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Abstract 22 

Soil organic matter (SOM) and pH are critical soil properties strongly linked to carbon storage, nutrient 23 

cycling and crop productivity. Land use is known to have a dominant impact on these key soil 24 

properties, but we often lack the ability to examine temporal trajectories across extensive spatial scales. 25 

Large-scale monitoring programmes provide the data to evaluate these longer-term changes, and under 26 

different climatic conditions. This study used data from Chinese soil surveys to examine changes in 27 

soil pH and SOM across different land uses (dry farmland, paddy fields, grassland, woodland, unused 28 

land), with surface soil (0-20 cm) collected in the periods 1985-90 (Survey 1; 890 samples) and 2006-29 

10 (Survey 2; 5005 samples) from two contrasting areas. In the southern part of China the mean pH of 30 

paddy soils fell sharply over the two decades between surveys - from pH 5.81 to 5.19 (p<0.001), while 31 

dry farmlands in the northern sampling area fell slightly (from pH 8.15 to 7.82; p<0.001). The mean 32 

SOM content of dry farmland soil rose in both areas and the mean SOM of paddy fields in the southern 33 

area also rose (all p<0.001). Woodland soil pH in the south showed an increase from 4.71 to 5.29 34 

(p<0.001) but no significant difference was measured in the woodlands of the northern area, although 35 

the trend increased. The SOM content of woodland top soils rose in the northern (p=0.003) and 36 

southern (p<0.001) study areas. The implications and potential causes of these changes over the two 37 

decade timespan between surveys are discussed and suggestions made as to how large scale soil 38 

sampling campaigns can be designed to monitor for changes and potential controlling factors. 39 

 40 

Key words: Soil change; land use; soil surveys; woodland; paddy fields; agriculture 41 
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1. Introduction 43 

The scale of China’s economic growth, the size of the country and its population, and the diversity 44 

of its climate and ecosystems mean there is great demand to understand the spatial and temporal 45 

variability in the Chinese environment. Following scientific and regulatory focus on China’s air and 46 

water quality, the Government is now prioritising soil quality (State Council, 2016). Knowledge and 47 

effective management of China’s basic soil resources is essential, requiring careful and systematic 48 

surveying of the terrestrial environment. Soil pH and soil organic matter (SOM) are critically important 49 

properties of soils. Understanding their variability, range and any underlying changes is fundamentally 50 

important for agriculture/food security, land use management and the environmental sciences. Soil pH 51 

is important for crop production, nutrient chemistry, soil organisms and in shaping plant community 52 

composition in natural ecosystems. SOM is critical for soil structure and workability, the ability of 53 

soils to store nutrients and water, and for the global C cycle. China’s agricultural land is critical for 54 

food production and its diverse landscape is critical for the balance of natural ecosystems. 55 

China covers 7.7% of the world’s total farmland (Cai and Barry, 1994) and therefore any systematic 56 

changes have global implications. Some recent and high profile studies have reported underlying rapid 57 

changes in Chinese soils. For example, Guo et al. (2011) reported significant acidification of major 58 

Chinese croplands between the 1980s and the early 2000s, while Fang et al. (2007) and Tang et al. 59 

(2018) presented evidence of the impacts of human activities on carbon sequestration in China’s soils 60 

and ecosystems. In addition, soil acidification has been reported on agricultural land and forest land in 61 

UK (Blake, 1999; Blake, 2002; Goulding, 2016), North America and Europe (Reuss et al., 1987), 62 

which have led to a potential risk of soil bioaccumulation in human and plants health (Murtaza et al., 63 

2017). However, there is still a shortage of systematic information from which to evaluate the spatio-64 

Keith, Aidan
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temporal ranges and variations in the pH and SOM of Chinese soils across different land uses. Large-65 

scale surveys have been undertaken in China at different times and co-ordinated by different Ministries 66 

but the datasets are not widely available or evaluated yet. Here we report on pH and SOM data obtained 67 

for two time periods (1985-90 and 2006-10) across two important and climatically different parts of 68 

China. These data sets provide the opportunity to evaluate temporal trajectories in key soil properties 69 

across land use types at an extensive spatial scale, thus critically advancing the knowledge base needed 70 

to manage China’s vast soils and land resources. In this paper we therefore explore the distribution of 71 

pH and SOM values for the two surveys, and test whether changes over two decades are significant; 72 

importantly, we look at differences within the main broad land-use types to determine whether 73 

temporal changes are land-use specific and consistent across the two contrasting regions. The findings 74 

are discussed in relation to other studies for China and internationally, and consider the wider 75 

implications for China’s land use management. Furthermore, we consider how future regional/national 76 

surveys of China’s soil resources can be designed and co-ordinated in the light of international 77 

experiences, to ensure the most reliable information, capable of detecting underlying changes is 78 

obtained. 79 

 80 

2. Material and methods 81 

2.1. Study areas 82 

Two major surveys of Chinese soils have been conducted by Government Ministries. The first was 83 

1985-90, the second was more comprehensive, with more samples taken over the period 2006-2010 84 

(see Table S1). For this study, two regions were selected from those national surveys, one in the north 85 

and one in the south (see Figure 1). The reasons for the selection of two regions: (1) The two areas 86 

Keith, Aidan
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are the typical representatives of economic development in north and south parts of China, 87 

respectively; (2) Comparing with the other smaller countries elsewhere in the world which have soil 88 

surveys (e.g. Belgium = 30,700 km2, Netherlands = 40,600 km2) or even UK ( = 242,500 km2), two 89 

selected areas have a comparative and sufficient regional area to reveal the characteristics of soil pH 90 

and organic matter; (3) the geographical, geological and floristic cover variations in two areas could 91 

provide a natural background advantage in explaining the change of soil pH to avoid for the 92 

autocorrelation problem. 93 

Area 1 (north) covers 218,000 km2. Land use types include dry farmland, paddy fields, woodland 94 

(including coniferous forest, broadleaf forest, coniferous-broadleaf forest, and shrub), grassland and 95 

unused land. Dry farmland dominates in Area 1, with wheat, maize, rice, beans and other crops being 96 

common. However, the land use in Area 1 has also undergone big changes (see Table S2); arable land, 97 

grassland and unused land have decreased, but woodland, garden and construction land have increased 98 

(Wu et al., 2015). Area 1 has a temperate semi-humid and semi-arid continental climate. Summers are 99 

hot and humid with high rainfall; winter is cold and dry. The most widely distributed soil types are 100 

brown earths. The main zonal soils also showed succession from the southeast (brown soils) to 101 

northwest (chestnut brown soil)(Hao et al., 2017). 102 

Area 2 (south) covers 178,000 km2 of varying terrain, with high land in the north and lower land in 103 

the south, near the coast. It has a tropical and subtropical monsoon maritime climate. Igneous rocks 104 

dominate around a third of the province. Elsewhere it has the full range from ultrabasic to acid rocks, 105 

with acidic granite a major component (Lin et al., 2006). Three main soil types occur - latosols (pH 106 

4.5-5.5), lateritic red soils (pH 4.5-5.6) and red soils (pH 4.5-6) (Lian, 2002). Their formation is 107 

influenced by strong soil leaching, because of the sub-tropical high rainfall conditions (Lian, 2002). 108 
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Major land use types include paddy fields, a range of fruit and vegetable crops (or collectively defined 109 

‘dry agricultural land’), woodlands (including coniferous forest, broadleaf forest, coniferous-broadleaf 110 

forest, and shrub), grasslands and unused land. Paddy fields make up the largest type, accounting for 111 

27% of the whole area (Guo et al., 2011). A huge urbanization programme and rapid development of 112 

the economy has had a significant effect in changing the composition of land use types. The 113 

composition of land use in Area 2 has changed significantly from the 1990s, with a decrease of arable 114 

land and the increase of urbanisation, industrial and mining land (Tang, 2008) (see Table S2 and S3). 115 

 116 

 117 

 118 

Figure 1: Soil sampling sites in north (Area 1) and south (Area 2) of China. 119 

 120 
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2.2. Soil surveys 121 

The Chinese National Environmental Monitoring Centre (CNEMC), the Chinese Academy of 122 

Sciences (CAS), the MEP Chinese Research Academy of Environmental Sciences (CRAES) and a 123 

number of universities in China were also involved in these activities. Sampling sites were randomly 124 

selected using a grid method for the two surveys, with consideration of different environmental factors 125 

including soil types, vegetation types, land uses, soil texture etc (see Supplementary Information for 126 

further information). Topsoil (0-20 cm) was collected and stones, litter and large roots removed. Soil 127 

samples were dried at room temperature and then gently ground to pass through a 2 mm sieve. 100 g 128 

dry samples were used for chemical analysis. Soil pH was determined, depending on the salinity and 129 

OM status of the soils, as follows: a 2.5:1 ratio of water or saline solution for acid soils with 1 mol 130 

KCl/L, neutral and alkaline soils with 0.01 mol CaCl2/L); a ratio of 5:1 for saline soil; a ratio of 10:1 131 

for litter-rich and peat soil. SOM (%) was determined by heated oxidation with K2Cr2O7-H2SO4 (185 132 

℃), followed by back titration by FeSO4 (see Table S1). The number of samples taken in the two 133 

surveys differed, with a more comprehensive survey conducted in 2006-2010. In summary, data was 134 

available as follows: Area 1: 1985-1990 – 500 samples, 2006-2010 – 3132 samples; Area 2: 1985-135 

1990 – 390 samples, 2006-2010 – 1873 samples (Table 1).  136 

 137 

2.3. Data analysis 138 

Unpaired t-tests were used to examine differences in soil pH and SOM between surveys for whole 139 

areas and for separate land use types in these areas. The formula for the unpaired t-test is:  140 

t = 𝑋𝑋�1−𝑋𝑋�2

�𝑆𝑆1
2

𝑁𝑁1+
𝑆𝑆22
𝑁𝑁2

, where x1, s1
2 and N1 are the first sample mean, sample variance and sample size; x2, 141 

s2
2 and N2 are the second sample mean, sample variance and sample size. R software was used for 142 
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statistical analyses (R Core Team, 2016). The distribution of soil pH and SOM data for all samples 143 

and samples from individual land use types were visualised in the ggplot2 package (Wickham, 2016) 144 

using geom_density to produce smoothed sample densities for comparison of the surveys, and 145 

geom_hex was used to plot relationships between soil pH and SOM within land use types.  146 

 147 

3. Results 148 

Table 1 presents the summary of soil pH and SOM data from the surveys. Table 2 and 3 give details 149 

of soil pH and SOM, respectively, according to land use type. 150 

 151 

Table 1: Soil pH and organic matter in Area 1 (north) and Area 2 (south) from 1985-90 to 152 

2006-10 153 

Site Year Sample 

number 

Soil pH Organic matter 

Mean Median Mean Median 

 

Area 1 

1985-90 500 8.05 

(6.7-8.9) 

8.25 1.37 

(0.23-3.7) 

1.00 

2006-10 3132 7.81 

(6.7-8.6) 

7.9 1.83 

(0.48-4.31) 

1.49 

 

Area 2 

1985-90 390 4.90 

(4.2-6.4) 

4.8 1.65 

(0.38-3.92) 

1.23 

2006-10 1873 5.26 

(4.2-7.3) 

5 2.58 

(1.06-4.62) 

2.41 
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 154 

3.1. Characterization of pH and SOM distribution and variation 155 

Mean (and median) pH values for all the soils sampled in Area 1 were 8.05 (8.25) in 1985-90 (n=500) 156 

and 7.81 (7.9) in 2006-10 (n = 3132) (i.e. an apparent decline). In Area 2 mean (and median) values 157 

for all the soil samples were 4.90 (4.8) in 1990 (n = 390) and 5.26 (5.0) in 2006 (n = 1873) (i.e. an 158 

apparent increase). However, it is important to note that the sites sampled and the distribution of 159 

samples across land uses differed between the surveys. The apparent overall differences in soil pH 160 

values between the two surveys are significant for soil pH (see Table 2 for statistics; Figure 2a, b) 161 

and SOM (see Table 2 for statistics; Figure 2c, d) but need to be seen as indicative only, with 162 

consideration given the shifts in land use composition. 163 

 164 

 165 
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 166 

Figure 2: Sample density of pH and SOM values from both surveys for the two study regions. a. soil 167 

pH in Area 1; b. soil pH in Area 2; c: SOM in Area 1; d: SOM in Area 2. Survey 1 (pink) carried out 168 

from 1985 to 1990; Survey 2 (blue) carried out from 2006 to 2010. 169 

 170 

Emphasis can be placed on direct comparisons with those land use types that were most 171 

comprehensively sampled in both surveys. In this regard, in Area 1 the woodland (n = 101/515 in 172 

1985-90/2006-10) and dry farmland soils (n = 334/2283) can be most confidently compared. At the 173 

level of land use type, the pH trends were different compared to each area overall, with dry farmland 174 

being significantly lower (t= 9.05, df=447.37, p<0.0001, CI=0.4) in 2006-10 (mean = 7.82) than 1985-175 

90 (mean = 8.15). Woodland soils were not significantly different between surveys. Repeating the 176 

differences between the test of surveys, using only the subset of samples which were taken in the same 177 

locations (n = 73/27) also showed a significant reduction in soil pH from the first to the second 178 

surveyfor dry farmland (t1,47 = 2.31, p = 0.025). There were not sufficient samples in the same locations 179 
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to do this for the other land use types. The grassland soils data summarised in Table 2 also show an 180 

apparently significant decrease with time, but the number of samples available from 1990 was limited, 181 

so these grassland trends should be treated with some caution.  182 

  183 

Keith, Aidan
You have given degrees of freedom for the t statistic below but not here.YM: DF has been added here
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Table 2: Topsoil pH across different land use types in Area 1 and 2 in the 1985-90 and 2006-10 184 

surveys. df = degrees of freedom. 185 

 Land use 

type 

N Estimate (mean) T-value 95 percent 

confidence 

interval 

DF P-value 

1985-

90 

2006-

10 

1985-

90 

2006-

10 

 

 

 

Area 1 

Dry 

farmland 

334 2283 8.15 7.82 9.05 0.26 0.40 447.37 < 0.001 

Grassland 17 196 8.52 7.88 4.04 0.31 0.98 20.10 <0.001 

Paddy field 6 45 8.03 7.91 0.84 -0.19 0.44 10.63 0.42 

Unused 

land 

42 93 7.95 7.74 1.52 -0.07 0.47 49.03 0.14 

Woodland 101 515 7.70 7.82 -1.34 -0.29 0.06 115.34 0.18 

 

 

 

Area 2 

Dry 

farmland 

23 163 4.71 5.11 -2.89 -0.67 -0.12 53.81 0.005 

Grassland 0 3 -- -- -- -- -- -- -- 

Paddy field 66 1061 5.81 5.19 4.72 0.36 0.88 91.451 <0.001 

Unused 

land 

0 4 -- -- -- -- -- -- -- 

Woodland 301 642 4.71 5.29 -17.22 -0.65 -0.51 1251.2 < 0.001 

 186 

In Area 2, the woodland soils in 2006-10 (n = 642, mean = 5.29) were also higher (t= -17.22, 187 

DF=1251.2, p< 0.0001, CI=-0.65) than in 1985-90 (n = 301, mean = 4.71), while paddy field soils 188 
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were markedly lower in 2006-10 (n = 1061, mean = 5.19) than in 1985-90 (5.81) (t=4.72, DF=91.451, 189 

p<0.0001, CI= 0.88). It is noted that these mean values are derived from a wide range of soil pH values 190 

in each survey/land use, as highlighted by Figure 3. 191 

Other statistically significant differences over time are summarised in Table 2, but it should be noted 192 

that sample numbers were more limited in these cases.  193 

 194 

 195 

Figure 3: Sample density of soil pH values for each land use type in (a) Area 1 and (b) Area 2. 1: 196 

survey carried out from 1985 to 1990; 2: survey carried out from 2006 to 2010.. There is no data 197 
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recorded in grassland and unused land during two soil surveys there is no data recorded in 198 

grassland and unused land during two soil surveys.  199 

In general, soil pH in Area 1 is higher (range 6.7-8.9) than that in Area 2 (range 4-7). Area 1 has 200 

more saline soils with higher soil pH. The distribution of soil pH values in different land use types is 201 

shown in Figure 3. The most complete information (i.e. greatest number of samples) is available for 202 

paddy field soils, dry farmland and woodland soils. In Area 1 the soil pH range is similar across all 203 

land use types – for example the mean for both dry farmland and woodland was 7.82 in the 2006-2010 204 

survey. In Area 2, although mean values in 2006-10 were similar (paddy field 5.19; woodland 5.29; 205 

dry farmland 5.11), the range of values were rather different (see Figure 3).  206 

 207 

3.2. Land use and SOM 208 

In Area 1 decreasing SOM followed the sequence woodland > dry farmland > paddy field (see Table 209 

3 and Figure 4). In Area 2, the sequence was less clear and showed some differences between the two 210 

surveys: in 1985-90, woodland > paddy field > dry farmland; in 2006-10, paddy field > dry farmland > 211 

woodland (see Table 3 and Figure 4). 212 

 213 

Table 3: Soil organic matter (0-20 cm) across different land use types in Areas 1 and 2 in the 214 

1985-90 and 2006-10 surveys. 215 

Site Land use 

type 

N Estimate 

(mean) 

T-value 95 percent 

confidence interval 

DF P-value 

Keith, Aidan
Text size very small for this table. Suggest increasing for readability.YM: The text size has been increased as same as table 2.
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1985-

90 

2006-

10 

1985-

90 

2006-

10 

 

Area 1 

Dry 

farmland 

334 2283 1.35 1.81 -6.69 -0.59 -0.32 561.43 <0.001 

Paddy field 6 45 1.22 1.74 -1.38 -1.41 0.37 7.00 0.21 

Woodland 101 515 1.39 1.89 -3.00 -0.81 -0.17 133.71 0.003 

 

Area 2 

Dry 

farmland 

23 163 1.23 2.59 -6.71 -1.77 -0.95 42.46 <0.001 

Paddy field 66 1061 1.63 2.67 -6.56 -1.35 -0.72 89.22 <0.001 

Woodland 301 642 1.68 2.55 -10.88 -1.03 -0.71 419.17 <0.001 

 216 

The overall in mean SOM content increased from 1985-1990 to 2000-2006 in both Area 1 soils 217 

(mean of 1.37% (median = 1.00%) to 1.83% (1.49%), and Area 2 soils (1.65% (1.23%) to 2.58% 218 

(2.41%)). These represent large relative differences in the two decade time interval. However, as noted 219 

previously for overall differences in soil pH, the apparent overall change in SOM summarised in Table 220 

1 and Figure 2 need to be interpreted along with additional information, because the sites sampled and 221 

the distribution of samples across land uses differed between the surveys. It is therefore important to 222 

look at the land use types separately.  223 

In Area 1, the statistically significant results were for dry farmland, woodland and grassland, with 224 

the caveat noted above about the limited number of grassland samples analysed from 1985-90. Dry 225 

farmland SOM increased from 1.35% to 1.81% (p<0.001), woodland from 1.39% to 1.89% (p=0.003) 226 

and grassland from 0.93 to 1.89% (p<0.001). In Area 2, dry farmland, paddy field and woodland SOM 227 
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all showed statistically significant (p<0.001) increases, from 1.23 to 2.59%, from 1.63 to 2.67% and 228 

from 1.68 to 2.55%, respectively (see Table 3 and Figure 4). Repeating the test of differences between 229 

surveys using only the subset of samples which were taken in the same locations (n = 73/27) also 230 

showed a significant increase in SOM from 1985-90 to 2006-10 for dry farmland (t1,45 = 2.02, p = 231 

0.049). As for soil pH, there were insufficient samples taken in the same locations to do this for the 232 

other land use types.  233 

Previous studies have explored the relationship between SOM and pH for soils across China and 234 

different regions (e.g. see Dai et al. (2009)). The relation between these important two variables is 235 

complex and highly variable, because it depends on many factors – notably geology, climate, 236 

vegetation types, soil microbiology, and land use management. There were no clear relationships 237 

between SOM and pH within each land use types, neither by region or survey (see Figure S1).  238 

In summary, the key results from this study are as follows: 239 

Agricultural soils - the mean pH of paddy soils in Area 2 fell sharply (p<0.001) between 1985-90 and 240 

2006-10 - from pH 5.81 to 5.19, while dry farmlands in the north fell slightly (8.15-7.82) but 241 

significantly (p<0.001) too. The mean SOM content of dry agricultural land rose sharply (p<0.001) in 242 

both Area 1 and Area 2. The mean SOM of the Area 2 paddy fields also rose significantly (p<0.001).  243 

Woodland soils – woodland soil pH in Area 2 showed a net increase (p<0.001) from 4.71 to 5.29; no 244 

statistically significant difference was measured in the woodlands of Area 1. The SOM content of 245 

woodland top soils, rose sharply, in the northern (p=0.003) and southern (p<0.001) study areas, 246 

respectively.  247 

 248 
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 249 

Figure 4: Sample density of soil organic matter values for each land use type in (a) Area 1 and 250 

(b) Area 2. 1: survey carried out from 1985 to 1990; 2: survey carried out from 2006 to 2010. 251 

There is no data recorded in grassland and unused land during two soil surveys there is no data 252 

recorded in grassland and unused land during two soil surveys 253 

 254 

 255 

 256 
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4. Discussions 257 

The changes in soil pH and SOM across two contrasting regions of China represent major 258 

differences in the two decade time window of this study. They have significant implications for carbon 259 

storage, nutrient cycling and crop productivity, and need to be understood to optimise land 260 

management in different environmental contexts and avoid degradation of China’s soil resources. 261 

Agricultural soils of the different regions demonstrated variable change depending on specific land 262 

use type; soil pH in dry farmlands decreased in the north and increased in the south, whereas paddy 263 

field soils decreased in both regions but to different extents. In woodland soils, there were increases in 264 

soil pH in both regions, though this was only significant in the south. Soil organic matter tended to 265 

increase in all land use types but to a greater extent in the south where soil types generally had lower 266 

pH and climate is sub-tropical. Interactions between the composition of land use and environmental 267 

conditions play a key role in determining the trajectory of soil quality at large spatial scales. Below we 268 

discuss these findings in more detail in terms of other large-scale studies of soil change, potential 269 

causes of change and the implications for future management and monitoring. 270 

 271 

4.1. Have such rapid changes in soil pH and SOM been reported before? 272 

Previous studies have reported underlying recent and rapid changes in soil pH in Chinese soils. For 273 

example, Guo et al. (2010) found soil pH in major Chinese crop-production areas significantly 274 

decreased from the 1980s to the 2000s. They compared cropland soil pH in the 1980s and 2000s using 275 

results from two nationwide surveys, 154 paired sites and long-term agricultural sites. They reported 276 

declines in pH under cash crop systems and under cereals, with the size of reduction influenced by soil 277 

type and soil pH range (i.e. some function of buffering capacity). For example, leached red soils 278 

Keith, Aidan
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(typically pH~5) in southern China declined by 0.23-0.30 pH units, while fluvo-aquic soils in the north 279 

declined by 0.27-0.58 units. They were able to show the relative contributions of different processes 280 

to increased acidity followed the sequence: processes related to N-cycling > base cation uptake by 281 

crops > acid deposition. The widespread use of N fertilisers, they argued, accounted for most of the 282 

decline in soil pH. Guo et al. (2018) observed paddy soil pH decreased by an overall 0.6-unit from 283 

1980 to 2010 in Jiangxi Province. Guo et al. (2011) also reported soil pH in Guangdong Province 284 

decreased from 5.7 to 5.44 based on ca. 30-year data. The dataset reported here adds important 285 

information with a systematic assessment of soil pH and SOM in all the main land use types, 286 

highlighting temporal changes in agricultural and woodland soils. Yang et al. (2015) reported a 287 

significant decreasing trend in soil pH occurred in broadleaved forests and minor changes occurred in 288 

coniferous or mixed coniferous and broadleaved forests by using historical soil inventory data from 289 

the 1980s and a data set synthesized from literature published after 2000 in the forest ecosystem. Soil 290 

pH of tea plantation decreased from 1980s to 2010 based on 2058 soil samples from 19 provinces (Yan 291 

et al., 2020). With the change of agricultural land use, a significant pH decreasing (1.2 to 0.68)trend 292 

was found in different soil depths based on a paired soil surveys from 1980s to 2010s in Chengdu Plain 293 

of China (Li et al., 2020). 294 

Probably the world’s most systematic assessments of long-term soil changes have been conducted 295 

in the UK, with a combination of long-term (>100 years) controlled arable and pasture grassland 296 

agricultural plot trials at Rothamsted Research station (Blake et al., 1999; Johnston et al., 1986) and 297 

the Great Britain Countryside Survey across a wide range of habitats, with several thousand samples 298 

taken in 1978-2007 (Keith et al., 2015; Reynolds et al., 2013). These provide support to our study with 299 

comparable changes across a similar time period, namely: the generally significant increase in pH 300 

Keith, Aidan
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across most UK habitats from 1978 to 2007, by up to 0.6-0.8 pH units for some; there are some 301 

differences comparing England and Scotland, highlighting broad regional differences. Soil C 302 

concentrations decreased in arable and horticulture habitats (considered most equivalent in terms of 303 

land use intensity to ‘dry farmland’ in this study), but increased under broadleaved/mixed woodlands 304 

(Reynolds et al., 2013). The controlled Rothamsted experiments provide the clearest controlled and 305 

quantifiable evidence of changes in pH linked to atmospheric deposition and N inputs (Hütsch et al., 306 

1994), together with increasing soil C in response to organic matter amendments of farmland (e.g. 307 

addition of straw stubble and livestock manures) (Powlson et al., 2011a; Powlson et al., 2011b). 308 

Increases in soil pH in recent decades in some UK soils have been linked to reduced sulphur acid 309 

deposition inputs (Blake and Goulding, 2002; Emmett et al., 2010), as the UK’s emissions from coal 310 

combustion, industry and domestic heating sources have declined (Emmett et al., 2010).  311 

 312 

4.2. What factors could cause such changes? 313 

Changes in topsoil pH and SOM over time are caused by a shift in the balance between inputs and 314 

losses. For pH, this is the balance between H ion inputs from soil weathering, acidifying atmospheric 315 

deposition and additions in fertilisers and plant residues. For SOM, it is the balance between the rate 316 

of accumulation of the C stock (from photosynthesis, C additions in leaf litter, stubble and residue 317 

incorporation) and the rate of decomposition/leaching/other losses. The systems studied here differ in 318 

their inputs/losses and their ability to buffer changes. Paddy field soils have very different inputs/losses 319 

to woodland systems, for example. To understand the changes seen in the systems studied here, it is 320 

therefore necessary to consider inputs/losses, and other large-scale environmental and management 321 
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factors, that have changed over recent decades to shift the balance of hydrogen ions and soil C stocks 322 

in the different Chinese ecosystems studied here.  323 

The loss of soil C can be relatively rapid (e.g. after moving from grassland to arable, or following 324 

ploughing/disturbance), compared to the length of time and inputs required to build up soil C stocks. 325 

Active management of the C inputs added to agricultural soils can have major impacts on C stocks. A 326 

long-term study from Thomsen and Christensen (2004) reported SOM clearly and persistently 327 

increased with the annual application of straw and ryegrass. For example, when the amount of straw 328 

returned was 4 t/hm2, 8 t/hm2 and 12 t/hm2, after 18 years, soil C increased by 12%, 21% and 30%, 329 

respectively.  330 

China’s ‘dry’ agricultural lands have seen great changes in land management practices over recent 331 

decades, through the Land Reform, the drive towards agricultural self-sufficiency, greater use of 332 

fertilisers and pesticides, and often with changes in agricultural practices (Fei et al., 2010; Han et al., 333 

2017; He et al., 2018; Zhao et al., 2018). Some of these changes have been imposed/adopted regionally. 334 

Such factors include: greater incorporation of crop residues; greater addition of livestock manures; 335 

high fertiliser loadings and use of pest control agents; mechanisation and changes in the crops grown 336 

and cropping patterns. Similarly, China’s ‘wet’ agricultural lands (paddy fields) have also seen shifts 337 

in practice, which have resulted in dramatic gains in rice yields in China since the 1950s. These include: 338 

improved varieties of rice; changes to the incorporation of crop residues; much greater fertiliser use 339 

and changing inputs via atmospheric deposition; and changes in irrigation practice or cropping patterns. 340 

These changes also differ between regions and land use types, which makes it difficult to predict how 341 

the SOM inputs and C cycling have been impacted; China’s agricultural extension service farm plots 342 

can potentially provide an important resource to conduct systematic studies of the factors influencing 343 
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SOM (and pH) trends. Woodland systems and soils have also witnessed changes in several factors, 344 

which can influence the SOM dynamics of topsoils. These include: shifts in the proportions of primary 345 

and secondary woodland; the degree of active woodland management (e.g. clearance/felling/species 346 

mix/planting programmes); changing atmospheric loadings of CO2 and nutrients, which can affect 347 

woodland productivity and C storage. Future work is needed, to systematically monitor soil changes 348 

and to assess the contribution of these drivers in controlling the pH and SOM content of China’s soils 349 

resource, to help explain the trends seen here and in other studies.  350 

  Guo et al. (2010) published a comprehensive survey of soil pH in Area 2, where they were able to 351 

compare soil types from the 1980s with data from 2002-07. They focussed on trend differences 352 

between soil types. Alluvial soils from river valleys and the Pearl River Delta increased in soil pH, 353 

while red soils and paddy soils decreased. They also noted how major land use changes and agricultural 354 

practices, including urbanisation, acid mine drainage and excessive fertiliser use, had influenced the 355 

province. These important factors cannot easily be studied with our survey results, because precise 356 

information on soil types, locations and agricultural inputs are not known. However, the survey data 357 

presented here adds to the body of evidence showing rapid changes in critical soil properties in Chinese 358 

soil systems.  359 

 360 

4.3. What are the main implications of the changes reported here? 361 

This study shows that the basic properties of Chinese soils are changing quickly - they are dynamic, 362 

not static, systems. Rates of change in soil pH are fast and in line with some other recent published 363 

work from China and the UK that demonstrate significant change on decadal timescales. Perhaps the 364 

greatest concern is that agricultural soil pH is declining, notably that of paddy field soils, which supply 365 
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rice – the key staple foodstuff – to much of China’s population. Greater acidity, particularly in the pH 366 

4–6 range, can induce Al and Fe toxicity in crop plants, affect nutrient availability, soil fertility and 367 

crop yields. Reversing agricultural soil acidification is costly and labour/resource intensive.  368 

 369 

4.4. How can future surveys be conducted to verify underlying trends and shed light on causes? 370 

China is committed to soil surveys – with large resources and man-power at its disposal. This is 371 

clear from the scale and intensity of the national surveys already conducted. For example, the most 372 

recent national survey of soil pollutant quality (for selected heavy metals and organic contaminants) 373 

in the 2000s took many thousands of samples across China. Indeed, another national survey is being 374 

conducted now. However, what this study shows is that it is critical to be able to improve the quality 375 

of information obtained from such surveys, to give definitive information on the extent and scale of 376 

underlying changes in soil pH and SOM, and to yield information to explain the causes, in a way that 377 

is not possible from this study. This needs very careful design, handling and analysis, to ensure 378 

thorough statistical interpretation can be assured, capable of detecting underlying changes and their 379 

causes. This is not simply a matter of analysing large numbers of samples. Knowledge of other national 380 

soil monitoring programmes and experience operating the long-running GB Countryside Survey in the 381 

UK are valuable in guiding future soil monitoring programmes in China, and the following aspects of 382 

monitoring are considered important: 383 

Sampling strategy: Survey designs for national sampling strategies across Europe include, amongst 384 

others, systematic or gridded sampling and stratified random sampling (Van Leeuwen, 2017). These 385 

designs allow selection of sampling locations to be representative of the prevailing composition of 386 

land uses and soil types, and provide unbiased estimates to enable upscaling. Since land use can change 387 
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over time, a survey sampling design which is not based on land use types is more flexible and temporal 388 

estimates can be reported with and without land use change. The Countryside Survey uses the ITE 389 

Land Classification (Bunce et al., 1996) which stratifies Great Britain according to major 390 

environmental gradients (e.g. climate, geology, topography). In a stratified random survey, it is 391 

important to consider sample replication within strata and power analyses may be needed for different 392 

reporting classifications and metrics, particularly if devolved or regional reporting is required. 393 

Co-location of data: Measurements taken from the same sampling locations provide the basis for 394 

robust integrated modelling of different data. The most effective soil monitoring programmes would 395 

combine collections of biological, chemical and physical properties, along with functional measures 396 

of the soil, and the assessment of the plant community. The unit of replication for strata is a 1 km 397 

square in the survey design of the Countryside Survey but, for soil monitoring, there are five sampling 398 

plots within each 1 km square; soil, vegetation and habitat data are linked in these plots and this co-399 

location has been exploited in a variety of integrated modelling activities (Caruso et al., 2019; Maskell 400 

et al., 2013; Norton et al., 2018; Reynolds et al., 2013). It is important to capture detailed data on the 401 

plant community in conservation areas or national parks, where indirect drivers may be causing 402 

changes in vegetation composition that are not picked up in intensively managed habitat or with a 403 

coarse land use type. Other data such as climate and landscape-level metrics are linked at the 1 km 404 

resolution. 405 

Sample archives: The Countryside Survey has air-dried and frozen soil samples, which are 406 

catalogued and stored in dedicated archives. This means that new analyses can be undertaken on stored 407 

samples and, importantly, comparisons of methods can be made when they are updated or change. 408 
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Repeated sampling: Large-scale monitoring often evaluates data as a population of samples, for 409 

example those from different land uses as done in this study. Sampling the same set of locations over 410 

time (e.g. every 5–10 years) provides the strongest statistical basis to analyse changes over time. In 411 

order to do this, it is important that precise sampling locations can be re-located in subsequent surveys; 412 

this is done using GPS coordinates, detailed written descriptions and plot and landscape photographs 413 

for CS. Statistical analyses, however, should be flexible enough to accommodate a mixture of old, 414 

repeat and new sampling locations (Scott, 2008); it is therefore very important to have a systematic 415 

schema for uniquely identifying sampling locations, so that data can be efficiently handled and 416 

combined for analyses. Recent Chinese papers discuss some of these issues in detail (Peng et al., 2016; 417 

Song et al., 2017). 418 
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