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Abstract  

Transition to low-carbon energy sources is the primary driver of the wide deployment of 

ground-mounted solar photovoltaic (PV) technologies (solar parks). Despite of this 

notable land-use change impacts of solar parks on local climate and the associated 

ecosystem functions are poorly resolved. Field study conducted at a temperate UK 

grassland, showed cooler air and soil temperatures under panels during the growing 

season compared to the gap between the PV panel rows. Further, higher soil moisture 

under, during growing season compared to the gap and evidence for spatial variability on 

soil physical properties; likely the result of compaction and vegetation management 

during and after solar park construction. Microclimatic changes had no spatial effect on 

leaf area index nor net ecosystem exchange and water vapor fluxes. Acknowledging the 

effects of solar parks on soil temperatures HIS-PV (Heat-In a Solar PV park) model was 

built and sensitivity analyses reported that dense canopies and wet soils increased model 

errors during growing season whilst low dense canopies decreased model errors post-

growing season. HIS-PV model was applied to simulate soil temperature, incoming short-

wave (SW) and potential evaporation (PE) across different climatic zones. Annual 

incoming SW was strongly affected; control areas received 60% more solar radiation than 

under panels across all tested zones. Soil temperature and PE demonstrated the largest 

differences between under and control areas in arid environments, followed by evidence 

for lower amount of growing degree days under the panels at both the arid and the 

equatorial zones. Regardless of the wide solar parks’ deployment and the undoubtable 

importance of terrestrial ecosystems, local climatic changes caused by solar parks and 

implications for ecosystem services provided by the hosting landscape are poorly 

resolved. This study provides the first synthesis of emerging understanding in this area. 

Research findings are urgently needed to enhance understanding and thus explore the 

potential for managing solar parks to provide multiple ecosystem services. 
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Introduction 

Since the industrial revolution, the developed world has depended on non-renewable 

energy to satisfy lifestyles, and commercial needs (Chu and Majumdar, 2012; Dincer, 

2000; Gales et al., 2007). Energy demand has increased as a result of global population 

increase (higher than the expected average by 2%; Dincer (2000)), urbanization and 

modernization (Asif and Muneer, 2007; Bogardi et al., 2012). Meeting these energy 

requirements, prior to The Convention on Climate Change (or The Paris Agreement; UN 

(2015)), the world heavily relayed on exploiting and burning fossil hydrocarbon fuels 

(oil, gas and coal; Asif and Muneer (2007) and Voudouris (2013)), which contributed 

80% to the global energy needs (IEA, 2018a). This has contributed to the increase in 

atmospheric carbon dioxide (CO2) concentrations from 280 ppm pre-industrial, to 387 

ppm in 2009 (Rockström et al., 2009) and to 415.26 ppm in 2019 (The Keeling curve; 

NOAA (2019)). This increase in CO2 has generated significant changes to our climate 

with severe implications for ecosystems and humanity (Mendelsohn et al., 1994; Asif and 

Muneer, 2007; Pedraza, 2012; Chu and Majumdar, 2012). 

According to the WHO (2014), within 2030-2050 climate change side-effects are 

expected to cause around 250,000 additional deaths, annually. Consequently, more 
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sustainable solutions in the energy sector are urgently needed (Asif and Muneer, 2007; 

Dincer, 2000). A transition to low-carbon energy resources, is believed to be the best 

solution to mitigate these energy-related environmental problems (Asif and Muneer, 

2007; Dincer, 1999). Renewable energy is now the fastest growing energy sector in the 

world and is expected to surpass and ultimately replace conventional energy resources. 

Renewable sources began gaining global attention as an important element of global 

power generation in early 2000s (Frontini et al., 2013). In 2017, renewables contributed 

24% of power demand (IEA, 2018b), and has been projected to supply the world with 75-

80% of electricity by 2050 (IPCC, 2018). Across the EU, deployment of renewable 

energy resources is increasing rapidly. For example, installation capacity has increased 

on average by 5.3% per annum, whilst energy consumption has increased by 6% per 

annum, over the period 2005–2016 (Eurostat data; Carrosio and Scotti (2019) and EEA 

(2018)). During 2017, 30.6% of the total electricity generation derived from renewables 

and in order to achieve the 2030 targets (40% consumption by renewables, 27% 

mitigation of GHGs, 27% improvement on energy efficiency), the rate of the annual 

energy consumption by renewables is required to increase by 6%  every year (EEA, 2018; 

Tulus et al., 2019). 

Comparing all renewable types based on environmental, economic, and safety criteria, 

solar energy appears the most promising (Bórawski et al., 2019). Further, solar energy 

was reported to be one of the most sustainable among the other energy sources (Kamat, 

2007; Pogson et al., 2013) and a “common sense vision” (Ginley and Parilla, 2013). Solar 

energy is the fundamental basis of the Earth’s ecosystems’ survival, driving both climate 

and meteorological conditions (Ginley and Parilla, 2013). Judging by its abundance and 

its inexhaustibility across the Earth, at the moment solar energy generation leads the 

growth in renewables by 64%, throughout the projection period of 2050 (EIA, 2018). In 
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2017, 98 GW of solar power infrastructures was installed globally, equating a 31% 

increase when compared with the 2016 records of the Boomerang New Energy Finance 

(IEEFA, 2018). Across the EU, solar energy currently produces 4% of the electricity and 

is expected to provide 10% of total electricity by 2030 (Bórawski et al., 2019). 

Solar energy is divided in two types of technologies which convert solar energy: 

concentrated solar power (CSP) and solar photovoltaic (PV). CSP is only viable in areas 

of direct solar irradiances of greater than 4 kW·h·m-2·d-1, limiting its geographical spread 

to low latitude regions (Hernandez et al., 2015). In contrast, PV generates electricity under 

lower and diffuse solar radiation conditions and thus can be deployed in a range of 

climates (Pogson et al., 2013). Solar PV is a relatively mature energy source with 

development efforts significantly decreasing costs while increasing the PV technology 

efficiency (Sánchez-Lozano et al., 2013; Tulus et al., 2019). The compound annual 

growth rate in the EU was highest for solar PV systems (48%) during 2005-2016, 

compared with other types of renewables, including CSP (EEA, 2018).  

Solar PV can be installed as building-mounted or ground-mounted systems. Ground-

mounted solar PV parks, hereinafter referred to as solar parks, vary in size and design and 

are formed by a metal frame that is driven into the ground to hold the panels up at a fixed 

angle. They have been deployed in large areas of land across the world (Armstrong et al., 

2016; Hassanpour Adeh et al., 2018; Ravi et al., 2014; Barron-Gafford et al., 2016). 

Within the UK approximately 59% of PV electricity, was generated by ground-mounted 

PV panels covering an area of ~85 km2 (UK National Statistics, 2017), creating niches 

regarding potential environmental impacts deriving by this land-use change. Given the 

increasing land-use pressure for production including food, fibre and fuel, it is important 

to resolve the implications of the expansion of solar parks. 
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The physical presence of PV arrays will affect the photosynthetic active radiation (PAR), 

radiative flux balance and distribution of precipitation (Armstrong et al., 2016; 

Hassanpour Adeh et al., 2018). Solar PV panels also reduce the park’s albedo; panels are 

darker and thus have a lower albedo (~0.1) compared with soil and/or vegetated surfaces 

(a typical temperate grassland’s albedo is ~0.25; Barron-Gafford et al. (2016)). Observed 

changes in microclimate have as a result been substantial. For example, under PV panels 

summer and winter soil temperature decreased by 5.2 ºC and 1.7 ºC, respectively, while 

soil moisture was surprisingly high under due to rainfall falling along the PV panel 

supporting frame (Armstrong et al., 2016).  

Changes in microclimate may have significant effects on ecosystem processes, including 

productivity, decomposition, vegetation morphology, carbon cycling, soil erosion and 

evapotranspiration rates (Dupraz et al., 2010; Marrou et al., 2013a; Marrou et al., 2013b; 

Armstrong et al., 2016; Armstrong et al., 2014a; Marrou et al., 2013c; Barron-Gafford et 

al., 2016; Hassanpour Adeh et al., 2018; Hernandez et al., 2015). Notably, microclimate 

impacts have been observed to influence solar park’s ecology and the associated crop 

ecology. Variability in air and soil climates at the gap between solar PV panel’ rows (e.g. 

diurnal air temperatures warmer at the gap during growing season and around 2.5 °C 

cooler during the winter) compared to the area under the PV panel, decreased vegetation 

growth (Armstrong et al., 2016).  

Leaf area index (LAI) of lettuces have also been shown to increase under shade despite a 

decrease in the number of leaves (Marrou et al., 2013a). Overall, research has shown that 

changing the proportion of shade in an agrivoltaic system would require less management 

compared to a typical arable grassland (Marrou et al., 2013b). Thus, designing and 

planning of a solar park strongly affects all those parameters discussed.  



Assessment on the Local Climate Effects of Solar Photovoltaic Parks 

24  Maria Makaronidou - June 2020 

Despite these wide-ranging and potential important perturbations, research examining the 

potential effects of solar parks on the local climate is limited. Moreover, understanding 

the changes may support enhance park design on land management to enable multiple-

use including crop growth under agrivoltaic schemes firstly introduced by Goetzberger 

and Zastrow (1982)) under the panels and around panels, (Ravi et al., 2014), grazing 

(BRE, 2014) and habitat provision, including pollinators (Walston et al., 2018). 

Consequently, given the global deployment of solar parks, it is important to predict the 

microclimatic effects, and thus allow inference of potential implications for ecosystem 

processes, function and service delivery, across different climate zones. 

Considering the cost of and time required for field instrumentation, a modelling approach 

to predict local climate impacts is appealing. Modelling approaches have been used to 

evaluate the optimal placement of solar PV units on rooftops (Calvert and Mabee, 2015; 

Sánchez-Lozano et al., 2013; Sánchez-Lozano et al., 2014; Uyan, 2013). However, to 

date, there is no modelling tool available to explore microclimatic behaviour in solar 

parks.  

Recognising the rapidly accelerating land-use change for solar parks and the poorly 

resolved understanding of the effects on the hosting ecosystem, the overall aim of this 

PhD was to quantify the effects of solar parks on local climates and to enable these 

potential implications for ecosystem processes, function and service delivery to be 

inferred. Below provides a breakdown of the chapters of the thesis: 

Chapter 1, the aim of this study was to characterise this spatio-temporal variability in the 

air and soil climate, LAI, greenhouse gaseous fluxes and soil physical properties within 

a solar park. We hypothesised that:  
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H1. Photosynthetic Active Radiation (PAR), soil and air temperature, under the PV 

panels will be lower compared to the gap during growing season but are expected to 

demonstrate similar spatial distribution/trend from under towards the gap, during non-

growing season. Soil moisture is expected to be higher under the PV panels in comparison 

to the gap, as a result of precipitation runoff from PV panels side framing, reaching the 

surface under the PV panels.  

H2. Soil bulk density will be higher under PV panels and organic matter lower under PV 

panels due to compaction, high soil heterogeneity across the park and water runoff as 

affected by the design of the solar PV panels. 

H3. LAI spatial and seasonal variability will be explained by leaf condition and 

management of the solar park, notably sheep grazing in winter and mowing throughout 

the year.  

H4. The area under the panels will act as a sink of carbon dioxide (CO2) and demonstrate 

lower water vapor density in comparison to the gap which will act as a source of CO2 and 

demonstrate higher ratios of water vapor density throughout the year due to shade from 

the PV panels. 

Chapter 2, the aim of this study was to develop and evaluate a physically based, spatially 

explicit solar park soil temperature numerical model (HIS-PV, Heat In the Solar PV park). 

The following objectives were addressed, within an exemplar UK grassland solar park:  

O1. Construct and parameterise a physically based numerical model to simulate grassland 

soil temperature.  

O2. Evaluate the performance of the HIS-PV model for simulating spatio-temporal 

variation in soil temperatures. 
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O3. Determine the sensitivity of simulated soil temperatures at 10 cm depth to variations 

in key model parameters surface resistance (rs), volumetric water content (VWC) and LAI 

under different meteorological conditions. 

Chapter 3, the aim of this study was to assess the impacts of solar parks on crucial 

environmental drivers which among others regulate the microclimate and thus the annual 

Growing Degree Days (GDDs) at the host-environment across different climate zones. 

To address the magnitude of these effects, the following objectives were addressed: 

O1. Assess the effect of solar parks in different climatic zones on soil temperature in 10 

cm depth, Potential Evaporation (PE) in the summer and the annual incoming short-wave 

(SW) radiation at the soil surface.  

O2. Quantify the variability in GDDs caused by the physical presence of a solar park of 

a land in different climatic zones. 

Chapter 4, the aim of this study was to rapidly advance understanding of the climatic 

impacts of solar parks and postulate the implications for ecosystem function and 

consequently service provision. Moreover, to use the synthesis to identify key knowledge 

gaps to direct future research. To achieve this the following objectives were assessed: 

O1. Synthesise current understanding of the local climate impacts of solar parks. 

O2. Outline the potential implications of the altered climate on ecosystem processes and 

services. 

O3. Identify critical research needs, optimizing solar parks hosting ecosystem 

sustainability. 
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1 Chapter 1: Impacts of a 

Solar Photovoltaic Park in 

a Grassland on 

Microclimate and 

Ecosystem Response 

1.1 Abstract 

Globally, there is an increase in the number and size of ground-mounted (land-based) 

solar photovoltaic (PV) installations. Despite this land-use change, the potential impacts 

of solar PV parks on ecosystem functions are poorly resolved. Understanding the impacts 

of solar PV parks on microclimate is crucial, as climate is a key driver of ecosystem 

processes, function and service provision. This study quantifies the microclimatic 

impacts, and ecosystem response in a grassland hosting a solar PV park, in Wiltshire, UK, 

during 2015-2016. The spatio-temporal effect was assessed during growing and non-

growing season using five linear transects, each running perpendicular between two PV 

panel rows. Under the PV panels mean air and soil temperature during the growing season 

were cooler compared to the gap between the PV panel rows, by approximately 2 °C and 

4 °C, respectively. Further, the soil moisture under the panels was higher during growing 

season compared to the gap. Under the PV panels, soil bulk density was higher, and the 

organic matter lower, likely the result of compaction and vegetation management during 

and after construction. However, the induced microclimate showed no spatial effect on 

leaf area index (LAI) nor on the net ecosystem exchange (NEE) and the water (H2O) 
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vapor fluxes. The findings suggest that the host environment shows potential of recovery 

within five years post-construction and the grassland’s adaptation under the induced 

microclimatic change. To optimize the characterization of a land hosting a solar park and 

promote ecosystem functions, long-term monitoring and modelling approaches to upscale 

the research characterising the effects under diverse conditions of air and soil climate, are 

strongly suggested.  

Keywords: photovoltaics, solar park, grasslands, spatio-temporal variability, 

microclimate, leaf area index, carbon dioxide fluxes, water vapor fluxes, bulk density, 

organic matter 

1.2 Introduction 

Renewable energy production is increasing, with solar energy reported to be one of the 

most sustainable energy sources with resource potential across the world (Kamat, 2007; 

Pogson et al., 2013). Globally, photovoltaics (PV) solar power generation showed a 

historical increase of 40% from 2014 to 2017 (around 460 TWh), representing 2% of the 

total world energy electricity generation (IEA, 2018b). Until 2016, the UK ranked fourth 

in the global solar markets (RECP, 2017), increasing its power generation by 9%, from 

2016 to 2017, (total of 10.4 GWh; UK Government (2018)). In 2017, solar PV contributed 

12.75 GW to the UK national grid, with 0.5% of the total UK power generation deriving 

from 937,421 solar PV installations (UK National Statistics, 2017). Ground-mounted PV 

solar, hereinafter referred to as solar parks, accounted for 59% of PV energy generation 

(UK National Statistics, 2017). 

Solar parks vary in size and design and are formed by a metal frame that is driven into 

the ground to hold the panels up at a fixed angle. They have been deployed in large areas 

across the world, in a range of ecosystems from desserts to grasslands (Armstrong et al., 
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2016; Hassanpour Adeh et al., 2018; Ravi et al., 2014; Barron-Gafford et al., 2016). 

Within the UK solar parks, cover an area of ~ 100 km2 (Capell, 2016). Hypothetically, 

the UK energy demand could be supplied by 2,700 km2 (~1% of the country’s area) of 

solar parks based on a total capacity of 410 GW (EcoExperts, 2018). 

European solar parks are primarily deployed on converted arable lands and grasslands 

(EIAs; (BRE, 2013; Armstrong et al., 2016)). Converting arable lands and grasslands 

induces a modified microclimate and is expected to affect environmental processes 

including vegetation and soil carbon (C) stocks (Rounsevell and Reay, 2009; Ostle et al., 

2009a). Grasslands ecosystems’ importance on the Earth’s energy balance is undoubtable, 

providing critically globally significant ecosystem services, such as food and water, 

supporting nutrient cycles and oxygen production, also grasslands are regulating local 

and regional climates  (DeGroot et al., 2002; Novick et al., 2004). Grasslands can be an 

important ecosystem for biodiversity (Qi et al., 2018), creating habitats for a wide variety 

of flora and fauna (Cardoso et al., 2013). Grasslands are also a large and important soil C 

store (Thornley et al., 2006); within the UK, they store 240 ± 200 kg of C per hectare (ha) 

per year resulting in a total UK store of approximately 9.8 ± 2.4 billion tonnes of C (Ostle 

et al., 2009b).  

Despite the influence of microclimate on ecosystem processes with implications for 

ecosystem services (Stenseth et al., 2002), the spatio-temporal effects of solar parks on a 

grassland’s microclimate, are poorly understood. Recent research addressed the temporal 

magnitude of microclimate and its effect on greenhouse gaseous (GHG) fluxes and 

biodiversity in a typical solar park (Armstrong et al., 2016). The solar PV arrays, reduced 

the park’s albedo; panels are darker and thus have a lower albedo (~0.1) compared with 

soil and/or vegetated surfaces (a typical temperate grassland has an albedo of ~0.25; 

(Barron-Gafford et al., 2016), and intercept of light and precipitation.  
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These changes alter regulators of microclimate on a spatio-temporal scale, such as 

evaporation, wind speed, soil moisture, soil temperature and air temperature (Armstrong 

et al., 2014a). PV panels have been observed to alter the microclimate beneath them, 

decreasing the summer soil temperature by 5.2 ºC while increasing winter soil 

temperature by 1.7 ºC under the PV arrays relative to control areas (Armstrong et al., 

2016). Soil moisture was surprisingly high under panels due to rainfall falling along the 

PV panel supporting frame (Armstrong et al., 2016). Modifications of the park’s albedo, 

air temperature and soil moisture contents, causes perturbation to all associated fluxes of 

the surface energy balance, such as soil-evaporation and vegetation-transpiration, (Oke, 

1987; Armstrong et al., 2014b; Jackson, 1973). Effects on evapotranspiration (ET), and 

thus soil moisture will further impact vegetation growth (Marrou et al., 2013c). 

Reduced incoming short-wave (SW) solar radiation under the PV panels, leads to reduced 

photosynthetic activity (Oke, 1987). However, microclimate change caused by solar PV 

panels shading in agricultural land had a significant effect on productivity, increasing the 

total yield of lettuces (Marrou et al., 2013a). On the other hand at a grassland site,  

microclimatic change reduced biomass production to 25% under the PV panels compared 

with control areas (Armstrong et al., 2016). Such effects on vegetation growth, imply 

impacts on leaf area index (LAI), which may depend on plant species (Marrou et al., 

2013a). LAI directly quantifies canopy structure and can be used to predict primary 

productivity and plant growth (Waring and Running, 2007). In addition, LAI is a crucial 

input parameter in environmental modelling because it has an important influence on 

exchanges of energy, water (H2O) vapor and CO2 between plants and the atmosphere 

(Best et al., 2011; Adams and Keith, 2013; Lee and Park, 2007; Wang and Jarvis, 1990).  

Together, microclimate and LAI changes regulate GHG fluxes, both through reduced 

solar radiation receipts under PV arrays but also through other microclimatic changes. As 
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a result, CO2 exchange (NEE) and H2O vapor concentrations will likely vary 

spatiotemporally within solar parks. Both H2O vapor and NEE, are important greenhouse 

gaseous fluxes for temperate grasslands (Verma et al., 1989) for water availability and C 

release or sequestration.  

The microclimatic variability, the subsequent impacts on vegetation and GHG fluxes 

along with the land use disturbance during and post-construction (i.e. the removal of 

vegetation and compaction caused by the machinery during construction (Saini, 1966)), 

are also expected to affect soil physical properties (Bardgett et al., 1999). Soil bulk density 

and organic matter are important physical properties which affect soil health and plant 

growth. Soil bulk density would be expected to increase, and the organic matter to 

decrease (Keller and Håkansson, 2010; Gao et al., 2012; DelVecchia et al., 2014). 

However, Armstrong et al. (2016)  found no spatio-temporal effect of bulk density and 

organic matter in a solar park.  

1.2.1 Research aim 

Rapid global solar PV deployment along with the associated land-use change to grassland 

ecosystems, have the potential to affect ecosystem services. The ecological importance 

of grasslands and the need to transition to renewable energy, means that the effect of solar 

parks on the microclimatic spatial variability, needs to be resolved. Consequently, this 

study aims to characterise this spatio-temporal variability in the air and soil climate, LAI, 

GHG fluxes and soil physical properties within a solar park. We hypothesised that:  

H1. Photosynthetic Active Radiation (PAR), soil and air temperature, under the PV 

panels will be lower compared to the gap during growing season but are expected to 

demonstrate similar spatial distribution/trend from under towards the gap, during non-

growing season. Soil moisture is expected to be higher under the PV panels in comparison 
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to the gap, as a result of precipitation runoff from PV panels side framing, reaching the 

surface under the PV panels.  

H2. Soil bulk density will be higher under PV panels and organic matter lower under PV 

panels due to compaction, high soil heterogeneity across the park and water runoff as 

affected by the design of the solar PV panels. 

H3. LAI spatial and seasonal variability will be explained by leaf condition and 

management of the solar park, notably sheep grazing in winter and mowing throughout 

the year.  

H4. The area under the panels will act as a sink of carbon dioxide (CO2) and demonstrate 

lower water vapor density in comparison to the gap which will act as a source of CO2 and 

demonstrate higher ratios of water vapor density throughout the year due to shade from 

the PV panels. 

1.3 Materials and methods 

1.3.1 Site 

Data were collected from Westmill Solar Park, Wiltshire, UK (51° 37' 03'' N 01° 38' 45'' 

W, altitude 100-106 meters, Figure 1.1(a); (Westmill Solar Farm, 2011). The 5 MW 

capacity solar park was installed in 2011. The park had a parallelogrammical design, 

formed by 36 PV panel rows to the west and 33 rows to the east of a central north-south 

passageway. The park covers a total of 121,000 m² (Figure 1.1(b)). The area under the 

PV panels was 29,000 m², the gap area between panel rows was 58,000 m², and the area 

between the PV panels and boundary fence 34,000 m². The park was seeded after 

construction (in 2011-2012) with a species-rich meadow mix. The grassland was sheep 

grazed in the winter and strips parallel to the northern and the southern PV panel row 
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edges (straight line strip of 1.50 m width; Figure 1.1(c)) mowed twice annually to prevent 

PV panels’ shading. 

1.3.2 Experimental design 

The study consisted of eight sampling periods between two to five days in duration, 

spread between March 2015 and March 2016. May, June, July and early September 

sampling periods were classified as growing season and October, December and March 

as non-growing season (Table 1.1). Microclimatic characteristics of each visit are 

available in Tables 1-4 in Appendix 1 - SI.1, p. 207.  

Table 1.1: Field sampling days, timers and average temperatures (from the spatial 

explicit experiment). The daily air temperature means derived from the spatial 

explicit experiment. M stands for morning, A for afternoon and E for evening sets 

of measurements. 

Visits Dates Time of Measurement Air temperature 

(daily mean) 

1. 30.03-31.03.2015 (Pilot and soil sampling) 5.1 °C 

2. 13.05-14.05.2015 M, A and E 15.4 °C 

3. 22.06-25.06.2015 M, A and E 21.2 °C 

4. 14.07-18.07.2015 M and E 20.6 °C 

5. 02.09-05.09.2015 M and E 14.2 °C 

6. 28.09-01.10.2015 M, A and E 15.2 °C 
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Five 

linear 

transects, 11.25 m in length running perpendicular between two PV panel rows were 

randomly located within the solar park (Figure 1.1(b)). Fifteen sampling points were 

identified at equal distance (0.75 m intervals) along each transect (total sampling points 

n = 75). The initial 4.5 m length (six sampling points), of each transect was under the 

panels, hereinafter mentioned as ‘under’. The section of the transect in the gap between 

the two panel rows, hereinafter mentioned as the gap, was 6.75 m in length (nine sampling 

points). The length  connecting two sampling points at 4.5 m and at 5.25 m, were under 

the northern panel edge of the panel, hereinafter mentioned as northern panel edge, and 

the last transect point at 11.25 m distance, was the point close and/or under the southern 

panel edge of the next panel row (two transects had their last sampling point under this 

edge), hereinafter mentioned as southern panel edge. At each transect, air and soil 

microclimate, soil properties and LAI were measured at each sampling point. Gaseous 

fluxes were recorded at one point under, at sampling point 1.25 m, and in the gap, at 

sampling point 7.5 m. 

 

7. 30.11-01.12.2015 M and A 11.8 °C 

8. 04.03-06.03.2016 M and A 5.2 °C 
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Figure 1.1: (a) Westmill Solar PV park panoramic photograph and (b) the 

construction map illustrating the placement of the five linear transects (green 

coloured lines). (c) Linear transect experimental design with a 0.75 m interval. The 

length under the panels was 4.5 m and the length at the gap between two panel rows 

was 7 m. Gaseous fluxes were measured from two plastic collars at 1.5 m sampling 

point under and at 7.5 m sampling point in the gap between two panel rows (orange 

circles). lpanel, is the length of the PV panel surface, h, the height of the northern 

edge of the panel. 

1.3.2.1 Microclimatic spatial variability 

For all 75 sampling points, soil moisture (volumetric water content; VWC), 

Photosynthetically Active Radiation (PAR), soil temperature and air temperature were 

measured during every sampling period two to three times per day (M for morning, A for 

afternoon and E for evening. VWC was measured using a theta probe (MM3 Theta Probe 

Soil Moisture Sensor; Delta-T Devices (UK-b)) in the top 6 cm of soil (m³/m³), PAR 

(μmol mˉ² sˉ¹) was measured above the vegetation canopy using a SKR 110 Red/Far-Red 

pyranometer sensor with the SKR100 display meter (Skye Instruments, UK). Soil (°C; 10 

cm depth) and air temperature (°C; above vegetation canopy) were measured using two 

Superfast Thermapens (Global FSE, UK). All measurements across the five transects 
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were conducted within 50 minutes. All the equipment was calibrated before and after each 

visit. 

Precipitation and open water evaporation, at the soil surface were measured using 75 

precipitation gauges and mini evaporation pans (surface areas = 56.7 cm2). Pairs of jars 

were installed in the ground, at each sampling point of the transects on the 22nd of June. 

Nets were used to secure the top of the jars to prevent animals and insects entering. 

Sampling took place twice, summer (22nd of June-4th of September 2015) and autumn 

season (5th of September-1st of December 2015).  Evaporation pans were initiated with a 

60 mm depth of water and the rain gauges with 20 mm depth of lower density vegetable 

oil to prevent evaporation. 

Evaporation was calculated using data from both jars in the following equation: E = [w - 

ow] - injected water proportion, where, evaporation E, measured in mm, w the amount 

of water collected in the water jar and ow, amount of water in the oil jar during data 

collection. 

1.3.2.2 Soil properties spatial variability 

Soil bulk density (g/cm³) and organic matter (%) were determined from soil samples 

collected on the 31.03.2015. Soil samples were collected from each of the 75 sampling 

points using a bulk density steel core with a 7.5 cm diameter and 5.5 cm height (core 

volume = 242.86 cm³). Soil analysis was performed in accordance with Emmett et al. 

(2008). 

Bulk density was determined, by oven drying samples at 105 °C until constant weight. 

Immediately after, soil was sieved to separate stones; stone density was measured due to 

high intensity of stone particles. Soil and stone weight as well as stone volume (Lang and 
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Thorpe, 1989), were recorded and bulk density was calculated using the following 

equation: 

Bulk density (
g of soil

cm³ core volume
) =

[Dry weight core (105 °C)(g)− Stone weight (g)]

[Core volume (cm3)− stone volume (cm−3)
 (1), 

Soil gravimetric water content (GWC) was calculated using the following equation: 

GWC (
g of water

g of soil
) =

[Fresh Soil Weight (g)− Dry Soil Weight (g)]

Dry Soil Weight (g)
 (2), 

Organic matter was determined by loss on ignition (LOI), 10 g of oven dried soil (at 105 

°C) was put in a muffle furnace at 375 °C for 16 hours. To calculate the organic matter 

(OM %) of the soil samples the following equation was used: 

OM (%) = 100 ∗  
[Prior Ignition weight (105 °C)(g)−Post Ignition weight (375 °C)(g)]

Prior Ignition weight(105 °C)(g)
 (3), 

1.3.2.3 Leaf Area Index (LAI) 

LAI was assessed by harvesting all above ground biomass from 40 cm² at each point on 

the transect in May, June, October and December. This represents the growing season 

(May and June) and the non-growing season (October and December). During July and 

early September (growing season) samples were collected from 1.5 m, 4.5 m, 7.5 m and 

11.25 m along each transect, (two points from under and two from the gap). Samples were 

stored overnight in a cool room and then (12-24 hours after cut) were separated to dead 

(non-transpired dry and brown; NT) and alive (transpired wet and green leaves; T) 

vegetation, excluding the plant stems. Two methods were used to analyse the LAI, a 

conventional scanner and ImageJ software (Schneider et al., 2012) for May, June, July 

and early September samples and a LI-3100C Area Mater (LI-COR, 2017) for October 

and December samples. An investigation was performed to evaluate and compare the two 

methods (R2 = 0.8).  
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1.3.2.4 Gaseous fluxes 

NEE and H2O vapor flux were measured using a portable static chamber system approach 

(Trucco et al., 2012; Armstrong et al., 2015; McEwing et al., 2015). CO2 concentrations 

and absolute humidity (water vapor pressure in millibars (mb)) were measured from 10 

collars, 30 cm diameter, installed along the five transects (Figure 1.1(c)), using an EGM-

4 infrared gas analyser (IRGA, PP Systems (USA)), attached to a transparent chamber. 

Collars were carefully sealed in the soil to minimise root disturbance one month prior to 

the first measurement; 22nd of June 2015. Measurement across the site were performed 

over a period of approximately one hour and 30 minutes. Measurements were not 

performed during rain and during periods were the PAR < 5  µmol m-2 s-1 under and at 

the gap (Trucco et al., 2012). 

NEE was calculated using the following equation (McEwing et al., 2015), 

𝐹𝐶𝑂2
= S ∙

V ∙ MCO2 ∙273.16

A ∙ Vm (273.16+T)
∙  3600 ∙  1000 (4), 

where, 𝐹𝐶𝑂2
, is the flux (mg m² hrˉ¹), 𝑆 , the gradient of CO2 concentration changes over 

a time interval (IRGA’s 124 seconds), 𝑉, the volume of the chamber (0.019 m3), 𝑀𝐶𝑂2
, 

the molecular mass of CO2 (44.095 g/moles), 𝐴, the area of the collar (bottom chamber; 

equal to 0.071 m2), 𝑉𝑚, the universal gas constant (82.058) and 𝑇, is the air temperature 

in degrees Celsius (°C).  

H₂O flux (mm H₂O hrˉ¹), was determined analogues to equation 4 as: 

𝐹water =  𝜌 ∙
V ∙ Mwater ∙273.16

A ∙ Vm (273.16+T)
∙  3600 ∙  1000 (5), 

As a form of quality control, for the fluxes included in the analysis, regression plots and 

their R-squared (R2) values of concentration towards sampling time duration, were used. 
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During the summer R2 values below 0.8 and during winter measurements (McEwing et 

al., 2015), R2 values below 0.5 were rejected from the analysis (because out of the 

growing season C fluxes in grasslands ecosystems are relatively stable; Trucco et al. 

(2012)). 

1.3.3 Data analysis 

The statistical analysis was conducted using R programme language within the RStudio 

environment version 3.3.2 (RStudio, 2015). The packages used for statistical analysis and 

data representation were, gam (for model predictions prior analysis; (Hastie and 

Tibshirani, 1986)), scales (Hadley Wickham, 2017), ggplot2 (Hadley Wickham, Winston 

Chang, 2016) and dplyr (Hadley Wickham, Romain Francois, Lionel Henry, Kirill 

Müller, (R Core Team, 2017)). Results were reported as significant when p values ≤ 0.05. 

ANOVAs (analysis of variance) and a post-hoc Tukey HSD (Honest Significant 

Difference) test was applied to indicate means that differed significantly (Tukey, 1977). 

Tukey post-hoc is considered a thorough and strict method which considers all possible 

pairwise differences at the same time and is accepted widely in ecology (Day and Quinn, 

1989).  

For H1, to assess the probability of PV arrays physical presence creating temporally 

dynamic microclimatic niches, a three-way ANOVA was used with distance along the 

transect, hereinafter mentioned as distance (which could also be assessed as categorical 

as it is a count variable; specific distance along transects from one point to the other), 

time of day and season as the explanatory variables. For evaporation, the data were 

transformed by adding 100 to each measurement (to avoid having negative values in the 

dataset). For H2, soil bulk density and organic matter spatial variability post construction, 
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generalised additive models (GAMs), which capture non-linear patterns (Wood, 2006) 

were used with distance along the transect and stone density as explanatory variables.  

To assess H3, to investigate the spatio-temporal variability in LAI, distance along the 

transect, growing season (in and out) and leaf condition (T and NT) were used as 

explanatory variables using a three-way ANOVA. LAI data were transformed by adding 

1 unit to each measurement (for zero values in the dataset) and then log transformed, 

given the data distribution, to avoid violation of statistical assumptions. Finally, for H4, 

to assess the spatio-temporal variability of NEE and water vapor in the solar park, location 

and date, were used as explanatory variables using a four-way ANOVA, and the 

maximum negative value +1 was added to all fluxes (water vapor density and CO2) to 

avoid having negative values in the dataset.  

1.4 Results 

1.4.1 H1. Microclimatic spatio-temporal variability 

1.4.1.1 Air Temperature 

During growing season, morning, afternoon and evening, air temperature under the PV 

panels was significantly cooler than the gap by 1.2-2.2 °C (p < 0.001; Figure 1.2). Overall, 

in the morning the mean air temperature along the transect was cooler (16.4 °C) compared 

to the afternoon and evening metrics which were similar throughout (20.1 °C and 20.2 

°C, respectively), with p < 0.001 among the three times of day. The difference between 

the minimum air temperatures under and at the gap was similar (less than 1 °C; Table 1 

in SI.1) with under warmer in the morning and the afternoon. The maximum air 

temperatures in the morning and in the evening, showed a 3.5-4 °C difference between 

under and gap (warmer throughout the day). The difference was at its peak during the 

afternoon, with the gap exceeding the under by 10 °C (Table 1 in SI.1). 
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During non-growing season, mean air temperature increased by 3 °C throughout the day 

(p < 0.001). The minimum and the maximum air temperatures between under and gap 

were similar (less than 0.5 °C difference; Table 1 in SI.1) with under slightly cooler and 

gap slightly warmer in the morning and afternoon, respectively. The overall trend along 

the transect was different to the growing season, with temperatures gradually cooling 

down, up until the northern panel edge and gradually warming up by ~3 °C along the gap, 

especially in the afternoon and evening periods (Figure 1.2).  

 

Figure 1.2: Air temperature metrics spatial distribution of the means, in three times 

of the day during growing and non-growing season along the five linear transects. 

Blue shaded area illustrating the standard error of the mean. 

1.4.1.2 Soil Temperature 

Growing and non-growing season soil temperatures along the transect demonstrated a 

similar pattern compared to air temperatures, but with the soil remaining cooler than the 

air and the transitions from under to the gap being sharper at each time period (Figure 1.2 
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and Figure 1.3). During the growing season, soil temperature under the PV panels was 

cooler throughout the day compared with the gap (p < 0.001). Further, soil temperatures 

demonstrated sudden increases at the northern panels’ edges, which in the evening 

reached 5 °C (p < 0.001). The differences between the minimum temperatures under and 

the gap ranged from 1.3 °C in the morning to 2.4 °C in the evening, while the maximum 

temperatures ranged from 3.2 °C in the morning to 8.8 °C in the evening. In the afternoon 

the difference between the maximum soil temperatures were minor (0.3 °C; gap warmer) 

and between the minimum soil temperatures the difference was 2 °C (gap warmer; Table 

2 in SI.1). 

During the non-growing season, morning and afternoon soil temperature trends along the 

transects were more similar with slightly warmer soils in the afternoon (Figure 1.3). Soil 

temperatures along the transect were gradually increasing from morning to afternoon and 

afternoon to evening (15.2 °C, 16.4 °C and 17.3 °C respectively). Morning and afternoon 

mean under and at the gap were the same, 9.2 °C, with gap’s minimum and maximum 

values warmer by 1 °C in the afternoon (Table 2 in SI.1). Soil temperature mean increased 

gradually at the northern panel edge, (breaking points at 3.75 m-5.25 m along the transect; 

alike the air temperature). Both soil temperature means under and at the gap in the evening 

were ~1 °C warner compared with the morning and afternoon temperatures (p < 0.001). 

There was a sudden increase of the minimum soil temperatures in the evening of 7 °C 

(was ~2.5 °C in the morning and the afternoon) while the maximum temperature was 

increasing by 1 °C from the morning to the evening (Table 2 in SI.1). 
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Figure 1.3: Soil temperature metrics spatial distribution of the means, in three times 

of the day during growing and non-growing season along the five linear transects. 

Blue shaded area illustrating the standard error of the mean. 

1.4.1.3 Soil moisture 

Soil moisture demonstrated the greatest small-scale variations of all the examined 

microclimatic variables (Figure 1.4). This was notable under the panels regardless of 

season or time of the day. Further, there were sharp and significant fluctuations under the 

panels from one point to another (p < 0.001), while at the gap the most significant change 

occurred at the last sampling point (southern panel edge). Despite these small-scale 

variations, during growing season, under was on average moister than the gap regardless 

time of day (p < 0.001). Further an abrupt transition between under and the gap was 

evident at sampling point 4.5 m (northern panel edge). During the non-growing season, 

the gap demonstrated a reversed trend with distance along the transect; the soil moisture 

decreased towards the southern panel edge. Overall, the section of the transect under the 

PV panels was drier compared to the gap (p < 0.001). 
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Figure 1.4: Soil moisture metrics spatial distribution of the means, in three times of 

the day during growing and non-growing season along the five linear transects. Blue 

shaded area illustrating the standard error of the mean.  

1.4.1.4 PAR 

PAR increased over a short distance at the northern panel edge and reduced over a short 

distance at the southern edge (Figure 1.5). Further, PAR, was constantly lower under the 

PV panels compared to the gap, regardless of time of day, during growing and non-

growing season (p < 0.001). The maximum difference between under and gap, was in the 

afternoon of the growing season were the gap reached 975 μmol mˉ² sˉ¹ and under 

received just 218 μmol mˉ² sˉ¹ (p < 0.001; Table 3 in SI.1). PAR in the morning and 

evening of the growing season demonstrated similar magnitudes and were significantly 

different to the afternoon (p < 0.001). The standard error of the mean was higher in the 

afternoon during both seasons for both under and gap. 
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Figure 1.5: PAR metrics spatial distribution of the means, in three times of the day 

during growing and non-growing season along the five linear transects. Blue shaded 

area illustrating the standard error of the mean. 

1.4.1.5 Precipitation and Evaporation from an open water system 

Precipitation differed significantly between growing and non-growing season along the 

transect (p < 0.001). Further, the spatio-temporal interaction (season and distance) 

showed evidence of significance with p < 0.05. Over the entire sampling period, under 

and gap precipitation differed significantly, with precipitation under the panels being 

always lower (p < 0.001) with a different distribution at each period tested (Figure 1.6). 

In addition, smoother transitions from one sampling point to the next, were observed 

during the growing season compared to out of season (Figure 1.6), with maximum 

precipitation deriving from 9 m along the transect (statistically different to both under and 

gap sampling points along the transect; p < 0.001). At the northern panel edge, 

precipitation demonstrated a steep rise, from under to the gap, with this sudden increase 

being sharper during non-growing season. The Tukey pairwise analysis illustrated a 
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statistical significance of those sampling points at the northern panel edge compared with 

the other under and at the gap (p < 0.05).  

Evaporation did not illustrate a statistically significant spatial and/or temporal variation. 

However, during the non-growing season, there were some sudden spikes especially at 

2.25 m, 8.25 m and 11.25 m along the transect (Figure 1.6). On the other hand, during 

growing season, the amount of the evaporation under the panels was gradually increasing 

towards the gap. 

 

Figure 1.6: Precipitation and evaporation spatial distribution of the means during 

growing and non-growing season along the five linear transects. Shaded area 

illustrating the standard error of the mean. 

1.4.2 H2. Soil properties spatial variability 

Soil bulk density (p < 0.001 and R2 = 50%) and organic matter (p < 0.05 and R2 =29.5%) 

varied significantly along the transect. Soil bulk density under was higher, compared with 

the gap (Figure 1.7a). Organic matter content increased slightly along the transect from 

the northern panel edge, with fluctuations in the gap (p < 0.001). Organic matter under, 

was lower compared with the gap (p < 0.001). Further, it was negatively correlated with 

the bulk density (Figure 1.7b). Stone density had also an impact on the bulk density and 
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on the organic matter variabilities along the transects (p < 0.01 and p < 0.001 

respectively). 
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Figure 1.7: (a) Soil bulk density and soil organic matter with the error bars 

illustrating the standard deviation of each point along the transect. (b) The 

relationship between bulk density and organic matter, with the grey shaded area 

and smoothing line illustrating the 95% confidence intervals. 

1.4.3 H3. LAI seasonal and spatial variability 

LAI differed significantly with season, condition (T and NT) and their interaction (p < 

0.001, Figure 1.8) and did not demonstrate a statistically significant variation with 

distance along the transect. There was more alive (T; green) than dead vegetation (NT; 

dry or decomposed) during the non-growing season (p < 0.001). Alive (T) vegetation was 

significantly different in growing season compared with the non-growing season and the 

pattern with distance along the transect was complex (p < 0.001 among sampling points 

on the transect). 
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Figure 1.8: Leaf area metrics spatial distribution of the means of each condition (T 

● and NT ▲), during growing and non-growing season along the five linear 

transects. 

1.4.4 H4. NEE and Water vapor flux spatio-temporal variability 

Overall, under and gap CO2 and H₂O vapor fluxes differed significantly regardless of 

season (p < 0.01 for NEE and p < 0.05 for H₂O vapor). The area under the panels, was 

generally a sink for CO2 in growing season (Figure 1.9 (a)). Further, the gap area appeared 

as a sink for CO2 for all the dates apart from the 30th of November (non-growing season). 

Water vapor fluxes illustrated a statistical significance at the gap between the 1st of 

December and the 23rd of June (p < 0.05; Figure 1.9 (b)). The area under the panels was 

lower than the gap throughout apart from the 30th of November where the gap was lower 

than under. 

(a) 
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(b) 

 

Figure 1.9: (a) CO2 concentrations flux metrics represented as the NEE of two 

locations (under; U dark grey and gap; G light grey) and (b) H2O in the solar PV 

park towards the date of the measurement. Box plots displaying minimum, first 

quartile (25th percentile), median, third quartile (75th percentile) and maximum CO2 

concentrations. 

1.5 Discussion 

There has been exponential growth in solar park deployment yet there is limited 

understanding of the impact of solar parks on the microclimate and implications for 

ecosystem processes. We found significant variation in microclimate and soil physical 

properties along the transects from the south edge of solar array rows to the south edge 

of adjacent rows. In contrast, LAI and GHG fluxes illustrated a seasonal effect (expected 

seasonal variation in LAI in a temperate climate) but no spatial effect (no difference 

through the solar park). Overall the PV panels’ southern edge along with the northern 
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panel edge (Figure 1.1 (c)), were breakpoints of the sudden changes for most variables. 

Below we discuss the four hypotheses in turn.  

1.5.1 H1. Presence of the solar parks creates temporally dynamic 

microclimatic niches 

Soil and air temperature, soil moisture and PAR, are key ecosystem drivers, and were 

shown to vary spatially and temporally within the solar park (Clinton, 2003; Barnett and 

Facey, 2016; Davidoff and Selim, 1988; Armstrong et al., 2016; Federer, 1968; McEwing 

et al., 2015). All assessed microclimate variables followed a similar trend along the 

transects (lower under the PV panels and higher in the gaps) during growing and non-

growing season, except for the VWC, which demonstrated a reversed relationship during 

growing season (see Figures under section 1.4.1). The spatial distribution of all aspects 

of microclimate during the non-growing season differed to those in the growing season 

likely due to the combination of PV panels and the daily and hourly variation of the 

azimuth and elevation. 

For all tested aspects of microclimate, PV panels’ edges, specifically the northern and the 

southern panel edges, were breakpoints. Air and soil temperature and PAR were lower 

under the PV panels, increased smoothly or sharply at sampling point 4.5 m (northern 

panel edge) and throughout the gap for all three times of the day. All variables decreased 

at the final couple of sampling points along the transect, close to the southern edge of the 

subsequent solar array apart from metrics during non-growing season. VWC was the only 

variable which demonstrated higher ratios during non-growing season and slightly 

increased soil moisture at the gap; along the final four sampling points towards the 

southern panel edge (Figure 1.4). This could be due to precipitation water runoff from the 
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PV panels which created water pools in front of the southern PV panels edge the cooler 

air temperature and the lower PAR under compared with the gap. 

PAR is known to be positively correlated with rates of evaporation (Clinton, 2003), 

however, in this study, variations in PAR along the transect could not be strongly 

correlated with the evaporation as the spatial distribution of the later was quite stable (no 

spatiotemporal significance p > 0.05; Figure 1.6) with minor fluctuations along the 

transects. Whilst there were fluctuations in evaporation during the non-growing season, 

these could be explained by the occasional cover of the jars by the leaves in the middle 

of the transect (e.g. sampling point 8.25m); There were already interventions made from 

park’s management, with  grass occasionally being cut with machinery at the PV panels’ 

southern and northern edges (park’s management operating cuts at random periods per 

annum, when shading of panels from vegetation growth was a risk).  

The fact that under the PV panels, both PAR and precipitation were lower compared to 

the gap, initially implied disturbance of the evaporation and therefore a direct effect on 

soil-plant interactions (Gupta et al., 2015). Evaporation under the panels during growing 

season, was approximately double the precipitation. This would imply drier soil under the 

panels, but soil moisture findings supported that the soil was wetter under and both air 

and soil temperatures cooler than the gap. It was assumed that there were limitations 

during the evaporation and precipitation (jars) experiment, because the area of the jars 

was small and thus easier to be covered by plants. 

Assessing evaporation and precipitation from this solar park, the interest was placed on 

where were the patterns of variability across the site, and this small pan approach, whilst 

with limitations in its accuracy, provides reasonable precise measures that enable these 

patterns to be explored. Several studies using atmometers (small area of the belani plate) 

have been proven to assess evaporation with a good level of accuracy (Kettridge and 
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Baird, 2006; Alam and P. Trooien, 2001; Carder, 1960; Qian et al., 1996; Thom et al., 

1981). Thus, even if it is recognised that the absolute values might not be so representable, 

in general is an approach widely used. Thus, it was anticipated that in this experiment, a 

small pan area provided reasonable precise measures that enable patterns to be explored. 

Installing jars of wider area, would compromise the logic (spatiality) around the linear 

transect experimental design. The idea of implementing this type of spatial experiment 

was to grasp data from as many points as possible along a 11.25 m length (15 sample 

points on a 11.25 m transect) and thus get a point per point variability of the measured 

variables, which would be even more descriptive. Also, it has been proven that size of 

pans did not implement major differences into the actual result (Carder, 1960; Oke, 1987; 

McIlroy and Angus, 1964). In addition, having installed 150 jars in total on five transects 

across the solar park running the same experiment throughout, creates assumptions 

regarding the oasis effect (Agodzo et al., 1997; McIlroy and Angus, 1964; Li et al., 2013). 

Thus, the installation of bigger jars, would only increase any potential impacts. 

PAR metrics demonstrated a significant gradient along the gap (wider margins of the 

standard error of the mean), regardless season (Figure 1.5), especially during the 

afternoon metrics (sun at a vertical position). This variability could be potentially 

explained by implications during measurements due to differences of time of day during 

measurement, as position of the sun in the sky changes.  Further, as mentioned in Methods 

(and mainly at section 1.3.2.1), PAR was measured along five transects in a 121,000 m² 

area solar park at vegetation height, which as expected differed from one area to the other. 

In addition, the graphs illustrate mean PAR ratios taken by five transects of four campaign 

visits in the growing and four campaign visits out of growing season (Table 1.1). 

Naturally, PAR, that is known to be a sensitive parameter to measure as could be altered 

on the spot, by clouds or even by the time needed to get from one transect to the next 



Assessment on the Local Climate Effects of Solar Photovoltaic Parks 

54  Maria Makaronidou - June 2020 

thus, was logically assumed to demonstrate these gradients especially at the gap 

(unsheltered area; Figure 1.5).  

Air and soil temperature were significantly cooler under the PV panels compared to the 

gap, regardless of the time of the day and season. The changes between under and gap 

minimum and maximum values, were not of a magnitude known to impact plant 

processes, as location did not cause the temperature to cross the growing temperature 

thresholds of 5 °C to 25 °C, that define grassland growing season in temperate 

environments nor the frost level 0 °C during the non-growing season (Moot et al., 2000; 

Hassan et al., 2007), thus the impact on grass growth was assumed minor judging by the 

smalls differences between under and gap (Figure 1.2 and Figure 1.3). However, the 

temperature differences were of the magnitude known to impact ecosystem process rates. 

The soil under the PV panels, was frequently wet due to water input from the edges of the 

PV panels’ and supporting frame. Whilst evaporation rates were broadly similar to the 

gap, transpiration rates given the lower LAI, may have promoted higher soil moisture. In 

addition to lower PAR and air temperature, the higher VWC and evaporation rates under 

the panels during the growing season, could also have contributed to the lower air and 

soil temperature under PV panels, compared with the gap. Soil temperature is strongly 

correlated to soil moisture (Abu-Hamdeh, 2003; Davidoff and Selim, 1988; Alvenäs and 

Jansson, 1997; Davidson et al., 1998) as precipitation and evaporation (Figure 1.6) 

regulate soil temperature with feedbacks on soil moisture content.  

The microclimatic niches were created on the grassland by the physical presence of the 

PV panels and were considered tenser but comparable to the observed effects of trees on 

grasslands (Morecroft et al., 1998; Yan et al., 2012). Tree canopies’ size and shape vary 

with each species, and their artificial shade is directly correlated to the spatial 

microclimatic variability of the area at the sub-canopy as well as to temporal variability 
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such as season and time of day (agroforestry scheme). PV panels acting in a similar 

manner as tree canopies, create an artificial shade which had a spatio-temporal effect at 

the microclimate. Consequently, it should be possible to design solar parks to induce 

desirable microclimatic niches for ecosystem processes and mitigate crucial perturbations 

at the energy and water balance in a solar park ecosystem. 

1.5.2 H2. Soil bulk density and organic matter vary spatially within 

solar parks 

Soil bulk density and organic matter varied spatially through the solar park, confirming 

our hypothesis. Soil bulk density and organic matter was higher under and lower at the 

gap and the latter the opposite (Figure 1.7b). However, previous study performed in 2013 

at the same site, showed no spatial effect of the PV arrays on the soil properties 

(Armstrong et al., 2016). Armstrong et al. (2016) took four samples under PV panels, four 

in the gaps and four in control areas rather than a transect approach as used here; different 

experimental design.  

Microclimatic factors such as soil  moisture, precipitation and evapotranspiration can 

affect, soil physical properties along with site management activities including the use of 

heavy machinery (Gong et al., 2003). Given Armstrong et al. (2016) did not find 

differences, it could be concluded that the differences arose because of the effect of 

different microclimate and implications for ecosystem processes. However, the choice of 

experimental design is crucial and the exact sampling locations could have caused the 

opposing results between the two studies. Alternatively, whilst compaction may have 

occurred during construction, vehicle use in on-going at the site, especially at the northern 

and southern panel edges during cutting and thus compaction could be being increased 

over time due. 
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Soil moisture content, affected by water runoff from the PV panels (discussed under 

section 1.5.1), may have had an effect on both organic matter and bulk density. Soil 

moisture depletion causes soil shrinkage creating cracks and fissures on the soil as 

observed at the site (Gavin and Agnew, 2000). The PV panels may have caused higher 

soil moisture under the panels but perhaps had a negative effect at the southern panel edge 

creating water pools. In addition, soil gravimetric content (data and analysis in SI.1 p.186) 

showed a strong correlation with bulk density (Figure 1 (b) in the SI.1) and a significant 

effect on both bulk density and the organic matter along the transect. Soil bulk density 

was increased with a similar manner to the GWC along the transect, reflected to the water 

run-off from the sides of the PV panels frame as well as the pools created at the front of 

the southern panel edge (Figure 1 (a) in the S.I.1). 

These water pools might have a long-term effect on the soil porosity and the organic 

matter (Clinton, 2003; Gavin and Agnew, 2000), thus suggests further investigation. 

Finally, there was a negative correlation between bulk density and organic matter, as 

found in other studies (Keller and Håkansson, 2010; Gao et al., 2012; DelVecchia et al., 

2014): as soil bulk density decreased, the organic matter increased. This pattern is 

attributable to compaction (Saini, 1966) and increased litter and soil decomposition 

caused by vegetation removal (Dagar and Tewari, 2017). 

1.5.3 H3. LAI vary spatially and seasonally due to shading and 

grassland management 

LAI, which is an indicator of vegetation productivity, was as high as in many other 

grasslands, with the mean ranging between 2-6 (Li et al., 2016). Overall, LAI did not vary 

through the solar park despite the known regulation of plant processes by climate and the 

observed differences in microclimate within the site. Specifically, the microclimatic 
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spatio-temporal variability and the evaporation, precipitation as well as soil and air 

climate in general, are known to directly affect vegetation and also indirectly due to 

effects on soil quality (bulk density and organic matter; (Gavin and Agnew, 2000; Liu 

and Luo, 2011; Davidoff and Selim, 1988; Song et al., 2013; Fowler and Brown, 1994).  

As mentioned above, during the growing season the soil under the PV panels was wetter 

compared with the gap (Figure 1.6), providing more water for plant growth (Gavin and 

Agnew, 2000; Gupta et al., 2015). However, under was also cooler (low soil temperature) 

and PAR receipt also lower, which is generally associated with lower productivity in 

temperate environments (Hatfield and Prueger, 2015; Acevedo, 2002). Despite these in 

this temperate UK solar park, the LAI of NT (dead vegetation; dry or decomposed on the 

ground) was similar regardless season, and LAI of T vegetation was increased out of 

season.  

Further with regards to PAR, research suggests that exposure to direct solar radiation can 

damage plants growth (Hatfield and Prueger, 2015) and diffuse light can sometimes be 

used more efficiently by plants; shade tolerant species (Li et al., 2014). In addition, 

depending on the season and the species, there is a specific amount of PAR that the 

species need to photosynthesize. The amount of daily PAR requirements for grassland 

species based on those found at Westmill solar park (Plant species survey; Table 5 in 

SI.1) is estimated around 200-230 μmol mˉ² sˉ¹ (quite same with the PAR findings under 

panels) and thus saturation will not have occurred under the PV panels (Unruh, 2015). 

Lack of difference in LAI ratios for T and NT leaves during growing and out of growing 

season is also attributable to differences in vegetation species, with shade tolerant species 

dominating under the panels and shade intolerant species dominating in the gaps (e.g. 

Trifolium repens, sensitive to shade, Plantago lanceolata semi-tolerant). The plant 

species survey that was undertaken from May to September 2015 (Table 5 in SI.1) showed 
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the prevalence of Poa annua and Festuca ovina and rubra (both family Poaceae), 

growing under the panels. Festuca rubra, is also a species that has proven to grow well 

under trees (agroforestry). Poa annua is a known shade tolerant species (Vargas and 

Turgeon, 2003), while Festuca ovina is known for its moderate tolerance to shade but 

excellent tolerance in cold environments (Ogle et al., 2010).  

A previous study has shown that for some crops shade conditions (and all the 

microclimatic turbulence this creates), could be ideal and increase crop yields of specific 

species (Marrou et al., 2013b; Marrou et al., 2013c). Also, Marrou et al. (2013a), 

measuring the leaf area index of lettuces under shade treatments, reported that it was 

increased despite the decrease in the number of leaves of each lettuce (Marrou et al., 

2013a). This raises the question with regards to morphology and size of the leaves in this 

study. Whilst individual leaf dimensions were not assessed, the leaves of Platango 

lanceolate (broad leaves; appearing mostly at the gap), could vary more compared to 

Festuca ovina (clustered needle leaves; appearing under and at the gap) but further 

research is required. These difference in vegetation composition further explains why LAI 

did not vary reflected to spatial differences in soil and air temperature in the growing 

season was up to 3 °C, which is not assumed to strongly affect vegetation growth in a 

geospatially similar region (a  Netherlands grassland; Song et al. (2013)).  

Last, management of the solar park could have had an effect on the LAI. The park was 

grazed with sheep out of growing season and strips were cut at the southern and northern 

edges with machinery throughout the year. These solar park management actions 

occurred, when PV panels’ shading was a risk and not following a specific schedule. 

Therefore, any assumptions were made carefully, because even though grazing is a typical 

management practice, lack of management and control of the grazing could alter 
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vegetation density (canopy; LAI) and microclimate drivers (Song et al., 2013; Klein et 

al., 2005).  

Consequently, apart from high moisture content and precipitation and low air 

temperatures out of growing season, the high LAI ratios of T vegetation could be 

explained by the fact that sheep grazing periods were not enough. It was anticipated and 

would be interesting to investigate in the future, the potential of sheep showing preference 

on vegetation lying under the panels or at the vegetation species at the gap In addition, It 

is strongly suggested that in any multi-land use schemes, in this case a land hosting live-

stock and a solar park, should follow a framework to manage this new type of ecosystem 

based on the subsequent species growing or been cultivated post-construction, in favour 

of food and energy supply from the same land unit (BRE, 2013; 2014).  

1.5.4 H4. GHG fluxes will vary temporally and spatially within solar 

parks 

GHG fluxes are influenced by microclimate, soil microbial communities and vegetation 

(Liu et al., 2015; Rochette et al., 1991).  As microclimatic and soil physical properties 

varied spatio-temporally and LAI varied temporally, it is assumed that CO2 ecosystem 

exchange and H2O vapor would differ. Both under and gap were sinks of CO2, which is 

the desirable result in order to achieve the reduction of CO2 gases sourcing to the 

atmosphere (Frank, 2005; Forster and Ramaswamy, 2007; UN, 2015; Thomas et al., 

2016). This finding contradicts the results from Armstrong et al. (2016), undertaken at 

the same site with a similar experimental design. Their study, conducted in 2013, 

identified the area under the PV panels as a source throughout the year except for January 

and the area at the gap as a sink throughout the entire growing season (May to August).  
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In our study both areas under and gap were mostly a sink of CO2 during growing season. 

These differences could be attributable to differences in annual conditions, as it is 

established that C sequestration could differ from year to year (Conant Richard et al., 

2017), thus the differences might also occurred due to this factor. Alternatively, it could 

be due to the choice of sampling days. Within this study, there was an obvious day-by-

day variation which supports the need of a day-by-day monitoring of those GHGs. For 

example, in June the area under on the 23rd was acting as a source and a day earlier as a 

sink (Figure 1.9 (a)). Similar daily differences were reported in early September, were on 

the 3rd the area under was acting as a source but as a sink on the 4th.  

Finally, the differences between fluxes in 2013 (Armstrong et al., 2016) and this study 

could be supported by the vegetation surveys of the two studies. The species differed, 

with fewer species found in this study, and there was more bare ground in 2013. 

Armstrong et al. (2016). Armstrong et al. (2016) research was conducted a year after the 

reseedings and as in any intervention, the system needs some time to adopt and recover 

(e.g. an agroforestry system needs up to five years to recover; (Morecroft et al., 1998; 

Yan et al., 2012)). It is known that in temperate grasslands the source of C after harvesting 

followed by a rapid LAI recovery, maintains C sinks during the summer (Novick et al., 

2004). However, the reduction in species richness could be also explained by the sampling 

area size because the collar area was smaller compared to the plots (1 m x 1 m area) by 

Armstrong et al. (2016). However, the plant species survey for our study was carried out 

throughout growing season (May to September 2015), and the reported areas were the 

actual collars from which the gaseous fluxes sampling occurred.  

The H2O vapor under the panels was lower than in the gap during the growing season. 

Marrou et al. (2013b) also showed H2O vapor decreased under more shade. During the 
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non-growing season, evapotranspiration was boarder line zero (the gap in November and 

under in December). Negative evapotranspiration values occur whenever rain exceed 

s evapotranspiration and thus soil moisture is increased (Wilcox and Sly, 1976). It was 

assumed that the increased soil moisture at the gap in November, also explained the 

sourcing of CO2, however it was not statistically supported. 

1.5.5 Interactive effects related to the Water-Energy balance in a solar 

park 

Given the variability and spatio-temporal differences between under and gap, and 

acknowledging that the observed climate aspects investigated for this study, (including 

air temperature, precipitation, soil moisture, evaporation), are related through the balance 

of incoming and outgoing energy combined with water at the surface, allowed us to also 

hypothesize critical interactive effects on energy and water balance in solar parks. It is 

assumed that in an already changed climate, seasonal and spatial differences in a solar 

park, especially of a large scale should be monitored, given their widespread deployment, 

as the effects on the local climate, are proportional to the potential effects on the global 

climate regulation. However, there are no studies (to our knowledge) investigating the 

potential impacts of an induced microclimate by solar parks at the water and energy 

balance, impacts which are acknowledged in this study. 

In particular, due to solar PV panels’ physical presence in the investigated UK temperate 

grassland and in particular the panels design, the observed water runoff creating water 

pools in front of the southern PV panels edge (oasis effect) and the water runoff from the 

panel sides reaching the soil under them, associated with the overall cooler air 

temperature and the lower PAR, under compared with the gap, resulted to lower 
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evaporation under for both growing and non-growing season. This observation implies 

direct effects on the water and energy balance under the panels. 

In addition, vegetation cover is known for its ability to influence the exchange of energy 

and water vapor between the land surface and the atmosphere (Bonan, 2008). Results with 

regards to the LAI in this UK temperate grassland solar park, showed that the area under 

regardless of season, demonstrated constantly higher ratios compared to gap (for both 

green/transpired and decomposed/non-transpiring leaves, T and NT respectively), despite 

the lower PAR. Moreover, the water vapor results demonstrated fluxes close to zero in 

growing season and below zero out of growing season. However, similar results, with 

minor differences were observed at the gap. The soil surface at the gap, received higher 

ratios of PAR, the air temperature was warmer compared to under but water vapor fluxes 

and the NEE were similar throughout the season. Thus, it was anticipated that the plant 

cover (LAI) played a major role, regulating water and energy balance in this solar park.   

Plant cover directly impacts the soil microclimate through modifications of near‐ground 

solar radiation and soil temperature, and these interactive effects are relevant for key 

ecohydrological processes such as soil evaporation. Changes caused by vegetation cover 

in soil microclimate are season dependant (Villegas et al., 2010), ecosystem dependant 

(Armstrong et al., 2014a) and also are related to plants morphology and physiology. 

Vegetation strongly affects the amount of net solar radiation that is reflected by the soil 

surface, the partitioning of net radiation into sensible and latent heat fluxes, the rate of 

precipitation recycling and the partitioning of precipitation into soil moisture, 

evapotranspiration, and runoff  (He et al., 2010). 

All the above, implied effects on soil physical properties including soil bulk density and 

organic matter, but also imply further impacts on the water and energy balance in the 

investigated UK temperate grassland hosting a solar park. The negative correlation 
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between bulk density and organic matter as generally proven in several studies (Keller 

and Håkansson, 2010; Gao et al., 2012; DelVecchia et al., 2014): as soil bulk density 

decreased, the organic matter increased, was attributable to compaction (Saini, 1966) and 

increased litter and soil decomposition (Dagar and Tewari, 2017). As a matter of fact, the 

LAI of non-transpiring (decomposed) leaves, regardless of season, was higher under the 

panels compared to the gap, increasing litter decomposition and thus explaining the 

higher NEE ratios under than the gap (both locations mostly negative regardless season; 

sink of CO2).   

The percentage of organic matter under the panels was approximately 3% higher than the 

gap, which does not imply major differences between the two locations. However, it was 

anticipated that for the effects on soil physical properties, the observed microclimatic 

differences and the vegetation cover between under and gap, would also have a major 

effect on C cycling. Temperature, soil moisture and PAR are some of the key drivers of 

biosphere C cycling, with changes in temperature generally positively related to primary 

productivity and organic matter decomposition rates and the uptake and release of CO2 

and CH4, always ecosystem and climate season dependant. Effects of solar park 

microclimate on C cycling have been assessed by Armstrong et al. (2016). Their study 

found no spatio-temporal differences related to soil physical properties. Although, in our 

study organic matter showed a positive relationship with air and soil temperature under 

and at the gap and thus an effect on the water-energy balance is anticipated.  

Consequently, it should be possible to design solar parks to induce desirable 

microclimatic niches for ecosystem processes and mitigate crucial perturbations at the 

energy and water balance in a solar park’s ecosystem. These feedbacks should be further 

investigated to quantify and establish the causes. 
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1.6 Conclusion 

Energy is essential for domestic and commercial needs and the demand is projected to 

increase. The expansion of solar PV installations around the globe, represents a 

significant land-use change. Therefore, it is crucial to provide scientific information on 

potential ecosystem impacts in the host environments. The spatial and temporal variations 

of the microclimate are crucial for the general understanding of solar park ecosystem 

response (Liu and Luo, 2011). The quantified spatio-temporal variability in microclimatic 

aspects exhibited complex relationships with soil physical properties, LAI and GHG 

fluxes. These interactive effects observed in the induced microclimate caused by the 

physical presence of the solar park, suggest a variety of impacts on the water and energy 

balance in the park dependant to space and time. In an already changing climate, impacts 

as such highlight the need for urgent assessment, given the wide deployment of large-

scale solar infrastructure across the globe. Better resolution of spatio-temporal 

microclimatic response in solar PV parks in different climatic zones and ecosystem types 

is required so that the full consequences of the growing land-use changes are understood. 

This will provide information for future solar PV park construction and management.   
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2 Chapter 2: Simulating the 

impact of a Solar 

Photovoltaic Park on a 

Grassland’s Thermal 

Behaviour 

2.1 Abstract 

Ground-mounted solar photovoltaic (PV) panels are widely installed on grasslands. 

Grasslands are critical global ecosystems as they supply many ecosystems services, 

including carbon (C) storage. Soil temperature is the primary controller of many 

important ecological processes, including productivity and decomposition, the balance of 

which determines the carbon source-sink status. Despite this, the impact of solar PV 

panels on grassland soil temperatures is poorly resolved. In this study, a pseudo-three-

dimensional (3D) physically based, spatial explicit numerical model was built, to simulate 

soil temperatures in a solar PV park in Wiltshire, UK. The HIS-PV (Heat In the Solar PV 

park) model simulated soil temperatures from standard meteorological data (SMD) and 

was evaluated against spatio-temporally explicit soil temperature measurements. Under a 

diverse range of meteorological conditions, the HIS-PV model provided a good 

representation of observed soil temperatures with root mean square errors (RMSE) of 1 

°C - 1.5 °C. Sensitivity analysis assessing the potential effect of volumetric water content 

and surface resistance variations as well as the leaf area index (LAI) on soil temperatures 

was performed. Dense canopies and zero surface resistance increased model errors during 
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growing season and low dense canopies decreased model errors during post-growing 

season periods. Errors varied temporally, with extreme errors reaching 3 °C in some 

evenings of the tested periods. HIS-PV provides the foundation of a modelling tool to 

explore the impact of solar PV parks on soil temperatures and their associated ecosystem 

services across the world. 

Keywords: ground-mounted solar park, photovoltaic, grasslands, numerical modelling, 

soil temperature, sensitivity analysis, surface resistance, volumetric water content, leaf 

area index 

2.2 Introduction 

Conventional energy resources lead to several environmental impacts such as greenhouse 

gases emissions, air and water pollution and are the dominant cause of climate change 

(Asif and Muneer, 2007; Evans et al., 2009). The need for an energy transition to 

renewable resources is urgent (UN, 2015) and solar energy is one of the most widely 

applicable renewable sources (Kamat, 2007; IEA/WEO, 2017; EIA, 2016). Globally, 

solar photovoltaic (PV) demand is expected to reach around 106 GW (from rooftop and 

ground-mounted), with ground-mounted reaching 33.1 GW only in China (currently 

world leader in solar energy capacity) by the end of 2018 (RECP, 2018). In the UK, 

ground-mounted solar PV installations (hereinafter referred to as solar parks) covered an 

area of 100 km2 agricultural land in 2016 (Capell, 2016). Solar parks are primarily 

deployed on pasture or low grade arable land and subsequently managed as grasslands 

(BRE, 2013).  

Solar parks have been found to alter the local climate, with significant effects on soil 

temperature and other microclimatic drivers such as solar radiation fluxes. The magnitude 

of change in soil temperature is particularly high, with differences of up to ~ 4 °C between 
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the areas under and at the gap of the solar PV panel rows (section 1.4.1.2 in chapter one 

of this thesis and Armstrong et al. (2016)), caused by perturbations to the surface energy 

balance. The PV panels reduces incoming direct short wave (SW) and outgoing long-

wave (LW) radiation fluxes by the soil under them (Hassanpour Adeh et al., 2018; Marrou 

et al., 2013b; Yang et al., 2017; Hu et al., 2015). These spatial variations in radiative 

fluxes balance directly impact subsurface soil temperature, a crucial regulator of 

grassland productivity  and decomposition processes with implication for carbon (C) 

sequestration (Liu and Luo, 2011; Teasdale and Mohler, 1993; Thornley et al., 2006). The 

perturbations to the surface energy balance (including net sensible and latent heat fluxes) 

will also affect evapotranspiration (ET). 

Perturbation to the surface energy balance, caused by solar parks, affect ecosystem 

processes and properties, including photosynthesis, net ecosystem exchange (NEE), leaf 

area index (LAI) and plant diversity and productivity (Armstrong et al., 2016; Armstrong 

et al., 2014a; Barron-Gafford et al., 2016; Marrou et al., 2013b; Marrou et al., 2013a). For 

example, Armstrong et al. (2016), demonstrated that microclimate and vegetation 

management of a solar park induced changes on plant diversity and above ground 

biomass, with above ground biomass under the PV panels 25% of that in control areas. 

Further, photosynthesis and NEE varied and were correlated to microclimate, 

management and soil properties. Marrou et al. (2013a) investigated the consequences of 

solar parks on crop productivity, including lettuce species. They found that lettuce yield 

was maintained but the LAI per plant was increased under the PV panels while the number 

of leaves decreased. Following that, Marrou et al. (2013b), found that changes in soil 

temperatures had an effect on the leaf emission rate of cucumbers and lettuces, and 

suggested that the focus should be on the mitigation of light reduction as well as strategic 

plant selection to optimise the productivity of agrivoltaic schemes (mixed systems 

comprising food and energy production from the same land unit).  
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Considering the global importance of grasslands, and the wide spread of solar parks 

around the world, it is important to resolve the potential impacts on microclimate as this 

will regulate key processes and ecosystem service provision. Considering the cost of and 

time required for field instrumentation across a range of ecosystems and climates, a 

modelling approach to predict local climate impacts is appealing. A model that predicts 

soil temperature would be very valuable as this is the primary controller of grassland 

ecosystem function and carbon dynamics. In rural environments, modelling approaches 

were used to evaluate the optimal placement of solar PV units and there is understanding 

of the impacts of roof-mounted PV panels on urban temperatures (Calvert and Mabee, 

2015; Sánchez-Lozano et al., 2013; Sánchez-Lozano et al., 2014; Uyan, 2013). However, 

to date, there is no modelling tool available to explore soil temperatures through solar 

parks. 

2.2.1 Research aim 

Given the wide spread deployment of solar parks and the poorly resolved impacts on local 

climatic conditions that regulate ecosystem functions, the aim of this study was to develop 

and evaluate a physically based, spatially explicit solar park soil temperature numerical 

model (HIS-PV, Heat In the Solar PV park). The following objectives were addressed, 

within an exemplar UK grassland solar park:  

O1. Construct and parameterise a physically based numerical model to simulate grassland 

soil temperature.  

O2. Evaluate the performance of the HIS-PV model for simulating spatiotemporal 

variation in soil temperatures. 
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O3. Determine the sensitivity of simulated soil temperatures at 10 cm depth to variations 

in key model parameters surface resistance rs, volumetric water content (VWC) and LAI 

under different meteorological conditions. 

2.3 Methods 

2.3.1 HIS-PV model Description 

HIS-PV is a pseudo-three-dimensional (3D) physically based, spatial explicit numerical 

model, based on the soil temperature models by Kettridge et al. (2008; 2013). The model 

was coded in Fortran compiled imperative programming language that is especially suited 

to numeric computation using NAG builder 6.1 environment (NAG, 2018). Our model 

was framed as a soil temperature model with an associated surface boundary layer (Figure 

2.1) with a timestep established at 30 seconds for simulations conducted for five 10-day 

periods.  
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Figure 2.1: Virtual description of the model’s incoming and outgoing radiation and 

energy balance components. K↓, the direct beam solar radiation, K↓dir, direct short-

wave radiation, K↓dif, diffuse or scattered short-wave radiation, L↑, outgoing long-

wave radiation, L↓ incoming long-wave radiation, E, evaporation, H, heat flux, QHs, 

sensible heat flux and ET, for evapotranspiration. Subscripts for each energy layer 

were used with s, accounting for surface, c, for the canopy and f, for the PV panels. 

Subsurface for node depths also illustrated and q, to describe the conduction 

between the soil profile cells. 
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2.3.1.1 Soil subsurface model component 

A 2D sub-model simulated the subsurface energy transfer and storage along a linear 

transect running perpendicularly top four PV panel rows of known dimensions (Figure 

2.3b). The energy transfer simulated a 1 m deep profile composed of 19 vertical nodes. 

Node separation increased with depth ranging from 0.005 m at the soil surface to 0.1 m 

at a depth of 1 m. Horizontally, the transect was discretised into 100 nodes at an interval 

of 0.50 m. Subsurface energy transfer occurs through heat conduction, advection of 

vapour and advection of liquid. In the HIS-PV, energy transfer by conduction (𝑞; W/m²), 

was simulated between adjacent nodes (vertically and horizontally), and was based on 

Fourier’s Law: 

𝑞 = −𝑘 
𝑑𝑇

𝑑𝑧
 (1), 

where, 𝑇 is the temperature gradient measured in (Kelvin), 𝑧, is the soil depth in (m) and 

𝑘, is the thermal conductivity in (W ∙ m-1 ∙ K-1).   

Thermal conductivity is calculated by Farouki (1986): 

𝑘 = (𝑃 − 𝜃)𝑘ₐ + (𝑓ₒ + 𝜃)𝑘ₒ
(

𝑓ₒ

𝑓ₒ−𝜃
)
𝑘𝑤

(
𝜃

𝑓ₒ+𝜃
)
 (2), 

where, 𝑃, is the soil porosity, 𝑓ₒ is the volumetric fraction of organic matter (subscript o), 

𝜃, is the volumetric water content (VWC) and the subscripts 𝛼 and 𝑤 represent the air 

and the water, respectively. 

Vapor transfer, was calculated in accordance with Krischer and Rohnalter (De Vries, 

1963), where, 𝑘  from equation (2), was assumed to be equal to the vapor transfer 

parameter  𝑘𝑣, measured in (W ∙ m-1 ∙ K-1), 

𝑘𝑣 =
𝐿𝑣𝜅𝑃

𝑅𝑇(𝐴−𝑝𝑤𝑠)

𝑑𝑝𝑤𝑠

𝑑𝑇
  (3), 
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where 𝐿𝑣, is the latent heat of vaporization of water (J · kg-1), 𝑅, the gas constant for water 

vapour (J · kg-1 · K-1), 𝜅, the diffusion coefficient of water vapor in the air (m²/sec), 𝐴, 

the atmospheric pressure of the air in (Pa) and 𝑝𝑤𝑠 the saturated vapor pressure in (Pa). 

Advection of liquid is assumed to be non-significant in accordance with Kettridge and 

Baird (2008). The implication of this simplification will be considered within the 

evaluation of the model performance (section 2.5.3). 

Volumetric heat capacity 𝐶𝑠 (J · m-3 · K-3) of soil, was calculated by: 

𝐶𝑠 = 𝜃𝑜𝐶𝑤 + 𝑓𝑜𝐶𝑜 + 𝑓𝑚𝐶𝑚 + 𝑓𝑎𝐶𝑎 (4), 

2.3.1.2 Boundary layers 

The basal soil temperature was assumed constant and equal to the annual average of soil 

temperature of the solar PV park at a depth of 10 cm depth; equal to 10.4 °C (Oke, 1987; 

Florides and Kalogirou, 2007). Zero energy transfer was assumed at the sides and ends 

of the simulated transects as this would result in small errors at the ends of the transects. 

As such, analysis of the model considered only the nodes within the central solar PV panel 

rows at a distance greater than 35 m (out of 100 m transect length) from the boundary. 

The model was applied to simulate soil temperatures through the centre of solar PV arrays 

and thus transfer from the sides are considered negligible. 

2.3.1.3 The three-layers design 

The ground heat flux to the surface (top) of the soil profile (𝑄𝑠; W/m2) was calculated 

from the surface energy balance of each surface node along the transect. HIS-PV model 

was designed in a manner where three energy exchanging layers were considered. These 

layers are the soil surface, the vegetation canopy and the solar PV panels. The model 
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simulated all primary fluxes acting on the soil surface (subscript s) considering the 

existence of these three layers. At the soil surface: 

𝑄𝑠
∗ = (1 − 𝑎)𝐾𝑠 + 𝐿𝑠

∗ = 𝑄𝐸𝑠 + 𝑄𝐻𝑠 + 𝐺𝑠 (5), 

where, 𝐾𝑠
∗ (W/m²), is the net SW solar radiation, 𝐿𝑠

∗  (W/m²), is the net LW solar radiation.  

2.3.1.3.1 Short-wave (SW) radiation (𝑲𝒔
∗) 

Incoming SW radiation above the solar PV panels (subscript 𝑓), 𝐾𝑓 ↓ , derived from 

measured data (section 2.3.3.2), and was equal to: 

𝐾𝑓 ↓= 𝐾𝑓 𝑑𝑖𝑓 ↓  + 𝐾𝑓 𝑑𝑖𝑟 ↓ (6), 

where, dif, the diffuse and dir, the direct radiation, respectively (Figure 2.1). The 

incoming SW radiation of the vegetation canopy layer below the solar PV panels 

(subscript c), is a function of 𝐾𝑓 𝑑𝑖𝑓 ↓ and  𝐾𝑓 𝑑𝑖𝑟 ↓ (W/m²).  𝐾𝑓 𝑑𝑖𝑟 ↓ was calculated for 

each position along the transect assuming a linear solar ray path between the position of 

the sun and the vegetation canopy surface. If this vector intercepts the PV panels 

(represented as defined planes in 3D space above the surface of the solar PV park; Figure 

2.1), then the location was assumed to be in shade and 𝐾𝑐  𝑑𝑖𝑟 ↓ equals zero. If the ray 

does not intercept a panel then the location is in direct sunlight and thus 𝐾𝑐  𝑑𝑖𝑟 ↓ is equal 

to 𝐾𝑓  𝑑𝑖𝑟 ↓. 

The diffuse SW radiation received at the vegetation canopy surface 𝐾𝑐  𝑑𝑖𝑓 ↓ was assumed 

equal to: 

𝐾𝑐 𝑑𝑖𝑓 ↓ = 𝑉 ×   𝐾𝑓 𝑑𝑖𝑓 ↓ (7), 
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where 𝑉 , is the sky view factor, defined as the fraction of vectors between the canopy 

surface and equally position points across a hemispherical sky that do no intercept the 

defined panels (Essery et al. (2008), for further details). 

The incoming SW solar radiation at the surface layer, was calculated considering Beer’s 

Law where: 

𝐾𝑠 ↓= 𝐾𝑐 ↓ exp(−𝜅 𝐿𝐴𝐼) (8), 

where κ, is the light extinction coefficient and LAI, is the leaf area index. The outgoing 

SW radiation from the soil surface is equal to: 

𝐾𝑠 ↑= 𝑎𝐾𝑐 ↓ (9), 

where α, is the albedo (unitless). 

2.3.1.3.2 Long-wave (LW) radiation 

Total incoming LW solar radiation above the PV panels, (W/m²), was calculated in 

accordance with the Stefan-Boltzmann equation (Brock and Arnold, 2000): 

𝐿𝑓 ↓= 𝜀∗𝜀𝑠 𝜎𝛵𝛼
4  (10), 

where, σ, the Stefan-Boltzmann constant (= 5.670374419 x 10-8 W ∙ m-2 ∙ K-4), Ta, was 

the absolute air temperature (Kelvin) and, 𝜀𝑠  is the surface emissivity and 𝜀∗ , is the 

effective emissivity of the sky, calculated by Arnold et al. (1996): 

𝜀∗ = (1 + 𝜆𝑛)𝜀0         (11), 

where 𝜀0 is the clear sky emissivity (= 8.733 x 10 𝛵𝛼
0.788). The cloud cover, 𝑛 (unitless), 

is calculated for the incoming 𝐾𝑠
∗ solar radiation, and 𝜆, is a constant dependant on the 
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cloud type which was equal to 0.26 following Braithwaite and Olesen (1990) and 

according to Brock and Arnold (2000), representing the average of all cloud types. 

Incoming LW solar radiation on the surface, 𝐿𝑠 ↓ , was calculated from Stephan-

Boltzmann’s Law and Beer’s Law: 

𝐿𝑠 ↓= 𝜀𝑠Vexp(−𝜅 𝐿𝐴𝐼) 𝐿𝑓  ↓  (12), 

where, 𝜀𝑠, is the surface emissivity, 𝐿𝐴𝐼 the leaf area index and the view factor V, equal 

to the SW radiation.  

Outgoing LW from the soil surface 𝐿𝑠 ↑, was calculated from Stefan-Boltzmann Law and 

Beer’s Law: 

𝐿𝑠 ↑ = 𝜀𝑠
∗𝑉𝜎𝛵𝑠

4 exp(−𝜅𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝐿𝐴𝐼)  (13), 

Solar PV panels vegetation and the soil surface were assumed to be similar in temperature 

and therefore the LW radiation fluxes between these components are for simplicity 

excluded from model simulations. 

2.3.1.3.3 Turbulent fluxes 

The latent heat flux for evaporation is 𝑄𝐸𝑠 (W/m²), and was calculated in accordance with 

the Penman-Monteith equation (Oke, 1987): 

𝑄𝐸𝑠 =
𝐿𝑣𝑠(𝑇𝑠−𝑇𝑎)+𝐿𝑣𝑣𝑑𝑑𝑎

𝑟𝑎+𝑟𝑠
 (14), 

where, 𝑇𝑎 (Kelvin) is the air temperature, s, is the slope of the saturation vapour versus 

temperature curve (kg/m³ · K), 𝑣𝑑𝑑𝑎, is the vapour density deficit of air (kg/m³), 𝑟𝑎, is 

the aerodynamic resistance (m/sec) and 𝑟𝑠, is the surface resistance (m/sec). 
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The sensible heat flux 𝑄𝐻𝑠 (W/m²) at the surface, was calculated using Newton’s Law of 

cooling: 

𝑄𝐻𝑠 =
𝐶𝑎(𝑇𝑠−𝑇𝑎)

𝑟𝑎
 (15), 

where, 𝐶𝑎, is the heat capacity of air. 

For the HIS-PV model, the 𝑟𝑎𝑇 is the sum of two resistances, the one above, and the one 

under the PV panels’ layer (Kettridge et al., 2013). The total aerodynamic resistance 𝑟𝑎𝑇, 

(m/sec) according to Kettridge and Baird (2008), is equal to: 

𝑟𝑎𝑇 =
ln (

𝑧𝑟−𝑑

𝑧0𝑚
)2

𝑘2𝑢𝑟
  (16), 

where,  𝑧𝑟, is the reference height above the ground surface (m), 𝑑, is the displacement 

height (m),  𝑧0𝑚, is the roughness length of momentum transfer (m), k is the von Karman 

constant (m) and 𝑢𝑟 is the wind speed at the data loggers’ sensor height (m/sec).  
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Figure 2.2: HIS-PV model input and output illustration comprising the Price and 

the HIP models by Kettridge and Baird (2008) and by Kettridge et al. (2013), which 

built was thoroughly described in chapter two of this thesis. 

2.3.2 HIS-PV model Parameterization 

2.3.2.1 Site and data collection 

The study was undertaken at Westmill Solar Park, Wiltshire, UK (51° 37' 03'' N 01° 38' 

45'' W, altitude 100-106 meters; Figure 2.3a Westmill Solar Farm (2011)). The 5 MW 

capacity solar park was installed in 2011 on a low-grade arable land. The park had a 

parallelogrammical design, formed by 36 PV panel rows to the west and 33 rows to the 

east of a central north-south passageway. The area under the PV panels was 29,000 m², 

the gap area between panel rows was 58,000 m², and the area between the PV panels and 
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boundary fence 34,000 m². The grassland was sheep grazed in the winter and a 1.5 m strip 

mowed at the northern and the southern edges of each panel row twice annually to prevent 

shading of the panels. 

 

 

Figure 2.3: (a) The construction map showing the location of the 12 micro-

meteorological stations. The stations at the gap were marked with X for the gap (G), 

Δ for the control (C) and O represents the plots under (U) the panels. Symbols ▲ 

and ● represent the stations with a total and diffuse sunshine data logger installed. 

The entrance was located at the northern border of the park. Temperature strings 



Chapter 2: Simulating the impact of a Solar Photovoltaic Park on a Grassland’s Thermal Behaviour 

Maria Makaronidou - June 2020   79 

were also installed within stations U2, G4 and C3 plots. Blue thick lines showing the 

location of the five linear transects. (b) The linear transect experimental design. 

2.3.3 High frequency logged measurements 

2.3.3.1 Initial conditions for soil temperature 

In order to assess the temporal and spatial explicit performance of the model, standard 

meteorological data (SMD) as well as soil properties and LAI, were measured for one 

year, (March 2015 to March 2016), in Westmill solar park (Figure 2.3b). Initial conditions 

were set using the soil temperature datasets obtained at stations U2 (U for under the 

panels) and C3 (C for control areas away from the panels; Figure 2.3b). Soil temperatures 

at six depths (surface, 0.03 m, 0.07 m, 0.15 m, 0.3 m and 0.5 m) through the soil profile 

were interpolated from soil temperature strings, from stations G4 (G for gap between PV 

panel rows), U2 and C3 (Figure 2.3a). 

2.3.3.2 Standard Meteorological data (SMD) 

SMD were collected from four randomly selected plots under the PV panels (hereinafter 

referred to as under), four plots between panel rows (hereinafter referred to as gap) and 

four control plots (Figure 2.3a). At each plot soil temperature (°C; 10 cm below the 

surface), volumetric water content (VWC in m³/m³; 10 cm below the surface), relative 

humidity (RH%; 0.5 m above the surface), wind speed (m/sec; 1.5 m height) and air 

temperature (°C; 0.5 m above the surface), were measured. Furthermore, total and diffuse 

photosynthetic active radiation (PAR, in μmol∙m-2∙s-1; 1.3 m above the surface) were 

recorded from one plot under (U2; Figure 2.3b) and one plot at the control (C3), with a 

sunshine sensor (BF3 sunshine sensor; Delta-T Devices (UK-a)) installed parallel to the 

soil surface at 1.3 m height. Conversion to W/m², was performed by equations provided 
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in the User Manual for Sunshine Sensor type BF3; Appendix A: Conversion to 

Appropriate Units, Delta-T Devices (UK-a).  

2.3.4 Spatially explicit instantaneous transect measurements 

To assess the spatial variability of soil temperature and parameterize input model 

components, five linear transects of 11.25 m length with 15 equally distributed points at 

an interval of 0.75 m (total sampling points n = 75) running perpendicular between two 

PV panel rows were established (Figure 2.3b). The spatial location of these transects was 

randomly selected within the solar park. At each of the transects soil and air temperature, 

PAR, soil moisture, soil properties (bulk density and organic matter) and LAI were 

measured along the transect. Measurements were taken during eight sampling periods 

between two to five days in duration, spread between March 2015 and March 2016 (for 

further details regarding the field campaigns see Table 1.1in chapter one of this thesis).  

2.3.4.1 Handheld microclimate metrics 

Soil moisture (VWC in m³/m³, 6 cm below surface) was measured using a theta probe 

(MM3 Theta Probe Soil Moisture Sensor, (Delta-T Devices, UK-b). PAR (in μmol mˉ² 

sˉ¹; above vegetation canopy) was measured using a SKR 110 Red/Far-Red pyranometer 

sensor with the SKR100 display meter (Skye Instruments, UK). Soil and air temperature 

(°C; 10 cm below the surface and above the vegetation canopy, respectively) were 

measured using two Superfast Thermapen (Global FSE, UK). Soil and air temperature, 

PAR and VWC, were measured during every sampling period, from all 75 sampling 

points two to three times per day (in the morning (M), afternoon (A) and evening (E); 

Table 1.1 in chapter one of this thesis). 



Chapter 2: Simulating the impact of a Solar Photovoltaic Park on a Grassland’s Thermal Behaviour 

Maria Makaronidou - June 2020   81 

2.3.4.2 Soil physical properties 

Soil bulk density and organic matter were determined from soil samples collected at the 

start of the field season (30th and 31st of March 2015). Soil samples were collected from 

each of the 75 sampling points using a bulk density steel core of 7.5 cm diameter and 5.5 

cm height (core volume = 242.86 cm³). Bulk density was determined, by drying samples, 

at 105 °C until constant weight. Stones were excluded from bulk density measurements 

given the high stone content of the soil cores. Stones were separated by sieving and stone 

volume determined through the Archimedes’ principal (Lang and Thorpe, 1989) and the 

soil densities derived by Emmett et al. (2008). Organic matter was determined by loss on 

ignition (LOI) method, using a muffle with 10 g of oven dried soil (at 105 °C) at 375 °C 

for 16 hours (Emmett et al., 2008). 

2.3.4.3 Soil surface properties 

Soil properties (soil water, organic and mineral content) were assumed spatially and 

temporally constant during model simulations. Thus, for the initialization of the HIS-PV 

model, volumetric water content was set at 0.35 m3/m3, the organic content at 0.05 g/m3 

and mineral content at 0.45 g/m3. The parameterization for soil surface properties 

including displacement height (d (m)), albedo (α), surface roughness (z0 (m)), emissivity 

(ε), surface resistance (rs (s/m)) for wet, moist and dry soils were parameterized based on 

existing literature (Table 2.1). 
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Table 2.1: Soil surface properties values used in the initial parameterization derived 

from existing literature. 

Variable Mean St. Dev. Publication 

d (m) 0.015 0.020 Jin and Liang (2006); Zeng and 

Dickinson (1998); Zeng and 

Wang (2007); Best et al. 

(2011); van de Griend and Owe 

(1994); Gavin and Agnew 

(2000) 

α 0.20 0.05 Mahfouf and Noilhan (1991); 

Kala et al. (2014); Allen et al. 

(1998) 

z0 (m) 0.021 0.022 Mahfouf and Noilhan (1991); 

Jin and Liang (2006); Zeng and 

Dickinson (1998); Businger et 

al. (1971); Deardorff (1974) 

ε 0.95 0.01 Mahfouf and Noilhan (1991); 

Jin and Liang (2006) 

rs (s/m) 

for wet soils 

0 0 Mahfouf and Noilhan (1991); 

Allen et al. (1998); Camillo and 

Gurney (1986); Gavin and 

Agnew (2000) 



Chapter 2: Simulating the impact of a Solar Photovoltaic Park on a Grassland’s Thermal Behaviour 

Maria Makaronidou - June 2020   83 

rs (s/m) 

for moist soils 

61.5 12.2 Allen et al. (1998); van de 

Griend and Owe (1994) 

rs (s/m) 

for dry soils 

500 71 Shuttleworth and Wallace 

(1985); Camillo and Gurney 

(1986) 

 

2.3.4.4 Leaf Area Index - LAI 

LAI was measured by harvesting all above ground biomass from a 40 cm² area at each 

point on the transect in May, June, October and December, representing the LAI during 

the start (May and June) and the end of growing season (October and December). During 

July and early September samples were collected from 1.5 m, 4.5 m, 7.5 m and 11.25 m 

distances on each transect, (Figure 2.3b representing the LAI at the peak of growing 

season. Samples were separated into NT (non-transpiring; dead) and T (transpiring; alive) 

vegetation, excluding plant stems. Two different methods were used to quantify the LAI. 

A conventional scanner and ImageJ software (Schneider et al., 2012) was used for May, 

June, July and early September and the LI-3100C Area Mater (LI-COR, 2017) for 

October and December. A post-hoc investigation was performed to evaluate and compare 

the two methods (R2 = 0.8). 

2.3.4.5 Sky view factor 

Solar PV panels within a 100 m x 100 m area were simulated using their real dimensions 

in the solar park. To evaluate the sky view factor for HIS-PV, photographs were taken 
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with a Nikon FC-E8 Fisheye Converter adjusted on a Nikon D60 camera and then 

analysed according to Frazer et al., (1999), using the Gap Light Analyser (GLA) software. 

2.3.5 HIS-PV model Evaluation 

The annual SMD records were examined and five periods with different meteorological 

conditions selected for model evaluation (Table 2.2). To examine the general 

performance of the HIS-PV model, two models with different parameterization were 

compared. One model was parameterized with SMD from the control plots (HIS-PV 

control) and one parametrised with SMD from the under and gap plots (HIS-PV u&g), 

(Table 2.3). The purpose of this was firstly to capture the potential of using the model to 

simulate effects in areas where there was no solar park SMD (i.e. where only the 

equivalent of control data is available) of any location across the world (e.g. control 

datasets). Secondly to demonstrate the model’s response to biases in the input data (Best, 

1998) by using under and gap SMD to simulate each location respectively. However, 

overall the differences between the two models were less than 1 °C (~0.9 °C under and 

~0.3 °C at the gap) by average and because there are no SMD broadly available from 

under and gap between the panels, only the HIS-PV control model was assessed and 

reported in this study (see SI.2 for results using the under and gap SM data). 
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Table 2.2: The five ten-day periods tested with the HIS-PV and their general 

microclimatic characteristics. Where, HT for the hottest, H for hot, C for cold, D for 

dry, W for wet, M moderate. Abbreviation s, for the periods in which spatial field 

metrics were also used in the analysis. DOY, stands for day of the year according to 

the Julian calendar for the period March 2015 to March 2016. 

Period DOY Mean Air 

temperat

ure (°C) 

Mean 

Wind 

Speed 

(m/sec) 

Mean RH 

(%) 

Net 

Precipita

tion 

(mm) 

Net SW 

radiation 

(W/m2) 

HTs 173-183 17.9 1.2 73.3 2.8 232 

HD 211-221 16.1 1.1 74.2 0 212 

CD 102-112 10.5 2 76.2 0 203 

CW 355-365 5.9 2.1 92.2 81.6 28.5 

MCs 268-278 10.6 0.7 85 1.6 134.4 

 

The surface properties were parameterized using the mean of the values found in the 

literature ( 

). The mean of T vegetation in the solar park within the entire sampling period (March 

2015-March 2016) was used for LAI. The VWC was parameterized differently depending 

on the datasets of the instantaneous measurements during each period, while mineral and 

organic content were kept constant (0.05 m³/m³ and 0.45 m³/m³, respectively) throughout 

as they were not expected to change drastically within a year. Initial soil temperature from 
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under (station U2; Figure 2.3(a) was used to start the simulation from under and the gap 

soil temperature (station G4; Figure 2.3(a) to start the simulation showing the soil 

temperature at the gap. In Table 2.3 the HIS-PV u&g model parameterization is reported 

as well. 

Table 2.3: HIS-PV models’ parameterization of SMD data, the initial soil 

temperature and the volumetric water content based on the logged measurements. 

Surface resistance parameterization based on precipitation data (wet or dry soils) 

and LAI parametrization based on instantaneous measurements. 

Model SMD Initial 

Soil 

Temper

ature 

VWC rs LAI 

Under Gap 

HIS- PV 

control 

control u&g 0.35 500 2.33 2.33 

HIS- PV 

u&g 

u&g u&g 0.20 500 3.50 2.99 

HIS- PV 

u&g 

u&g u&g 0.28 600 4.30 3.30 

HIS- PV 

u&g 

u&g u&g 0.34 600 1.10 1.10 

HIS- PV 

u&g 

u&g u&g 0.36 0 1 2 
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HIS- PV 

u&g 

u&g u&g 0.38 500 4.15 5.16 

2.3.6 Sensitivity analysis 

To evaluate the sensitivity of the model variations in LAI (tested values 0, 5 and 10), rs 

(tested values 0 s/m, 300 s/m and 500 s/m) and VWC (0.15 m3/m3, 0.3 m3/m3, 0.5 m3/m3), 

the HIS-PV control model was used. To quantify the impact of uncertainty in the inputted 

parameters given by the perturbations at the surface and their effects on soil temperature 

at 10 cm depth, the HIS-PV control was tested during the HTs and MCs periods (hottest 

and moderate cold periods, respectively). At each model run, one of the soil surface 

parameters (LAI, rs and VWC) was changed whilst the others were held constant. The 

results of the sensitivity analyses were reported separately for each tested model input 

component compared with the instantaneous data.  

2.3.7 Data analysis 

Statistical analysis was conducted using R programme language within the RStudio 

environment version 3.3.2 (RStudio, 2015; R Core Team, 2017). To evaluate the 

performance of HIS-PV control as well as the sensitivity of the model to the variability 

of LAI, rs and VWC, we compared the spatial distribution of the model with the mean of 

the logged and the instantaneous, at a soil temperature depth of 10 cm. The RMSE (root 

mean square error) used widely in environmental sciences on assessing predictive 

accuracy between measured and simulated data (Li, 2017; Li and Heap, 2011; Sándor et 

al., 2017; Phogat et al., 2016), was calculated and used as an indicator of the differences 

between measured and simulations. The lower the RMSE the better the model simulation.  

The packages that were used were scales (Hadley Wickham, 2017), ggplot2 (Hadley 
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Wickham, Winston Chang, 2016) and dplyr (Hadley Wickham, Romain Francois, Lionel 

Henry, Kirill Müller, (R Core Team, 2017)). 

2.4 Results  

2.4.1 O1. HIS-PV model evaluation 

2.4.1.1 Sky View Factor 

The model provided a reasonable representation of the sky view factor (RMSE = 

10.57%), although slightly overestimated along the transect, apart from sampling point at 

3.75 m (northern PV panel edge; described extensively at chapter one of this thesis; Figure 

2.4). At the last sampling point along the transect, the simulated sky view factor 

demonstrated a sharper decrease than for the measured (sampling point at the southern 

PV panel edge; also described extensively in chapter one of this thesis).  
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Figure 2.4: Sky view factor evaluation based on the relationship between measured 

(fisheye camera) and simulated along the linear transect.  

2.4.1.2 HIS-PV model evaluation with logged data 

HIS-PV predicted soil temperature well when compared with the logged data; overall the 

RMS errors did not exceed 1.23 °C under (MCs) and 1.06 °C in the gap (HTs; and Figure 

2.5). For all the tested periods the simulated temperatures under the panels were warmer 

than measured, apart from period HD (Figure 1 in the SI.2). The gap simulations were 

cooler apart from MCs and CW periods (daytime), both under and gap simulations 

performed similarly, with RMS errors ~0.30 °C (Figure 2.5 and Figure 3 in SI.2).  

Table 2.4: RMS errors between HIS-PV control and logged data of soil temperature 

at 10 cm depth 

 

 

 

Period HIS-PV control RMSE (°C) 

Under Gap 

HTs 0.65 1.06 

HD 0.52 0.95 

CD 1.18 0.99 

CW 0.26 0.30 

MCs 1.23 0.98 
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Figure 2.5: Comparison between simulated and logged soil temperature metrics 

during HTs the hottest and dry period and MCs the moderate cold period. 

2.4.2 O2. HIS-PV control model evaluation with instantaneous data 

The simulated data generally represented the instantaneous data taken along the transect 

in all periods. The model evaluation with the logged data demonstrated similar results 
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with the instantaneous where simulations under were warmer and at the gap cooler in the 

HTs period and both under and gap warmer in the MCs period. During the hottest (HTs) 

period, the simulated soil temperature along the transect was cooler than the instantaneous 

measurements at all three tested times of the day (TOD; Figure 2.6). For example, the 

RMS error in the morning was around 0.85 °C and increased in the afternoon (almost by 

1 °C) reaching a 2.30 °C RMS error at the evening of the 25.06.2015; simulated soil 

temperature was cooling down with the passing of the day. During a moderate cold (MCs) 

period, the simulated soil temperature demonstrated similar distribution along the transect 

as the instantaneous measurements, however it was overpredicting (warmer) with the 

errors ranging between 1 °C-1.65 °C. The simulation cooled down along 3 m-6.75 m 

overlapping or being in the standard error margins area the instantaneous during all tested 

days (Figure 2.6).  
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Figure 2.6: Period HTs and MCs, moderate cold, during morning, afternoon and 

evening illustrating the distribution of the means of the instantaneous (shaded blue 

area illustrating the standard error of the mean) and the simulations of HIS-PV 

model along the transect. RMSE indicating the error between the instantaneous and 

the simulation. 

2.4.3 O3. Sensitivity analysis 

The sensitivity analysis was performed assessing soil temperature simulations (10 cm 

depth) during periods HTs and MCs (hottest and moderate cold periods, respectively), 

during which instantaneous metrics were available (Figure 2.6 and Figure 2.7). The 

results of the sensitivity analyses were reported separately for each tested model 

component and the magnitude of change was reported comparing the values of RMS 

errors between simulated and measured (Table 2.5). 
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2.4.3.1 Sensitivity analysis during the hottest and driest period (HTs) 

During the hottest (HTs) period assessed, the different parameterization of LAI surface 

properties’ component, notably impacted soil temperature (Table 2.5). The simulations 

of soil temperature with denser canopies (LAI = 5 and LAI = 10) were cooler than when 

the actual LAI was used (LAI = 2.33), especially after ~ 4.5 m (gap area). The RMS errors 

increased gradually from morning to the afternoon and from the afternoon to the evening 

by approximately 1 °C-1.5 °C (Figure 2.7). With LAI=0, the simulations of soil 

temperature were similar to the instantaneous measurement, with an RMSE around 1.5 

°C in the morning which increased by 1 °C in the afternoon and then dropped to ~1.5 °C 

in the evening. Further, the simulated soil temperature (setting LAI = 0) was constantly 

warmer than the instantaneous metrics along the transect (Figure 2.7).  

The surface resistance had also an impact on soil temperature simulations when set to 

zero (wet soils; Table 2.5). The RMS errors where mostly driven by differences in the 

simulated and instantaneous soil temperatures in the gap.; the soil temperature predictions 

along the transect under the panels were similar to the instantaneous measurements 

(Figure 2.7). The simulation set to zero (wet soils) underestimated the instantaneous the 

most, compared with the rest of the different surface resistance parameterizations, 

especially at the gap (Figure 2.7). The RMS errors gradually increased from morning 

towards the evening by 0.5 °C. When parameterized as drier or dry soils (rs = 300 s/m and 

600 s/m, respectively), the soil temperature simulations where similarly distributed along 

the transect, underpredicting and the RMS errors compared with the instantaneous ranged 

from 1 °C-2.6 °C. 

The impact of volumetric water content (VWC) component on the simulated soil 

temperature was smaller compared to the effect of the LAI and surface resistance (Figure 

2.7). The simulated soil temperatures under the panels were similar to the instantaneous 
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measurements with the RMS errors driven by the changes at the gap (as for the surface 

resistance). The magnitude of the change on the soil temperature simulations, regardless 

of VWC parameterization, was ~1 °C in the morning, ~1.5 °C in the afternoon and 

between 2 °C and 2.5 °C in the evening. The RMS errors were increasing by 

approximately 0.5 °C-1 °C from the morning towards the evening. 
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Figure 2.7: Period HTs, sensitivity analysis of the LAI model component, the surface 

resistance component and the volumetric water content component. Comparison 

with the mean of the instantaneous metrics along the transect during three times of 

the day (morning, afternoon and evening). Shaded area illustrating the standard 

error of the mean of the instantaneous metrics.  

2.4.3.2 Sensitivity analysis during a moderate cold period (MCs) 

The simulated soil temperatures when LAI was set to zero, demonstrated the greatest 

RMS errors, along the transects, with increases of ~2.5 °C from the morning to the 

afternoon and then decreases of ~1 °C towards the evening (Table 2.5).  The simulated 

soil temperatures were warmer under the PV panels, cooler under the northern panel edge 

and warmer in the gap (Figure 2.8) during all times of day. The trends as well as the RMS 

errors were similar for both dense canopies (LAI = 5 and LAI = 10), during all three times 

a day (Table 2.5). Further the trends of soil temperatures with denser canopies remained 

constant along the transect (Figure 2.8). 
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The surface resistance parameter variation had a limited effect on the soil temperature 

simulations; RMS errors were ~1 °C-1.5 °C regardless of time of day (Table 2.5). All 

three tested values slightly overpredicted the instantaneous measurements and when 

parameterized for wet soils (0 s/m), the simulated soil temperatures were closer to 

instantaneous measurements (Figure 2.8).  

Variation in volumetric water content had limited effect on the soil temperature 

simulation (Figure 2.8). The RMS errors in the morning, afternoon and evening metrics 

were 1.2 °C-1.5 °C regardless of parameterization and the simulated soil temperatures of 

the wetter soils (VWC = 0.50 m³/m³) were closer to the instantaneous distribution along 

the transect. 
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Figure 2.8: Period MCs, sensitivity analysis of the LAI model component, the 

surface resistance component and the volumetric water content component. 

Comparison with the mean of the instantaneous metrics along the transect during 

three times of the day (morning, afternoon and evening). Shaded area illustrating 

the standard error of the mean of the instantaneous metrics. 
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Table 2.5: Sensitivity analysis RMSE report for periods HTs and MCs using the C. HIS-PV model (LAI = 2.33, rs = 500, VWC = 0.35) 

Period HTs 23.06.2015 

M 

25.06.2015  

M 

22.06.2015 

A 

23.06.2015 

A 

25.06.2015 

A 

22.06.2015 

E 

25.06.2015  

E 

Mean 

(Daily) TOD 

LAI=0 1.10 1.82 2.24 2.42 2.47 1.55 1.75 1.91 

LAI=5 1.59 1.91 1.61 2.41 3.29 2.31 3.82 2.42 

LAI=10 1.86 2.29 1.93 2.88 3.87 2.67 4.38 2.84 

rs=0 0.99 1.81 1.33 2.10 2.85 2.47 3.55 2.16 

rs=300 1.04 1.10 0.89 1.34 1.99 1.54 2.60 1.50 

rs=600 0.77 0.81 0.77 1.07 1.61 1.25 2.18 1.21 

VWC=0.15 0.59 0.63 0.66 0.78 1.22 1.21 2 1.01 
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VWC=0.30 0.80 0.84 0.75 1.05 1.61 1.29 2.22 1.22 

VWC=0.50 0.92 0.98 0.95 1.36 1.98 1.42 2.51 1.44 

Initial model 

parameterization  

0.84 0.88 0.80 1.17 1.71 1.32 2.29  

         

Period MCs 29.09.2015 

M 

30.09.2015 

M 

01.10.2015 

M 

29.09.2015 

A 

01.10.2015 

A 

28.09.2015 

E 

29.09.2015 

E 

Mean 

(Daily) TOD 

LAI = 0 3.15 2.70 1.94 4.16 4.71 3.57 2.82 3.29 

LAI = 5 1.39 0.76 0.98 0.97 0.95 1.12 1.08 1.03 

LAI = 10 1.47 0.86 1.10 1.08 0.95 1.31 1.22 1.14 
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rs = 0 1.07 0.39 0.39 0.91 0.88 0.78 0.69 0.73 

rs = 300 1.42 0.82 0.76 1.31 1.47 1.11 1 1.13 

rs = 600 1.61 1.04 0.98 1.53 0.72 1.32 1.21 1.20 

VWC = 0.15 1.72 1.15 0.91 1.96 2.18 1.40 1.28 1.51 

VWC = 0.30 1.57 1 0.90 1.56 1.75 1.29 1.18 1.32 

VWC = 0.50 1.55 0.96 0.99 1.26 1.44 1.15 1.06 1.20 

Initial model 

parameterization 

1.56 0.98 0.92 1.47 1.65 1.26 1.50  
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2.5 Discussion 

The HIS-PV model is the first to simulate variation in soil temperature within solar 

parks, predicting spatial variation at the 10 cm scale and temporal variation at 60-

minutes intervals. Both spatial and temporal variations in soil temperature predictions 

were well aligned with measured soil temperatures collected in a solar PV grassland in 

the UK. Moreover, the model was evaluated during five time periods with a diverse 

range of meteorological condition. The majority of the RMS errors between simulated 

and logged (temporally dynamic) were lower than 1 °C and between simulated and 

instantaneous (spatially distributed) were ~1 °C-1.5 °C. In addition, the sensitivity of 

the model to LAI, surface resistance and VWC using instantaneous measurements 

during warm and cold periods (HTs and MCs) demonstrated that the model was most 

sensitive to LAI and relatively not sensitive to surface resistance and VWC.  

Given this high sensitivity of the LAI, an opportunity for re-evaluating this component 

to a key driver of the HIS-PV simulations, arises. Limitations from inputting the LAI 

as a fixed parameter and not as a value of multiple ranges, for example adding different 

nodes of LAI ranging from 0-6 for a grassland with a 0.5 interval (i.e. 0,0.5,1,1.5 up to 

6), could be also assumed. Regardless, the HIS-PV model at this stage, has the potential 

to provide useful simulations under a range of diverse weather characteristics in a 

temperate UK grassland solar park. Therefore, it is anticipated that across a range of 

climates and meteorological conditions, will be further in place to provide useful insight 

to ecosystem response to this growing land-use change.  
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2.5.1 Sky View Factor model component 

The HIS-PV model successfully simulated the sky view factor on a linear transect 

running perpendicular between two PV panel rows. The RMS error was ~10.6% (Figure 

2.4) and the overall spatial distribution along the transect was satisfactory for model 

evaluation. It was assumed that the error of overestimation was evident due to field of 

view implications. Photographs were taken at day-time of a cloudy day and GLA 

software, was reported to estimate diffuse light very well (Hardy et al., 2004). Thus, the 

error was assumed to be driven by the type of fish-eye lenses used which is generally 

shown that even from perfectly equiangular projections and restrictions in field of view, 

affect the results of sky view factor (Blennow, 1995). In particular, methods (computing 

or on printed photographs) used on images produced by the same camera (older version) 

and lens (same length and specifics) that were used to take the photographs in this study, 

also overestimated the sky view factor (Blennow, 1995). 

2.5.2 Model sensitivities during warm periods 

Warm periods HD (hot and dry; Figure 1 in the SI.2) and HTs (Figure 2.5) differences 

between measured and simulated soil temperatures under and at the gap were of the 

same magnitude ~0.4 °C (Table 2.4). Further, the simulated trends represented the 

measured (logged and instantaneous) well during the two warm periods. The analysis 

of HIS-PV model sensitivity on LAI variation showed a major effect on the simulated 

soil temperatures during the HTs period. Our findings were in agreement with a 

simulation study by Kang et al. (2000). In their study, it was demonstrated that risen air 

temperatures and variation of the LAI has shown to affect the spatial variability of the 

soil temperature at 10 cm depth, with the errors increasing from 1.55 °C-4.71 °C 

analogue to increasing densities of LAI from 0-10. 
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During the HTs period, in the afternoon (12 pm) there were constant overpredictions of 

~0.5 °C which increased to ~2 °C during the last two days of the period under the panels 

and constant underpredictions of the same range at the gap, apart from the last two days 

were measured and simulated overlapped (Figure 2.5). This warming up (under) and 

cooling down (gap) respectively, during the last two days, could be related to the 

increased proportion of direct SW radiation (~900 W/m²; data not presented) and the 

risen temperature which in the afternoon of the 30th of June reached ~35 °C (data not 

presented; (Lenderink et al., 2007). During HD period where under and gap simulated 

soil temperatures were underpredicting, assumingly the high SW radiation which 

reached a maximum of ~820 W/m² on the 2nd of August (simulated and logged 

overlapping; see Figure 1 in the SI.2) might have had an effect on the simulated soil 

temperatures. 

In addition, it is assumed that the initial model parameterization might have caused a 

conflict and affected the simulated soil temperatures during the two warm periods. More 

specifically, the HIS-PV control model parameterization (same for all periods assessed), 

had components such as VWC and rs set as if the soil was quite wet (0.35 m³/m³) and at 

the same time, quite dry (rs = 500 s/m; Table 2.3). Therefore, potentially, if rs was 

parameterized around 300 s/m, the simulated soil temperature would be closer to the 

logged during both periods. In fact, the sensitivity studies on rs during HTs period 

showed that when soils are parameterized as semi-dry and dry (300 s/m and 600 s/m, 

respectively) the RMS errors between simulated and instantaneous were lower and the 

trends were in close agreement to the instantaneous (overlapping under and slight 

underpredicting at the gap; Figure 2.7).  
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2.5.3 Model sensitivities during cold periods 

The simulated soil temperature during the assessed cold periods (MCs, CD and CW; 

Table 2.4), represented the measured (logged and instantaneous data) slightly better 

than the simulations in the warm periods (Table 2.4) during the model evaluation and 

the sensitivity analysis. When the LAI was set zero (during MCs period), the simulated 

soil temperature demonstrated the highest RMS errors among all comparisons in this 

study especially when compared with the instantaneous data taken in the afternoon 

(reached 4.71 °C on the 1st of October). Zero LAI would cause changes at the surface 

energy balance, as the incoming SW and precipitation interception at the soil surface 

and the subsequent processes including evaporation, would change (Reichstein et al., 

2003). Land without vegetation (e.g. winter period, out of growing season), is expected 

to show increased soil evaporation and increase the proportion of incoming SW receipt 

at the soil surface compared to a land unit with vegetation (vegetation canopy absorbs 

a proportion of the incoming radiation). Thus, increased soil evaporation and incoming 

SW proportion on a bare soil would result in warmer soils at root zone depth (10 cm – 

30 cm; (Gupta et al., 1981; Gupta et al., 2015)).   

CW was a period with air temperature minimum reaching around -3 °C and total 

precipitation around 82 mm. The initial parameterization of the model (surface 

resistance rs = 500 s/m; almost dry soil) and VWC (0.35 m3/m3), did not have an effect 

or created conflicts which would impact the simulated soil temperatures, as it was 

assumed during the two warm periods. This was mainly assumed since CW was the 

only one among the five period where simulated represented the logged best (RMS 

errors less than 0.3 °C; see Figure 3 in SI.2). Initially, the high amount of precipitation 

was assumed to have an impact on the simulations, because the model does not account 
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for the impact of energy transfer by liquid advection, (i.e. of water moving through the 

soil and transporting energy with it). We would expect this to be more impactful during 

or after periods of rainfall but the simulations during CW period proved that there was 

no impact even during a ten-day period of high precipitation ratios.  

2.6 Future Model development 

HIS-PV model predicts the effect of solar parks on soil temperatures, using SMD and 

surface properties aspects including LAI. Judging from the results of the sensitivity 

analysis assessing simulated soil temperatures driven by different parameterizations of 

LAI, surface resistance and VWC components, there are a few suggestions to further 

improve HIS-PV. The LAI should be a dynamic component in the model as it had a 

major effect on the simulated soil temperatures under a diverse range of weather 

characteristics. However, the range of the LAI, should perhaps be less fixed and have 

several LAI’s tested and correlated with the other outputs of the model including soil 

temperature and solar radiation, along the transect design. Further, applying HIS-PV 

model in different climate zones, soil moisture should be also considered as a main 

model component, as temperature is not the only driver of leaf phenology and canopy; 

LAI (Arora and Boer, 2005).  

In addition, the model was tested with SMD simulating conditions in a UK temperate 

grassland. For future model development and application of the HIS-PV model in 

different ecosystems it is important to further discern the variation in both soil moisture 

and LAI. Solar parks have been shown to have soil moisture and biomass variability 

under and at the gap between PV panels (Armstrong et al., 2016). Thus, modelling solar 

parks productivity predictions could be also considered to improve the simulations. The 

accuracy of the HIS-PV model would increase developing an incorporation with a 



Assessment on the Local Climate Effects of Solar Photovoltaic Parks 

Maria Makaronidou - June 2020   106 

vegetation or a crop model (Sinclair and Seligman, 2000; Dinesh and Pearce, 2016; 

Arora and Boer, 2005; Dupraz et al., 2010). Assessment on evapotranspiration, 

monitoring the diurnal and nocturnal fluctuations, could further improve the simulations 

(Nemitz et al., 2009; Kettridge and Baird, 2006) and predict the effects on productivity 

in solar parks. 

Regarding the PV panels physical presence, it is important to address the significant 

roughness that the panels induce where installed. Potential impacts on terms of 

evapotranspiration is a logical assumption since just vegetation management alone may 

not be useful. Apart from roughness, it would be very interesting to have solar panels 

dimensions component as a key driver of the simulations, which would upscale HIS-

PV at a stage where it could be a useful tool for all construction companies prior-

planning and designing of a solar park. 

2.7 Conclusion 

Given the global deployment of solar parks, establishing the effects on the microclimate 

of any given area, is crucial. This research demonstrates the capability of the HIS-PV 

model to predict fine temporal and spatial scale simulations of soil temperature, with 

confidence, in a solar PV grassland, and on lands where solar parks may be constructed 

under a range of weather conditions. HIS-PV requires standard meteorological data, 

that are readily available in many locations and some surface property data, namely 

VWC, soil mineral and organic content, LAI, albedo, displacement height, roughness, 

emissivity, surface and aerodynamic resistance. However, the results of this study, when 

initially parameterizing the model components, demonstrated that only LAI crucially 

affected simulated soil temperatures under a diverse range of weather characteristics; 

and is strongly suggested that it should be a dynamic model component. The model was 
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tested with standard meteorological data simulating conditions in a UK temperate 

grassland; however, the model should be assessed in other climate zones as well. In 

addition, the proposals for future model development could establish HIS-PV model as 

a widely applicable tool with the potential of creating frameworks of an effective 

vegetation management to promote agrivoltaic schemes, as well as any other multiple-

use land and thus, optimize ecosystem services from the same land unit. 
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3 Chapter 3: Simulating the 

Impacts of Solar 

Photovoltaic Parks on Soil 

Temperature, Potential 

Evaporation and Incoming 

Short-Wave Radiation in 

different Climate Zones  

3.1 Abstract 

The need to transition to low-carbon energy sources is the primary driver of the large-

scale deployment of ground-mounted solar photovoltaic (PV) technologies (solar 

parks). However, the impact of solar parks on microclimates across different climate 

zones is unresolved. The aim of this study was to assess the impact of solar parks on 

root zone soil temperature (10cm depth), potential evaporation (PE), incoming short-

wave radiation (SW) and growing degree days (GDDs) across the Equatorial, Arid, 

temperate, boreal and polar climate zones. HIS-PV model was applied to simulate soil 

temperature, SW and PE in 25 hypothetical solar parks across five different climatic 

zones. Typical Meteorological Year (TMY) data from NREL USA, were used to 

simulate each solar park and its microclimatic conditions assessing the potential impact 

on GDDs in three treatments: under, between (gap) and away (control) from the PV 

panels. Annual incoming SW was strongly affected by solar park installation; control 
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received 60% more solar radiation than under and 8% more than the gap across all tested 

zones (p < 0.001). The summer daily mean soil temperature among treatments within 

the same zone showed significant differences with control being constantly cooler than 

under across equatorial, arid and temperate zones (p < 0.001). In the Arid zone soil 

temperature under was 3.1 °C cooler than control, when in the equatorial and temperate 

zones was 1.1 °C cooler. PE under, was strongly affected in the Arid (46% less and the 

Equatorial ((35% less)) zone, relative to the control; (p < 0.001). GDDs under were 

lower than control, especially in the arid and the equatorial zones. The overall 

differences among treatments were low (3-4%) apart from arid where control had 13% 

more GDDs compared with under. Our findings regarding the reduced amount of GDDs 

under the panels, especially at the arid, where most of solar parks are globally installed, 

deemed crucial, however were not statistically significant (p > 0.05) thus further 

assessment is required to establish the causes. 

Keywords: soil temperature, potential evaporation, short-wave radiation, 

photovoltaics, solar parks, climatic zones, growing degree days 

3.2 Introduction 

Global efforts to mitigate climate change is forcing an energy transition from 

conventional to renewable resources (UN, 2015; IPCC, 2018) with solar energy having 

a progressively prominent role (IEEFA, 2018).  Solar power-based generation in 

operation is increasing globally (IEEFA, 2018). In particular, ground-mounted 

photovoltaic (PV) technology is rising exponentially, increasing its capacity (RECP, 

2018) across the world including Asia, America, Europe; a diverse range of climatic 

zones. The growth in solar PV installations (hereinafter referred to as solar parks), 
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causes an extensive land use change, since ground-mounted solar parks are primarily 

deployed on land. 

This rapid deployment, especially in highly populated countries, has coincided with 

global rise of population, resulting in increased land-use competition for food, fibre and 

fuel. At the same time there is an increased pressure globally to follow sustainable 

practices and protect the environment. Solar parks require more space than other energy 

resources. To mitigate land-use pressures, new strategies that take advantage of the 

space under and around the PV panel rows need to be developed. For example, these 

strategies (multiple-lands use) involve food production under PV panels (agrivoltaic 

schemes firstly introduced by Goetzberger and Zastrow (1982)), the co-production of 

biofuel from agave plants grown around the panels (Ravi et al., 2014), the introduction 

of new habitats to promote, for example, pollinators (Walston et al., 2018), and small 

live-stock for grazing (BRE, 2014). Given that solar parks offer such potential regarding 

space, unlike other land use changes from other energy sources, multiple-use lands are 

appealing. 

Despite the notable land use change from solar parks installations and the potential for 

multiple-use lands, the effects of the physical presence of solar parks on local climate 

is poorly resolved. Soil temperature, evaporation and incoming SW radiation are key 

environmental drivers which among others (including vegetation), regulate the 

microclimate. Research has highlighted the magnitude of the induced-microclimate 

caused by the PV arrays and its effect on ecosystem function and vegetation growth 

only in temperate and temperate-Mediterranean environments (Table 3.1).  

In a UK grassland, the daily mean soil temperature under was 5.2 °C cooler and the 

above-ground biomass was four times higher compared with areas away from the solar 
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PV panels (Armstrong et al., 2016). Further, vapor pressure deficit was lower under the 

PV panels during the day and higher during the night compared with areas away 

(Armstrong et al., 2016). In addition, daily mean soil temperature on lettuce and 

cucumber cropland, located at Montpellier of France, was decreased under and implied 

changes on leaf apparition rate of juvenile leaves compared with areas exposed at full 

sunlight (Marrou et al., 2013b).  

The effect of shade cover (i.e. PV panels) on soil temperature, incoming SW radiation 

and potential evaporation (PE) is in part determined by the existing vegetation 

communities (Teasdale and Mohler, 1993). According to Armstrong et al. (2016) the 

areas under PV panels (hereinafter referred to as under) were less productive and less 

diverse compared to areas away. However, in a previous study with a different spatial 

explicit design (chapter one of this thesis), evapotranspiration (ET) metrics were quite 

similar comparing under and the gap between two panel rows (hereinafter referred to as 

gap) and the leaf area index (LAI) was unaffected spatiotemporally during growing 

season. Further, differences were noticed with regards to the Net Ecosystem Exchange 

(NEE) where under and the gap demonstrated reversed pattern regarding sourcing and 

sinking of CO2 during growing season. 

Differences between the results of these studies are recognised and suggest that the 

effects of solar parks appear to be more complicated and the assessments were 

conducted only on temperate environments. In addition, all of the microclimatic effects 

described above are regulated through vegetation, as the microclimate determines 

physical, chemical and biological processes that control soil formation and plant 

distribution (Liu and Luo, 2011). Thus, any microclimatic changes at the surface energy 

balance are crucial because they will modify processes including ET which will then 
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alter the vegetation cover (Jackson, 1973). The effects on vegetation are difficult to 

summarise but Growing Degree Days (GDD) is a simple means and a fine scale 

quantifying approach, which allows prediction on the phenological transitions of living 

organisms (animals, plants etc.(Bonhomme, 2000; Hassan et al., 2007; McMaster and 

Wilhelm, 1997; Swan et al., 1987)).  

Each living organism has a specific number of GDD (threshold) which must be 

accumulated to trigger phenological changes and this is expected to change with the 

presence of a solar park construction. The spatiotemporal microclimatic niches in a solar 

park, will have a strong effect on the GDD under and potentially within the gap. In a 

solar park in the UK (temperate zone), the total GDD were significantly lower under 

compared with areas away (control) from the PV panels by ± 36 °C daily (Armstrong 

et al., 2016). Need to consider here that the length of growing season varies at each 

climate zone and the up-to-date research findings have only assessed temperate 

environments.  
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Table 3.1: Published research up to date regarding solar parks impacts on the local climate 

Publication Country Geospatial 

Characteristics 

Climate Zone Measurements Findings 

Dupraz et al. 

(2010) 

Montpellier, 

France 

43.15°N, 3.87°E, 

Elevation: 57 m 

Temperate, 

Mediterranean 

PAR, under two 

different shades 

associated with 

crop production 

(LAI as an 

indicator) 

Predicted a 35-

73% increase of 

global land 

productivity for the 

two different 

densities. 

Marrou et al. 

(2013a) 

Montpellier, 

France 

43.15°N, 3.87°E, 

Elevation: 57 m 

Temperate, 

Mediterranean 

PAR, air and crop 

temperature (four 

varieties of 

Total relative 

lettuce yield at 

harvest equal or 
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lettuces), under 

and away from PV 

panels, Relative 

humidity (RH), 

total aerial dry 

matter, leaf length, 

width and number. 

higher than the 

available solar 

radiation. Some 

lettuce varieties 

showed shade 

tolerance. Leaf 

thickness 

decreased, LAI 

increased, but 

length and width 

were unaffected 

under shade in 

growing season. 
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Marrou et al. 

(2013b) 

Montpellier, 

France 

43.15°N, 3.87°E, 

Elevation: 57 m 

Temperate, 

Mediterranean 

Air and soil 

temperature, RH, 

wind speed and 

PAR, crop 

temperature 

(lettuce, cucumber 

and durum wheat) 

and number of 

leaves, under and 

away from the 

panels. 

Air temperature 

and RH similar 

under and away 

the PV panels. Soil 

temperature 

decreased 

significantly under. 

Diurnally, crop 

temperature and 

PAR ratio 

increased under 

the PV panels. 

Overall crop 



Assessment on the Local Climate Effects of Solar Photovoltaic Parks 

Maria Makaronidou - June 2020   116 

temperature under 

was unaffected. 

Marrou et al. 

(2013c) 

Montpellier, 

France 

43.15°N, 3.87°E, 

Elevation: 57 m 

Temperate, 

Mediterranean 

Air and soil 

temperature, RH, 

wind speed and 

PAR, precipitation 

associated with ET 

variability, 

stomatal 

conductance and 

biomass 

production of four 

varieties of lettuce 

and cucumbers, 

Shaded irrigated 

crops under PV 

panels saved 14-

29% water; shade 

proportion 

dependant. 

Increased ratios of 

vegetation cover 

and stomatal 

conductance and 

soil evaporation 

more sensitive to 
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under and away 

from PV panels. 

plant transpiration 

under PV. 

Irrigation allowed 

evaporation and 

biomass 

production being 

close to their 

potential. 

Armstrong et al. 

(2016) 

Oxfordshire, UK 51.37°N 01.38°W, 

Elevation:103 m 

Temperate Under, gap 

between PV panels 

and away, air and 

soil temperature, 

soil moisture, RH, 

wind speed and 

Summer soil 

temperature under 

was 5.2 °C cooler 

than gap and away 

from the panels. In 

winter, the gap was 
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gust, PAR and 

precipitation 

associated with 

site management 

and carbon cycling. 

1.7 °C warmer 

compared to under 

and away. Above 

ground biomass 

and species 

diversity reduced 

under. 

Photosynthesis 

and Net ecosystem 

exchange reduced 

under panels 

during winter and 

spring. 
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Barron-Gafford et 

al. (2016) 

Arizona, USA 32.09°N, 

110.81°W, 

Elevation: 888 m 

Temperate, Steppe Air temperature 

2.5 m above soil 

surface 

comparison among 

a semiarid desert, a 

parking lot, and a 

solar PV site. 

PV heat island 

effect caused due 

to nocturnal air 

temperature above 

PV panels being 3-

4°C warmer than 

wildlands. 

Hassanpour Adeh 

et al. (2018) 

Oregon, USA 44.34°N, 

123.17°W, 

Elevation: 72 m 

Temperate, 

Oceanic 

Air temperature 

(different heights), 

RH, wind speed 

and direction, 

away and at the 

gap between PV 

Under the PV 

panels 90% from 

May to August 

more biomass and 

328% more 

efficient compared 
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panels. Soil 

moisture, biomass 

from under, at the 

penumbra and 

away PV panels 

associated with 

microclimate 

with away and area 

in the penumbra. 

Mean air 

temperature 

variability 

observed mostly 

close to the surface 
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Given the construction of solar parks across a diverse range of climatic zones and the 

focus of land-use impacts within studies mainly within temperate environments, a 

continental scale modelling approach to predict the scale and diversity of microclimate 

impacts is strongly suggested. HIS-PV model (built and evaluated in chapter two of this 

thesis), is a  physically based, spatial explicit numerical model (based on the soil 

temperature models built by Kettridge and Baird (2008) and Kettridge et al., (2013). 

The model simulates soil temperatures through the soil profile, PE and incoming SW 

radiation across the solar park. Photosynthetic active radiation (PAR) is highly 

correlated with SW and determines the energy available for photosynthesis. 

Temperature regulates metabolic rates and therefore strongly impacts all productivity 

and decomposition processes. Last, water availability controls productivity and 

decomposition. PE can give an indication regarding the impacts of solar parks on the 

water availability for the subsequent processes, including plant growth. 

It is important to secure and promote ecosystem functions at the hosting environment 

in order to achieve the optimum efficiency from both land (food) and PV panels 

(energy) at the same land unit. The wide deployment of solar parks across different 

climate zones and the introduction of new strategies such as multiple-use lands, will 

continue without fully understanding the impacts of solar parks at the local climate.  

3.2.1 Research aim 

The aim of this study was to assess the impacts of solar parks on crucial environmental 

drivers which among others regulate the microclimate and thus the annual GDDs at the 

host-environment across different climate zones. To address the magnitude of these 

effects, the following objectives were addressed: 
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O1. Assess the effect of solar parks in different climatic zones on soil temperature in 10 

cm depth, PE in the summer and the annual incoming SW radiation at the soil surface.  

O2. Quantify the variability in GDDs caused by the physical presence of a solar park 

of a land in different climatic zones. 

3.3 Methods 

3.3.1 Sites and data selection 

To assess the effect of hypothetical solar parks installed across different climate zones, 

five locations at each climate zone (n = 25; Figure 3.1 and Table 3.2) were selected in 

the USA based on the Köppen Climate Classification (KCC; (Kottek et al., 2006). USA 

provides the option of using a great and widely accessible database of typical 

meteorological year data (TMY) from hundreds of stations and sensors installed across 

all states at any given time and for free (NREL, 2005). Further, the USA is a climatically 

diverse country (covering all five KCC climate zones) which spreads across a 9,834 

million km2 area with a full range of weather phenomena strongly affected by the 

Atlantic and the Pacific stream. The annual average of precipitation in the USA is 

ranging from around 1618 mm in Hawaii to 218 mm in Nevada and the annual average 

of air temperature is ranging from 21.5 °C in Florida to -3 °C in Alaska.   
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Figure 3.1: Location of the 25 meteorological stations assessed. Longitude, latitude 

and the climate zone classification based on Köppen created in ArcMap 

Environment version 10.1 of the ArcGIS (ESRI, 2011) by the author. 

Simultaneously is one of the top five leading solar PV markets-countries (China, Japan, 

Germany, USA, Italy), ranking forth for 2016 and 2017 regarding its solar PV 

installations capacity (WEC, 2016; REN21, 2017; RECP, 2018). Thus, the impact on 

microclimate caused by the land-use changes (establishment of solar parks), at a country 

of a geospatial and marketing footprint such as the USA, will further have a major effect 

on the global climate compared with a country of smaller size and of a smaller solar PV 

market. In addition, the wide and free accessibility to online TMY datasets (NREL, 

2005), offers an opportunity to undergo a study for further application of the HIS-PV 

model across different climatic zones.  
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TMY data are widely used in environmental, climate modelling and in generally in solar 

energy systems studies (Hall et al., 1978), to describe the solar climate of a region. 

Measurements are made at hourly intervals over a few years to build up a non-biased 

picture of the local climate (Cebecauer and Suri, 2015). The TMY data used for the 

input in the HIS-PV model were, air temperature (sensor at 2 m above surface measured 

in °C), relative humidity (sensor at 2 m above surface measure in %), wind speed (sensor 

at 90 m and measured in m/sec) and diffuse, direct and total SW radiation (several feet 

above ground level measured in W·m-2). 
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Table 3.2: Sites geospatial and climatological information 

No KCC Climatic description Location Altitude (m) Daily air 

temperature (°C) 

Growing Season 

(total DOY) 

min max mean  

1 Af Equatorial, fully humid Hilo, Hawaii 9 13.9 31.1 23.1 365 

2 Af Equatorial, fully humid West Palm Beach, Florida 6 -1.1 33.9 23.6 365 

3 Am Equatorial, monsoonal Miami, Florida 11 5 35.6 24.5 365 

4 Aw Equatorial, winter dry Naples, Florida 3 3 33.9 22.9 365 

5 Aw Equatorial, winter dry Key West, Florida 1 9.4 33.3 25.6 365 

1 BSh Arid, Steppe, hot arid Laredo, Texas 142 22.4 41 22.4 290 
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2 BSk Arid, Steppe, cold arid Reno, Nevada 1342 11.1 37.8 19 140 

3 BSk Arid, Steppe, cold arid Denver Int Airport, 

Colorado 

1650 16.2 40 10.9 177 

4 BWh Arid, Desert, hot arid Las Vegas, Nevada 648 3.3 44.4 19.8 299 

5 BWk Arid, Desert, cold arid Goldfield, Nevada 

(Tonopah Airport Met 

Station) 

1655 -11.1 37.8 11.2 188 

1 Cfb Warm Temperate, fully 

humid, warm summer 

Wytheville, Virginia 780 -19 32.6 11.9 204 

2 CSa Warm Temperate, 

Steppe, hot summer 

Sacramento, California 5 -2 40 15.55 310 
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3 CSb Warm Temperate, 

Steppe, warm summer 

Portland, Oregon 6 -4.4 37.8 12.2 241 

4 CSb Warm Temperate, 

Steppe, warm summer 

San Francisco, California 2 2.2 32.8 13.8 365 

5 CSb Warm Temperate, 

Steppe, warm summer 

Santa Barbara, California 3 0 32.2 14.7 365 

1 Dfa Snow, fully humid, hot 

summer 

Lincoln, Nebraska 357 23.3 38.9 11.2 189 

2 Dfc Snow, fully humid, cool 

summer 

Fairbanks, Alaska 133 -38.3 -30 -1.4 94 

3 DSc Snow, Steppe, cool 

summer 

Homer, Alaska 27 -20.6 23.9 3.8 148 
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4 DWa Snow, Dessert, hot 

summer 

Valentine, Nebraska 789 -25 41.7 9.7 157 

5 DWb Snow, Desert, warm 

summer 

Dickinson, North Dakota 788 -33.9 39.4 5.3 104 

1 ET Polar Barrow, Rogers Airport, 

Alaska 

10 16.1 -41.7 -11.8 NA 

2 ET Polar Dutch Harbor, Alaska 4 -15.6 22.2 4.7 NA 

3 ET Polar Gambell, Alaska 8 -27 16.6 -2 NA 

4 ET Polar Mekoryuk, Alaska 15 -29.4 21 0.9 NA 

5 ET Polar Savoonga, Alaska 17 -29.4 10.2 -3.3 NA 
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3.3.2 Model Description 

HIS-PV is a pseudo-three-dimensional (3D) physically based, spatial explicit numerical 

model, based on the soil temperature models by Kettridge and Baird (2008) and by 

Kettridge et al. (2013). The model was coded in Fortran compiled imperative 

programming language that is especially suited to numeric computation, using NAG 

builder 6.2 environment (NAG, 2018). A 2D sub-model simulated the subsurface 

energy transfer and storage along a linear transect running perpendicular to three PV 

panel rows of known dimensions in a 100 m x 100 m simulated solar park. The energy 

transfer simulated a 1 m deep profile composed of 19 vertical nodes. Node separation 

increased with depth ranging from 0.005 m at the soil surface to 0.1 m at a depth of 1 

m. A synopsis of HIS-PV model parameterization and thorough description regarding 

the built of the model can be found in chapter two of this thesis (section 2.3.1).  

For this study, HIS-PV was framed as a soil temperature model with an associated 

surface boundary layer with a timestep established at 30 seconds for 8754 hours in total 

(annual period of 365 days; starting time interval at 06:00 on the 1st of January and 

finishing time interval at 22:00 on the 31st of December). HIS-PV model was further 

edited to simulate the potential evapotranspiration (PET): 

𝐸 =  
𝐿𝑣𝑠(𝑇𝑠−𝑇𝑎)+𝐿𝑣𝑣𝑑𝑑𝑎

𝑟𝑎
  (1), 

where, 𝑇𝑠, is the surface temperature, 𝑇𝑎, is the air temperature (both in Kelvin), 𝑠, is 

the slope of the saturation vapour versus temperature curve (kg·m-3·K-1) and 𝑣𝑑𝑑𝑎, is 

the vapour density deficit of air (kg·m-3). 𝐿, was calculated from Stefan-Boltzmann Law 

and Beer’s Law (see section 2.3.1 for full model description). 
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3.3.3 Model Parameterization 

3.3.3.1 Soil and surface properties input data 

Initial conditions (input soil temperatures in different depths), were calculated for each 

of the 25 locations, using a model calculator for soil temperatures in depth; heat transfer 

from one cell to the next one based on Fourier’s law (Sobota, 2014). This calculator is 

a numerical solution to the second law of heat conduction created by Dr Andrew Baird 

(University of Sheffield). It calculates the temperature in a given cell at time from the 

temperature at the previous time step plus the subsequent change in the cell temperature 

during the time step. The temperature that was set as the surface boundary condition of 

this model was air temperature from the TMY datasets (detailed description under 

section 3.3.1). The addition of energy to the cell is the balance between energy entering 

the cell and the energy leaving the cell; calculated using Fourier’s law. The soil and 

surface properties for each climate zone were parameterized based on an extensive 

literature review and the mean of each variable was used in the simulations (Table 3.3).  
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Table 3.3: Literature review for soil and surface properties parameterization input across all five climate zones 

Variable Equatorial Arid Temperate Boreal Polar Publication 

d (m)-

displacement 

height 

0.34 0 0.20 0.08 0.10 Jin and Liang (2006); Zeng and Dickinson (1998); 

Zeng and Wang (2007); Best et al. (2011); van de 

Griend and Owe (1994); Gavin and Agnew (2000); 

Gallagher et al. (2002); Xuan et al. (2017); Cao et al. 

(2012) 

α (unitless)-

albedo 

0.15 0.15 0.15 0.44 0.65 Mahfouf and Noilhan (1991); Kala et al. (2014); Allen 

et al. (1998); Barron et al. (1980) 

z0 (m)-surface 

roughness 

0.06 0.09 0.12 0.90 0.02 Mahfouf and Noilhan (1991); Jin and Liang (2006); 

Zeng and Dickinson (1998); Businger et al. (1971); 

Deardorff (1974); Hales et al. (2004); Claassen and 



Assessment on the Local Climate Effects of Solar Photovoltaic Parks 

Maria Makaronidou - June 2020   132 

Riggs (1993); Gallagher et al. (2002); Hoffmann and 

Jackson (2000) 

ε (W/m²)-

emissivity 

0.98 0.90 0.96 0.97 0.97 Mahfouf and Noilhan (1991); Jin and Liang (2006); 

Snyder et al. (1998); Tian et al. (2014) 

rs (s/m)-

surface 

resistance 

50 600 500 70 20 Mahfouf and Noilhan (1991); Allen et al. (1998); 

Camillo and Gurney (1986); Gavin and Agnew 

(2000) Allen et al. (1998); van de Griend and Owe 

(1994) Shuttleworth and Wallace (1985); Camillo 

and Gurney (1986) 

ra (s/m)-

aerodynamic 

resistance 

128 128 128 128 128 Shuttleworth and Wallace (1985) 
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LAI-Leaf Area 

Index 

1.1 0.3 2.5 3 2.5 Masson et al. (2003); Champeaux et al. (2006); 

Mahfouf et al. (1995); Hoffmann and Jackson (2000); 

HU et al. (2008) 

Volumetric 

Water Content 

0.15 0.05 0.35 0.25 0.25 James et al. (2003); Kemp et al. (1997); Stursova and 

Sinsabaugh (2008); Jacome et al. (2013); Granberg et 

al. (1999); Paruelo et al. (1988); Farley et al. (2004); 

HU et al. (2008) 

Organic 

content 

0.40 0.06 0.05 0.50 0.01 Schlesinger (1984); FAO (1996); Stursova and 

Sinsabaugh (2008); Jones (1973); Jenny et al. (1948); 

Chen et al. (2012); Hewins et al. (2018) Paruelo et al. 

(1988); Farley et al. (2004) 

Mineral 

content 

0.25 0.05 0.50 0.20 0.40 Chen et al. (2012); Preston et al. (2017); Paruelo et 

al. (1988); Pérez (1996) 
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3.3.4 Experimental design 

Soil temperature and PE in the equatorial, arid and temperate zones (hereinafter referred 

to as warm zones) and incoming SW radiation (across all five climate zones) were 

simulated for a year (365 days) in a 100 x 100 m solar park with three PV panels’ rows 

(Figure 3.2). The boreal and polar zones where not assessed, because the foundation of 

HIS-PV model does not consider ice and frost dynamics (snow cover and soil frost).  

Further, in this study we focused assessing the differences of soil temperatures, PE and 

the GDDs among the three treatments across the zones where the solar PV parks are 

predominantly installed. 

The area without PV panels had a 15 m length (control), the areas under spread along 5 

m and the gap along 10 m.  Two linear transects were selected to assess the objectives 

of this study (Figure 3.2). The mean of ten data-points under the second panel row and 

ten data-points at the gap between the second and the third panel row along the first 

linear transect, were used to represent treatments: under and gap, respectively. The 

control metrics derived by the mean of ten data-points on the second linear transect 

south and away from the solar PV panels. The selection of the two transects was 

opportunistic as both transects were selected in a distance of at least 5 m away from the 

northern and southern sides of the simulated solar park.   

Soil temperature at the surface (to calculate the growing degree days, described next), 

soil temperature in 10 cm depth (root zone depth), PE and incoming SW radiation, were 

assessed under PV panels (hereinafter referred to as under and U), at the gap between 

the PV panels (hereinafter referred to as gap and G) and from a control area away from 

the PV panels (hereinafter referred to as control and C). Root zone is on average in 
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between 5 cm to 30 cm depth, remote sensing, Met Office and several companies 

measuring the microclimatology of an area with data loggers use the 10 cm depth (also 

for soil moisture metrics) as it is a sensible depth not far from surface and not too close 

at the water table (MetOffice, 2018).  

 

Figure 3.2: The simulated solar park of a 100 m x 100 m area illustrating the linear 

transects under, at the gap between the PV panels and the linear transect in the 

control area, away from PV panels (white colour lines). 

3.3.5 Data analysis 

O1. To assess the effect of solar parks on soil temperature at 10 cm depth and PE at the 

surface, we calculated the absolute differences in the daily means between control and 

under and control and gap during the northern hemisphere’s summer (DOY 152-244). 
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To assess the effect of solar parks on the incoming SW radiation, we calculated the 

absolute differences in the daily means between control and under and control and gap 

for a year. Differences between gap and under were assumed low compared with the 

influence of the PV panels between under and an area without panels (control), and 

were therefore, not assessed. The simulation at the control treatments was used to 

subtract the ones from under and the gap respectively. The daily mean soil temperature, 

incoming SW and PE were tested against treatment and climate zone factors in a simple 

two-way ANOVA. A Tukey pairwise post-hoc test was performed to address any 

potential significance among their interactions.  

O2. The simulated surface temperature dataset was used to derive GDD of each 

treatment in each of the five locations within each climate zone. Firstly, we quantified 

the length of growing season across the equatorial, arid and temperate zones (at each of 

the five met-stations per zone), counting from the last frost week of spring until the first 

frost week of autumn within the year (threshold of 0 °C for daily minimum air 

temperature; (Kunkel et al., 2004; NOAA, 2016)). Secondly, to calculate the GDDs 

during the growing season at each location, the following equation was used: 

𝐺𝐷𝐷 = [ 
(𝑇𝑠𝑢𝑟𝑓.𝑚𝑎𝑥+ 𝑇𝑠𝑢𝑟𝑓.𝑚𝑖𝑛)

2
] −  𝑇𝑏𝑎𝑠𝑒 (2), 

where, 𝑇𝑠𝑢𝑟𝑓.𝑚𝑎𝑥 , the daily maximum surface temperature, 𝑇𝑠𝑢𝑟𝑓.𝑚𝑖𝑛 , the daily 

minimum surface temperature and 𝑇𝑏𝑎𝑠𝑒, set equal to a minimum of 5 °C (Hassan et al., 

2007). The GDDs of each treatment at each location were averaged to get the mean 

GDDs of each treatment at each zone. Last, the percentage difference between the 

GDDs under and the GDDs at the control as well as the between the gap and the control 

were calculated (equation 2). GDDs was tested with treatment and climate zone to 
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determine the potential effects, using a simple two-way ANOVA and a Tukey pairwise 

post-hoc test to address any potential significance among the factors’ interactions.  

The statistical analysis was carried out using R programme language within the RStudio 

environment version 3.3.5. (R Core Team, 2017) and p values ≤ 0.05 deemed 

significant. The packages that were used were scales (Hadley Wickham, 2017), ggplot2 

(Hadley Wickham, Winston Chang, 2016) data.table (Matt Dowle, 2018) and dplyr 

(Hadley Wickham, Romain Francois, Lionel Henry, Kirill Müller, (R Core Team, 

2017)). 

3.4 Results 

3.4.1 O1. Soil temperature, PE and incoming SW variability with 

and without solar panels 

3.4.1.1 Simulated soil temperature in 10 cm depth 

Soil temperature under was significantly lower compared with control treatments in the 

three assessed warm zones (arid, equatorial and the temperate zones) with p < 0.001 

(Figure 3.3). There was no evidence for significant differences between gap and control 

treatments (negligible 0 to 0.1 °C difference). The mean soil temperature at the control 

was always warmer than under across the warm zones (Table 2 in the SI.1). The 

differences between the minimum and the maximum soil temperatures were larger 

across the arid zone (under 11.9 °C, gap 15.3 °C and control 15.1 °C). In the arid zone, 

the difference between the mean soil temperature under and control was the largest, 3.6 

°C, while in the equatorial and the temperate the difference was 1.3 °C and 1.4 °C 

respectively (Table 3 in the SI.1). 
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Figure 3.3: Illustration of the simulated summer soil temperature under, at the 

gap and at the control across equatorial, arid and temperate zones. 

3.4.1.2 Simulated potential evaporation (PE) at the surface 

The PE ratios under, were significantly lower compared with the control treatments 

within equatorial (p = 0.001) and the Arid (p < 0.001) zones in the summer (Figure 3.4). 

In the temperate zone, there were non-significant differences between control-under and 

control-gap treatments (Table 4 in the SI.3). Among the warm periods, the mean 

potential evaporation in the arid, demonstrated the largest difference between control 

and under, with the control showing 46% higher PE than under (Table 5 in the SI.3). 

Overall, the differences between control and under potential evaporation was 

decreasing by ~10 % from one zone to the other; increasing elevation.  
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Figure 3.4: Illustration of the simulated summer potential evaporation (PE) under, 

at the gap and at the control across equatorial, arid and temperate zones. 

3.4.1.3 Short wave (SW) 

The annual incoming SW radiation under panels across all climate zones, was 50% to 

60% less than control treatments (p < 0.001). Further the gap received by average 8% 

less SW, compared to the control, with exceptional statistical significance between gap 

and control at the equatorial zone (p < 0.05; Tables 6 and 7 in the SI.3). Regardless of 

climate zone, the solar parks annual effect on the incoming SW radiation was similar 

among the treatments, with the control receiving more SW than the gap and the gap 

more SW than under (Figure 3.5).  
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Figure 3.5: The amount of the total annual incoming SW radiation at each 

treatment across all five climate zones. 

3.4.2 O2. GDD variability among Under, Gap and Control 

treatments 

The difference of the total amount of GDDs at the gap compared with the control 

treatments, was less than 1%, while under and control comparison showed differences 

of higher magnitude at the equatorial and arid zones (Figure 3.6). However, these were 

not supported statistically (p > 0.05). In the arid zone, control counted 13% more GDDs 

compared with under. At the temperate there were not drastic differences among 

treatments, with the control counting 3% more GDDs than under. At the equatorial 

zone, control counted 4% more GDDs than under. The outliers at the equatorial zone 

derived by the met-station at Hilo, Hawaii, which demonstrated the lowest total of 

GDDs at the gap and under compared with the other met-stations assessed within the 

zone (Table 3.4).   
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Figure 3.6: The total amount of the GDDs at each of the treatments across the 

three climate zones assessed. 
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Table 3.4: The total amount and daily mean of GDDs (derived from the division of the sum with the length of days of growing season) at 

each met station during growing season across the equatorial, the arid and the temperate zone. 

No KCC Climatic 

description 

Location Growing Season  GDD – Under °C GDD – Gap °C GDD – Control °C 

Dates DOY Total Daily Total Daily Total Daily 

1 Af Equatorial, 

fully humid 

Hilo, Hawaii Entire year 365 5903 16.17 5834 16 5822 15.95 

2 Af Equatorial, 

fully humid 

West Palm 

Beach, Florida 

Entire year 365 6138 16.80 6421 17.60 6497 17.80 

3 Am Equatorial, 

monsoonal 

Miami, Florida Entire year 365 6514 17.85 6803 18.60 6859 18.80 
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4 Aw Equatorial, 

winter dry 

Naples, Florida Entire year 365 6155 16.90 6436 17.65 6512 17.85 

5 Aw Equatorial, 

winter dry 

Key West, 

Florida 

Entire year 365 6886 18.90 7215 19.80 7284 19.95 

6 BSh Arid, Steppe, 

hot arid 

Laredo, Texas 27/02-13/12 290 5649 19.50 6391 22.00 6409 22.10 

7 BSk Arid, Steppe, 

cold arid 

Reno, Nevada 22/05-8/10 140 1993 14.25 2336 16.70 2317 16.55 

8 BSk Arid, Steppe, 

cold arid 

Denver Int 

Airport, 

Colorado 

23/04-5/10 177 2504 14.15 2951 16.70 2951 16.70 
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9 BWh Arid, Desert, 

hot arid 

Las Vegas, 

Nevada 

16/02-12/12 298 4600 15.40 5010 16.80 5045 16.90 

10 BWk Arid, Desert, 

cold arid 

Goldfield, 

Nevada 

12/04-16/10 188 2306 12.30 2858 15.20 2805 14.90 

11 Cfb Warm 

Temperate, 

fully humid, 

warm summer 

Wytheville, 

Virginia 

19/04-8/11 204 2860 14.00 3138 15.40 3157 15.50 

12 CSa Warm 

Temperate, 

Steppe, hot 

summer 

Sacramento, 

California 

5/02-11/12 310 3948 12.75 4016 12.95 4028 13.00 
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13 CSb Warm 

Temperate, 

Steppe, warm 

summer 

Portland, Oregon 15/03-10/11 241 2798 11.60 2903 12.05 2902 12.00 

14 CSb Warm 

Temperate, 

Steppe, warm 

summer 

San Francisco, 

California 

Entire year 365 3547 9.70 3573 9.80 3586 9.85 

15 CSb Warm 

Temperate, 

Steppe, warm 

summer 

Santa Barbara, 

California 

Entire year 365 4193 11.50 4187 11.50 4218 11.55 
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3.5 Discussion 

Despite the exponentially rising land-use change for solar parks’ installations, impacts 

on the local climate are poorly resolved despite the profound implications for ecosystem 

function (Dupraz et al., 2010; Marrou et al., 2013c; Marrou et al., 2013b; Marrou et al., 

2013a; Hassanpour Adeh et al., 2018; Armstrong et al., 2016; Barron-Gafford et al., 

2016; Hernandez et al., 2015). Therefore, modelling approaches are strongly advised in 

order to build an immediate understanding with regards to solar parks local climate 

effects. The HIS-PV model built and evaluated in a temperate UK grassland solar park 

provided useful simulations under a range of diverse weather characteristics (Chapter 2 

of this thesis). As a result, based on the RMSEs produced between simulated and 

measured datasets when tested under different whether characteristics (sections 2.5.2 

and 2.5.3 of chapter 2 in this thesis) it was anticipated that across a range of climates 

and meteorological conditions, the model will be further in place to provide useful 

insight to ecosystem response to this growing land-use change. 

In fact, in this study, HIS-PV model was applied to simulate soil temperature, potential 

evaporation, annual net shortwave radiation and based on the simulated surface 

temperature to estimate the effects of solar parks on the growing degree days across the 

equatorial, the arid and the temperate zone, where solar parks are mostly implemented. 

The effects of climate zone and location within a solar park showed significant 

differences for soil temperature at 10 cm depth among treatments (especially in the arid 

zone) and significant differences for potential evaporation (apart from in the temperate 

zone) in the summer with major differences regarding the annual incoming SW 

radiation among under the panels, at the gap and control areas away in all five climate 

zones.  
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However, these major differences observed at the annual incoming SW radiation, did 

not seem to reflect on major differences among the total amount of GDDs of under, gap 

and control treatments in the tested zones. Initial model parameterization limitations 

were assumed, especially regarding the input soil temperature component. PE seemed 

quite low for both arid and temperate zone, suggesting limitations and complexities with 

temperature simulations at the surface, which are strongly suggest thorough 

investigation going forward. For PE, it was also assumed that the initial 

parameterization of soil properties (Table 3.3) might have an effect; less critical than 

soil temperature parameterizations, but still worth assessing using sensitivity analyses 

approaches. 

The results were discussed based on the two objectives and future development of HIS-

PV model was addressed.  

3.5.1 O1. Solar parks effect on microclimate regulators 

Assessing soil temperature at 10 cm depth, PE and incoming SW simulations, the 

differences between control and under treatments were assumingly affected by 

elevation, solar zenith and weather, i.e. climate zone (Clinton, 2003). All three tested 

microclimate regulators in this simulations’ study, declined with the increase of latitude 

and the differences among treatments were stronger in the Equatorial and the Arid zones 

(Figure 3.3, Figure 3.4, and Figure 3.5). Even though, climate zone had a stronger effect 

between control and under ratios of PE and soil temperature in the summer, the strongest 

and clearest effect was on the annual incoming SW radiation among treatments (Figure 

3.5). The difference between under and control SW was of high magnitude and 
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consistently ~60% and between gap and control around 8%, within all zones assessed, 

explained by the physical presence of PV panels.  

Further, the ratios of PE, which relies on the water availability for the subsequent 

processes (including plant productivity and decomposition), where high in the Arid and 

less in the equatorial and the temperate zones (Figure 3.4). In the temperate zone, PE 

among treatments did not deem significant because the weather and climatic conditions 

are not that diverse as in the equatorial and arid zones. The extremes of equatorial (for 

example wet or dry) and the arid (for example dry and cold at night) climatic and 

weather conditions, might explain the findings for PE; lower magnitude in the Arid 

where perhaps water in the soil available for PE is less compared to the Equatorial 

(Hartmann, 1994). 

Also, the differences between control and under treatments, could be explained by the 

fact that unsheltered areas (control and gap) are more sensitive and exposed to ambient 

conditions (including wind and humidity), which regulate the microclimate of each area 

respectively (Pepin and Lundquist, 2008).  Thus, solar position combined with PV 

panels arrays physical presence reduced the incoming SW radiation and the available 

water for all the subsequent ecosystem processes (see section 1.4.1.4 in chapter one of 

this thesis, Armstrong et al., (2014a) and Armstrong et al., (2016)) with soil temperature 

being substantially affected across warm zones in the summer. 

In addition, the physical presence of the PV arrays in a ground-mounted design reduce 

significantly the sky view factor under (measured in a temperate grassland, see section 

4.1 in chapter two of this thesis), and this is further expected to affect the annual net 

loss of the latent heat fluxes affecting soil temperature, PE and incoming SW radiation 

(Hassanpour Adeh et al., 2018). Evident to that, the soil under was cooler regardless of 
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seasonal changes at each region across the warm zones. The perturbation of the 

incoming SW under the PV panels especially in zones of higher latitude  are expected 

to delay warming under the panels (Pepin and Lundquist, 2008). In addition, in previous 

studies, evapotranspiration fluxes, soil temperatures and solar radiation fluxes were 

mostly assessed associated with vegetation parameters (growth, cover, diversity, 

biomass) potentially affected by solar parks (Marrou et al., 2013c; Marrou et al., 2013b; 

Armstrong et al., 2016; Hassanpour Adeh et al., 2018). Thus, a crop model combined 

with HIS-PV model could provide with more concrete information regarding the causes 

of the impacts on these microclimate regulators. 

Further, especially under the PV panels, it is assumed that plants relied mostly on the 

amount of the diffuse radiation for their growth (Marrou et al., 2013b). PE under the 

panels, is expected to affect the availability of water for photosynthesis, which will 

affect vegetation growth and the overall plant diversity (Marrou et al., 2013c). In 

addition, limited SW under the panels, and differences between gap and control, implies 

masking effects on vegetation at the gap. It was found that plant species diversity 

differed among gap and control (Armstrong et al., 2016). Based on the findings of this 

study and surveys from a previous study (Armstrong et al., 2016), it seemed that a 

multiple-use land, for example a solar park within a grassland, comprises has three 

different plant species communities (under, gap and control) within the same site.  

3.5.2 O2. Solar parks effect on the total amount of Growing Degree 

Days at lower altitude zones 

Growing degree days, is widely used in agronomy and crop modelling, including NDVI 

tools (Hassan et al., 2007; Bonhomme, 2000; McMaster and Wilhelm, 1997; Kunkel et 
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al., 2004; Swan et al., 1987; Taejin et al., 2016; Tucker et al., 2001), as it is strongly 

dependant on temperature (Hassan et al., 2007), and temperature is highly affected by 

climate (and this by itself, already creates changes regarding the duration of growing 

seasons). GDDs is a great indicator regarding the different phases of vegetation 

development. In this study we showed that the total amount of GDDs was not 

significantly affected by the physical presence of the PV arrays.  

Assessing the equatorial, arid and temperate zones, which are the zones where solar PV 

parks are mostly implemented and where most of the global food production from lands 

derives from. It was clear that the area under the panels counted the lowest amount of 

GDDs compared with gap and control (Figure 3.6). However, the difference did not 

seem significant among the treatments. It was interesting how the observed differences 

of the annual SW radiation received among under, the gap and control treatments did 

not reflect to a similar manner in the total amount of growing degree days. It was 

assumed that GDDs and SW radiation cannot be strictly correlated, as there are other 

factors affecting the GDD calculation and that was mainly the surface temperature 

(minimum, maximum values). 

In particular, the minimum of surface temperature, included in the equation of the 

growing degree days (section 3.3.5, Equation 2), includes mainly night-time minimum 

temperatures, while SW reflects only to day-time. In addition, the overall differences 

between under and the gap (results from Chapters 1 and 2 in this thesis) and between 

under and control areas (results in this study as well as from the solar parks literature 

available at the momentum, Table 3.1), were never reported as major. At the temperate  

UK grassland that mostly assessed and the model was evaluated primarily, regarding 

soil temperatures at 10 cm depth, the differences between the means were 
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approximately 2 °C different in growing season and 4 °C different out of the growing 

season (area under always cooler than gap versus control). The limitations in the 

equation of the GDDs and the overall reported differences among under, gap and control 

areas, do not suggest major differences in the growing degree days, especially in the 

temperate zone. 

Further, GDDs are strongly dependant on plant species and each species grows within 

specific temperature (and other parameters) and temperature has a strong effect on the 

physiology and the morphology of the plants (Bonhomme, 2000). For example, even 

the growing season length differs among plant species (Great Plains; (McMaster and 

Wilhelm, 1997) with wheat: starting in September through July at a Tbase = 0 °C 

(winter), with corn: starting in April through October and a Tbase = 10 °C (summer) and 

not a Tbase = 5 °C, (our models’ initial parameterization across all zones). Therefore, 

calculating and quantifying the effect of solar parks on lands where vegetation is sparse 

or non-existed vegetation (arid zone), could also cause complexities. In the arid zone, 

where most the largest PV parks’ installations are globally established, demonstrated a 

13% decrease of GDDs under the panels compared with control treatments.   

It was assumed that any differences among the treatments was related to extreme surface 

temperatures that occur in desert environments (arid zone) as well as the higher gain of 

the net sensible heat fluxes. This pointed out the difference between a shaded area 

(under) and an exposed to ambient conditions area (gap and control). In addition, these 

findings could be upscaled if a crop model was to be considered in the HIS-PV model 

parameterization and address potential uncertainties that derive with non-bare soil 

lands. Last, the factor ice and frost should be thoroughly investigated, as there are 

cultivated lands, crop, shrub and grasslands at the boreal zone, and continuous periods 
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above 0 °C (to form a growing season) allowing a more cautious investigation. Overall, 

there was an almost great balance among the three treatments total of GDDs at the 

temperate zone, which suggests that potentially those locations should be preferable 

when planning a new PV plant installation. 

3.6 Ideas for future model development 

Based on our overall findings, it is strongly suggested that HIS-PV should be combined 

with a crop model. Considering the existent type of cultivated vegetation (croplands, 

shrublands, grasslands), will help research identify and address the potential effects on 

GDDs at each treatment in each climate zone respectively. Solar parks are installed on 

agricultural lands and deserts, thus vegetation (whether sparse or dense) and its potential 

feedbacks on microclimate aspects (i.e. soil temperature) should be considered when 

investigating soil thermodynamics. At the moment, the model has the potential to 

predict plant temperature which if accounted for, could indicate concrete feedbacks on 

vegetation productivity assessments.  

Further with regards to implications at the surface boundary, the foundation of HIS-PV 

model, is not in place to account for frost and snow cover. It is a quite sensitive and 

difficult area to assess even by expert modellers (Pepin and Lundquist, 2008; Albergel 

et al., 2015; N. Flerchinger and E. Saxton, 1989; Rempel et al., 2004), as it might take 

years of research and evaluations. However, we strongly believe that if crop modelling 

was to be added in the future, the already powerful HIS-PV model, will be reliable and 

essential when planning and designing solar PV parks. 

Focus should be placed on investigating the effects of PV panels of different design and 

dimensions. We assume that different solar park design and planning such as panels 
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inclination, aspect and the installation of solar PV trackers instead of ground-mounted 

(fixed angle) would increase the amount of GDDs under the PV panels. 

3.7 Conclusion 

The HIS-PV model is in place to produce satisfactory simulations across different 

climate zones. The USA comprises great climatic variability and typical meteorological 

year (TMY) data broadly accessible online, when at the same time is the fourth solar 

PV market in the world. Undoubtably, the clear and strong effect of around 60% less 

SW radiation received under the panels and the fact that the amount of GDD at the Arid 

zone was reduced by 13%, implies long-term effects on ecosystem function. The fact 

that soil temperature at root zone depth and PE in the summer were also affected among 

the treatments across the warm zones, especially in the arid, suggests that the effect on 

vegetation growth will be of substantial magnitude and also the need of a crop model 

combination to ensure these findings. An extra model component of the temperature at 

the vegetation canopy, as well as the combination of HIS-PV model with a crop model, 

could further address the potential impacts on the vegetation growth of the hosting 

ecosystem. The effect of solar parks on GDD was not statistically significant regardless 

of some obvious decreases under. However, effects on microclimate and GDDs should 

be further assessed with the addition of a crop model, as it is quite crucial for ecosystem 

function and more specifically for food production in all five climate zones. Based on 

our overall implications from our findings showing the impacts of solar parks across 

different climate zones, we support suggestions for different designing and planning of 

the PV panels. 
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4 Chapter 4: Solar 

Photovoltaic Park Impacts 

on Local Climate and 

Potential Ecosystem 

Service Implications 

4.1 Abstract 

The global energy system is transitioning to low-carbon energy resources. Solar energy 

is predicted to be the dominant renewable in the future given improvements in 

efficiency and decreasing costs. This is triggering a notable and accelerating land-use 

change for ground-mounted systems (hereinafter referred to as solar parks). Terrestrial 

ecosystems represent an important carbon sink and thus land-use change has 

implications for climate change. Regardless of the wide global deployment of solar 

parks and the undoubtable importance of terrestrial ecosystems, local climatic change 

caused by solar parks and implications for ecosystem services provided by the hosting 

landscape are poorly resolved. This study provides the first synthesis of emerging 

understanding in this area. Fifteen studies focused on the local climate impacts were 

assessed, with air temperature most commonly quantified followed by solar radiation 

fluxes and soil temperature. There were disagreements between studies, for example 

with some showing a cooling effect and some a warming effect. Experimental design 

and the ecosystem functions that were assessed and correlated with effects on local 

climate aspects, were different for most of the assessed solar park studies. The 
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synthesised changes in local climate was used to infer potential implications for 

ecosystem services, supported by evidence, albeit limited, of perturbations to ecosystem 

processes caused by solar parks. Whilst there is some disagreement, for example, 

whether solar parks are a sink or a source of carbon dioxide in the atmosphere, all 

findings confirm that the effects on climate will have implications on ecosystem 

function and thus on ecosystem services. Future research is urgently needed to enhance 

understanding and thus explore the potential for managing solar parks to provide 

multiple ecosystem services. Research focus should be placed on resolving differences 

between climate zones and on exploring implications of different solar park designs. 

Keywords: solar energy, photovoltaics, climate, ecosystem processes, ecosystem 

services 

4.2 Introduction 

A transition to low-carbon, cleaner and inexhaustible energy resources is believed to be 

the best solution to mitigate climate changes generated by conventional energy 

resources (Mendelsohn et al., 1994; Asif and Muneer, 2007; Pedraza, 2012; Chu and 

Majumdar, 2012). Solar energy, based on environmental, economic, and safety criteria, 

is the most promising resource and if supported by state policies, it could be also very 

profitable (Bórawski et al., 2019). Within the last five years, photovoltaics (PV) 

technology, has improved, decreasing costs, resulting in deployments greatly exceeding 

projections (IEA, 2017; 2018b; 2014; IEA/WEO, 2017; IAE/WEO, 2018; REN21, 

2017; 2018). PV power generation demonstrated a historical increase of 40% in 2017, 

representing 2% of the total world electricity generation (IEA, 2018b).  Further, the 

compound annual growth rate in the EU was higher for solar PV systems (48%) during 

2005-2016, than any other type of renewable energy technology (EEA, 2018). 
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Ground-mounted PV parks (hereinafter referred to as solar parks), have been deployed 

across landscapes with their physical presence perturbing the surface energy balance. 

For example, the solar PV arrays, reduced the park’s albedo; panels are darker and thus 

have a lower albedo (~0.1) compared with soil and/or vegetated surfaces (a typical 

temperate grassland ~0.25; Barron-Gafford et al. (2016)), and the intercept of solar 

radiation with implications for temperature, and precipitation. Terrestrial ecosystems, 

including deserts and grasslands, where solar parks are mostly deployed, are known to 

be regulated by climate and therefore, changes will have implications for ecosystem 

function. However, the rapid increase of solar parks deployment and associated 

extensive land-use change has not been supported by a concerted research to assess and 

quantify the range and magnitude of effects on the hosting ecosystem. 

Most of the limited published research quantify the effects of solar parks on local 

climate, but time periods evaluated, sampling methods and analysis differed. There are 

contradictions between studies, for example, Taha (2013) and Millstein and Menon 

(2011), implied that solar parks induce a regional cooling while Barron-Gafford et al. 

(2016) study, implied that they induce a heat-island effect. Lack of synthesis studies 

stymies the useful of existing understanding of solar parks effects on ecosystem 

functions. 

Quantification of ecosystem function effects are even more limited than for climate and 

highly variable between studies. For example, air temperature variability under the 

panels (hereinafter referred to as under) led to shorter annual growing degree days 

(GDDs) compared with control treatments away from the panels (Armstrong et al. 

(2016) and Chapter 3 of this thesis). Further, reduced accumulation of biomass was 

reported under driven by climate aspects including soil moisture and soil temperature 
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(Armstrong et al., 2016; Hassanpour Adeh et al., 2018; Dupraz et al., 2010). In addition, 

reduced plant cover of cucumbers under panels have been associated with 

evapotranspiration decreases (Marrou et al., 2013b). 

Changes to ecosystem functions results in implications for ecosystem services provision 

(Matos et al., 2019; Montoya and Raffaelli, 2010) including, air quality, climate 

regulation, biomass materials and food provision, soil formation, water and nutrient 

cycle support and pollination regulation (UKNEA, 2014). Ecosystem services vary with 

ecosystem type (deserts, grasslands) as well as spatio-temporally, driven by differences 

on biodiversity and climatic conditions diversity (Kottek et al., 2006). Hence, different 

aspects of vegetation and soil conditions occur at each climate zone and thus the 

magnitude of change at the local climate will vary. As a result, investigating 

implications on ecosystem services is complex. Adding to that the impact of solar parks 

at the local climate creates an even more confusing understanding and establishment of 

solutions to promote ecosystem functions at the hosting land. However, is critical due 

to their constant support of human deployment (Gigliotti et al., 2019). 

Developing understanding could lead to solar parks deployment and operation that 

promotes ecosystem services provision through multiple-land use strategies. Such 

schemes include agrivoltaics, firstly introduced by Goetzberger and Zastrow (1982) 

involving cropping under (Marrou et al., 2013c; Marrou et al., 2013b; Marrou et al., 

2013a) and around PV arrays, (Ravi et al., 2014), grazing (BRE, 2014) and habitat 

provision, including pollinators (Walston et al., 2018). Such multiple-land use is highly 

appealing given the anticipated growth in solar, growing land scarcity and importance 

of ecosystem services for human survival and climate change adaption (Matthews et al., 

2014; Mooney et al., 2009). It is important to follow a techno-ecological synergy (TES) 
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framework understanding and designing synergies between technological and 

ecological systems with ultimate target enhancing harmony between human 

intervention and nature (Bakshi et al., 2015; Hernandez et al., 2019). 

4.2.1 Research aim 

Given the accelerating rate of deployment of solar parks and critical importance of 

ecosystems for society, resolving the impacts of solar parks is increasingly urgent. 

Consequently, the aim of this study was to rapidly advance understanding of the 

climatic impacts of solar parks and postulate the implications for ecosystem function 

and consequently service provision. Moreover, to use the synthesis to identify key 

knowledge gaps to direct future research. To achieve this the following objectives were 

assessed: 

O1. Synthesise current understanding of the local climate impacts of solar parks. 

O2. Outline the potential implications of the altered climate on ecosystem processes 

and services. 

O3. Identify critical research needs, optimizing solar parks hosting ecosystem 

sustainability. 

4.3 O1. Synthesis of the current understanding of the local 

climate impacts of solar parks 

There are fifteen published studies, and three chapters in this thesis, that have evaluated 

the effects of solar parks on the local climate across the five main climatic zones 

(classified by Köppen; Kottek et al. (2006)). The studies vary in terms of the variables 

measured, sampling location within the solar park and metric; daily minimum, average 
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and maximum ratios (Table 4.1). In this section climate aspects findings were assessed 

(air and soil temperature, soil moisture, humidity, wind, soil properties and solar 

radiation fluxes. Findings regarding the ecosystem processes including Leaf Area Index 

(LAI), gaseous fluxes, biomass, evapotranspiration, photosynthesis and plant diversity, 

were thoroughly assessed under section 4.4, associated with their subsequent 

ecosystems services.  
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Table 4.1: Aspects of climate surface properties and ecosystem processes assessed from current literature related to the effects of solar 

parks at the hosting ecosystem. 
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4.3.1 Air temperature 

Air temperature was the most commonly assessed variable, quantified in ten of the 18 

solar park studies (Table 4.1). However, the direction of change was contradictory with 

Taha (2013), Fthenakis and Yu (2013) and Millstein and Menon (2011), finding cooling 

and Barron-Gafford et al. (2016) study, finding heating effect. These contradictory 

findings could be explained by the studies’ locations. For example, cooling was found 

on studies mostly conducted at desert (arid) environments and warming when conducted 

at temperate environments. Further, the studies that found cooling, were modelling 

studies and Taha (2013) reported air temperatures simulations at 5 m height (above solar 

park), when Barron-Gafford et al. (2016) study was a field study that measured air 

temperature at 2.5 m above PV panels. Variability of air temperature assessed from 

different heights above panels was supported by Gao et al. (2016b) as well. Their study 

showed that solar panels induce a heating effect measuring air temperatures 2 m higher 

from the panels, while at 10 m height, there was cooling; both compared to outside the 

solar park. 

Among the studies, air temperature variability, was assessed using different 

experimental designs. For example, as mentioned some studies tested the variability of 

air temperature in different heights above PV panels (Millstein and Menon, 2011; 

Barron-Gafford et al., 2016; Fthenakis and Yu, 2013; Gao et al., 2016b; Yang et al., 

2017), whilst others tested the spatio-temporal variability under, at the gap between 

panels’ rows and away (control) from the PV panels (Marrou et al. (2013b); Armstrong 

et al. (2016) and in Chapter 1 of this thesis). The causal mechanisms for the observed 

variability were different between studies. Marrou et al. (2013b) explained the cooling 
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of the air temperature as a function of wind speed and incoming SW radiation, whilst 

Armstrong et al. (2016) and in Chapter 1 of this thesis, as a function of season, site 

management (vegetation) and location in a solar park. The later studies also showed that 

air temperature differences among treatments led to shorter annual growing degree days 

(GDDs) under compared with control areas (Chapter three of this thesis). 

From another aspect, Gao et al. (2016b) related the variability with the power 

conversion of the panels, which differs between winter and summer thus causes energy 

budget to be different between a solar park and control areas away from it. Exceptional 

was the Taha (2013) study, where the cooling effect above a solar park, occurred with 

increases of solar PV panels’ efficiency (ε > 20%). 

4.3.2 Soil temperature 

Soil temperature was measured in six of the 18 solar park studies, three of which are 

Chapters of this thesis; Table 4.1). The studies assessed soil temperature at different 

depths, using different experimental designs and different types of vegetation were 

rooting in the assessed soils. All suggested that the amplitude of mean soil temperature 

decreased with increase in depth, under the panels soil temperature was cooler than the 

gap and the range of the annual mean soil temperature was greater within a solar park 

than in control areas away from it (Table 4.2).  

Marrou et al. (2013b), investigated the soil temperature at depths of 5 cm and 25 cm at 

a temperate agrivoltaic site during the cropping seasons of durum wheat, cucumbers 

and of four varieties of lettuces. There was a daily average cooling at 25 cm depth, 

during growing season, for wheat (cooler) and lettuces (warmer). Armstrong et al. 

(2016), investigated soil temperature at 10 cm depth in a solar park at a temperate, UK 
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grassland, showing a 1.7 °C cooling on average in the gap in winter and a 5.2 °C cooling 

under the panels in summer, compared with control plot measurements. Similarly, in 

Chapter one of this thesis, at the same site as Armstrong et al. (2016), soil at 10 cm 

depth was cooler under the panels throughout the day in the growing season and the gap 

was 5 °C warmer than under the panels. In addition, in both studies there were major 

differences between the minimum and the maximum values between sampling plots 

under the panels and in the gaps between PV panel rows (see Appendix 2 – S.I. 2 p.207). 

Regardless of experimental design which was quite different and there were two years 

difference between the two field studies, their findings between were similar.  

Gao et al. (2016a) and Yang et al. (2017) conducted their study on desert (arid) 

environments (i.e. sparse or no vegetation) in a quite high range of soil depths.  Both 

studies suggested that soil temperatures at 5 cm and 10 cm depth inside a solar park, 

were cooler compared to control areas outside the solar park, throughout the year. 

Further, that the range of soil temperature in the summer was increased inside a solar 

park, as shown in the simulated soil temperatures at the arid climate zone in Chapter 

three of this thesis (section 3.4.1.1). Yang et al. (2017), implied that the solar park 

planning (number of PV panels’ rows), was the major cause of impact on soil 

temperatures, because the penetration of incoming SW was majorly affected by solar 

park design.  

4.3.3 Soil moisture 

Soil moisture was measured in three of the 18 solar park studies, conducted in temperate 

environments; Table 4.1). The studies assessed soil moisture at different depths, using 

different experimental designs on lands covered by different types of vegetation. 
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However, two studies have concluded to similar results regardless of experimental 

design (as in soil temperature), stating that the soil moisture content in a solar park in 

growing season was higher (Table 4.2) under the PV panels and similar or with minor 

differences of the means under in comparison to the gap, out of the growing season 

(chapter one of this thesis and Hassanpour Adeh et al. (2018)). Armstrong et al. (2016) 

results were inconclusive. 

Hassanpour Adeh et al. (2018) study showed evidence of more rapid water depletion at 

the gap between the panel rows, compared with control, based on soil moisture 

measurements at several depths. In Chapter one of this thesis (section 1.4.1.3), soil 

moisture at 10 cm depth along a linear transect running perpendicular between two PV 

panel rows (hereinafter referred to as linear transect), demonstrated an even soil 

moisture range between under and the gap in and out of the growing season, with 

maximum differences between gap and under areas observed in the evening. It was 

assumed that the channelling of precipitation by the PV panels (water run off at the 

sides of the panels) increased the spatial variability of moisture content, under the PV 

panels. This was further supported by Armstrong et al. (2016) who also confirmed non-

significant differences between under, gap and control areas. 

4.3.4 Humidity (Relative and Absolute) 

Humidity was an infrequently assessed variable among the solar park studies; it was 

measured in just two studies (Table 4.1). Armstrong et al. (2016), assessed Relative and 

Absolute Humidity (RH and AH, respectively) as well as Vapor Pressure Deficit (VPD; 

the difference between the amount of moisture in the air and how much the air can hold 

when saturated; Table 4.2) at a temperate UK grassland. Armstrong et al. (2016), 

showed that RH was reduced under the panels throughout the daily cycle. On the other 
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hand, Gao et al. (2016b) showed that the RH during night-time, was increased inside 

the solar park (sensor at 10 m height from the PV panels) in Golmud desert (arid 

environment) in China. 

Armstrong et al. (2016) assessed AH and significant differences between the minimum 

and the maximum values under the panel compare to control and gap areas were 

observed.  For example, during the growing season, the daily minimum of absolute 

humidity was 1.3 g · m-3 higher and the daily maximum 5.6 g · m-3 lower compared 

with the gap and the control areas.  

4.3.5 Wind direction and speed 

Wind speed and direction in a solar park, was barely assessed regardless of the potential 

perturbation at the surface with assumed implications for air temperature, as reported 

by Armstrong et al. (2016), Millstein and Menon (2011) and Fthenakis and Yu (2013). 

Hassanpour Adeh et al. (2018) is the only study (to our knowledge) that has observed 

wind direction under (wind predominantly directed from the south) and at the gap 

between panels (wind distributed among many incident angles) at a temperate 

environment in the US; however, without providing reasoning for their observations. 

Armstrong et al. (2016), found an annual 63% slowdown of wind speed at the gap 

between the PV panel rows compared with control areas in a temperate UK grassland. 

Millstein and Menon (2011) reported an increase above and a decrease in the magnitude 

of the afternoon south-westerly winds under the panels due to changes of the albedo 

and the surface roughness in desert environments. Fthenakis and Yu (2013) study, 

conducted in temperate environment, showed that heating and cooling of the air 



Assessment on the Local Climate Effects of Solar Photovoltaic Parks 

Maria Makaronidou - June 2020   166 

temperature inside the solar park was a function of wind speed, which was south-

westerly and also seemed to be affected by the physical presence of the solar park.  

4.3.6 Solar radiation fluxes  

The effects of solar parks on solar radiation fluxes were highly assessed by solar park 

studies (nine of the 18 studies; Table 4.1). Literature assessed different aspects of solar 

radiation fluxes. Armstrong et al. (2016) and in Chapter one of this thesis (section 

1.4.1.4) PAR was assessed in the same temperate UK grassland. Dupraz et al. (2010), 

Marrou et al. (2013a) and (2013b), assessed the light availability under two different 

shade densities (50% and 70%) in the same agrivoltaic scheme. Hassanpour Adeh et al. 

(2018) assessed the incoming short-wave (SW) radiation whilst, Millstein and Menon 

(2011), Yang et al. (2017) and Marrou et al. (2013b) the incoming and the outgoing 

long-wave (LW) and short-wave (SW) radiation.  

Averaged across the year, PAR under the PV panels was 92% lower than in the gap 

between the PV panel rows; PAR in the gap was similar to that at control plots 

(Armstrong et al., 2016). Further, in Chapter one of this thesis (section 1.4.1.4), PAR 

during growing season was found four times higher in the morning and afternoon and 

three times higher in the evening in the gap compared with under. The amount of the 

incoming SW radiation was reduced under the PV panels, especially diurnally during 

growing season in rural environments (Hassanpour Adeh et al. (2018), Marrou et al. 

(2013b) and in Chapter 3 of this thesis section 3.4.1.3).  

Outgoing SW and LW were significantly reduced in the afternoon hours of the summer 

period, directly above the PV panels in a Californian desert (Millstein and Menon, 

2011). However, the annual average differences between the solar park and control 
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areas were not significant. Yang et al. (2017), in a Chinese desert, related the increased 

annual LW and the decreased SW radiations, to changes at the surface temperature and 

found significant differences.  

Radiation availability at a temperate agrivoltaic system, under two shade densities (Half 

Density; 50% and Full Density; 70%) was lower during the wheat cropping season, 71% 

and 43% at each shade treatment, respectively (Dupraz et al., 2010). At the gap between 

the PV panels, the light availability was less than 60%. Notably, comparisons and 

generalisations regarding solar radiation fluxes are impossible at the moment, as each 

of the studies investigates different aspects of radiation at different ecosystem types. 

However, all agreed that under the panels light was notably lower than the gap between 

panel rows and control areas. 

4.4 O2. Outline the potential implications of the altered 

climate on ecosystem processes and services 

The increased GHGs have generated significant climate change jeopardies with 

implications for ecosystems and humanity (Mendelsohn et al., 1994; Asif and Muneer, 

2007; Pedraza, 2012; Chu and Majumdar, 2012). The capacity of ecosystems to deliver 

services to an already overpopulated planet is a fact and the acknowledged climate 

change increases the scarcity (Mooney et al., 2009). Climate changes affect ecosystem 

functions and results in implications for ecosystem services provision (Matos et al., 

2019; Montoya and Raffaelli, 2010). As mention above, the quantified significant 

variability of climate aspects, including air temperature and soil moisture, which are 

related through the balance of incoming and outgoing energy combined with water at 

the surface, suggest critical implications on energy and water balance in solar parks. 

Therefore, based on the ecosystem services as suggested by UKNEA (UKNEA, 2014) 
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and the implications on energy and water balance, caused by solar parks, the followed 

(related to solar parks) were discussed. 

4.4.1 Provisioning ecosystem services 

4.4.1.1 Food provision (biomass materials) 

The Leaf Area Index (LAI) is an easily measured variable and a great indicator of 

vegetation growth, whilst food provision for animals is critical for the accumulation of 

biomass, which would affect supply, and either are poorly assessed. Three of the 18 

solar park studies including Chapter one of this thesis addressed the effects of solar 

parks on LAI (section 1.4.3). During spring 2011, Marrou et al. (2013a), found that the 

annual mean of LAI under the panels was significantly decreased under two different 

densities of shade (50% and 70% of shade). On the other hand, in Chapter one of this 

thesis, LAI along a linear transect, was higher under the panels compared with the gap, 

during growing and non-growing season months (Figure 1.8). This was explained by 

the higher amount of soil moisture under the panels which promoted vegetation 

(grasses) growth. These results could be related with Dupraz et al. (2010), who found 

minor effects on the annual mean above ground biomass at 50% shade but significant 

effects at 70%  of shade, for wheat during growing season. Further, showed evidence 

of a decreased yield production of wheat under the panels associated with the decreased 

solar radiation fluxes. 

Biomass accumulation and food provision are also associated with the vegetation 

management of a land hosting a solar park which was proven to affect plants’ diversity 

(Armstrong et al. (2016) and Chapter one in this thesis see Table 5 in SI.1, p.207). In a 

UK temperate grassland hosting a solar park, Armstrong et al. (2016) conducted a 
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vegetation survey which showed that under the panels there were fewer species than at 

the gap and control treatments. Further, that mostly forbs and legumes thrive at the gap 

and in control compared to under the panels’ diversity. For Chapter one of this thesis, a 

vegetation survey was run in the same site, to assess the plants’ diversity four years 

post-construction of the solar park. Both Achillea millefolium and Phleum pratense, 

which were the most prevalent in 2013’s survey by Armstrong et al. (2016) were not 

present under the panels in 2015’s survey (see SI.1 Table 5, p.207). 

Apart from the effect on plant diversity, the morphological and phenotypical 

characteristics of the vegetation were shown to be affected by the physical presence of 

the PV panels (Marrou et al., 2013b). These changes affect the ratios of biomass as well 

as of the LAI but remain unaddressed. It is expected that due to higher amounts of 

moisture, the leaves will be bigger, greener and thicker (storing more water), for most 

of the year. However, this is highly dependent on the species and the climate zone, 

because wheat for example did not vary significantly under shade and at control areas, 

compared with lettuce and cucumbers (Marrou et al., 2013b).  

The plant cover was also affected by the physical presence of the PV panels for both 

lettuces and cucumbers during growing season (Marrou et al., 2013b). Lettuces cover 

was higher under the panels than at the control areas (almost by 150%) due to the 

morphological adaptation of the lettuce leaf size arrangement under shade. The 

cucumbers thrived in the control treatments compared with under the panels (less than 

33% cover), which corresponded with the time period during which significant 

differences were found on the actual evapotranspiration between under and control 

areas (detailed in Marrou et al. (2013c)). As mentioned above, each type of vegetation 

responds differently under shade and under diverse climatic conditions, therefore future 
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assessments would be complicated to understand but is urgently needed, especially with 

agrivoltaics on the rise. 

Adapting to the local climate changes is hard and spatio-temporal dislocations of plant 

species are expected; associated to climate change (Montoya and Raffaelli, 2010). This 

will affect the amount of biomass materials produced from a terrestrial ecosystem and 

will be further affected within a solar park. In the literature assessed for this study (Table 

4.1), biomass and food provision were correlated with the light and water availability, 

with microclimate and the gaseous fluxes perturbation from solar parks. Lettuce 

varieties demonstrated a strong ability to produce biomass more efficiently with limited 

light resources (Marrou et al., 2013a). Further, Dupraz et al. (2010), found minor effects 

on the annual mean above ground biomass at 50% shade but significant effects at 70%  

of shade, for wheat during growing season. 

On the other hand, in a temperate grassland, areas away and at the gap between panel 

rows biomass was four times higher than under the panels, associated with microclimate 

and vegetation management (Armstrong et al., 2016). Hassanpour Adeh et al. (2018), 

also found greater amount of biomass at the gap than under in an unirrigated pastureland 

which often experiences water stress. Further investigations on vegetation in different 

climatic zones and lands are critical in order to increase the probability of the assumed 

causes.  

A framework with shade tolerant species and their potential to adapt under panels is 

urgently required, as most findings regarding biomass provision are from three types of 

crops (e.g. lettuces, cucumber, wheat, agave; Dupraz et al. (2010); Marrou et al. 

(2013c); Marrou et al. (2013b); Marrou et al. (2013a); Ravi et al. (2014)). Dinesh and 

Pearce (2016), suggested a short list of crops which might adapt in agrivoltaic systems 
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but have not been evaluated yet, including broccoli, hog peanut, yam, sweet potato, 

spinach, parsley, arugula and chard. 

The assessments on the impacts of solar parks on vegetation, are the poorest, with above 

ground biomass and the leaf area index receiving most of the research focus. However, 

the experimental designs of the current studies differed significantly, the crop types 

which have been investigated were too specific (lettuces, cucumbers, durum wheat and 

mixed grassland species) and the correlation to establish the causes differed as well. 

Therefore, it is obvious that the need for further research is urgent, especially with 

vegetation being the protagonist in multiple-use lands, with remote-sensing approaches 

deeming the most sensible. 

4.4.1.2 Fibre provision 

There have been studies investigating agrivoltaic systems with cultivations rich in fibre 

such us durum wheat (Marrou et al., 2013b; Dupraz et al., 2010). Experiments 

conducted on the Paulownia variety wheat grown under shade in an agroforestry 

scheme, showed a reduction in wheat yield by 51% (Li et al., 2008), while Dupraz et al. 

(2010) reported that in a 60% light availability reduction, there was only a 19% 

reduction in wheat yield. There is limited research assessing crop yields in solar parks, 

and most of the comparisons to grasp some understanding regarding reductions caused 

by shade, are using agroforestry literature. However, as seen in this example for durum 

wheat, comparisons between agroforestry and agrivoltaic schemes might run into great 

differences and thus inaccuracies with regards to the result (Dinesh and Pearce, 2016). 
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4.4.1.3 Fresh water 

The provisioning of fresh water does not directly apply within the ground-mounted solar 

parks scope reviewed in this PhD study, in comparison with floating solar schemes. 

Thus, implications on fresh-water provision could not be directly speculated with this 

form of design (Qi and Zhang, 2017). 

4.4.1.4 Genetic resources 

Physiology and morphology of plants with long-term effects on phenotypes and 

genotypes of potentially rare species have been reportedly affected by climatic changes 

(Kumar, 2015), especially changes on net precipitation, net solar radiation and 

evaporation (FAO, 2015; 2011; Dupraz et al., 2010; Marrou et al., 2013b; Marrou et al., 

2013a). There have been evidence by two solar park studies, which  conducted plant 

surveys across the same solar park (Chapter 1 of this thesis, Tables in S.I.1 p. 207 and 

Armstrong et al. (2016)), that grassland species diversity changed in a period of two 

years. It was related to site’s management (sheep grazing in the winter and machinery 

cuts throughout the year) but should be thoroughly investigated to avoid any 

implications on plant genetic resources provision from multi-land use solar parks as this 

particular one in Westmill (Westmill Solar Farm, 2011).  

4.4.2 Regulating ecosystem services 

4.4.2.1 Climate regulation 

Climate is regulated among others, by air temperature, gaseous fluxes, precipitation and 

the overall weather patterns at a global and local scale (Zari, 2017). Solar parks can 

influence climate in two ways, directly, by changing local climate with potential 
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implications for regional climate, and through altering the lands’ carbon source-sink 

status and therefore atmospheric CO2 concentrations. However, there is uncertainty on 

whether solar parks induce cooling, or heating (Table 4.2). In addition, wind and 

humidity (closely related to gaseous fluxes and weather patterns), findings are 

extremely limited and carbon dioxide fluxes, including net ecosystem exchange, soil 

respiration and photosynthesis, were addressed only from two studies including chapter 

one of this thesis.  

Specifically,  Armstrong et al. (2016) showed that regardless of season, the soil under 

the panels demonstrated the lowest soil CO2 respiration (cooler air under) and 

photosynthesis ratios (low ratios of solar radiation) compared with the areas at the gap 

between panel rows and control areas. The variability was further supported by the 

existent vegetation and by the reduced wind speed under the panels.  

Further, Net Ecosystem Exchange (NEE) demonstrated contradictions with regards to 

whether under and gap were a sink or a source of CO2 in the atmosphere (Armstrong et 

al. (2016) and in Chapter one of this thesis; Figure 1.9). Armstrong et al. (2016) found 

that during the summer the gap between the panel rows was a greater sink of CO2 

compared to under the panels while out of growing season the control was the greatest 

sink among the three treatments. Annually, under was a sink while gap and control were 

a source of CO2 to the atmosphere. On the other hand, in Chapter one of this thesis 

(section 1.3.2.4), there were evidence that both gap and under were a sink of CO2 during 

most of the fieldwork visits. Further, the area under was shown to be a source out of the 

growing season. 

Contradictions may occur because each year the gaseous fluxes vary depending on the 

weather conditions (Luo and Zhou, 2006). Further, uncertainties may occur due the fact 
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that CO2 fluxes are the most poorly assessed factors by solar park studies, despite of the 

strong implications on soil moisture and temperature which influence plant growth 

(Phillips and Nickerson, 2015). It needs further assessment especially when considering 

wider deployment of multiple-use lands, including agrivoltaic systems. 

4.4.2.2 Pollination Regulation 

The effects of solar parks on climate aspects and their associated ecosystem functions, 

have had a strong impact on biodiversity. Evidence showed decreased plant diversity 

under the panels and reports for prevalence of specific shade-tolerant species were 

addressed from two surveys run with two years difference at the same solar park 

(Armstrong et al. (2016) and in Chapter one of this thesis). Changes on plant diversity 

in a solar park, suggested implications on pollinators, which are already in danger due 

to the extensive land fragmentation from climate change. Watson et al. (2002), 

investigated the potential of multiple-use lands introducing pollinator habitats in a solar 

park. In their study, they have identified over 3,500 km2 of agricultural land near 

existing and planned solar energy facilities where pollinators habitats creation could 

deliver profit on ecosystem services. 

4.4.2.3 Hazard Regulation 

Solar parks provide clean and renewable energy; however, the solar panels are made of 

chemical materials which are currently under investigation with regards to their safest 

ways of disposal after solar park decommissioning. There are recycling projects 

assessing new ways of dealing with solar parks waste, as well as manufacturing new 

eco-friendly materials, to replace the hazardous which were primarily used in industry 

(Fthenakis, 2018; Xu et al., 2018; Babayigit et al., 2016). Apart from this aspect, solar 

parks waste is not assumed as hazardous compared with the waste deriving by other 
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types of energy resources (i.e. nuclear energy waste), especially when there are evidence 

that some of these hazardous solar panels’ waste materials could be recycled to produce 

mesoporous silica material for soils (Ma and Ruan, 2013).   

4.4.2.4 Noise Regulation 

In Westmill Solar Park; UK temperate grassland hosting a solar park (Westmill Solar 

Farm, 2011), there are wind turbines installed close to the solar park. This is quite 

normal as many large-scale projects involve both types of renewable infrastructure 

within the same land unit. It is anticipated that industrial wind turbines are a new source 

of noise, in a previously quite rural area. Animal Conservation papers found that wind 

turbines noise decreased bird nesting in a grassland and thus were suggested to be 

implemented in crop lands, which support lower passerines compared to grasslands 

(Krecia et al., 1999). Further, wind turbines affected squirrels community emitting 

vocalizations that alert others to the presence of a predator (Rabin et al., 2006).  

In addition, Environmental Health studies investigating sleeping patterns and 

disturbances, showed that the noise deriving by the propellers of the wind turbines had 

moderate to strong effects on the sleep of residents close to wind parks (Nissenbaum et 

al., 2012; van den Berg, 2004; Knopper and Ollson, 2011; Schmidt and Klokker, 2014; 

Bolin et al., 2011). Regarding solar parks and their potential impact on noise regulation, 

would be noise produced by inverters. They produce a fair amount of noise but are still 

significantly quieter than a vacuum cleaner and only during daytime.    

4.4.2.5 Disease and Pest Regulation 

There are implications for increased pest and diseases on lettuces cultivations, under the 

PV panels, due to the increased air humidity and limited air circulation compared with 
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the gap or control areas away from the panels (Marrou et al., 2013b). One of the main 

negative effects of shading on crops is usually the increase of fungal diseases (Roberts 

and Paul, 2006). These evidences suggest the need for future research, especially with 

the wide deployment of solar parks on multiple-use lands. 

4.4.2.6 Regulation of water, air and soil quality 

The regulation of water, air and soil quality are highly interdependent to all the climate 

aspects and ecosystem processes that are expected to be affect by a solar park 

(thoroughly mentioned and assessed under section 4.4). Here, there were some additions 

with regards to the water use efficiency from precipitation and PV panels surface 

cleaning water runoff and their implications to the water and soil quality.  

For example, there have been suggestions implying that the amount of water used to 

clean the PV panels and dust suppression are similar to the amounts required for annual 

agave growth, suggesting the possibility of integrating the two systems to maximize the 

efficiency of land and water use to produce both electricity and liquid fuel in a semi-

arid located solar park (Ravi et al., 2014). Also, that water used for cleaning and water 

from precipitation collected in containers in the solar park, could be widely used in 

agrivoltaic systems as well, as being the main method or irrigation any type of solar 

park (Dinesh and Pearce, 2016; Hernandez et al., 2019).  

However, there are severe implications for soil and water quality during panels cleaning 

procedures (Qi and Zhang, 2017). Cleaning panels involves the use of chemical 

products, mostly non-bioproducts, to remove dust and any dirt (bird droppings) that 

would affect the energy production. Cleaning products contain chromium which mainly 

consists of hexavalent and trivalent chromium compounds. Their toxicity is 

undoubtable and inhibits the growth of crops and using wastewater that contains 
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chromium to irrigate will reduce crop yield and harden the soil. Even though other 

cleaning technologies (e.g., electrostatic) exist, most are not yet commercially available, 

and the impacts of conventional technologies (e.g., cleaning using chemical sprays) on 

the environment are partially resolved (Hernandez et al., 2014). Wastewater runoff 

leaches into the soil, might also have a long-term effect at the water table in the solar 

park. 

4.4.3 Supporting ecosystem services 

4.4.3.1 Water Cycling 

Solar parks physical presence may affect the water cycle, redistributing precipitation, 

altering rates of evaporation and transpiration as discussed in some of the published 

solar park studies (Table 4.1). Overall, effects of precipitation in solar parks, were 

poorly addressed, with current findings showing that the PV panels’ design, allowed the 

penetration of some water under the panels (sides of the panels’ frame and water runoff 

at the front of the southern panel edge). Only two studies measured the amount of 

precipitation and both were conducted in the same UK temperate grassland (Armstrong 

et al. (2016) and in Chapter one of this thesis section 1.4.1.5). In Chapter one of this 

thesis there were evidence of water intake under the PV panels explained by the 

diagonal flow of rain and by the panels design (water run off at the sides of the panels). 

Perturbations at the amount of water intake by the surface, implied effects on 

evapotranspiration. 

Impacts on water cycle can be affected by ecosystem type and co-land use (multiple-

use lands such as agrivoltaics). For example, Marrou et al. (2013c) assessed cucumbers 

and lettuces actual evapotranspiration (AET), soil water potential (water storage) and 
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transpiration during cropping season. Their findings showed that AET under the PV 

panels, was more affected by shading in spring than in summer and that plant 

transpiration was reduced by 31% for lettuces under shade. On the other hand, the 

function Evaporation/Transpiration was found to increase significantly under shade. 

Further, at 25 cm depth, under shade lettuces maintained their water potential to 50 kPa 

compared with the 65 kPa in control areas and the cucumbers demonstrated a water 

potential of 80 kPa going deeper (30 cm depth).  

In addition, Hassanpour Adeh et al. (2018) showed that the area under the panels was 

328% more efficient, decreasing the ratios of potential evaporation (PE) at the gap 

between panels rows. The further low PET lead to increased grasses water use 

efficiency. At the control areas there were evidence of depletion through ET and 

scarcity reported during the growing season. In Chapter three of this thesis, PE in 

different climate zones was assessed (section 3.4.1.2). The area under, was constantly 

evaporating less compared with gap and control (three times lower in the equatorial, 

double in the arid).  

Marrou et al. (2013c) associated the water use efficiency with biomass accumulation 

which for lettuces under shade reached daily a 67% to 87%. Water potential which is 

highly related to water use efficiency by the soil affecting the ratios of plant biomass 

(Marrou et al., 2013a). On the other hand, cucumbers accumulation of the total dry 

matter was reduced by ~40 % compared to control areas under full sun. Thus, 

investigating those variables at each species can be complicated as for example, 

cucumber appears more sensitive under shade than lettuces. Thus, the water available 

for evaporation under panels stays in the soil, this leads to increased soil moisture 

content and as a result to changes at the phenological characteristics of the vegetation 
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such as plant growth and biomass production, which obviously will vary with plant 

species, spatially and temporally. 

4.4.3.2 Soil formation  

Soil physical properties, including bulk density and organic matter, affect soil 

formation, thus soil health and plant growth (Saini, 1966). Soil health and plant growth 

are essential for maintaining habitats and biodiversity. Therefore, quantifying the 

effects of solar parks on soil is crucial. However, only two studies (Armstrong et al. 

(2016) and Chapter one of this thesis; section 1.4.2) assessed solar parks effects on soil 

physical and biochemical properties. Armstrong et al. (2016) and in Chapter one of this 

thesis, were conducted in the same UK temperate grassland with two years difference 

between the two field studies.  

The effects of solar parks on climate aspects and their associated ecosystem functions, 

have had a strong impact on biodiversity. Evidence showed decreased plant diversity 

under the panels and reports for prevalence of specific shade-tolerant species were 

addressed from two surveys run with two years difference at the same solar park 

(Armstrong et al., 2016; Makaronidou, 2019). Changes on plant diversity in a solar park, 

suggests implications on pollinators, which are already in danger due to the extensive 

land fragmentation from climate change. Watson et al. (2002), investigated the potential 

of multiple-use lands introducing pollinator habitats in a solar park. In their study, they 

have identified over 3,500 km2 of agricultural land near existing and planned solar 

energy facilities where pollinators habitats creation could deliver profit on ecosystem 

services. 
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4.4.3.3 Soil formation through the nutrient cycle 

Armstrong et al. (2016) showed no spatial nor seasonal variability in total carbon (C) 

and nitrogen (N), bulk density, particle size distribution and microbial C and N. 

However, in Chapter one of this thesis, there were evidence of spatial variability of bulk 

density and organic matter, related to high amounts of soil moisture under the PV panels 

(section 1.4.2). The magnitude deemed low, and the correlation between bulk density 

and organic matter was negative (Keller and Håkansson, 2010; Gao et al., 2012; 

DelVecchia et al., 2014). This implied that the soil conditions within a solar park 

recovered four years after the extensive perturbation during construction and post-

construction (compaction from machinery and vegetation re-seeding, respectively).  

4.4.3.4 Primary production 

Induced microclimate caused by solar parks was shown to affect the energy flow across 

a land hosting a solar park (studies assessing part of the issue as seen in Table 4.1 as 

well as in Chapter one of this thesis) strongly affected primary production; vegetation 

in a solar park (thoroughly assessed in above). Climate factors influence primary 

productivity differently and depends on the type of vegetation and the climate zone, for 

example, desert vegetation is closely related to both precipitation and temperature (Han 

et al., 2016). Thus, for once again, the assessment on solar parks local climate effects 

across different climate zones, combined with physical based models associated with 

crop models, would provide critical information and help building strategies to promote 

the supply of ecosystem services. 
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4.5 Limited and non-inclusive findings is solar parks with 

great implications for the Water-Energy Balance 

Given the variability and spatio-temporal differences among the location which were 

assessed by current literature (Table 4.1), and acknowledging that the observed climate 

aspects investigated across the four chapters of this thesis, (including air temperature, 

precipitation, soil moisture, evaporation), are related through the balance of incoming 

and outgoing energy combined with water at the surface, allowed us to further highlight, 

the critical need to assess their interactive effects on energy and water balance in solar 

parks. It is assumed that in an already changed climate, time of day, seasonal and spatial 

differences in a solar park, should be monitored regardless of solar parks’ size, 

especially given their widespread deployment, as the effects on the local climate, are 

proportional to the potential effects on the global climate regulation.  

Below follows a summary that describes the illustration of the impacts of solar parks in 

aspects of climate and on ecosystem processes (Table 4.2) as reported from the fifteen 

solar park studies and the first three Chapters of this thesis. Daytime, night-time and 

annual averages increase and/or decrease variability were reported only when assessed 

by more than three studies (Table 4.1). Apart from the fact that results were at times 

contradictory, which prohibits accurate assumptions going forward, the summary 

highlighted even bigger gaps assessing specific times of day in the subsequent seasons 

(growing and non-growing) as well as across different climate zones. There were 

limited to non-reported metrics during night-time, which would provide information 

including transpiration rates. Also, the day-time reported metrics, reported in three and 

more studies, mostly end up to contradictions (air temperature for example), or to not 

enough data to report statements with certainty, for example regarding the effects on 
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evaporation under the panels in a temperate ecosystem, or an arid desert ecosystem 

(where solar parks are mostly widely deployed). 

Similar observations regarding knowledge gaps out of the growing season. Most 

researchers investigating a new topic as the one investigated in this PhD study, primarily 

focused their assessments on growing season impacts, as it is the season when most of 

the ecosystem functions occur and thus growing season is the main regulator of the 

ecosystem services supply. Despite that, research is still in juvenile stage, as solar parks 

where implemented almost two decades ago and any assumption or long-term impact 

is expected to appear within the next decade (before and right after the decommission 

stage).  

Regardless, the wide global deployment of solar parks across different ecosystem types, 

different climate zones, under different management strategies, different PV panels 

planning, placement and design, along with the speed of this deployment to achieve the 

ultimate transition to clean energy resources, implies massive global land-use change. 

The implications of this massive land-use change on microclimate and the subsequent 

processes are unresolved, run into contradictions (due to limited research available), 

each follows a different experimental design disabling any establishment of causes. 

There is strong evidence of potential impacts at the energy and water balance, as well 

as evidence of ecosystem recovery four years post-construction, increased crop and 

pollination yields under the panels (Table 4.1). In an already changed climate, assessing 

all the above, increases the already high complexity of the topic, however we urge the 

scientific community to focus on this field of research. 
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Table 4.2:Literature review findings related to solar parks’ effects on aspects of climate and ecosystem processes. Arrows showing whether 

the average of the studies showed an increase, a decrease, a contradiction, a simultaneous increase and a decrease reflected to experimental 

design, of each of the mostly tested variables. Red colour for Under the panels, blue colour for the Gap between PV panel rows, green for 

the Control areas and yellow colour for above and in the area with PV panels compared to Control. Equality symbol, grey colour, 

demonstrated the findings with same response among investigated areas inside a solar park and Control.  

 

Variable 

Growing Season Non-Growing Season Annual 

Day Daily Night Day Daily Night Day Daily Night 

Air Temperature ↑ ↑ ↕ ↓ ↑ ↑ ↑ ↓ ═ ↓ ↓ ↑ 
  ↓ ↕ ↑ 

Soil Temperature ↓ ↑ ↑ ↓ 
 ↓ ↓ ↕ ↕ 

  ↓ ↓ ═ 
 

Soil Moisture ↑ ↓ 
        

Biomass  ↑ ↓ 
     ↑ ↑ ↓ 

 

Longwave-LW        ↓ ↕ ↕ 

Shortwave-SW ↑ ↑ ↓ ↓ 
     ↑ ↕ ↓ ↓ 

Evaporation and ET  ↑ ↓ 
  ↑ 

  ↑ 
 

Albedo  ↓   ↑  ↑ ↑ ↑ 
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4.6 O3. Critical research needs optimizing solar parks 

hosting ecosystem sustainability 

This synthesis study reviewed fifteen publications and the three results chapters of this 

thesis, all associated with impacts of solar parks at the local climate, highlighting the 

urgent need for future research. The existing studies are limited, aim to answer varying 

questions while applying different methodologies. This prevents reliable 

generalisations across different climatic zones, ecosystem types and solar park designs, 

whilst solar energy generation is exponentially increasing across the globe.  

Interest in sustainability is increasing at the engineering sector, and lately several 

approaches account for environmental impacts of infrastructure at the hosting 

environment. It is anticipated that future research on solar parks should be approached 

by a combination of strategic engineering of solar technologies and ecology principals 

to promote sustainability of solar energy across diverse hosting environments. The 

ultimate target is to create a win-win situation, promoting parallelly clean energy 

provision by solar parks and ecosystem services provision, from the same land unit.  

Techno-ecological synergies are the outcomes deriving by technology and nature 

processes for the benefit of ecosystem’s sustainability (Bakshi et al., 2015; Hernandez 

et al., 2019). For example, in an agrivoltaic scheme using PV panels design to harvest 

water for the irrigation of the hosting land, could result to several techno-ecological 

synergies outcomes (seven in number; Hernandez et al. (2019)). These positive 

outcomes could ultimately promote ecosystem services and supply, reducing air 

pollution, regulate the climate, secure food and energy, while increasing water use 

efficiency and pollination (Hernandez et al., 2019; Bakshi et al., 2015). 
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At this stage, modelling approaches verified with field data, including remote sensing 

approaches, are strongly suggested as they provide rapid and cost-effective information 

(Chapters two and three of this thesis). The majority of the related solar studies focused 

their investigations on daily averages reports and mostly during the growing season. 

However, nocturnal metrics are also crucial to identify effects on ecosystem function 

including for example transpiration. Potential increase of transpiration was caused by 

vegetation removal and gravel underlayment which had as a result cooling of the PV 

panels (Hernandez et al., 2019). Thus, land management should be always considered 

when trying to address potential and size of impacts from solar parks at the local climate 

and the overall water and energy balance. 

In addition, all future studies apart from accounting for daily averages should further 

account for minimum and maximum values of climate variables (air temperature, soil 

moisture, soil temperature, humidity, wind speed and solar radiation fluxes). All types 

of metrics are essential as they could be used to assess variability of ecosystem functions 

including vegetation growth; for example, air temperature minimum and maximum are 

essential calculating the amount of growing degree days. 

Moreover, experimental designs are also crucial addressing variability which might 

differ from one design to another. Comparisons between inside and outside a solar park 

are critical, but differences among randomly selected locations inside a solar park 

including under panels, gap between panel rows, panels’ sides, control areas away from 

panels, linear transects grasping under and gap areas should be also considered. There 

was high variability reported among different areas inside a solar park and all suggest 

further investigation.  
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Below, there are suggestions for future research categorised as Ecological and Techno-

Ecological approaches, terms borrowed from a recent study by Hernandez et al. (2019), 

which would be also interesting if expanded in the southern hemisphere as well. All 

ideas reported here, are strongly associated with crucial ecosystem services. The most 

relevant to our study and approach, (i.e. ground-mounted solar parks microclimate 

variability), were mainly those mentioned under section 4.4. In particular, related to air 

pollution reduction, climate regulation, animal welfare, food system resilience, habitat 

of species, land sparing, maintenance of genetic diversity, pollination, water-use 

efficiency and quality, supplied by solar park ecosystem functions. 

4.6.1 Ideas for Future Research 

• Identify whether solar parks induce cooling or heating and if this is related to 

climate zone and/or height (surface to above PV panels) that air temperature was 

measured. Assessing the wind, solar radiation and air temperature vertical 

profiles could establish weather solar parks induce cooling or heating (Fthenakis 

and Yu, 2013).  

• Investigate plants diversity variability throughout the years post-construction of 

solar parks, associated with microclimate variability. This should include 

species growth, accounting for yield production and biomass accumulation. 

• Investigate the abundance of small mammals (i.e. brown hare, owls) as well as 

live-stock solar parks forage quality associated with biomass materials and food 

provision. Examine whether a solar park would be used by raptor species 

(shelter areas from PV arrays). 
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• Identify whether solar parks sink or source carbon dioxide in the atmosphere 

across climate zones; is it associated with vegetation (dense, sparse or non) 

and/or varies depending on the weather conditions (Luo and Zhou, 2006). 

• Investigate the effect of low solar radiation fluxes under the panels on plants 

diversity and biomass, across different climate zones.  

• Expand the evaluation of shade-tolerant species for agrivoltaic applications to 

other species apart from lettuces and cucumbers, including broccoli, hog peanut, 

yam, sweet potato, spinach, parsley, arugula and chard (Dinesh and Pearce, 

2016). Investigate the species growth, for example accounting for yield 

production and biomass accumulation under the panels compared to control 

areas.  

• Simulate soil temperatures by testing different solar panels’ dimensions deriving 

by real-life solar parks and quantify implications of design on energy and water 

balance 

• Quantify the effect of redistributing precipitation under the panels and in front 

of the southern panel edge (water pools created from runoff) on the surface 

energy and water balance across different climate zones; implications for soil 

physical and biochemical properties including soil bulk density and organic 

matter which affect soil health and plant growth (Saini, 1966). 

• Support water cycle by consider practices and technics to increase the water 

availability under the panels. For example, establish collectors (drainpipes) to 

store water from the panels’ runoff at the southern panel edges which could then 

be used for irrigation. 
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• A carbon calculator life cycle analysis of solar parks, would be beneficial and 

promote the outcome of several techno-ecological synergies including air 

pollution reduction and climate regulation (Hernandez et al., 2019). 

• Investigate how cleaning of the PV panels with chemicals to prohibit dust 

deposition, would affect plant-soil traits including Evapotranspiration and thus 

provision of services including food provision, biodiversity maintenance, 

habitats and pollination. 

4.7 Conclusion 

There is a global effort for an energy transition to low-carbon resources and solar energy 

is the most promising. Impacts of the solar parks deployment on the hosting land are 

poorly assessed. Terrestrial ecosystems are sensitive demonstrating low availabilities in 

water and fluctuations in temperatures. These sensitivities vary with climate zone and 

thus different types of vegetation. Maintaining grasslands, shrublands and any types of 

ecosystems where solar parks are installed was the target when new strategies as 

multiple-use lands where initially introduced. However, assessing the UK framework 

of solar parks establishment there was a clear distinction regarding the grades of a land 

which would host a solar park. The areas proposed for a solar park establishment would 

have to be low grade and not ideal for agriculture use (BRE, 2014). If the proposed area 

could be used for agriculture, then the proposal should thoroughly explain and provide 

information explaining why the proposed land-use change. It is strongly suggested, that 

policy makers create firmer frameworks as well as guide the stake holders with cautious 

delivering environmental and financial benefits for all sides involved. With solar parks 

changing the land-use, the effect is larger, and thus ecosystems services are expected to 

be altered. Relating the impacts of solar parks at the local climate to the provision of 

ecosystem services shows the urgency of establishing the causes and find solutions to 
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tackle the effects and promote ecosystem services supply. Chances to optimise the 

effects through multiple-use lands sound appealing. Apart from research purposes, this 

synthesis is an easily accessible framework to communicate the complexity of 

understanding the implications of solar parks on ecosystem services to stake holders, 

policy makers and the public. The existing studies are limited, aim to answer varying 

questions and use different methodologies. This prevents reliable generalisations across 

different climatic zones, ecosystem types and solar park designs. At this stage modelling 

approaches verified with field data are strongly suggested as they allow predictions to 

expand on larger areas and for long-term metrics which is extremely practical and 

costless. Research findings are urgently needed to enhance understanding and thus 

explore the potential for managing solar parks to promote several techno-ecological 

outcomes. 
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Appendix 1 – S.I. 1 

Microclimatic observations – graphs 

Air temperature 

Table 1. Daily minimum, maximum and mean air temperature during growing and non-growing season in degrees Celsius (°C). 

Growing Season Morning 

(min/max/mean) 

Afternoon 

(min/max/mean) 

Evening 

(min/max/mean) 

Under 8 22.3 15.7 12.3 26.6 18.8 14.1 27.5 19.2 

Gap 7.8 26 16.9 11.5 36.3 21 14.6 30.8 20.8 

Transect 7.8 26 16.4 11.5 36.3 20.1 14.1 30.8 20.2 

Non-Growing 

Season 
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Under 2.7 14.4 10.1 5.1 19.8 13.4 11.5 20 16.1 

Gap 2.6 15.2 10.1 4.8 20 13.4 11 19.2 16 

Transect 2.6 15.2 10.1 4.8 20 13.4 11 20 16 

 

Soil Temperature 

Table 2. Daily minimum, maximum and mean air temperature during growing and non-growing season in degrees Celsius (°C). 

Growing Season Morning 

(min/max/mean) 

Afternoon 

(min/max/mean) 

Evening 

(min/max/mean) 

Under 9.9 18.3 14.1 10.6 23.7 14.7 11.2 19.6 14.4 

Gap 11.2 21.5 15.9 12.6 24 17.5 13.6 28.4 19.2 
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Transect 9.9 21.5 15.2 10.6 24 16.4 11.2 28.4 17.3 

Non-Growing 

Season 

         

Under 2.6 12.7 9.2 3.9 13.8 9.2 9.6 14.5 11.1 

Gap 2.2 12.6 9 2.8 13.7 9.5 9.6 14.8 11.6 

Transect 2.2 12.7 9.1 2.8 13.8 9.4 9.6 14.8 11.4 

 

Soil Moisture 

Table 3. Daily minimum, maximum and mean soil moisture during growing and non-growing season in (m3/m3). 
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Growing 

Season 

Morning 

(min/max/mean) 

Afternoon 

(min/max/mean) 

Evening 

(min/max/mean) 

Under 0.037 0.478 0.295 0.076 0.482 0.292 0.034 0.540 0.286 

Gap 0.03 0.477 0.267 0.012 0.441 0.250 0.048 0.387 0.220 

Transect 0.030 0.478 0.278 0.012 0.482 0.260 0.034 0.540 0.245 

Non-Growing 

Season 

         

Under 0.186 0.522 0.400 0.107 0.472 0.383 0.173 0.510 0.400 

Gap 0.200 0.521 0.390 0.165 0.499 0.391 0.161 0.520 0.390 

Transect 0.186 0.522 0.390 0.107 0.500 0.388 0.161 0.520 0.400 
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Photosynthetic Active Radiation 

Table 4. Daily minimum, maximum and mean air temperature during growing and non-growing season in μmol mˉ² sˉ¹ 

Growing Season Morning 

(min/max/mean) 

Afternoon 

(min/max/mean) 

Evening 

(min/max/mean) 

Under 9 1530 207 28 2110 218 15 1298 327 

Gap 68 2490 641 135 2900 975 93 1565 343 

Transect 9 2490 417 28 2900 672 15 1565 622 

Non-Growing 

Season 

         

Under 3 303 80 7 1450 103 3 280 64 

Gap 30 1600 378 45 1822 681 30 910 345 
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Transect 3 1600 259 7 1822 450 3 910 233 

 

Jars Experiment for Precipitation and Evaporation 

Precipitation 

Growing Season 

Min Max Mean  
Non-Growing 

Season 
Min Max Mean 

Under 0 61 21.44  Under 0 78 17.3 

Gap 26 80 60.25  Gap 30 163 86.02 

 

Evaporation 

Growing Season 

Min Max Mean  
Non-Growing 

Season 
Min Max Mean 
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Under 0.3 37.3 22.47  Under -55.6 53.3 0.77 

Gap 12.3 53.3 33.64  Gap -85.7 133.4 21.24 

 

 

Table 5. Plant species survey (period May-September 2015) 

Transect 1 Distance (m) Plant Species 

 1.25 Festuca ovina, Poa annua 

 7.50 Festuca ovina, Poa annua 
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Transect 2 Distance 

(m) 

Plant Species 

 1.25 Festuca rubra, Poa annua, Festuca ovina, Poa 

pratensis 

 7.50 Plantago lanceolata, Trifolium repens, Poa annua 

 

Transect 3 Distance (m) Plant Species 

 1.25 Poa annua  

 7.50 Festuca ovina, Brachypodium sylvaticum, 

Trifolium repens 
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Transect 4 Distance (m) Plant Species 

 1.25 Poa annua, Rumex obtusifolius 

 7.50 Leucanthemum vulgare, Festuca ovina, Poa annua, 

Plantago lanceolata, Brachypodium sylvaticum 

 

Transect 5 Distance (m) Plant Species 

 1.25 Poa annua, Rumex obtusifolius 

 7.50 Leucanthemum vulgare, Festuca ovina, Poa annua, 

Trifolium repens, Lotus corniculatus, Trifolium 

pratense, Festuca rubra 
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H2. Soil properties (some extra GAMs including testing the variability of GWC) 

Soil bulk density was affected by distance, organic matter and GWC (p < 0.001 and R2 

=60%). The amount of soil bulk density under was higher, compared with the gap 

(Figure 1(a)). Bulk density fell between a range of 0.75 g/cm3 to 1.15 g/cm3 for the area 

under and 0.60 g/cm3 to 1.05 g/cm3 for the gap area, representing a slight decrease from 

under to the gap. There was an obvious positive correlation between bulk density and 

the gravimetric water content (Figure 1(b)) as well as a similar trend along the transect. 

The available organic matter demonstrated a slight increase from the northern panel 

edge onwards, with fluctuations along the gap (Figure 1(a)). Organic matter under, was 

lower compared with the gap (p < 0.001), and negatively correlated to the bulk density. 

The spatial factor had a strong effect on the organic matter and the GWC explained the 

rest of the variation in the GAM (p <0.001 and R2 = 25%; Figure 1(a)).   
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Figure 1 (a) All tested physical properties and (b) the correlation between bulk density 

and gravimetric water content.
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Appendix 2 – S.I. 2 

HIS-PV control and HIS-PV u&g models’ comparison with logged measurements 
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Table 1. A comparison between the control and the u&g HIS-PV models at a 10cm 

depth with the logged measurements 

Period Location  Logged Min and 

Max soil 

temperature (°C)  

Control HIS-

PV RMSE (°C) 

U&G HIS-PV 

RMSE (°C) 

Differenc

e RMSE 

(°C) 

HTs Under 13 / 19.4 0.65 1.41 0.76 
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HTs Gap 15.2 / 24.7 1.06 1.29 0.23 

HD Under 11.7 / 16.8 0.52 1.78 1.26 

HD Gap 13.1 / 20.5 0.95 1.06 0.11 

CD Under 7 / 12.1 1.18 0.49 0.69 

CD Gap 7.9 / 14.9 0.99 1.40 0.41 

CW Under 4.4 / 8.8 0.26 1.52 1.26 

CW Gap 2.3 / 8.2 0.30 0.54 0.24 

MCs Under 9.8 / 10.7 1.23 0.45 0.78 

MCs Gap 9.4 / 13.1 0.98 0.66 0.32 

 

HIS-PV control and HIS-PV u&g models’ comparison with instantaneous 

measurements 
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Table 2. A comparison between the control and the u&g HIS-PV models at a 10cm 

depth with the instantaneous measurements 
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Period Date TOD Control HIS-

PV RMSE (°C) 

Under & Gap HIS-PV 

RMSE (°C) 

RMSE 

Difference 

HTs 23.06.2015 M 0.84 0.99 0.15 

HTs 25.06.2015 M 0.88 1.38 0.5 

HTs 22.06.2015 A 0.8 0.95 0.15 

HTs 23.06.2015 A 1.17 1.39 0.22 

HTs 25.06.2015 A 1.71 2.18 0.47 

HTs 22.06.2015 E 1.32 1.62 0.6 

HTs 25.06.2015 E 2.29 2.75 0.46 

MCs 29.09.2015 M 1.56 1.2 0.36 

MCs 30.09.2015 M 0.98 0.64 0.34 

MCs 01.10.2015 M 0.92 0.91 0.01 

MCs 29.09.2015 A 1.47 0.79 0.68 

MCs 01.10.2015 A 1.65 0.69 0.96 

MCs 28.09.2015 E 1.26 1.02 0.24 

MCs 29.09.2015 E 1.5 0.91 0.59 

 

HIS-PV control model evaluation with logged data during periods HD, CD and CW 
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Figure 1. Hot and Dry (HD) period 

 

 

Figure 2. Cold and Dry (CD) period 
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Figure 3. Cold and Wet (CW) period 
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Appendix 3 – S.I. 3 

Table 1. Sites geospatial and climatological information 

No KCC Climatic description Location Latitude 

(degrees °) 

Longitude 

(degrees °) 

Altitude 

(m) 

Met-

Station 

(NREL 

source) 

1 Af Equatorial, fully humid Hilo, Hawaii 19.717 -155.05 9 918250 

2 Af Equatorial, fully humid West Palm Beach Int Arpt, Florida 26.683 -80.1 6 722030 

3 Am Equatorial, monsoonal Miami, Florida 25.817 -80.3 11 722020 

4 Aw Equatorial, winter dry Key West, Florida 24.55 -81.75 1 722010 

5 Aw Equatorial, winter dry Naples, Florida 26.15 -81.767 3 722038 



Appendices 

Maria Makaronidou - June 2020   227 

6 BSh Arid, Steppe, hot arid Laredo, Texas 27.57 -99.49 142 752520 

7 BSk Arid, Steppe, cold arid Reno, Nevada 39.483 -119.767 1342 724840 

8 BSk Arid, Steppe, cold arid Denver Int Arpt, Colorado 39.833 -104.65 1650 725650 

9 BWh Arid, Desert, hot arid Las Vegas McCarran Int Arpt, Nevada 36.083 -115.15 648 723860 

10 BWk Arid, Desert, cold arid Coldfield, Nevada (Tonopah Airport 

Met Station) 

38.067 -117.083 1655 724855 

11 Cfb Warm Temperate, fully humid, warm 

summer 

Wytheville, Virginia 36.9 -81.35 780 724056 

12 CSa Warm Temperate, Steppe, hot summer Sacramento, California 38.5 -121.5 5 724830 

13 CSb Warm Temperate, Steppe, warm 

summer 

Portland, Oregon 45.6 -122.617 6 726980 
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14 CSb Warm Temperate, Steppe, warm 

summer 

Santa Barbara Municipal Arpt, 

California 

34.433 -119.85 3 723925 

15 CSb Warm Temperate, Steppe, warm 

summer 

San Francisco, California 37.617 -122.4 2 724940 

16 Dfa Snow, fully humid, hot summer Lincoln, Nebraska 40.833 -96.767 357 725510 

17 Dfc Snow, fully humid, cool summer Fairbanks, Alaska 64.817 -147.85 133 702610 

18 DSc Snow, Steppe, cool summer Homer, Alaska 59.65 -151.483 27 703410 

19 DWa Snow, Dessert, hot summer Valentine, Nebraska 42.867 -100.55 789 725670 

20 DWb Snow, Desert, warm summer Dickinson, North Dakota 46.8 -102.8 788 727645 

21 ET Alpine Barrow W post-W Rogers Airport, 

Alaska 

71.32 -156.62 10 700260 
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22 ET Alpine Mekoryuk, Alaska 60.367 -166.267 15 702185 

23 ET Alpine Savoonga, Alaska 63.683 -170.5 17 702035 

24 ET Alpine Gambell, Alaska 63.783 -171.75 8 702040 

25 ET Alpine Dutch Harbor, Alaska 53.9 -166.55 4 704890 

 

 

Soil Temperature in 10 cm depth 

Table 2. Daily mean soil temperature in 10 cm depth across five climate zones. 
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Climate Zone Daily Mean Soil 

temperature °C 

(min/max/mean) - Under 

Daily Mean Soil 

temperature °C 

(min/max/mean) - Gap 

Daily Mean Soil 

temperature °C 

(min/max/mean) - Control 

A, Equatorial 17.4 / 26.6 / 23.1 16.5 / 27.9 / 23.7 17.2 / 27.9 / 23.8 

B. Arid 4.4 / 27.4 / 16.3 1.4 / 31.1 / 16.7 1.8 / 31 / 16.9 

C. Temperate 9.3 / 21.8 / 16.4 8.1 / 23.1 /16.5 8.1 / 23.2 / 16.6 

D. Boreal -7 / 19.30 / 6.65 -7.7 / 19.4 / 6.3 -7.8 / 19.4 / 6.3 

E. Polar -15.7 / 7.9 / 1.5 -16.3 / 7.7 / -2.1 -16.4 / 7.6 / -2.2 

 

Table 3. Percentage and absolute values differences of the simulated daily mean soil temperature in 10 cm depth between under-control and gap-

control treatments. Subtracted with base the control simulations. 
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Potential Evaporation 

Table 4. Daily mean, min and max of PE of the soil across five climate zones 

 Control vs Under (°C) Control vs Gap (°C) 

 min max mean min max mean 

Equatorial -0.2 1.3 0.7 0.7 0 0.1 

Arid -2.5 3.6 0.6 0.4 -0.1 0.2 

Temperate -1.2 1.4 0.2 0 0.1 0.1 

Boreal -0.8 0.1 -0.3 -0.1 0 0 

Polar -0.7 -0.3 -3.7 -0.1 -0.1 -0.1 
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Climate 

Zone 

Daily (min/max/mean)– 

Under 

Daily (min/max/mean) - 

Gap 

Daily (min/max/mean) - 

Control 

Equatorial 0.65 / 2.35 / 1.40 0.35 / 3.50 / 2 0.60 / 3.50 / 2.10 

Arid 0.90 / 8.25 / 3.80  0.35 / 13 / 5.10 0.50 / 12.85 / 5.20 

Temperate 0.60 / 3.20 / 1.70  0.40 / 4.20 / 1.90 0.40 / 4.25 / 1.90 

Boreal 0.20 / 2.10 / 1.05 0.10 / 2.30 / 1.05 0.10 / 2.35 / 1.10 

Polar -0.08 / 1.05 / 0.35 0.04 / 1.10 / 0.40 -0.10 / 1.05 / 0.40 

 

Table 5. Percentage and absolute values differences of the simulated daily mean potential evaporation (PE) between under-control and gap-control 

treatments. Subtracted with base the control simulations. 
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Incoming Short-wave (SW) radiation at the surface 

Table 6. Daily mean, min and max of SW of the soil across five climate zones 

 Control vs Under (°C) Control vs Gap (°C) 

 min max mean min max mean 

Equatorial -0.05 0.65 0.70 0.25 0 0.10 

Arid -0.40 4.6 1.40 0.15 -0.15 0.10 

Temperate -0.20 1.05 0.20 0 0.05 0 

Boreal -0.10 0.25 0.05 0 0.05 0.05 

Polar 0.02 0 0.05 0 -0.05 0 
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Climate Zone Daily (min/max/mean)– 

Under 

Daily (min/max/mean) - 

Gap 

Daily (min/max/mean) - Control 

Equatorial 54.20 / 120 / 74.60 160.70 / 178 / 174  188 / 189 / 188.60 

Arid 57.20 / 102.30 / 68.30 141.50 / 153.50 / 149.70 161.80 / 162.90 / 162.40 

Temperate 49 / 95.20 / 62.50 134.70 / 142.70 / 139.30 152 / 152.50 / 152.25 

Boreal 45.70 / 86.40 / 58.80  112.60 / 120 / 118 129 / 130 / 129.80 

Polar 30.90 / 50.90 / 38 72.15 / 75.60 / 74.50 80.40 / 81.20 / 80.70 

 

Table 7. Annual percental differences of the simulated incoming SW (W/m2) at the surface between Under-Control and Gap-Control treatments. 

 Under vs Control Gap vs Control 
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Table 8. The mean and the standard deviation of the total of GDDs (ºC) during growing season at each climate zone  

min max mean min max mean 

Equatorial 36.40% 133.80  71.25% 69 60.50% 114 5.70% 27.30 14.80% 11.00 7.70% 14.60  

Arid 37.20% 104.60 64.80% 60.60 58% 94.10 5.40% 20.30 13.10% 9.40 7.80% 12.70  

Temperate 37.50% 103 67.90% 57.30 58.90% 89.75 6.30% 17.30 11.40% 9.80 8.50% 12.95 

Boreal 33.60% 83.30 64.85% 43.60 54.70% 71 7.60% 16.40 13.45% 10 9.10% 11.80 

Polar 36.65% 49.50 61.80% 30.30 52.75% 42.70 6.30% 8.25 10.25% 5.60 7.75% 6.20 
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ID Climate 

Zone 

Treatment Mean of the 

Summed 

GDDs (ºC) 

St. Dev. of 

the 

summed 

GDDs 

Mean of the 

daily GDDs 

St. Dev. of 

the daily 

GDDs 

1 Equatorial Under 6319 385 17.43 0.94 

2 Equatorial Gap 6542 512 17.93 1.40 

3 Equatorial Control 6595 538 18.07 1.47 

4 Arid Under 3410 1618 15.12 2.69 

5 Arid Gap 3909 1723 17.48 2.61 

6 Arid Control 3905 1747 17.43 2.73 

7 Temperate Under 3469 629 11.91 1.60 
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8 Temperate Gap 3563 550 12.34 2.06 

9 Temperate Control 3578 558 12.38 2.08 

 


