:Condition -0.09 0.73 -0.13 0.90

Table 5: Parameter estimates and ANOVA results for the STB model on first AOI hit
during familiarisation.

in Table 5. A histogram of the data can be seen in Fig. 10.

These results suggest that infants in the no-label condition looked significantly more

often first at the head during the first trials than during the last trials, but no other

difference was significant.

2.3 Discussion

In Experiment 1, we explored the effect of labelling on object perception and category

encoding in 15-month-old infants. Specifically, we addressed the question of changes

in attention distribution in the presence of a label when this label was presented with

a diagnostic non-salient feature (tail) and a non-diagnostic salient feature (head). We

found evidence that infants in the label condition learned to match categories to audi-

tory stimuli, but no difference between conditions in terms of looking behaviour during

familiarisation, and no clear evidence of familiarisation to either feature for all infants

in the label condition as would be shown by a novelty preference. Critically, this result

does not replicate results from the literature around the question of the effect of labelling

on categorisation and perception in infants.

There could be two explanations for this lack of evidence: either adding a label

truly does not impact looking behaviour in the setup we used, or there is a significant

difference but we lacked statistical power to detect it. Although meta-analyses suggest

that the latter is probably true (e.g. Lewis et al., 2016), it is interesting to consider the

implications of the former.

A first possible explanation of the results we observe here is that of a ceiling effect, in

which the head preference was so strong in both conditions that adding a label associated

solely with the tail was not enough to direct infants’ attention towards the diagnostic

tail. To control for this possible effect, future work should seek to reduce the difference

in salience between the different features of an object.
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Figure 10: Histogram from the data of first AOI looked at.
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Alternatively, the issue may be methodological. Historically in infancy research it

has been assumed that eye-tracking measures are a proxy for information processing.

However it arises from this study and previous work that information processing, as

exhibited by evidence of learning at test, can happen without showing as systematic

patterns of looking during training (e.g. Aslin, 2007; Hilton et al., 2019; Hilton & West-

ermann, 2017; Twomey et al., 2018). In particular, in our study, since infants in the label

condition processed the information they needed to form the correct categories without

looking longer or differently at the diagnostic tail, compared to infants in the no-label

condition, the extent to which eye-tracking indexes information processing is unclear.

Nonetheless, infants in the label condition did show a preference in the tail con-

trast trials: some of them preferred the new tail as we expected, when others preferred

the old tail, which is commonly seen as a need for further processing of the stimulus

(Houston-Price & Nakai, 2004). We further looked into how these two groups of infants

might vary in terms of word learning scores or looking behaviour during familiarisation.

However the reduced sample size did not allow us to run reasonable statistical tests.

Unreported diagnostic plots do not, however, suggest that infants who exhibited a fa-

miliarity preference looked less at the target during word learning trials, as could have

been expected.

Overall then, it is unclear how labels affect information processing in this categori-

sation task in 15-month-old infants; however our data are more compatible with the

labels-as-features theory, which predicts no attentional effects of labelling, than with the

labels-as-symbols theory, which predicts that labels actively drive attention to diagnostic

features. In Experiment 2, we asked whether in adults, labels would play a referential

role in contrast to the featural role predicted in infants. To be able to link and com-

pare results from both experiments, we presented adult participants with an explicit

categorisation task, using the same material as in Experiment 1.

3 Experiment 2

3.1 Methods

All materials used for this experiment are available online for inspection and replication

purposes alongside materials from Experiment 1, including raw stimuli, the experiment

script in Eprime (version 2), raw data, and statistical scripts in R.

3.1.1 Data Handling and Software Specifications

The data handling and software specifications for this experiment are the same as for

Experiment 1.

3.1.2 Participants

We recruited 60 participants from Lancaster University via an online pool of partici-

pants for psychology studies. Most participants were students, some of them studying
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psychology. After exclusion of four outliers (more than two standard deviations away

from the mean) in terms of learning speed, the final sample consisted of 56 participants

(42 female, Mage = 21.14, range 18-39). All participants were fluent in English.

3.1.3 Materials

Visual Stimuli We used the exact same visual stimuli as in Experiment 1, since as

for infants, the head is more salient for adults in animal-like stimuli (Kovic et al., 2009).

Auditory Stimuli After categorising each exemplar, participants in both conditions

were given auditory feedback in the form of a shimmering sound for correct or a buzzer

for incorrect categorisation. Then, participants in the label condition heard the phrase

“It’s a [Saldie/Gatoo]”, pronounced by a female native British speaker in a neutral tone.

The duration of both feedback sounds and both labelling phrases was the same.

3.1.4 Procedure and Design

Participants were tested in a quiet room, using a Tobii X120 eye-tracker calibrated using

a 9-point routine to record eye-tracking data, and Eprime to run the experiment and

collect behavioural data (categorisation responses, reaction time, number of training

blocks, etc.).

The experiment consisted of a categorisation task: participants were presented with

one exemplar at a time, and were asked to sort them into one of two categories by

pressing the corresponding button on a keyboard. Participants were first presented with

a training phase, during which they were provided with feedback after each categorisation

decision. Participants in all groups heard non-linguistic feedback, followed by the label

for the category for half of the participants. This training phase lasted for up to 21

blocks, or until successful categorisation (i.e. one full block without any mistakes).

Each block consisted of the 12 exemplars shown in Fig. 2 presented in a random order.

A fixation cross was presented in the middle of the screen for one second before each

trial.

Participants were then presented with a test phase that consisted of the same cat-

egorisation task for one block without feedback. Two of the old exemplars for each

category were replaced with new exemplars, to control for rote learning of category

information for each exemplar separately, rather than formation of a feature-defined

category.

3.2 Results

We used the same analysis structure for adults as we did for infants.

3.2.1 Behavioural Results

We hypothesised that participants’ categorisation abilities would benefit from hearing a

label on top of the ‘correct/wrong’ auditory feedback. This outcome would be reflected

CHAPTER 3. UNMATCHED FEATURE SALIENCE AND DIAGNOSTICITY 53



2 4 6

Number of Blocks to Learning

Condition No Label Label

Figure 11: Raincloud plot from the data of the number of blocks to learning.

in the number of training blocks they needed to learn the categories (i.e. complete a full

block without any categorisation mistakes), as well as in the overall response accuracy

throughout training.

Number of Blocks to Learning Given that we did not have enough data points for

a mixed-effects model and that this measure was not normally distributed (Anderson-

Darling normality test: A = 4.49, p < .001), we conducted an independent 2-group

Mann-Whitney U test to test the effect of labelling on the number of training blocks

to learning. We found no significant difference between the label and no-label group

(W = 348.50, p = .45). Notably, the median in both groups was of two blocks to

learning, suggesting a ceiling effect (two blocks being the minimum number of blocks

assuming that the participants infer the category structure after a few mistakes in the

first block and then complete the second block with no mistakes).

Accuracy During Training We submitted accuracy during training to a binomial

linear mixed-effects regression model. The model included main effects of and interac-

tion between Condition (no-label, label), scaled log reaction time (zLogRT), and Block

(starting at 0). The model also included random intercepts and slopes for zLogRT and

Block by participant, and random intercepts by visual stimulus and by auditory stimu-

lus. A summary of the parameter estimates and p-values for this model can be found in

Table 6.

Participants in the no-label condition performed above chance in the first block

(significant Intercept), their performance increased throughout training (significant effect

of Block), and finally, participants in the no-label condition with longer reaction times

later in training were also less accurate (significant effect of zLogRT:Block). No other

effects were significant; particularly, participants in the label condition did not differ

significantly from participants in the no-label condition at any point or in terms of
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Parameter Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.77 0.25 3.11 0.002
ConditionLabel 0.13 0.32 0.41 0.68
zLogRT -0.12 0.16 -0.72 0.47
Block 1.96 0.31 6.40 < .001
Condition:zLogRT -0.25 0.22 -1.11 0.27
Condition:Block -0.45 0.28 -1.59 0.11
zLogRT:Block -0.61 0.19 -3.27 0.001
Condition:Block:zLogRT 0.27 0.20 1.37 0.17

Table 6: Parameter estimates and ANOVA results for the STB model on accuracy during
training.
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Figure 12: Raincloud plot from the data of the proportion of looking at the tail during
an entire trial.

reaction time effects.

3.2.2 Eye-tracking Results

Proportion of Tail Looks by Trial We submitted proportion of looking to the

tail during training to a linear mixed-effects regression model. The model included main

effects of and interaction between Condition (no-label, label) and FstLst (first block, last

block). The model also included random intercepts and slopes for FstLst by participant,

and random intercepts by visual stimulus and by auditory stimulus. A summary of the

parameter estimates and results of the ANOVA analysis on this model can be found in

Table 7. A raincloud plot of the data can be seen in Fig. 12.

Only the main effect of FstLst reached significance, with participants in the no-label

condition looking more towards the tail during the last block compared to the first block.

There was no significant difference between the two groups, either during the first block

or the last block.
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Parameter Model Output ANOVA Output
Estimate Std. Error F value Pr(> F )

(Intercept) 0.77 0.04
FstLstLast Block 0.30 0.05 86.91 < .001
ConditionLabel -0.09 0.06 1.10 0.30
FstLst:Condition 0.07 0.07 0.85 0.36

Table 7: Parameter estimates and ANOVA results for the STB model on proportion
looking at the tail after label onset.

Parameter Model Output ANOVA Output
Estimate Std. Error F value Pr(> F )

(Intercept) 0.78 0.04
FstLstLast Block 0.61 0.05 96.97 < .001
CurrentObjectFeedback -0.02 0.05

44.12 < .001
CurrentObjectLabel -0.08 0.06
ConditionLabel -0.08 0.09 1.29 0.28
FstLst:COFeedback -0.38 0.06

34.27 < .001
FstLst:COLabel -0.27 0.08
FstLst:Condition 0.03 0.11 0.22 0.64
COFeedback:Condition -0.03 0.07

0.27 0.76
COLabel:Condition -0.01 0.08
FstLst:COFeedback:Condition 0.06 0.09

0.67 0.51
FstLst:COLabel:Condition -0.05 0.11

Table 8: Parameter estimates and ANOVA results for the STB model on proportion
looking at the tail by trial window.

Proportion of Tail Looks by Trial Window To gain insight into how the feed-

back (non-linguistic in both groups and linguistic in the label group) influenced looking

behaviour, we submitted proportion of looking at the tail during those different time

windows for each trial to a linear mixed-effects regression model. The model included

all main effects of and interactions between FstLst (first block, last block), Curren-

tObject (visual stimulus, feedback, label), and Condition (no-label, label). The model

also included random intercepts by participant, visual stimulus (Stimulus), and category

(StimLabel), and additional slopes by participant for FstLst, CurrentObject, and their

interaction. A summary of the model’s parameter estimates and ANOVA analysis for

those parameters can be seen in Table 8. Notably, the model gives us a parameter for

each level of CurrentObject (and interactions including this effect), but the ANOVA

analysis only computes an F value for this effect in general. A raincloud plot of the data

can be seen in Fig. 13.

Participants in the no-label condition exhibited (a) more looking at the tail before

categorisation in the last block, (b) less looking at the tail after categorisation (i.e. while

hearing the feedback and after) during the first block, and (c) substantially less looking

at the tail after categorisation during the last block (significant main effects of and

interaction between FstLst and CurrentObject). No effect including Condition reached

significance; in other words, participants in the label condition did not significantly differ

from participants in the no-label condition at any point.
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Figure 13: Raincloud plot from the data of the proportion of looking at the tail by trial
window.
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Figure 14: Time-course plot of the mean and SE of proportion looking at the tail.
Vertical dashed line represent feedback onset (0 ms) and label onset (2000 ms).

Time-course Analysis Next, we analysed the evolution of proportion looking to the

tail during training trials. We chose to include in the analysis only data from 1000 ms

before button press until the end of the trial, as more than half of the reaction times were

under 1000 ms (58.7%). A bootstrapped cluster-based permutation analysis revealed no

difference between conditions either in the first or last block (see Fig. 14).

3.3 Discussion

In Experiment 2, we aimed to understand how auditory labels impact categorisation in

adults, and whether or not this effect was different from what was observed in infants.

First, the behavioural results indicate that the task was too easy for adults, leading

to a ceiling effect in terms of categorisation learning and accuracy, thus rendering any

effect of labelling undetectable. Although it is typical for such experimental designs to

find similar accuracy levels at the end of the experiment between subjects, participants

who hear a label after the non-linguistic feedback usually display better accuracy and

lower reaction times earlier (e.g. Lupyan et al., 2007). In previous studies however,

categories were more ambiguous, and not defined by a sole feature; our simpler category

structure could explain why participants in our study were at ceiling. Creating categories

defined by more than one feature in a probabilistic manner and/or making the category

boundaries more ambiguous, while keeping the same overall structure with a salient-

non-diagnostic feature, could mitigate the ceiling effect encountered in this study.

Despite this null result, we had expected some effect of labelling on looking behaviour.

Once again we did not find this, and it was most likely due to the simplicity of the

task; specifically, participants did not have to rely on the label to encode the relevant

information about the stimuli and categories. This explanation is further supported

by one of the participants in the label group spontaneously sharing that they quickly
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understood that the tail was the diagnostic feature and quickly made the categorisation

decision on this basis.

4 General discussion

In this paper, we set out to study the effect of auditory labels on categorisation both

in 15-month-old infants and in adults. More specifically, we tested the hypothesis that

labels can act as category markers by directing attention to diagnostic features for a

category. We found no evidence of an effect of labelling on looking behaviour during

categorisation in either infants or adults, and no evidence for behavioural differences in

adults. Although the lack of evidence in adults can be explained by a ceiling effect due

to the simplicity of the task, the question remains as to why we found no significant dif-

ferences in infants when numerous previous studies found varying effects under different

conditions. It is of course entirely possible that we simply lacked the statistical power

to detect an existing difference, nonetheless it is interesting to consider what a true null

effect would mean on a theoretical point of view.

On the one hand, in line with the labels-as-symbols theory, we would have expected

infants in the label condition to learn to look more at the diagnostic tail and less at

the salient head throughout the experiment. This was not the case: there was no

significant difference in proportion of looking at the tail depending on whether or not

infants heard a label. Two recent studies found contradicting evidence (Althaus &

Mareschal, 2014; Althaus & Plunkett, 2015a): in these studies, infants looked longer at

the diagnostic feature of two-featured objects when hearing a label. Two key differences

between these studies and our design could explain those conflicting results. First, in

Althaus’s work, objects were not separated into two categories, and the diagnosticity of

a feature was defined as a low between-exemplar variability for this feature, with the

idea that diagnostic features are features common to all exemplar of a given category,

therefore reducing overall variability between exemplars. In our study, the diagnostic

tails were no less variable than the non-diagnostic heads, and were diagnostic only in the

labelled categorisation context. This difference in the definition of diagnosticity could

explain why we obtained different results, since we measured different concepts. More

importantly, in our experiment, we wanted to make sure that the salience difference

would be strong enough and shared by all participants, and therefore made the choice to

use a very salient head. This high salience might have prevented any label-induced shifts

in looking behaviour in the competition for attentional control. In contrast, stimuli in

Althaus’s work were specifically designed to reduce any difference in salience between

the two features. It would be interesting in future studies to use varying degrees of

salience between features.

On the other hand, the labels-as-features theory predicts that labels should not have

an impact on attentional focus, which is consistent with our findings. However, based

on this null result we do not claim that we have evidence in favour of the labels-as-

features theory. Indeed, the labels-as-symbols theory could be correct, but in the current

study other factors may have had a stronger influence on attentional focus. Further
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work is needed to ascertain whether or not labels can impact attentional focus in some

conditions, in particular in more realistic settings where the salience of diagnostic features

is not substantially lower than the salience of non-diagnostic features, as was the case in

our experiment.

In addition to these theoretical concerns regarding the effect of auditory labels on

categorisation, our findings provide some insight into the use of eye-tracking data for

measuring learning mechanisms. Eye-tracking is particularly useful when it comes to

studying young infants who cannot give clear behavioural responses, and eye-tracking

data have been commonly used as a proxy for their attentional processes. As an extension

to the attentional focus evidenced by eye-tracking data, it has been assumed that infants

look longer at stimuli that require more encoding, thus more attention (Houston-Price

& Nakai, 2004); hence, an implicit link was made between looking times and learning

mechanisms. From our work however, it is unclear that infants would necessarily look

longer at a stimuli that requires more encoding. Particularly, we know that infants

encoded enough information about the tails to link the correct one to its corresponding

name; yet in a novelty preference trial they showed no preference towards a tail that

they had never seen before, and thus needed more effort to encode. Instead, it seems

that infants could encode enough information without it affecting their overall looking

behaviour. This is even more clear in adults who have higher encoding capacities. Overall

these results suggest that eye-tracking data are not a pure reflection of learning processes,

but of something more.

In light of our findings, future studies should focus on understanding more precisely

how labels impact categorisation and how they might compete with other factors for

attention control, if they can have an impact at all on attentional focus. In addition to

this, further work should seek to deepen our understanding of what processes impact

eye movements in both adults and infants, to improve how we understand eye-tracking

results and design eye-tracking experiments.

References

Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., & Kievit, R. A. (2019). Rain-

cloud plots: A multi-platform tool for robust data visualization. Wellcome Open

Research, 4, 63. https://doi.org/10.12688/wellcomeopenres.15191.1

Althaus, N., & Mareschal, D. (2014). Labels direct infants’ attention to commonalities

during novel category learning. PloS one, 9 (7), e99670. https://doi.org/10.1371/

journal.pone.0099670

Althaus, N., & Plunkett, K. (2015a). Categorization in infancy: Labeling induces a per-

sisting focus on commonalities. Developmental Science, 1–11. https://doi.org/

10.1111/desc.12358

Althaus, N., & Plunkett, K. (2015b). Timing matters: The impact of label synchrony on

infant categorisation. Cognition, 139, 1–9. https://doi.org/10.1016/j.cognition.

2015.02.004

60 A. CAPELIER-MOURGUY, NOVEMBER 2019



Althaus, N., & Westermann, G. (2016). Labels constructively shape object categories

in 10-month-old infants. Journal of Experimental Child Psychology, 151, 5–17.

https://doi.org/10.1016/j.jecp.2015.11.013

Aslin, R. N. (2007). What’s in a look? Developmental Science, 10 (1), 48–53. https :

//doi.org/10.1111/j.1467-7687.2007.00563.x

Barnhart, W. R., Rivera, S., & Robinson, C. W. (2018). Effects of linguistic labels on

visual attention in children and young adults. Frontiers in Psychology, 9. https:

//doi.org/10.3389/fpsyg.2018.00358

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure

for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and

Language, 68 (3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
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Chapter 4

Labels Drive Adults’ Attention to

Salient Features

In the previous chapter, we used the same experimental design on 15-month-old infants

and adults to study the potential effects on visual attention of feature salience and

object labelling during a categorisation task. We presented participants with categories

in which the salient feature (the head of line-drawn novel animals) was non-diagnostic of

category membership, but the non-salient feature (tail) was diagnostic. We found that

participants who heard a label (redundant for adults, as they were also given non-verbal

feedback on their categorisation choice) could learn those counter-intuitive categories

without looking differently at the stimuli from participants in a control group who did

not hear a label.

In infants, this result was interpreted as indirect evidence against the labels-as-

symbols theory and thus in favour of the labels-as-features theory. Most importantly,

taken together with the rest of the literature, this finding hinted that eye movements

and looking times are not a good proxy for learning, but only measure visual attention

patterns.

In adults, however, there was clear evidence from their accuracy measure that par-

ticipants were at ceiling performance, and this could at least partly explain the absence

of differences in looking patterns. To further study this question in adults, we thus

extended our experimental design to make it more complex for adults. Specifically, we

increased the number of non-salient diagnostic features that participants needed to con-

sider for category learning. We present this new design and the ensuing results in this

chapter.



A Name for a Head: Auditory Labels Drive Adults’

Attention to Salient, Not Diagnostic, Object Features
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Abstract

The effect of auditory labels on category formation has been studied extensively

in infants and adults. Although there is a consensus that adults see labels as symbolic

category markers, it is unclear whether infants process labels in such a way early

in development, as argued by the labels-as-symbols theory, or if infants first see

labels as object features, and slowly learn to give them a more symbolic value, as

argued by the labels-as-features theory. An important prediction of the labels-as-

symbols theory is that labels should highlight diagnostic features. This prediction

was recently tested on adults and 15-month-old infants, but resulted in a ceiling

effect in adults. Here, we extend this previous study to mitigate this ceiling effect.

Precisely, we presented adults with animal drawing where the non salient feet and

tail were diagnostic of category membership, but the salient head was not. We

found that adults who heard category labels looked more at the non-diagnostic

head. Considering that head are usually diagnostic of category membership in real-

life, this suggests that the effect of auditory labels on attention during categorisation

tasks is heavily influenced by background knowledge.

Keywords: labelling, categorisation, salience, diagnosticity

1 Introduction

A key component of human cognition is the ability to bring objects we encounter to-

gether into categories, to reduce the cognitive cost of processing new exemplars of those

categories. Starting as early as 10-month-old, infants automatically group together items

that are similar, and separate items that are dissimilar, slowly building up categories

based on what they see (Mareschal & French, 2000; Mareschal et al., 2000). Category
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exemplars are often encountered together with the name of the category spoken by a

caregiver early in development, and such naming events also have been argued to im-

prove categorisation in infants and adults (e.g. Althaus & Westermann, 2016; Balaban

& Waxman, 1997; S. A. Gelman & Coley, 1991; Gliga et al., 2010; Graham & Poulin-

Dubois, 1999; Lupyan et al., 2007; Plunkett et al., 2008; Waxman & Markow, 1995).

However, the mechanism by which adding a spoken label improves categorisation pro-

cesses early in development, and how those mechanisms develop, remains unclear. Two

main theories attempt to explain the role of labels in categorisation early in development:

the labels-as-symbols view argues that labels are category markers, while the labels-as-

features view argues that labels do not differ from other object features. Both theories

however agree that later in development adults see labels as category markers, and the

compound-representations theory offers a mechanism to account for a developmental

change from a featural to a symbolic role of labels.

On the one hand, the labels-as-symbols theory suggests that labels are, from an

early developmental stage, abstract decontextualised cues that are separate from object

representations and act as referential pointers in a top-down way, inviting the listener

to form categories (Waxman & Markow, 1995). A possible mechanism for this theory

is that labels drive attention towards diagnostic features, that is, features shared by

all exemplars of the category but not by out-of-category items. For example, knowing

that both humans and elves walk on two legs, use tools, and talk, is not helpful in

discriminating them into two categories, while the body hair of humans and the pointy

ears of elves are both diagnostic features for their respective categories. Supporting this

theory, studies in infancy research have shown that adding a label specifically allowed

infants to form categories that they would not otherwise form (Althaus & Westermann,

2016; Plunkett et al., 2008; Waxman & Markow, 1995), and increased infants’ attention

towards and encoding of diagnostic features (Althaus & Mareschal, 2014; Althaus &

Plunkett, 2015). In adults, studies have shown that participants attended selectively to

diagnostic features when hearing a label (Best et al., 2013), that auditory labels reliably

primed category representations across participants whereas other non-linguistic sounds

only primed specific exemplars of those categories with between-subject differences in

the exemplars primed (Edmiston & Lupyan, 2015; Lupyan & Thompson-Schill, 2012),

and finally that the enhancement of labelling by up-regulating activity over Wernicke’s
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area via transcranial direct current stimulation selectively improved the formation of

“sparse” categories heavily relying on a few diagnostic features, and vice versa when

disturbing labelling (Perry & Lupyan, 2014, 2016).

On the other hand, the labels-as-features theory suggests that labels are first treated

as features, part of the object representation at the same level as other physical or

auditory features: a dog is an animal with four legs, fur, a tail, a dog face, and is called

“dog” (Sloutsky & Fisher, 2004). In this theory, labels simply facilitate categorisation by

adding to the overall similarity of all exemplars within a category, since they all share the

same name in addition to other features. However, the labels-as-features theory mostly

applies to the earlier stages of development, and proponents of this account agree that

label perception evolves to bear a more symbolic role later in development (e.g. Best et

al., 2013; Deng & Sloutsky, 2016; Sloutsky & Fisher, 2012). In particular, a study with

different age groups noted that 4- to 5-year-old children perceived labels as features, 11-

to 12-year-old children perceived labels as symbolic markers, and 7- to 8-year-old children

were in a transitional stage with some children being more feature respondent and others

more symbolic marker respondent (Sloutsky et al., 2001). Nevertheless, there is some

evidence that adults can still treat labels as features in some contexts, suggesting that

the mechanisms by which labels are perceived as symbols does not necessarily replace

the initial role of labels as features (Deng & Sloutsky, 2012).

A third view introduced recently can account for this evolution in time (Westermann

& Mareschal, 2014). This compound-representations account assumes that labels are

encoded in the same representational space as other features, but are not integrated

into the object representations, only linked to them. In this way, labels will first drive

categorisation by adding to the within-category similarity. With learning, over time,

labels will become more closely associated to object representations, and act more like

markers for categories, reducing the distance in representational space between exemplars

of the same category.

Despite the numerous studies conducted on this topic in adults, no study has fo-

cused specifically on the online process of category learning and effects of labels on this

process, to our knowledge. Many studies have focused on behavioural measures such

as categorisation accuracy, reaction time, or inference of a missing feature (e.g. Best

et al., 2013; Deng & Sloutsky, 2016; Edmiston & Lupyan, 2015; Lupyan et al., 2007;
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Lupyan & Thompson-Schill, 2012; Sloutsky & Fisher, 2012). Other studies have used

eye-tracking and found preferential looking to a target amongst a set of items when

hearing a redundant, task-irrelevant label (Edmiston & Lupyan, 2015; Lupyan, 2008;

Lupyan & Spivey, 2010; Salverda & Altmann, 2011). Critically, the existing research

with adults does not present a clear picture of how category labels affect the attention

to and processing of object features of different salience when learning novel categories.

A recent study with infants and adults addressed these questions by asking whether or

not a label could actively guide categorisation in categories where low-salience, but not

high-salience, features were diagnostic (Capelier-Mourguy et al., 2019). In this study,

15-month-old infants and adults were presented with the same stimuli: a series of simple

two-featured snake-like animals, with a salient head and non-salient a tail. Importantly,

the high-salience head did not indicate category membership but varied pseudorandomly

during training; in contrast, the low-salience tail was diagnostic of category membership.

Adults further had to make a categorisation choice for each exemplar, and were given

non-linguistic auditory feedback. Based on previous literature, the authors hypothesised

that adults hearing a redundant label would look more at the diagnostic tail and would

be better and quicker at learning the categories than adults hearing only an auditory

feedback after categorising each animal. These predictions were not upheld: using the

same stimuli and category structure for both 15-month-old infants and adults led to

a ceiling effect in adults in terms of learning speed and accuracy, and an absence of

difference in terms of looking patterns.

In the current study we aimed to mitigate this ceiling effect in adults by extending

Capelier-Mourguy et al.’s work (2019, hereafter CMTW). We did so by using two non-

salient features instead of only one (a tail and feet), and making neither of them fully

diagnostic, so that participants would have to pay attention to both features to learn

categories. As in CMTW, we expected that (a) participants who heard a label would,

during the training phase, look more and/or more quickly at the diagnostic features,

and encode them more robustly, and (b) participants who heard a label would form

categories more quickly.
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2 Methods

All materials used for this experiment are available online for inspection and replication

purposes 1, including stimuli, the experiment script in Eprime (version 2), raw data, and

analysis scripts in R.

2.1 Data Handling and Software Specifications

Data Handling A common measure in eye-tracking data analysis is the proportion of

looking at an area of interest (AOI). To account for the boundedness of proportion values,

we used the arcsine-root transformation of the proportion in our statistical models; for

ease of discussion, we use the term “proportion” to talk about this measure. However,

we plot raw proportion values only, for ease of visual interpretation.

Further, we discarded looks outside of our defined AOIs. This means that, for ex-

ample, the proportion of looking at the tail during the familiarisation trials is defined as

the time spent looking at the tail divided by the time spent looking at the tail, feet, or

head, but not the total time spent looking at the screen during a trial.

Software Specifications All statistical results were obtained using R (version 3.6.1; R

Core Team, 2019). Analyses in this paper were conducted using (a) lme4 (version 1.1-17;

Bates et al., 2015) to run Sample Theory Based (STB) (generalised) linear mixed-effects

models, lmerTest (version 3.0-1; Kuznetsova et al., 2017) to run ANOVA analyses on

those mixed-effect models, and the p.adjust function from the base stats package to ad-

just p-values when needed, (b) eyetrackingR (version 0.1.8; Dink & Ferguson, 2018) to

handle eye-tracking data and run bootstrapped cluster-based permutation analyses, and

(c) ggplot (version 2.2.1; Wickham, 2016) to plot graphs from our data and ggeffects

(version 2.4.1; Lüdecke, 2018) to compute and plot estimated marginal effects from our

models.

2.2 Participants

We recruited 40 participants from Lancaster University via an online pool of partici-

pants for psychology studies. After exclusion of four outliers (more than two standard

deviations above the mean) in terms of learning speed, the final sample for behavioural

1https://osf.io/5yh67/
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Category Tail Feet Head

A α ν 1
α ν 2
α α 1
α α 2
ν α 1
ν α 2

B β ν 1
β ν 2
β β 1
β β 2
ν β 1
ν β 2

Table 1: Category structure. α represents a feature belonging to category A, β a feature
belonging to category B, and ν a neutral feature. Heads are never diagnostic and so the
two different versions are coded 1 and 2

results consisted of 36 participants (17 female, Mage = 20.58, range 19-23). A further

five participants did not contribute to eye-tracking data due to not meeting our inclusion

criteria (minimum 70% of looking on 70% of the trials). All participants were fluent in

English.

2.3 Materials

Visual Stimuli We used structurally similar stimuli as those in CMTW, adding a

third low-salient feature.

Our stimuli thus consisted of simple snake-like animals with three features only:

a salient head (Kovic et al., 2009), and two non-salient features, a tail and feet. This

ensured that stimuli afforded a “natural” non-uniform salience shared by all participants.

While the salient head was never diagnostic of category membership, we designed stimuli

so that neither the feet nor tail were fully diagnostic. To do so, we defined two prototypes

for the non-diagnostic head, but three prototypes for feet and tail: one prototype for

each category, and one “neutral” prototype that would correspond to neither category.

See Table 1 for a structural description of the stimuli, and Fig. 1 for examples of stimuli

displaying all possible feature versions.

Auditory Stimuli After categorising each exemplar, participants in both conditions

were given auditory feedback in the form of a shimmering sound for correct or a buzzer

for incorrect categorisation. Then, participants in the label condition heard the phrase
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Figure 1: Example of stimuli displaying all three kinds of feet and tail, and both kinds
of heads.

“It’s a [Saldie/Gatoo]”, pronounced by a female native British speaker in a neutral tone.

Both feedback sounds lasted for 2000 ms, and both labelling phrases lasted for 1000 ms

with a label onset at 400 ms.

2.4 Procedure and Design

Participants were tested in a quiet room, using a Tobii X120 eye-tracker calibrated using

a 9-point routine to record eye-tracking data, and Eprime to run the experiment and

collect behavioural data (categorisation responses, reaction time, number of training

blocks, etc.).

The experiment consisted of a categorisation task: participants were presented with

one exemplar at a time, and were asked to sort them into one of two categories by

pressing the corresponding button on a keyboard. Participants were first presented with

a training phase, during which they were provided with feedback after each categorisation

decision. Participants in all groups heard non-linguistic feedback, followed by the label

for the category for half of the participants. This training phase lasted for up to 21

blocks, or until successful categorisation (i.e. one full block without any mistakes).

Each block consisted of the 12 exemplars described in Table 1 presented in a random

order. A fixation cross was presented in the middle of the screen for one second before

each trial.

Participants were then presented with a test phase that consisted of the same cate-

gorisation task for one block without feedback.
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3 Results

Analysis Structure We conducted two types of analysis in this report: testing aver-

age proportion looking during one or several time windows of a trial, and time-course

analysis. We also tested for other unique-per-trial values, however these tests followed

the same structure as tests on proportion looking.

For the tests of proportion looking, we used (generalised) linear mixed-effects re-

gression models fitted with maximal converging random-effects structure to estimate

parameters (Barr et al., 2013). For significance testing of those parameters, we used

type I ANOVA analyses with Satterthwaite’s method as implemented in lmerTest for

linear models, and commonly-used asymptotic Wald tests for generalised linear models.

For the time-course analyses, we used bootstrapped cluster-based permutation anal-

ysis as implemented in eyetrackingR with 100 ms time bins and t-test comparisons

between the two conditions (no-label, label); the choice of a t-test rather than a mixed-

effects model was due to the current implementation in eyetrackingR that did not allow

for the use of mixed-effects models when testing a between-subject factor as in our case.

To test different levels of other factors (e.g. first three trials against last three trials),

we ran an independent analysis on each level of this factor (or levels of their interaction

when using multiple factors); although this approach involved multiple comparisons,

there is to our knowledge no straightforward way to test for multiple factors directly.

In the same way that conducting multiple independent t-tests after a significant

ANOVA interaction increases the likelihood of a type I error, testing for a great number of

parameters in a single model (e.g. regression or ANOVA) increases the chance of finding

significant p-values by chance (see Shaffer, 1995, for a review on multiple hypothesis

testing). However, if the use of corrected p-values, or q-values, is consensual for multiple

post-hoc tests (e.g. the Bonferroni adjustment introduced by Dunn, 1961), the question

of when and how to correct for multiple tests for regression parameters is still debated

(e.g. A. Gelman et al., 2012). Considering that we are here often testing for a great

number of parameters, we provide uncorrected p-values for our models, but contrast

them with q-values based on the less stringent control of false discovery rate (thereafter

‘fdr’) proposed by Benjamini and Hochberg (1995) rather than more conservative family-

wise error rate adjustment methods such as the Bonferroni correction. To keep this
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Figure 2: Raincloud plot from the data of the number of blocks to learning.

article clearer, we only use fdr q-values for p-values that are only mildly significant; the

uncorrected p-values further allow readers to apply the adjustment method they think

the fittest, and thus change their interpretation of our results accordingly.

3.1 Behavioural Results

One of our hypotheses was that participants’ categorisation abilities would benefit from

hearing a label on top of the ‘correct/wrong’ auditory feedback. This would be reflected

in the number of training blocks they need to learn the categories (i.e. complete a full

block without any categorisation mistakes), as well as in the overall response accuracy

throughout training.

Number of Blocks to Learning Given that this measure was not normally dis-

tributed (Anderson-Darling normality test: A = 1.6971, p = .0002), we first conducted

an independent 2-group Mann-Whitney U-test to test the effect of label on the number

of training blocks to learning. We found no differences between the label and no-label

group (W = 129, p = .2929), and as such, there was no evidence that labels helped

participants learn categories more quickly. A “raincloud” plot (Allen et al., 2019) of the

data is shown in Fig. 2. These plots include half a violin plot to understand the shape

of the data, individual data points to better understand the structure of the data, and

a boxplot to give some descriptive statistics at a glance.
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Parameter Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.56 0.50 3.11 0.002
Block 1.46 0.42 3.50 ¡.001
zLogRT -0.33 0.40 -0.82 0.411
DiagnosticFeet -1.41 0.55 -2.55 0.011
DiagnosticTail -0.51 0.54 -0.95 0.344
Condition -0.31 0.62 -0.49 0.622
Block:zLogRT -0.67 0.41 -1.64 0.100
Block:DiagnosticFeet -0.51 0.44 -1.16 0.246
Block:DiagnosticTail -1.00 0.45 -2.23 0.026
zLogRT:DiagnosticFeet 0.35 0.47 0.75 0.455
zLogRT:DiagnosticTail 0.17 0.49 0.35 0.725
Block:Condition -0.76 0.41 -1.85 0.065
zLogRT:Condition -0.15 0.53 -0.29 0.775
DiagnosticFeet:Condition 0.33 0.65 0.50 0.614
DiagnosticTail:Condition -0.19 0.63 -0.30 0.765
Block:zLogRT:DiagnosticFeet 0.37 0.43 0.86 0.389
Block:zLogRT:DiagnosticTail 0.56 0.44 1.28 0.202
Block:zLogRT:Condition 0.31 0.42 0.74 0.460
Block:DiagnosticFeet:Condition 0.27 0.43 0.63 0.531
Block:DiagnosticTail:Condition 0.69 0.44 1.55 0.120
zLogRT:DiagnosticFeet:Condition 0.06 0.65 0.10 0.922
zLogRT:DiagnosticTail:Condition -0.01 0.66 -0.01 0.992
Block:zLogRT:DiagnosticFeet:Condition -0.15 0.44 -0.33 0.740
Block:zLogRT:DiagnosticTail:Condition -0.32 0.45 -0.70 0.486

Table 2: Summary of the glmer model for accuracy during training.

Accuracy We submitted response accuracy to a binomial generalised linear mixed-

effects restricted model. The model included all main effects of and interactions between

Block (numeric), Reaction Time (zLogRT, log-transformed and scaled), Diagnostic fea-

ture (both, feet, tail), and Condition (no-label, label). The model also included random

intercept and slopes for Block, zLogRT, Diagnostic, and their interactions, by partici-

pant; and random intercept by visual stimulus and by auditory stimulus. The parameter

estimates for this model are given in Table 2.

The most notable significant effect here is that of Block, with accuracy increasing

throughout training for participants in the no-label condition when they had average re-

action times when categorising exemplars where both the feet and tail were diagnostic.

Other than that, two p-values reached significance: for the main effect of Diagnos-

ticFeet, with lower accuracy when only the feet were diagnostic during the first block in

the no-label condition for average reaction times compared to when both features were

diagnostic, and for the Block-by-DiagnosticTail interaction with a slower increase in ac-
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curacy in the no-label group for average looking times compared to when both features

were diagnostic. However, the fdr correction gave non-significant q-values for the two

effects considered here (q = 0.087 and q = 0.154 respectively).

Notably, none of the other parameters were significant. Thus, accuracy did not

significantly differ with respect to any other variable or interactions, and in particular,

participants in the label condition did not significantly differ from participants in the

no-label condition at any point regardless of what features were diagnostic and regardless

of their reaction times. In conclusion, participants first had more difficulties successfully

categorising exemplars for which only the feet were diagnostic, but by the end of training

participants successfully categorised all exemplars, all that regardless of the presence or

absence of auditory labels. Put differently, labels did not help participants reach higher

accuracy earlier in training.

3.2 Eye-tracking Results

Average Proportion of Looking We submitted proportion of looking to the different

AOIs during training to a linear mixed-effects model. The model included main effects of

and interaction between FstLst (first block, last block), AOI (head, feet, tail), Diagnostic

feature (both, feet, tail), and Condition (no-label, label). The model also included

random intercepts and slopes for FstLst, AOI, Diagnostic, and their interactions, by

participant; and random intercepts by visual stimulus and by auditory stimulus. A

summary of the parameter estimates and results of the ANOVA analysis on this model

can be found in Table 3. Note that while some of our variables were categorical with

multiple levels (AOI, Diagnostic and associated interactions), the ANOVA analysis only

computed an F value for these effects as a whole. We therefore report the F value

and associated p-value on the first line only for categorical variables and associated

interactions with more than two levels. A raincloud plot of the data can be seen in

Fig. 3.

First, we saw a significant main effect of AOI, with participants looking much less

at the feet and more at the tail compared to the head in the no-label condition during

the first block of training when both features were diagnostic. Looks towards the two

diagnostic features increased by the end of training for those same participants when

both features were diagnostic, as evidenced by the significant FstLst-by-AOI interac-
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Figure 3: Raincloud plot from the data of the proportion of looking at the different
AOIs.
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Model Output ANOVA Output
Parameter Estimate Std. Error F value Pr(> F )

(Intercept) 0.59 0.07
FstLst -0.13 0.09 0.98 0.323
AOIFeet -0.38 0.10 25.33 ¡.001
AOITail 0.28 0.11
DiagnosticFeet 0.02 0.06 0.02 0.979
DiagnosticTail -0.05 0.06
Condition 0.13 0.09 0.22 0.642
FstLst:AOIFeet 0.17 0.12 6.06 0.006
FstLst:AOITail 0.18 0.17
FstLst:DiagnosticFeet -0.02 0.10 0.02 0.984
FstLst:DiagnosticTail -0.01 0.09
AOIFeet:DiagnosticFeet 0.05 0.09 1.51 0.224
AOITail:DiagnosticFeet -0.08 0.09
AOIFeet:DiagnosticTail 0.06 0.08
AOITail:DiagnosticTail 0.11 0.08
FstLst:Condition -0.01 0.12 0.01 0.908
AOIFeet:Condition -0.05 0.14 4.23 0.024
AOITail:Condition -0.33 0.16
DiagnosticFeet:Condition 0.04 0.09 0.06 0.939
DiagnosticTail:Condition 0.11 0.08
FstLst:AOIFeet:DiagnosticFeet 0.04 0.14 0.69 0.605
FstLst:AOITail:DiagnosticFeet 0.00 0.17
FstLst:AOIFeet:DiagnosticTail 0.11 0.13
FstLst:AOITail:DiagnosticTail -0.06 0.15
FstLst:AOIFeet:Condition -0.03 0.17 0.03 0.975
FstLst:AOITail:Condition 0.06 0.24
FstLst:DiagnosticFeet:Condition 0.00 0.14 0.06 0.946
FstLst:DiagnosticTail:Condition 0.02 0.13
AOIFeet:DiagnosticFeet:Condition -0.16 0.12 1.53 0.219
AOITail:DiagnosticFeet:Condition -0.01 0.13
AOIFeet:DiagnosticTail:Condition -0.17 0.11
AOITail:DiagnosticTail:Condition -0.17 0.12
FstLst:AOIFeet:DiagnosticFeet:Condition 0.10 0.20 0.60 0.667
FstLst:AOITail:DiagnosticFeet:Condition -0.09 0.24
FstLst:AOIFeet:DiagnosticTail:Condition -0.09 0.19
FstLst:AOITail:DiagnosticTail:Condition -0.01 0.20

Table 3: Summary of the lmer model for proportion looking at the different AOIs during
training.
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AOI Direction Cluster Position Summed Statistic Probability

Head label > no-label 600 - 1200 ms -14.39 0.048
label > no-label 1800 - 2400 ms -19.32 0.026

Tail no-label > label 1800 - 2600 ms 27.64 0.016

Table 4: Summary of the bootstrapped cluster-based permutation analysis on proportion
of looking at the different AOIs.

tion. Furthermore, there was a mildly significant AOI-by-Condition interaction, with

participants in the label condition looking less at the tail compared to participants in

the no-label condition in the first block of training when both features were diagnostic.

However, the fdr correction gave a non-significant q = 0.122.

No other effects were significant. Notably, looking patterns did not differ depending

on which features were diagnostic at any time for participants in the no-label condition,

and the difference in looking pattern between participants in the label and no-label

condition did not differ significantly depending on which features were diagnostic or

between the first and last training block. In other words, participants overall looked

much less at the feet than other AOIs, but looked more at both diagnostic features (tail

and feet) by the end of training, and participants in the label condition might have been

looking less at the tail compared to participants in the no-label condition.

Time-course Analysis To understand better how participants divided their atten-

tion between the three AOIs during training, we ran one bootstrapped cluster-based

permutation analysis for each AOI for the first and last block of training. We chose

to include in the analysis only data from 1000 ms before button press until the end of

the trial, as more than half of the reaction times were under 1000 ms (50.4%). The

clusters that reached significance are displayed in Fig. 4, and p-values for those clusters

are reported in Table 4.

From this analysis, we can see that participants in the label condition looked more at

the head and less at the tail in the first block of training compared to participants in the

no-label condition, and participants in both conditions looked equally little at the feet.

There seemed to be an overall similar trend in the last block of training, however with

no clusters reaching significance. We return to the temporal location of the significant

clusters in the first block in the general discussion, it does seem however that differences

arose after categorisation, and that the presence of auditory labels elicited increased
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Figure 4: Time-course plot of the mean and SE of proportion looking at the different
AOIs. Vertical dashed line represent feedback onset (0 ms) and labelling phrase onset
(2000 ms). Purple overlay rectangles represent clusters where the difference between
conditions reached significance.
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attention to the head and decreased attention to the tail as a result.

First Look (Time) Another hypothesis we formulated was that participants would

look more quickly at the diagnostic features when in the label condition compared to

participants who did not hear a label. To test this, we submitted the log-transformed

time to first look at the tail and feet from trial onset to a linear mixed-effects model. The

model included main effects of and interaction between FstLst (first block, last block),

AOI (head, feet, tail), Diagnostic feature (both, feet, tail), and Condition (no-label, la-

bel). The model also included random intercepts and slopes for FstLst, AOI, Diagnostic,

and their interactions, by participant; and random intercepts by visual stimulus and by

auditory stimulus. A summary of the parameter estimates and results of the ANOVA

analysis on this model can be found in Table 5. A raincloud plot of the data can be seen

in Fig. 5.

Two effects were significant here. First, there was a significant main effect of AOI,

with participants in the no-label condition looking more slowly at the feet and more

quickly at the tail compared to the head, when both feet and tail were diagnostic, during

the first block of training. Second, there was a significant FstLst:AOI interaction, with

participants in the no-label condition looking much more quickly at the feet and more

quickly at the tail compared to the head, when both feet and tail were diagnostic, during

the last block of training relative to the first block of training. No other effects were

found to be significant, meaning that participants in the no-label condition did not look

significantly quicker or slower to either AOI depending on which AOI was diagnostic,

during the first block or last block, and that participants in the label condition did not

significantly differ from participants in the no-label condition in any way. As such, labels

did not impact the first AOI participants looked at, and instead, all participants started

looking first at the diagnostic tail as early as the first block of training, but needed more

training to also look earlier at the diagnostic feet.

4 Discussion

In this paper, we aimed to study the potential effects of labelling on attentional processes

during categorisation. More precisely, we wanted to test whether an auditory label could

direct attention towards diagnostic features when those features were of low salience.
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Figure 5: Raincloud plot from the data of the time before first look at each AOI.
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Model Output ANOVA Output
Parameter Estimate Std. Error F value Pr(> F )

(Intercept) 6.76 0.19
FstLst 0.49 0.22 1.18 0.287
AOIFeet 0.57 0.27 49.24 ¡.001
AOITail -0.56 0.27
DiagnosticFeet -0.03 0.16 0.12 0.888
DiagnosticTail 0.18 0.16
Condition -0.08 0.27 0.00 0.967
FstLst:AOIFeet -1.04 0.31 14.19 ¡.001
FstLst:AOITail -0.56 0.35
FstLst:DiagnosticFeet -0.13 0.24 0.32 0.727
FstLst:DiagnosticTail -0.09 0.23
AOIFeet:DiagnosticFeet 0.08 0.26 0.87 0.492
AOITail:DiagnosticFeet -0.16 0.25
AOIFeet:DiagnosticTail -0.30 0.28
AOITail:DiagnosticTail -0.43 0.23
FstLst:Condition -0.13 0.31 0.07 0.795
AOIFeet:Condition 0.00 0.38 1.03 0.369
AOITail:Condition -0.07 0.39
DiagnosticFeet:Condition -0.20 0.23 0.68 0.511
DiagnosticTail:Condition -0.23 0.22
FstLst:AOIFeet:DiagnosticFeet 0.32 0.38 0.55 0.700
FstLst:AOITail:DiagnosticFeet 0.30 0.37
FstLst:AOIFeet:DiagnosticTail 0.42 0.38
FstLst:AOITail:DiagnosticTail 0.29 0.36
FstLst:AOIFeet:Condition 0.58 0.43 0.11 0.900
FstLst:AOITail:Condition 0.32 0.49
FstLst:DiagnosticFeet:Condition 0.55 0.33 1.07 0.353
FstLst:DiagnosticTail:Condition 0.07 0.32
AOIFeet:DiagnosticFeet:Condition 0.34 0.37 1.50 0.219
AOITail:DiagnosticFeet:Condition 0.62 0.36
AOIFeet:DiagnosticTail:Condition 0.53 0.39
AOITail:DiagnosticTail:Condition 0.63 0.33
FstLst:AOIFeet:DiagnosticFeet:Condition -1.15 0.52 1.48 0.231
FstLst:AOITail:DiagnosticFeet:Condition -0.78 0.51
FstLst:AOIFeet:DiagnosticTail:Condition -0.72 0.53
FstLst:AOITail:DiagnosticTail:Condition -0.55 0.50

Table 5: Summary of the lmer model for first look time at the different AOIs during
training.
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First, we found no evidence of an effect of labelling on the behavioural level, with no

significant differences between participants in the label and no-label condition in terms

of learning speed or accuracy during training. In terms of looking patterns, however,

we found that participants in the label condition preferred to look at the non-diagnostic

head at the beginning of training. This head preference was no longer significant by

the end of training. Thus, while the addition of an auditory label neither improved nor

hindered categorisation itself, it did have an effect on attention distribution. Crucially,

we did not replicate previous results in the adult literature on category learning, where

the addition of an auditory label reduced reaction time and increased accuracy more

quickly during training (e.g. Lupyan et al., 2007), and the effect we observed on looking

patterns did not meet our predictions, specifically, participants did not look more at the

diagnostic features (tail and feet) in the label condition.

First, we found that participants in both conditions looked much less at the feet than

at any other feature, throughout training, and that they also took longer to make their

first fixation at the feet than at any other feature. These results suggest that, although

the tail and feet were equally diagnostic, the tail was naturally more salient than the

feet, and even the feet’s diagnosticity was not enough to make participants look at them

as much as to the other diagnostic feature. Further, participants preferred to look at

the tail compared to the head as early as the first block of training. We know however

from previous research that animal heads are usually more salient than other features

(Kovic et al., 2009), and we further know that for these particular stimuli the head

was more salient than the tail for adults and infants (Capelier-Mourguy et al., 2019).

Thus, participants here quickly learned that heads were not diagnostic, and consequently

turned their attention to the next most salient feature: the tail. This points at the variety

of studies that could be conducted, with a different number of features, with different

salience relationships between them, and possibly differences in diagnosticity, to better

understand how diagnosticity and salience interact in the presence or absence of category

labels.

We further found an effect of labelling on attention. According to the labels-as-

symbols theory, labels should highlight diagnostic features, thus helping to form cate-

gories. This has been confirmed in adults, in particular, auditory labels distort internal

representation of categories to enhance the importance of diagnostic features, to the

CHAPTER 4. LABELS DRIVE ADULTS’ ATTENTION TO SALIENT FEATURES 83



detriment of other features (Lupyan, 2008). What we saw however was labels highlight-

ing the already salient head, drawing attention away from the diagnostic tail and failing

to increase attention to the other diagnostic feature, feet. This seemingly counterintu-

itive finding could result from the fact that, in the real world, categories are rarely defined

by non-salient feature; in fact, it would make sense to believe that salient features have

become salient because they were diagnostic for the categories we encounter in real life.

Besides, studies have shown that labels reliably primed category representations (Edmis-

ton & Lupyan, 2015; Lupyan & Thompson-Schill, 2012), which suggests that labels have

a priori effects on attention and expectations. Thus, it would make sense that labels

naturally activate representations in which features that would usually be diagnostic are

highlighted, in this case the head, rather than highlight usually non-diagnostic features

that are only diagnostic for the lab task at hand. This would also explain why the label

only highlighted the head at the beginning of training, before participants learned that

heads were not diagnostic for the current task. Moreover, in the first block of training,

participants in the label condition first looked more at the head than participants in

the no-label condition during the non-linguistic feedback. They then looked more at the

head again, and less at the tail, later in the trial during the labelling phrase. This sug-

gests that, knowing that the categories were labelled, participants expected the heads to

be important for the categorisation feedback, both non-linguistic and linguistic. This is

further evidence for global effects of auditory labels on participants’ expectations about

categories.

Additionally, this preference for heads in the label compared to the no-label condition

could explain why we did not replicate another key finding in the literature. Auditory

labels, even redundant, have been shown to improve categorisation performance (e.g.

Lupyan et al., 2007). Here however, participants in both conditions needed the same

number of training blocks to learn the categories, and their accuracy did not increase

differently during training. Importantly, unlike in CMTW, we did not see here a clear

ceiling effect, and thus this cannot alone explain the absence of difference. Yet, this result

can be easily explained if we consider that auditory labels indeed helped participants

form categories, but that this facilitatory effect was counteracted by the detrimental

label-induced longer looking at the head at the beginning of training.

However, more work is needed to determine whether or not salient features in natural
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categories are indeed diagnostic for those categories, and if labels always direct attention

to those typically diagnostic features in lab tasks.
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Chapter 5

A Model of Labelling and

Attentional Focus

Using a new design, we were able in the previous chapter to avoid the ceiling effect

observed in adults in Chapter 3. Doing so, we were able to detect differences in looking

patterns induced by the addition of a redundant auditory label. According to previous

studies on the effect of labels on categorisation in adults, we expected participants to

look more at the non-salient but diagnostic features (tail and feet), but less at the salient

but non-diagnostic head. Instead, we found evidence that participants, when hearing

a label, looked reliably more at the head at the beginning of training, compared to

participants who only heard non-linguistic feedback.

This finding, confusing at first, could be explained by considering participants’ back-

ground knowledge. In the real world indeed, animal heads are arguably often diagnostic,

and thus participants’ looking behaviour at the beginning of training could reflect this

background knowledge. It remains surprising, however, that participants in the label

condition, at the end of training, still did not look more at diagnostic features compared

to participants in the control group. Here again, it might be that looking patterns do

not tell us the whole story about learning.

Overall, our empirical work in the last two chapters suggests that (a) 15-month-

old infants see labels as object features, (b) adults have background knowledge linking

auditory labels to animal heads in general, but most importantly (c) eye movement and

looking time measures do not give us a good insight into learning mechanisms in these

cases. To better understand how labelling might impact the learning of categories where

the non-salient features, but not the salient features, are diagnostic, we propose to use

computational modelling. In the next chapter, we describe a neurocomputational model

simulating the attention bias induced by feature salience, and study how this model

learns categories with and without a label.
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Abstract

How labels relate to perceptual features of objects in category learning has been

discussed controversially. According to one view labels have the same status as other

features and become integrated into the object representation. Another view holds

that labels are separate from object features and thereby shape object representa-

tions. Here we extended a previous computational model of object categorisation to

model different ways in which labels can affect attention to object features during

category learning. Specifically, we were interested in how object labels can direct

learners’ attention to diagnostic features of low salience, and replicated an empir-

ical study recently designed to study this aspect of the question. Attention was

modelled as modulation of learning rates of attended-to features. We discuss how

changes in attention affect resulting object representation and the implications of

these processes for the theories of the status of object labels in categorisation.

Keywords: connectionist model, representational development, label status, lan-

guage development, cognitive development

1 Introduction

How labels relate to perceptual features of objects in category learning is controversial.

It is clear from the literature that labels facilitate categorisation (e.g. Althaus & West-

ermann, 2016; Gelman & Coley, 1991; Gliga et al., 2010; Graham & Poulin-Dubois,

1999; Plunkett et al., 2008), but different mechanisms have been proposed to explain

this effect, with no conclusive evidence in favour of a particular theory so far. On the

labels-as-symbols account (Waxman & Gelman, 2009; Waxman & Markow, 1995), labels

are symbolic, conceptual markers acting as privileged, top-down indicators of category

membership, and label representations are qualitatively different to object representa-

tions. This implies that labels should shape the way we divide our attention when

encountering an object, directly highlighting the relevant, diagnostic features for cate-

gorisation. Conversely, the labels-as-features account (Sloutsky & Fisher, 2004) considers

labels to be equivalent to other (physical) features, and thus to be embedded into object

representations. This theory does not predict any specific effects of labels on attention

during categorisation. A third approach takes a middle ground between the labels-as-

symbols and labels-as-features views: the compound-representations account (Wester-

mann & Mareschal, 2014) acknowledges that language is a special kind of input and
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that labels do not act at the same level as other features, but assumes integrated object

representations are formed through the association between perceptual object features

and labels. Although this theory does not make any explicit assumptions about atten-

tional mechanisms, it assumes that labels will at first drive categorisation by adding to

the overall similarity between exemplars of a category, and will become more closely re-

lated to object representations over time and make categories better defined by reducing

the distance in representational space between exemplars of the same category. This, in

turn, could optimise attention and/or reduce the cost of processing, when encountering

new exemplars of known categories.

Numerous studies have addressed the question of the role of auditory labels on cat-

egorisation in infants, finding conflicting evidence. In support of the labels-as-symbols

account, studies have shown that adding a label specifically allows infants to form cat-

egories that they would not otherwise form, for example grouping two different set of

items into one category (Plunkett et al., 2008), or grouping a set of similar objects into

two categories (Althaus & Westermann, 2016). More recent work using eye-tracking

has shown that labels directed 8- to 12-month-old infants’ attention to features of lower

variability in a one-category categorisation task (Althaus & Mareschal, 2014; Althaus &

Plunkett, 2015). Conflicting with these findings, it has been shown for example that 4-

to 5-year-old children and adults, when asked to make an inference on a missing feature

of one of two previously learned categories, did not rely on the label if it was inconsistent

with most of the other features (Deng & Sloutsky, 2012). More recently, 10-month-old in-

fants displayed longer looking times when presented in silence with a previously labelled

object than with a previously unlabelled object (Twomey & Westermann, 2017b), which

was best explained as a novelty effect similar to what would be expected if a feature

other than the label was missing from the object (Capelier-Mourguy et al., 2018).

In a recent empirical study, we extended previous work by training 15-month-old

infants to categorise animals where the diagnosticity and salience of features mismatched

(Capelier-Mourguy et al., 2019, thereafter CMTW). More precisely, we presented infants

with two-featured snake-like animals with the head as a salient feature, and a less salient

tail. The set of stimuli used can be seen in Fig. 1. Each feature was derived from one of

two distinct exemplars, and pairs of features were then combined into novel, snake-like

animals such that each type of head was paired equally often with both types of tail,

and vice versa. For half of the infants, animals were given one of two names such that

the type of tail varied consistently with the auditory label, but each type of head was

heard equally often paired with each label; in other words, the low-salience tail was

diagnostic for categorisation, and the high-salience head was not. As such, this study

was the first to our knowledge to simultaneously control for the salience of different

object features and their diagnosticity in a two-category categorisation task on infants.

Infants were subsequently tested for successful recollection of the different features, and

for word-learning in the relevant group. Testing the hypothesis that labels drive attention

towards diagnostic features, we predicted that infants who heard labels would over time

switch their attention away from the salient head to focus more on the diagnostic tail.
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Figure 1: Example of a stimulus used for categorisation, and pairs of stimuli used during
the familiarisation phase, in Capelier-Mourguy, Twomey, & Westermann (2019, there-
after CMTW).

However our predictions were not upheld: instead, infants’ looking behaviour did not

differ significantly depending on whether or not they heard a label, despite infants in

the label group successfully learning the names and matching categories.

As such, these data conflict with the labels-as-symbols theory, whose main claim

was that labels drive attention to diagnostic features. On the other hand, the labels-

as-features view predicts no effects of labelling on attention, thus a true null in our

empirical work would support this theory. However, the strong salience of the head in

our experiment could have overshadowed any label-driven attention mechanisms, when

previous studies supporting the labels-as-symbols theory used stimuli for which all fea-

tures were uniformly salient. Here, we decided to use computational modelling to under-

stand whether differences in feature salience between studies could explain the conflicting

results observed. Specifically, we expect that labels will interact with features of differ-

ent salience, and thus have a different impact on categorisation depending on feature
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salience.

Many models have been used to study categorisation and the effect of labels on cat-

egorisation (e.g. Althaus & Mareschal, 2013; Capelier-Mourguy et al., 2018; Erickson &

Kruschke, 1998; Kruschke, 1992; Love et al., 2004; Mareschal & French, 2000; Mareschal

et al., 2000; Mayor & Plunkett, 2010; Samuelson et al., 2011; Sloutsky & Fisher, 2004;

Twomey & Westermann, 2017a; Westermann & Mareschal, 2014). Kruschke (1992)

proposed the first computational model of categorisation that included an explicit at-

tention mechanism: ALCOVE. This model combined an exemplar representation with

perceptron-inspired error-driven back-propagation learning. Input neurons represented

an explicit psychological dimension each, for example, a neuron could code for stimulus

size, another one for brightness, and so on. Hidden neurons were previously encountered

exemplars, with receptive fields in the multidimensional psychological representation

space connecting them to the input neurons; as such, a new stimulus presented to the

model would activate previously encountered exemplars depending on how similar they

were to the new stimulus. Finally, output neurons represented the different categories

to learn, making ALCOVE a supervised learning model. Crucially, each input node was

gated by a dimensional attention strength, whose direct effect was to shape the receptive

field of all hidden neurons over the corresponding psychological dimensions, allowing the

model to learn on which dimensions to focus for a particular categorisation task. How-

ever, this implementation of an attention mechanism could not account for attention

distribution over different features of a stimulus regardless of particular psychological

dimensions. Furthermore, the use of explicit psychological dimensions restricts the model

to experimenter choices on those dimensions.

Aside from models based on ALCOVE (Erickson & Kruschke, 1998; Love et al.,

2004), no other model of human categorisation has implemented an explicit attention

mechanism to our knowledge. This motivated us to develop a categorisation model with

an explicit attention mechanism that would allow us to simulate infants’ processing of

stimuli with a known uneven salience distribution, and test how this impacted their

ability to learn new categories. To do so, we used a simple auto-encoder, and expanded

it with a simple, theoretically plausible attention mechanism.

2 Methods

2.1 Model Architecture

Neurocomputational models have successfully captured looking time data from infant

categorisation tasks (e.g. Mareschal & French, 2000; Twomey & Westermann, 2017a;

Westermann & Mareschal, 2004, 2012, 2014). Here, we used a simple three-layer auto-

encoder model to reproduce and explain data from CMTW. Auto-encoders reproduce

input patterns on their output layer by comparing input and output activation after

presentation of training stimuli, then using this error to adjust the weights between

units using back-propagation (Rumelhart et al., 1986). In infant studies, looking times

have been linked to information processing, with more complex or novel stimuli eliciting
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“Saldie”

Learning rate modulator

Figure 2: Structure of the attention-biased auto-encoder. The example stimuli at the
bottom serve as an illustration but were not directly inputted to the model.

longer looking times (e.g. Houston-Price & Nakai, 2004; Oakes, 2010). As such, network

error from auto-encoders has been used as a proxy for infant looking times.

A critical parameter for auto-encoders is their learning rate, which specifies how

much the connection weights will be updated depending on the network error, or in

other words, how much the model will learn from each presentation. Following the idea

that a greater attention to salient features would lead to better encoding of those features

in infants, we chose to implement salience in our model as a modulation in learning rate.

More precisely, the learning rate of connections from the non-salient input to the hidden

layer was reduced compared to the learning rate for all other connections. Thus, in the

same way that infants will learn less from features they pay less attention to, our model

will learn less from the non-salient feature than from any other feature at every step.

We represent this as a ‘learning rate modulator’ on the network structure depicted in

Fig. 2. The overall learning rate for the network was set at 0.01, and we ran models

with the salience ratio between the low-salience tail and the rest of the network ranging

from 10% (i.e. a learning ratio of 0.01 × 10% = 0.001 for the tail input to hidden layer

connections) to 90%, by increments of 10%.

2.2 Stimulus Encoding

Our stimuli were encoded as sets of abstract binary features that were designed to

reflect the visual and label characteristics and the category structure of the stimuli used

in CMTW. Thus, our encoding can be interpreted as a list of dummy variables that

could generalize to alternative stimuli, coding for the presence/absence of one particular

dimension of the stimuli (e.g. “has turquoise parts”, “has round shapes”, would be

plausible dimensions for the stimuli considered here).

Each visual feature (head, tail) was encoded over ten units. Each visual feature

existed in two versions, each built around a prototype by adding noise to it. More

precisely, each feature exemplar was created by adding values drawn from a uniform

distribution between −0.5 and 0.5 to the corresponding prototype, checking that there

was a minimum distance between any two exemplars of the same category. The two
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prototypes for each visual features had two overlapping units to represent the between-

category similarities: for example, both heads and both tails in CMTW were partly

green, and had a similar size.

The two labels were encoded over eight units with no overlapping units. In the

no-label condition, all label units were simply set to 0.

Each stimulus was then built by combining a label with a head and a tail, following

the structure used in CMTW and depicted in Fig.1. Notably, in the label condition,

each type of tail was always associated with the same label, whereas there was an

equal number of each type of head associated with each label, making the tail (and

its associated label) fully and solely diagnostic for category membership and the head

non-predictive.

2.3 Procedure

To collect an amount of data consistent with infant studies, we ran a total of 48 models

for each of our ten salience ratios, 24 in each condition (no-label, label). We occasionally

refer to independent models as ‘subject models’ in the rest of this paper.

In line with CMTW, the procedure consisted of a familiarisation phase, followed by

contrast test trials in which the extent to which model subjects had encoded each feature

was tested. Unlike in CMTW, we did not add word recognition trials at the end, as it

was clear that the models in the label condition would have perfectly learned to match

each label with the appropriate tail-based category.

Familiarisation The familiarisation phase lasted for 20,000 blocks. During each block,

models were presented once with each one of the 12 stimuli in a pseudo-randomised order

with exemplars from each category alternating. The first category presented for each

model was randomised. Network error and hidden representations for each stimulus were

recorded every 50 blocks.

Contrast Test Trials In CMTW, contrast test trials consisted of two animals pre-

sented side by side in silence, one with new versions of a familiarised head and tail

(thereafter “old features”), and one with an old feature and a new type of head or tail

(for head and tail contrast test trials). The prediction in developmental psychology is

that, if infants have fully encoded a feature, for example the tail, then they will exhibit

preferential looking towards the new tail compared to the old tail; that is, infants will

show a novelty preference.

To reproduce this procedure in our models, we considered the number of successive

presentations of the same stimulus necessary for the network error to fall below a prede-

fined threshold of 10−2, or for a maximum of 200 iterations. To compare this measure

between an old stimulus and a stimulus with a new feature, we saved the model state

after familiarisation and presented this saved state with each stimulus. Crucially, stim-

uli in the contrast test trials were always presented without a label. The assumption

was that if labels during familiarisation enhanced learning of the tail units, subsequent

CHAPTER 5. A MODEL OF LABELLING AND ATTENTIONAL FOCUS 95



presentation of a stimulus with a similar tail would be encoded faster than a stimulus

with a new kind of tail. Conversely, a label would not be expected to enhance learning

of the head units (as head types did not systematically co-occur with specific labels),

thus presenting at test two stimuli with a familiar head against a new head might not

lead to different speeds of encoding.

2.4 Data Handling and Software Specifications

Data Handling A common measure used with auto-encoders is the network error on

the output layer, which has been used as a proxy for looking time (e.g. Mareschal &

French, 2000; Twomey & Westermann, 2017a; Westermann & Mareschal, 2012, 2014).

Here, we recorded the network error separately over label, head, and tail units, as a proxy

for looking time to the two visual AOIs and processing of the auditory information.

Another measure of interest with neural networks in general is their hidden layer,

providing an insight into the model’s internal representations of items it has encoded

(e.g. Mareschal & French, 2000; Rogers & McClelland, 2004; Westermann & Mareschal,

2012, 2014). This measure allows us to better understand how the model learns to group

objects into categories.

Here, we first used Principal Component Analysis (PCA) to reduce the dimensional-

ity of the representational space of the hidden layer (activation pattern over all hidden

units in response to a specific input) in order to plot the 6-dimensional representations

in a 2-dimensional space. We ran an independent PCA for each subject for each block

(first and last). The direction of each axis in a PCA being random, we then changed the

sign of each PCA so that the average tail A would always be in the top-right quadrant

of the plot; this ensured that any hypothetical clusters would be consistently positioned

across participants.

We then computed the average absolute within-category distance for each category

(mean pairwise distance between all exemplars in a category), the between-category

distance as the distance between the cluster centre for each category, and the average

relative within-category distance as the absolute within-category distance divided by

the between-category distance. This is important as, over time, the model learns to

differentiate between exemplars of a category, increasing the absolute within-category

distance, but also learns to bring each category into distinct clusters. That is, the

between-category distance increases more than the within-category distance, making

the categories relatively more compact.

Finally, for contrast test trials, we recorded the total number of presentations of

each stimulus necessary for the network error to fall below a predefined threshold, or

for a maximum number of 200 presentations. We then computed the novelty preference

for head and tail contrast trials by dividing the number of presentations for the “new”

stimulus by the summed number of presentations for the new and old stimuli. To account

for the boundedness of this proportion of looking at the new stimulus, we then ran

statistics on the arcsine-root transformation of this measure. Crucially, we did not here

use network error as a proxy for looking time. This is because, due to the different
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learning rates for the salient head and non-salient tail, different network errors might

here lead to slower or quicker encoding depending on how the error is distributed over

the different units.

Software Specifications All source code and data are available online1. Simulations

were run using Python (version 3.6.8) and numpy (version 1.13.3). All statistical results

were obtained using R (version 3.5.2). Analyses in this paper were conducted using

(a) lme4 (version 1.1-17; Bates et al., 2015) to run Sample Theory Based (STB) mixed-

effects models and lmerTest (version 3.0-1; Kuznetsova et al., 2017) to run ANOVA

analyses on those mixed-effect models, and (b) ggplot2 (version 2.2.1; Wickham, 2016)

to plot graphs from our data and ggeffects (version 2.4.1; Lüdecke, 2018) to compute

and plot estimated marginal effects from our models.

3 Results

Analysis Structure For our statistical analyses, we used (generalised) linear mixed-

effects models as implemented in lme4 fitted with maximal converging random-effects

structure to estimate parameters (Barr et al., 2013). For significance testing of those

parameters, we used type I ANOVA analyses with Satterthwaite’s method as imple-

mented in lmerTest for linear models, and commonly-used asymptotic Wald tests for

generalised linear models.

3.1 Familiarisation

3.1.1 Looking Times

We submitted network error (looking time) to both visual features (head and tail) to a

linear mixed-effects model. The model included main effects of and interaction between

scaled block number (z.block), condition (no-label, label), error type (salient feature,

non-salient feature), and salience ratio. The model also included random intercepts and

slope for scaled block, error type, and their interaction, by subject model. A summary

of the model’s parameter estimates and ANOVA results for those parameters are given

in Table 1. A time course plot of the data for small salience ratio (tail 20% as salient

as the head), medium salience ratio (50% as salient), and high salience ratio (80% as

salient), for each feature, is shown in Fig. 3.

Looking both at the parameter estimates and the plot, the most notable results

were the main effect of error type and the condition-by-error type, and their interaction

with z.block, with a much higher error for the non-salient tail in the no-label condition

throughout learning for low salience ratios. Other interesting results were the main effect

of condition and the z.block-by-condition interaction, with smaller error for the salient

head in the label condition, or in other words, less learning in the no-label condition for

the head, despite its high salience.

1https://github.com/respatte/SalienceDiagnosticityEmpirical
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Figure 3: Time-course plot of the mean and SE of network error (looking time) on each
feature, for different salience ratios.

Parameter Model Output ANOVA Output
Estimate Std. Error F value Pr(> F )

(Intercept) 0.63 0.007
z.block -0.05 0.006 705.97 < 2.2 · 10−16

condition -0.13 0.009 77.31 < 2.2 · 10−16

error type 0.78 0.028 170.11 < 2.2 · 10−16

salience ratio -0.13 0.011 149.36 < 2.2 · 10−16

z.block:condition 0.02 0.008 7.53 .00631
z.block:error type -0.29 0.017 97.07 < 2.2 · 10−16

condition:error type -0.63 0.040 49.66 7.35 · 10−12

z.block:salience ratio 0.01 0.010 65.36 6.47 · 10−15

condition:salience ratio 0.22 0.016 186.27 < 2.2 · 10−16

error type:salience ratio -1.09 0.050 218.39 < 2.2 · 10−16

z.block:condition:error type 0.24 0.024 41.70 2.88 · 10−10

z.block:condition:salience ratio -0.01 0.014 33.23 1.57 · 10−8

z.block:error type:salience ratio 0.39 0.030 115.07 < 2.2 · 10−16

condition:error type:salience ratio 0.92 0.071 114.72 < 2.2 · 10−16

z.block:condition:error type:salience ratio -0.33 0.043 60.04 6.81 · 10−14

Table 1: Parameter estimates and ANOVA results for the STB model on network error
(looking time) on both visual features.
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Figure 4: Estimated marginal effect of z.block for network error during learning on each
feature and condition, for different salience ratios.

All other parameters of the model were also significant, but their main impact in this

model was to cancel out those differences for low salience ratios, since network errors

between conditions and features were similar for higher salience ratios, as can be seen in

the marginal effects plot in Fig. 4.

3.1.2 Hidden Representations

We submitted the average relative within-category distance to a linear mixed-effects

model. The model included main effects of and interaction between scaled block number

(z.block), condition (no-label, label), and salience ratio. The model also included random

intercepts and slope for scaled block by subject model. A summary of the model’s

parameter estimates and ANOVA results for those parameters are given in Table 2. A

plot of the first two dimensions of a PCA on the hidden representations for the first and

last block of learning is shown in Fig. 5, and a time course plot of the data for small

salience ratio (tail 20% as salient as the head), medium salience ratio (50% as salient),

and high salience ratio (80% as salient) is shown in Fig. 6.

The main effects of condition and salience ratio were significant, with subject models

in the no-label condition having a higher relative within-category distance for low salience

ratios, but this within-category distance decreasing as salience ratio increased.

The condition-by-salience ratio interaction was also significant, its main effect being

to keep the relative within-category distance comparable across different salience ratios

in the label condition, with no difference between the two conditions for high salience

ratios, as can be seen in the marginal effects plot in Fig. 7. Thus, category compactness

was specifically impaired in the no-label condition for small salience ratios, but increasing
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Figure 5: Hidden representations of items grouped by tail type for the first block of
learning (left) and last block of learning (right) (first two dimensions of a PCA).
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Figure 6: Time-course plot of the mean and SE of average relative within-category
distance, for different salience ratios.
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Parameter Model Output ANOVA Output
Estimate Std. Error F value Pr(> F )

(Intercept) 4.20 0.170
z.block -0.05 0.068 18.69 .613
condition -3.27 0.240 80.84 < 2.2 · 10−16

salience ratio -4.40 0.302 71.98 < 2.2 · 10−16

z.block:condition 0.08 0.096 40.67 .457
z.block:salience ratio 0.08 0.120 56.43 .725
condition:salience ratio 4.29 0.427 71.83 < 2.2 · 10−16

z.block:condition:salience ratio -0.09 0.170 56.70 .578

Table 2: Parameter estimates and ANOVA results for the STB model on average relative
between-category distance.
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Figure 7: Estimated marginal effect of z.block for relative between-category distance on
each feature and condition, for different salience ratios.

salience ratios reduced this impairment to the point that category compactness did not

differ between conditions.

3.2 Contrast Test Trials

We submitted chance-corrected novelty preference to a linear mixed-effects model. The

model included main effects of and interactions between condition (no-label, label),

contrast type (head contrast, tail contrast), and salience ratio. The model also included

random intercepts by subject. A “raincloud” plot (Allen et al., 2019) of the data is shown

in Fig. 8. These plots include a half-violin plot to understand the shape of the data,

individual data points to better understand the structure of the data, and a boxplot to

give some descriptive statistics at-a-glance.

Since we were interested in knowing whether or not there was a novelty preference

in either condition in either contrast trial for all salience ratios, we computed chance-

corrected estimated marginal means and 95% confidence intervals for those variables and

display those values in Fig. 9.

It is clear from this plot that there were no differences between conditions. The
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Figure 8: Raincloud plot of the “proportion of looking” at the stimulus with a new
feature compared to the stimulus with only old features for head and tail contrast trial.
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Figure 9: Estimated marginal effect of salience ratio by condition and contrast type.
Ribbons represent 95% confidence intervals.
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only other clear result is that the models required a comparable number of iterations

to encode both stimuli in the head trials, and only needed slightly more simulations

to encode the stimulus with a new feature in the tail contrast trials for higher salience

ratios, with no difference depending on label condition. However, this difference was

very small in magnitude and thus does not really warrant further interpretation, as such

a small effect does not compare to effects observed in infant data, and would not be

detectable with empirical work on infants.

4 Discussion

In this paper, we proposed a new implementation of feature salience for a categorisa-

tion auto-encoder model, and use it to test the interaction between labelling, feature

diagnosticity, and salience, in a categorisation task, following an empirical design asking

the same question. Specifically, we considered feature salience as an attentional bias

towards specific item features, and implemented the impact of this attentional bias as

a difference in learning rates, with smaller learning rates for features of lower salience.

We then studied the impact of labelling when learning categories where a non-salient

feature (here a tail) is solely diagnostic of category membership, depending on the dif-

ference in salience between this diagnostic feature and a more salient, non-diagnostic

feature (here a head). Overall, we found that adding a label positively impacted learn-

ing during training, but that it did not have a strong effect on encoding of new within-

and out-of-category exemplars in a subsequent test phase.

First of all, for low salience ratios, the model could not reduce its prediction error

(an index of learning) to the low-salience tail in the no-label condition. Put differently,

without a label, the low-salience feature was not well encoded. Conversely, the presence

of a label allowed the model to encode the low-salience feature better. Crucially, although

this result first seems compatible with a labels-as-symbols theory in which labels actively

highlight diagnostic features, the label in our model was not different from other physical

features; rather, the mere statistical co-variation between the label and the tail improved

learning of the diagnostic tail. Thus, similar empirical results can be explained without

the need to evoke an explicit label-induced attention driving mechanism. For example,

the longer looking to and more robust encoding of a diagnostic feature in the presence

of a label evidenced by Althaus and colleagues (Althaus & Mareschal, 2014; Althaus &

Plunkett, 2015), does not necessarily entail an effect of the auditory label highlighting

the diagnostic feature, but instead can be more simply explained in terms of statistical

co-variation between the auditory label and diagnostic feature.

Second, for low salience ratios again, learning of the head without a label was im-

paired, even though the head was salient and not linked to the label in any way. With

a label, as for the non-salient tail, the model learned the head rapidly. This can be ex-

plained by the fact that auto-encoders, much like humans, build internal representations

for entire objects; thus, a difficulty in learning the tail induced by its low salience is re-

flected more generally in the inability to form a good representation of the encountered

exemplars, and thus to learn efficiently the salient head.
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These results were however not only dependent on which feature was salient and

which was not, but on the salience difference between the two features. Specifically, for

small to medium differences in salience, both features were equally well encoded in the

presence or absence of a label. With a great salience discrepancy, however, without a

label, our data suggests that there is a competitive process between the two feature to

encode inputs (see Fig. 3, leftmost panels): as the error over the tail starts decreasing

around the thousandth step, the error over the head starts increasing again. Overall,

the salient head wins this competition, and since it is not informative for the encoding

of the tail, this leads to a poorer encoding of the stimuli overall. The addition of a

label, equally salient compared to the head, and informative for the tail, levels out the

competition between the two features and thus allows the model to better encode the

stimuli overall.

With respect to the contrast test trials, we found no strong evidence for a novelty or

familiarity preference, with models in both conditions needing equally long to process a

new exemplar from the familiarised categories or an exemplar displaying a novel, out-

of-category feature, regardless of which feature (head or tail) was novel, and regardless

of the salience ratio between the head and tail. This does not replicate looking time

results from CMTW, in which infants in the no-label condition exhibited a strong novelty

preference in the tail contrast trials, and infants in the label condition exhibited a mix

of familiarity and novelty preferences in those same tail contrast trials. This might

reflect the fact that our measure (number of iterations before network error fell under a

predetermined threshold) is not a good proxy for infant looking times in this task, or be

an indication that our choice of implementation for salience was incorrect. Importantly,

we did not for this task use the typical network error. Instead, considering that the

differences in learning rates might impact how our model learned from its error, we

looked at the number of presentation needed to fully encoded the stimuli, a measure

we believed to be a better proxy for learning. Further work is needed to assess if this

measure can indeed provide a good understanding of learning and be a good proxy for

infant looking times.

Further, our familiarisation results in terms of network error, typically used as a

proxy for looking times, do not replicate empirical data from CMTW either. Specifi-

cally, feature salience in CMTW’s stimuli differed greatly, yet they found no differences

in looking patterns during familiarisation depending on label condition. On the opposite,

we found that, for great salience differences, a label would have a positive impact on net-

work error. Although this can be seen as evidence against our implementation of feature

salience, this, taken together with previous work finding evidence of successful learning

at test in infants without showing as systematic patterns of looking during training (e.g.

Aslin, 2007; Hilton et al., 2019; Hilton & Westermann, 2017; Twomey et al., 2018),

brings further evidence that looking times do not directly measure information process-

ing. Rather, looking times are a proxy for those attention processes that impact object

exploration, but do not measure the cognitive resources dedicated to each look. Thus,

since network error in neurocomputational models is a clear measure of learning and not
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only of attention and spatial exploration, then future work is needed to understand how

exactly modelling results can relate to eye-tracking results, and in general more work is

needed to understand what internal processes are showcased by looking patterns.

However, all those discrepancies between our modelling results and the empirical re-

sults in CMTW might be more easily explained if our implementation of feature salience

was incorrect. Although our model does not aim to replicate directly brain processes but

is merely an abstract representation of those processes, studies on the neurobiological

bases of salience, that is, selective attention, can help us better understand what would

be better candidates to model salience. The model that is generally accepted is that

of a gain model, in which the firing rates of cells that respond to attended stimulus

increases while the firing rates of cells responding to other unattended stimuli decrease

(see Caporello Bluvas & Gentner, 2013, for a review). We first attempted a naive imple-

mentation of this system by directly using larger input values for salience features (and

smaller input values for non-salient features), without success. Indeed, in our abstract

model, the units do not represent biological neurons or neuron populations, and thus the

activation values do not relate directly to firing rates. Arguably, our current implemen-

tation attempted to represent this same effect, with more plasticity and therefore more

learning the enhanced salience features, but here again, this might not relate directly to

enhancement and inhibition effects in the brain.

Crucially, these enhancing and inhibiting effects are thought to be a top-down pro-

cess driven by a sustained representation of a model of behavioural event, possibly in

the prefrontal cortex, which feeds back into lower level processes to enhanced neural

activities relevant for the current event (Merzenich et al., 2014). One way to follow this

neurobiological result to implement salience into our model would be to change how

much discrepancies between the network output and its input will impact the backprop-

agated weight updates. In other words, instead of acting on the learning rate at the

level on the input units, in a somewhat bottom-up way, we could attempt to change the

learning rates between the output and hidden units, in a more top-down way.

In conclusion, even though it is unclear whether our implementation of feature

salience for neurocomputational models is valid, our work, taken together with con-

flicting results in the literature, suggests that differences in salience between stimulus

features in a categorisation task can impact how an auditory label may interact with the

categorisation process. This might explain how empirical studies that differ with respect

to how they build their stimuli and control for feature salience fail to reach a consensus

on the effect of labels on categorisation in infants.
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Chapter 6

General Discussion

In this thesis, we aimed to study the role of auditory labels in categorisation, through the

use of empirical and computational modelling methods. Overall, we provided mild evi-

dence in favour of the labels-as-features theory, stating that early in development infants

treat auditory labels as object features. Importantly, labels do not have a preferential

role according to this theory, rather, they help categorisation by increasing the similarity

of different exemplars that all share the same label within a category. Crucially, we failed

to find any evidence in favour of the labels-as-symbols theory. According to this theory,

labels have from an early developmental stage a symbolic value as category markers, and

help categorisation by highlighting commonalities between category exemplars, that is,

diagnostic features. Further, we did not directly replicate results in the adult literature,

neither in terms of facilitatory effects of redundant labels for category learning nor in

terms of labels driving attention to diagnostic features. Instead, we found no differences

in terms of learning speed, and labels drove attention to a salient but non-diagnostic fea-

ture. Finally, we evidenced category learning in the presence of a label in 15-month-old

infants, with no differences in terms of looking patterns compared to infants in a control

group.

First, we reproduced and extended a neurocomputational model of category learn-

ing to explain existing empirical data and help tease apart two theories that could both

explain the observed data as resulting from different mechanisms. Specifically, in the em-

pirical study, 10-month-old infants were familiarised at home with two objects, and only

heard a label for one of them. In a subsequent lab task, in which infants were presented

with pictures of the two objects one at a time, infants looked longer when seeing the

previously labelled object. This could be explained by the labels-as-features theory as a

novelty effect, due to the absence of one feature of the object, the label. Alternatively,

the compound-representations theory expected that seeing the object in silence would

activate its corresponding label, which would in turn increase infants’ attention to the

stimulus in the same fashion the presence of a label would. Implementing those theo-

ries into two structurally similar models allowed us to precisely test their predictions on

the experimental design considered. Only our model implementing the labels-as-features

theory reproduced the statistical effects observed in the data. In conclusion, for the

experimental design we tested, our model suggested that 10-month-old infants treated
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labels as object features, not as separate features nonetheless integrated into object

representations. We further used this labels-as-features model to predict results for an

ongoing follow-up empirical study by the same authors, in which infants where habitu-

ated with simple categories made of a few exemplars, rather than single objects. The

model once predicted that infants, in a subsequent lab test in silence, would look longer

at the previously labelled category. If the empirical results matched our prediction, this

would corroborate our finding that 10-month-old infants view labels as object features.

We then tested a key prediction of the labels-as-symbols theory on 15-month-old in-

fants, with adult participants as a control group that we knew sees labels as symbolic

markers. This theory argues that labels can help infants group objects into categories

by highlighting the defining, diagnostic features for those categories. To test this predic-

tion, we used two-featured animal-like stimuli for which we knew one feature was more

salient (the head), and deliberately grouped them into two named categories according

to their less salient feature (the tail). We thus expected infants in a control group to

preferentially look at the salient head, and infants who heard auditory labels to look

more at the diagnostic tail in order to learn the correct categories. We expected similar

results for adults, with the distinction that adults in both the label and no-label group

were provided with non-linguistic feedback. Thus, following previous literature, we only

expected adults who heard a redundant label to be quicker at learning the category

and to look quicker and/or more at the diagnostic tail compared to adults who only

heard non-linguist feedback. Interestingly, none of our predictions were upheld. Specifi-

cally, labels failed to attract infants’ attention to the diagnostic tail, but we nonetheless

gathered evidence that infants did learn the correct label-category matching. Thus, the

absence of an attention-driving mechanism did not lead to a failure to learn the cate-

gories. As such, our data provide indirect evidence against the labels-as-symbols theory,

and consequently they provide indirect evidence in favour of the labels-as-features the-

ory. Most importantly, the successful categorisation in the absence of any differences in

terms of looking behaviour between infants who heard a label and those who did not,

taken together with previous literature, suggests that eye-tracking data are not a proxy

of learning in general, but specifically tell us about attention-driven exploration pro-

cesses. What mechanisms impact these processes, and how different levels of attention

when looking at different features of the world impact learning mechanisms, remains to

be studied further.

In this study, we also failed to replicate previous findings in the adult literature (im-

proved category learning and increased attention to diagnostic features, when hearing a

label), due to a ceiling effect. We amended this in a subsequent study, by using the same

design structure but with more complex stimuli. Precisely, we increased the dimension-

ality of our stimuli, from two to three features, keeping one salient non-diagnostic head,

and two non-salient features, a tail and feet. Importantly, neither the tail nor the feet

where reliably diagnostic of category membership, and as such, participants had to pay

attention to both those non-salient features. As before, all participants were provided

with non-linguistic feedback to learn the categories, and we expected participants who
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heard a redundant label to learn the categories more quickly and to look more at the

diagnostic features. On the contrary, we found that participants in the label condition

looked significantly more at the non-diagnostic head at the beginning of training, while

their looking behaviour at the end of training did not differ from that of participants in

the no-label condition. Further, participants in the two groups did not differ with respect

to the number of exemplar presentations they needed to correctly learn the categories,

another result that did not replicate previous findings. We however explained these re-

sults by considering jointly the counter-intuitive nature of our stimuli and categories and

participants’ background knowledge. On the one hand, animal heads are arguably very

diagnostic features in the real world, to the point that participants may have implicitly

learned to look more at the head of a named creature. On the other hand, our stimuli

were expressly made so that the head would not be diagnostic of category membership,

forcing participants to focus on less salient features. Thus, participants in the label

condition first looked more at the head, usually diagnostic. This may have led to an

impairment in their ability to learn the categories at first, explaining why we did not see

the expected facilitatory effect of redundant labels on learning categories in adults.

Importantly, the main limitation of our two adult studies was that we used the

same or similar stimuli as we did for 15-month-old infants, in an attempt to allow for a

comparison of the results between adults and infants to better understand the possible

developmental differences between early and mastered category learning. Although this

is often seen in the literature, the comparison is usually done between older children

and adults, rather than young infants (e.g. Deng & Sloutsky, 2012, in which 4- to 5-

year-old preschool children and adults were tested). This in turns allows for (a) the

use of stimuli of appropriate complexity for both age groups, and (b) the use of the

exact same design and empirical measures across age groups. This second point is

particularly noteworthy here: there was a discrepancy in the design of our studies and

the empirical measures used between adults and infants, which makes the comparison

between the two harder to defend. Infants were presented with an implicit categorisation

task, without any knowledge of the number of nature of categories, whereas adults were

explicitly instructed to sort stimuli into two categories. Furthermore, infants in the

control condition had no incentive to form categories and we have no way of knowing if

and which categories they formed; we can only guess that infants in the control group

might have formed categories based on the salient head, but it is entirely possible that

they formed different categories (based on the tail or a combination of both the head and

tail) or even that they grouped all the stimuli together under the same global category

due to the shared body shape and colour. Conversely, adults in the control group were

given the same categorisation tasks, the only difference being that they only heard non-

linguistic feedback regarding their categorisation decision but no additional linguistic

feedback. Crucially, adults in both conditions were given an explicit categorisation task;

this, alongside testimonies from some participants, leads us to believe that adults used

a conscious strategy to complete the task, most likely interfering with the unconscious

effect of auditory labels we aimed to study. Therefore, a possible effect of condition
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would likely be very different between our infants and adults, due to our design. It is

however possible to link the two together, as in both studies, the specific effect of adding

an category-defining auditory label was tested, thus we could assume that we are testing

a common underlying mechanism, but testing its effect on different tasks.

Finally, our empirical results left open the question of how exactly participants, either

adults or infants, learned the category, and only showed that they did learn the categories

and that labels failed to attract their attention to the non-salient yet diagnostic features.

To gain insights into how feature salience and auditory labels interact when learning

categories, we set out to develop a computational model of categorisation that included

an explicit attention mechanism. First, we chose to re-use the neurocomputational

structure implementing the labels-as-features theory that we used earlier in this thesis

to successfully replicate empirical data from 10-month-old infants. Then, we proposed an

implementation of attention based on the generally accepted idea that a higher attention

in general terms (for example longer looking, or investing more cognitive resources into a

look) will result in better learning, and reciprocally, a lower level of attention will result in

less learning. Thus, we added to our model an ‘attention bias’ that reduced the learning

rate for low-salient features. We then reproduced the experimental design we used on

infants, in which labels corresponded to the non-salient feature, and studied the impact

of labelling depending on how differently salient the two features were. Specifically,

we looked at the network’s performance in terms of learning, as measured by network

error, and in terms of the compactness of the categories in its hidden representations.

What we found was that, when the non-salient feature was much less salient compared

to the salient feature, the model successfully encoded the different exemplars only when

presented with a label. Moreover, without a label, encoding was mostly impaired for the

low-salient feature, but it also impacted encoding of the highly salient feature to some

extent. This result showed that the addition of a label could improve the encoding of

information in general and for the diagnostic feature specifically. Importantly, we did

not implement any implicit attention driving mechanisms from the label, and as such,

the mere statistical covariation between the label and the diagnostic low-salience feature

was enough to explain results typically associated with the labels-as-symbols theory.

Further, for large differences in salience, the compactness of categories in the model’s

hidden representations was improved by the addition of a label, another sign that adding

a label helped the model build strong category representations.

Overall then, this thesis provides a first step into testing directly possible attentional

effects of labelling on categorisation by controlling for the salience of object features

in empirical studies and computational modelling, and predicts through computational

modelling that labels will have a different impact on categorisation depending on how

different the salience of multiple object features is.

Although our empirical data on infants indirectly suggested that they treated labels

as features, further work is needed to confirm this finding and rule out possible con-

founding effects. For example, it is possible that, in our design, the head was too salient

compared to the tail, and that running a similar experiment with a smaller difference
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in diagnosticity would lead to different results, as suggested by our modelling work. It

is also possible that, in the same way that adding a second non-salient diagnostic fea-

ture substantially changed the looking pattern results in adults, increasing the category

complexity will have an impact on infants’ looking patterns.

One particular question of interest would be to confirm the mechanisms by which

auditory labels drove adults’ attention to the salient head in our design, and to further

study when these mechanisms arise in development. If, as we hypothesised, this looking

behaviour results from adults’ background knowledge that heads are usually diagnostic,

pinpointing when in development this link emerges, and how it emerges, would shed a

new light on the role of auditory labels in categorisation. In particular, further work

is needed to test whether labels actively drive attention to features that are known to

be diagnostic in a top-down way, as suggested by the labels-as-symbols theory, or if

this increased attention to typically-diagnostic features is merely due to a statistical

association between labels and those features as suggested by our modelling work.

Another important point that needs further studying is in clarifying the amount

and nature of information that eye-tacking data give us, and finding other measures

to possibly complement it. Indeed, our work on infants added to the growing evidence

that learning, as evidenced clearly at test, can be seen without any statistical differences

in terms of looking behaviours during training. One candidate that has been put for-

ward to delve deeper into attention mechanisms is pupil dilation, even if the underling

physiological phenomena are still debated.

Crucially however, most of our statistical analyses resulted in non-significant results.

As such, they did not provide evidence that the different groups behaved similarly, but

merely failed to provide evidence that they behaved differently. Specifically, the ‘Sample

Theory Based’ (STB) statistics that we used do not differentiate between inconclusive

evidence and evidence in favour of a true null effect. Bayesian statistics provide us with

tools to more finely analyse the evidence that the data provides in favour of either the

null or an alternative hypothesis, and as such, their use would greatly enrich our results.

However, Bayesian analysis tools have mostly been documented, in psychology, for adult

data, and the guidelines developed for these data do not allow for an effective use of

Bayesian analysis on infant data. Infant data is indeed notoriously noisy compared to

adult data.

The first Bayesian analysis tool we meant to use on our data were Bayes factors

obtained from the comparison of nested models of increasing complexity. This follows

the STB approach described in Chapter 2, replacing the p-values obtained through

a likelihood ratio test by b-values obtained through bridge sampling of the models’

posterior distributions and drawing a Bayes factor from those distributions. The b-

values thus obtained represent the likelihood, given the data at hand, of one model

over the other model with one parameter removed. Although this approach has been

widely spread over the last decade (e.g. Dienes, 2014; Wetzels et al., 2011), due to its

straightforward use as direct alternative to p-values, it has some drawbacks (Kruschke,

2013). One typical issue is that b-values are often analysed on their own, when all they
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do is inform us on the updated likelihood of some model given new data, when this

should be put in perspective with the initial likelihood of the model: if a model was very

unlikely to be true, but was given a very high b-value given a dataset, it would still be

very unlikely true, only less so unlikely. However, even accepting that this tool is not

flawless, its use on infant data is difficult, as a substantially higher number of participants

is required to achieve similar power for the very lenient criterion of a b-value greater

than three, as compared to finding a p-value lesser than 0,05 (roughly one-and-a-half to

twice as many participants to reach 80% power according to some recent unpublished

simulations available online1). This explains why, even with an up-to-standards sample

size of 48 participants, model comparisons led to mostly inconclusive b-values.

The second Bayesian analysis tool we considered was the use of a region of practical

equivalence (ROPE) introduced by Kruschke (2013). In this framework, a small inter-

val around the null value is defined for each model parameter, and is used to make a

judgement based on each parameter’s posterior distribution. As such, parameters whose

posterior distribution fall entirely within the ROPE are deemed to follow the null distri-

bution for practical purposes, meaning that a true difference for the null would anyway

be too small to bear any importance on a practical point of view. On the opposite,

parameters whose posterior distribution fall entirely outside the ROPE are viewed as

truly different from the null distribution, and finally no conclusion can be drawn for

parameters whose distributions only partly overlap with the ROPE. When studying in-

fants however, the noisiness of the data is such that it is impossible to define a ROPE

that would be wide enough to encompass true null effects, and yet narrow enough to

allow for the detection of substantial effects.

Finally, we could not use Bayesian analysis to get more information from our data,

and more work is needed to develop tools that would allow for the use of Bayesian analysis

on infant data. For example, it is known that the specification of priors can influence

the computation of Bayes factors; one can thus imagine that better understanding what

priors are appropriate when studying infant data might lead to more meaningful b-values.

It is also possible that other tools will be developed, or that Bayesian analysis for infant

data will be rendered possible by the emergence of a wider availability of open data that

could then be brought together and analysed within a Bayesian framework.

Concluding Remarks This thesis answered a few questions, but importantly, it

raised many more new questions to be answered.

The stimuli and category structure we used in our empirical work were designed to

be simple enough for 15-month-old infants to succeed in an implicit categorisation task.

We however aimed to compare those infants with adults, using the exact same stimuli,

on an explicit categorisation task, resulting in a ceiling effect on adult performance. One

way to address this issue while still comparing expert adult learners and children still

developing their categorisation abilities would be to test older children (4- to 5-year-

old), on more complex stimuli, and crucially using identical methods for both adults and

1https://github.com/respatte/mb4-analysis/blob/master/Simulations.Rmd
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children (e.g. explicit or implicit categorisation). It would also be easier to design an

experiment meaningful for both young infants and children, in order to gain a better

understanding of the whole developmental trajectory.

Notably, our attempt to run an adult study with more complex stimuli provides

additional insight on how to design future stimuli. Namely, having only two features

that were not fully diagnostic did not prove difficult enough, and the complexity needs

to be increased further. Previous studies have successfully used humanoid five-featured

stimuli (head, torso, feet, hands, antennae) on both children and adults, future studies

could therefore adapt our category structure concept to such stimuli. Further, the high

success rate in learning the categories in infants suggests that they might also be able

to successfully process more complex stimuli and category structures in such lab-based

implicit categorisation tasks. Thus, future studies could increase the complexity of our

infant task, and could expect to find different looking behaviours as infants have to

engage more cognitive resources to make sense of the label-category link.

Our studies yielded many non-significant results, and the “sample theory based”

framework we used did not allow us to ascertain whether or not our data supported

the null hypothesis or simply did not provide conclusive evidence. The use of Bayesian

statistics should allow us to better understand the evidence provided by our data, but

these statistics have yet to be adapted for infant studies. Future studies would benefit

from Bayesian statistics better framed for infant studies and the naturally noisy infant

data, in terms of default or informative priors to use, tools and criteria to test for the

importance of an effect, and more generally guidelines on how to run and interpret

Bayesian statistics in infant studies. These guidelines might be better ascertain on

large-scale studies such as conducted by the ManyBabies consortium.

Finally, if our modelling work provided insights on the possible links between ob-

served behaviour and internal knowledge representations, it however failed to directly

replicate our results. The modelling of attentional focus is however important to better

understand how attention can affect learning, and more work is needed to determine

how best to model this at a conceptual levels on auto-encoders, which have been and

are still being used to model looking times in infants and adults, tasks in which visual

attention plays an important role. In parallel to this, more work is needed to understand

precisely what information eye-tracking data convey, and how other tools such as EEG

or pupilometry might complement it. Taken together, this will help us better under-

stand how computational models relate to empirical measures, and in turns how those

empirical measures relate to cognitive processes and theories.
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