Chemical, Textural and Thermal Analyses of Local Interactions Between Lava Flow and a Tree – Case Study From Pāhoa, Hawai’i

Biren, Jonas and Harris, Andrew and Tuffen, Hugh and Gurioli, Lucia and Chevrel, Magdalena Oryaëlle and Vlastélic, Ivan and Schiavi, Federica and Benbakkar, Mhammed and Fonquernie, Claire and Calabro, Laura (2020) Chemical, Textural and Thermal Analyses of Local Interactions Between Lava Flow and a Tree – Case Study From Pāhoa, Hawai’i. Frontiers in Earth Science, 8. ISSN 2296-6463

[img]
Text (Biren et al 2020 Frontiers lava-tree interaction)
Biren_et_al_2020_Frontiers_lava_tree_interaction.pdf - Published Version
Available under License Creative Commons Attribution.

Download (14MB)

Abstract

Because many volcanoes are densely vegetated, understanding of the interactions between active lava flows and trees is essential for robust hazard modeling. Tree molds − lava flow features generated when advancing lava engulfs and combusts trees − are widely documented but have, to date, only been described qualitatively. Detailed, quantitative studies of molds can, however, provide insights into the nature of lava-forest interactions. Here, we present a unique characterization of the chemical, textural and thermal interactions between lava and a tree (an Albizia), taking as a case type a basaltic pāhoehoe lava flow that traveled 20 km through Hawaiian rainforest on Kilauea’s East Rift Zone between June and December 2014. The dataset includes chemical analyses of lava (major, trace and volatile species) at the lava-tree contact, quantitative descriptions of lava texture (density, vesicle and crystal populations), and thermal analysis to fingerprint the devolatilization and combustion of wood as well as with cooling and crystallization of lava around the tree. We use these results to construct a three-stage thermal model to describe heat transfer between the lava and the tree, showing how the interaction facilitates combustion of wood and release of its volatile species (CO2 and H2O) into the lava, whilst triggering enhanced cooling and crystallization of lava surrounding the tree. Chemical analyses reveal that the inflating pāhoehoe at the lava-tree contact was strongly CO2-enriched (up to 1200 ppm), and textural data show that lava is denser at the contact. Moreover, lava crystallinity indicates a cooling rate of ∼70°C min–1 at the lava-tree contact, a rate well above the expected cooling rates (30°C min–1) for pāhoehoe more distant (40 m away) from the tree. We conclude that the tree had a local cooling effect on the lava that could potentially influence lava properties at larger scale if tree density, trunk diameter and moisture content are sufficiently high

Item Type:
Journal Article
Journal or Publication Title:
Frontiers in Earth Science
Subjects:
ID Code:
145263
Deposited By:
Deposited On:
06 Jul 2020 10:45
Refereed?:
Yes
Published?:
Published
Last Modified:
27 Nov 2020 08:11