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Abstract

The theoretical work carried out in this thesis presents the electrical properties of two
different types of two terminal molecular junctions: one dealing with gold electrodes which
form gold |molecule| gold structures and the other with a graphene sheet and gold electrodes
forming gold |molecule| graphene junctions. The theoretical tools employed are firstly, density
functional theory (DFT). Chapter 2 presents an introduction to the theoretical concept of DFT
and the implementation used in this work, namely the SIESTA code. The second tool is the
quantum transport code GOLLUM. To introduce this technique in Chapter 3, I present solutions
of Green’s functions for infinite and semi-infinite chains and the transmission coefficient
equation which forms the theoretical basis of this code. The main results of this thesis are as
follows:

The first topic I identify Fano resonances in the transport properties of carbine-metal-
amides and demonstrate that their energetic location and magnitude can be controlled by
varying the connectivity of the core to external electrodes and by rotating the pendant moiety
connected to the current-carrying core. The Fano resonances can be suppressed by rotating the
pendant group and increasing the linkages to electrodes.

Secondly, I compute the transmission coefficient, electrical conductance and
thermoelectric properties of structures formed from terthiophene with tetracyanoethylene and
terthiophene with dinitrotoluene. A theoretical investigation into the Seebeck coefficient in
stacked molecular junctions is performed using a first principles quantum transport method. I
show that the quantum interference produces Fano resonance in the gap between the HOMO
and LUMO and the stacking geometry can control the position of this quantum interference

feature. The shifting of this resonance enhances the thermopower as expected when the



junction is tuned through a node in the transmission function. | also found that supramolecular
interactions between two molecules changed the sign of thermopower.

Finally, I look at an experimental example of a molecular switch formed in a
gold/molecule/graphene vertical junction. Here the charge state of a ferrocene molecule is
controlled by the application of an electrochemical bias. I present the electrical conductance
and IV characteristics for a molecule (6-(ferrocenyl) hexanethiol) attached to gold lead and
graphene sheet and explain how the behaviour seen in the experiment arises from the

electrostatic repulsion of the molecule with the graphene electrode.
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Chapter 1

Introduction

1.1 Molecular electronics

The aim of using single molecules as building blocks to design and fabricate molecular
electronic components has been around for more than 40 years [1], but only recently it has
attracted huge scientific interest to explore their unique properties and opportunities. Molecular
electronics including self-assembled monolayers [2] and single-molecule junctions [3] are of
interest not only for their potential to deliver logic gates [4-5], sensors[6-7], and memories [§]
with ultralow power requirements and sub-10-nm device footprints, but also for their ability to
probe room-temperature quantum properties at a molecular scale such as quantum interference
[9] and thermoelectricity [10,11]. Single molecular electronics has gained intensive attention
since the first molecular rectifier was proposed by Aviram and Ratner in 1974.[12] By
manipulating their chemical structure, a diverse range of molecules have been investigated,
which function as basic electronic elementary devices, such as rectifiers,[13-16] conducting
wires,[17-21] and negative differential resistance devices,[22-24]. The ability to use specific
intermolecular interactions to assemble molecular devices appropriately is another critical
challenge for molecular electronics. [25] Therefore, a quantitative understanding of the electron
transport between adjacent molecules is an essential pre-requisite.

Most studies - both theoretical and experimental - focus on simple electrode molecule-
electrode systems, which will be discussed in this thesis. Experimentally, the systems can be
studied using Scanning Tunneling Microscopy Break Junctions (STM-BJ) [26-28] and

Mechanically Controllable Break Junctions MCBJ [29,30]. Recently, more scalable techniques
10



for contacting single molecules have been developed, including graphene-based junctions [31-
34], silicene-based junctions [35] and CMOS-compatible electrodes, such as Pt and Pd [36].
However as anticipated many years ago [37] structural defects in 2d hexagonal materials [38]
mean that their use as electrodes is still in its infancy and for the moment gold break junctions
remain the contacting method of choice. Within such constraints, several methods of
controlling electron transport have been developed, including mechanical gating [39, 40] and

electrochemical gating [41,42].

The realization of single-molecule electronic devices is challenging in several ways. First, the
typical length of molecules used in the research field is in the order of 1-2 nm. In addition,
electrodes, typically made of noble metals, separated by 1-2 nm is beyond the limits of classical
top-down lithographic techniques. Second, due to the tiny dimensions of the molecule, it is
typically impractical to place the molecule in the nanogap by direct manipulation. Instead,
chemical interaction between the molecule and the electrode is needed for positioning of a
molecule in the gap between the electrodes. Third, since the electrodes are typically much
larger than the molecules, it is an additional challenge to make sure that only a single molecule
is placed in each functional device. In addition to these three basic challenges, other challenges

such as device stability, uniformity, yield, and scalability are equally important. [44].

1.2 Thesis Outline

My aim in this thesis is to review the theoretical techniques to treat electron transport in
molecular scale junctions. The theoretical approach includes two main techniques, density
functional theory as outlined in chapter 2, which is implemented using the SIESTA code [43]
and the Greens function formalism of transport theory, as discussed in chapter 3. Both of these

methods are used to extensively study a family of molecules. In this case the molecules are

11



attached to gold leads and the connectivity is also studied by investigating para- para and meta-

meta coupling.

In chapter 4, | present a study of the electrical conductance of carbene-metal-amides with two
different geometries and two different connectivities. In chapter 5, I will introduce a theoretical
investigation into the Seebeck coefficient S and thermoelectric properties of the molecules
terthiophene with tetracyanoethylene and terthiophene with dinitrotoluene. In chapter 6, I
present the electrical conductance and IV characteristics for the molecule 6 (ferrocenyl)
hexanethiol attached to a gold lead and graphene sheet. Finally, chapter 7 presents conclusions

and suggestions for future works.
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Chapter 2

Density Functional Theory

2.1 Introduction

DFT is widely used by physicists and chemists to investigate the ground-state properties
of many-body systems such as atoms, molecules, and crystals. DFT transforms the many-body
system into one of the non-interacting fermions in an effective field. In other words, the
electrical properties of many interacting particle systems can be described as a functional of
the ground-state density of the system [1, 2]. In 1998, the importance of DFT was confirmed
(or came into the light) with the Nobel Prize in Chemistry, awarded to Walter Kohn for his
development of density functional theory. DFT is a reliable methodology which has been
applied to a large variety of molecular systems listed in numerous books and articles in the
literature with detailed descriptions of the principles of DFT and its application [1-6]. The
beginnings of DFT were rooted in the Thomas-Fermi model back in the 1920s which provided
the fundamental steps to obtaining the density functional for the total energy using the
wavefunctions [1, 6-8]. Nearly four decades later, further improvement was made by Hartree,
Dirac, Fock, and Slater. DFT was then given a robust foundation by the Hohenberg-Kohn
theorems and Kohn-Sham method [1, 3, 4, 7-11].
The primary aim of this chapter is to give a brief introduction to DFT and to outline the
underlying formalism of finding the solution to the non-relativistic many-particle time-
independent Schrédinger equation (TISE), since the properties of a many-electron system can

be determined by using functionals of the electron density. | will also give a summary of the

18



DFT code ‘SIESTA’ which I have extensively used throughout my Ph.D. research as a

theoretical tool to optimize the structures and generate Hamiltonians.

2.2 The Schrédinger Equation and Variational Principle
The time-independent, non-relativistic Schrodinger equation can describe any given non-

relativistic many particles system
qul'(f)l"?z! ...,‘FN, Rl’ R2, IRM) = El'llul'(Fl,Fz, ""FN' Rl' Rz, FRM) (21)

where H represents the Hamiltonian operator of a system consisting of N-electrons and M-
nuclei which describes the interaction of particles with each other, ¥; is the wavefunction of
the i state of the system, and E; is the energy of the i*" state described by ¥;. The Hamiltonian

operator of such a system can be written as a sum of five terms given by [2, 3, 12]:

Te Tn Uen
N M N M
H hZsz hzz\ﬂ : > L Z.e?
= - i = n- - B ne
zme i=1 zmn n=1 47-[80 i=1n=1 |Ti - Rnl
2.2)
Uee Unn
N N
D ILuEe )Y R
5 - T= = /e
Ame, 2 i=1i7j |li T 47[80 2 n=1n=#n' |Rn

where i and j denote the N-electrons while nand n’ run over the M-nuclei in the system,
m, and m,, are the mass of electron and nucleus respectively, e and Z,, are the electron and
nuclear charge respectively. The position of the electrons and nuclei are denoted as 7; and ﬁn

respectively, and V7 is the Laplacian operator which is defined in Cartesian coordinates as

0% 9% 0%
=—+
ox}  dy? 0z}
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In the equation (2.2), the first and two terms, T, and T,, represent the kinetic energy of electrons
and nuclei respectively. The last three terms represent the potential part of the Hamiltonian
where U,,, defines the attractive electrostatic interaction between electrons and nuclei. The
electron-electron, U,,, and nuclear-nuclear, U,,,, describe the repulsive part of the potential

respectively [1, 3, 6, 9, 13].

The Born-Oppenheimer approximation, also called the clamped nuclei approximation can be
applied because approximately 99.9% of atom's mass is concentrated in the nucleus (for
example, the hydrogen nucleus weighs approximately 1800 times more than an electron) and
the nuclei can be considered fixed as compared to the electrons. In this case, if the nuclei of
the treated atoms are fixed, their Kinetic energy is zero, and they do not contribute to the full
wavefunction anymore. The outcome of this assumption is that the Hamiltonian of the electron
system reduces the Hamiltonian to a new one, the electronic Hamiltonian H,;, which in the

fixed nuclear picture can be rewritten as [1, 3, 6, 13-15]:

Te Uen
N

N M
1
. mn D R
47‘[80 | 4me, 2

=1 i=1n=1 Ti i=

ele

H
‘H~

i#]j

Unn (2.3)

ZZ ZnZy re?
411502 |R —R

where U,,,, is a determined constant. For such a system, the Schrédinger equation for ‘clamped-

nuclei’ is:

HereWele = EecieWeie (2-4)
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where ¥, depends on the electron coordinates, while the nuclear part enters only
parametrically and does not explicitly appear in ¥,,;,.. The total energy, E;y:q:, IS then the sum

of E.;. and the constant nuclear repulsion term which is given by:

Etotar = Eete + Unn (2-5)

The wavefunction itself is not an observable quantity, whereas its modulus squared can be

written as:

Wy, Py, o) Ty) 12Ty dF . diy (2.6)

which represents the probability of finding the electrons 1,2,....., N in the volume elements
dr, d7, .....d7y, since electrons are indistinguishable, this probability is unchangeable if the

coordinates of any two electrons (here i and j) are swapped [12]

2 2
|W(F1,F2,...Fi,'r_},...,FN)l = |W(F1,F2,'r_j,?l,,?]v)| (27)

Because electrons are fermions with the spin of a half then ¥ must therefore be antisymmetric
with respect to the interchange of the spatial and the spin coordinates of any two electrons

-

W(?l, 72, ...Fi,'fj’, ""?N) == _lzu(fl,?z, ...Fi, 7}‘, ""?N) (28)

A logical consequence of the probability interpretation of the wavefunction is that the integral
of equation (2.6) over the full range of all variables equals unity. In other words, the probability
of finding the N-electron anywhere in space must be unity,
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2
J. ....fllIU(Fl,Fz, ,FN)l dFl d?z dFN == 1 (29)

A wavefunction which satisfies equation (2.9) is a normalized wavefunction. Since there is no
exact solution to the many-body Schrédinger equation, many theories have been developed by
Hartree, Hartree-Fock, and others, to achieve this goal. Most of these theories were based on a
theoretical principle called the variational principle of the wavefunction [1, 2, 5, 6, 12]. This
principle guides us how to look for solutions by using suitable trial wavefunctions ¥r,.;. This
principle is useful to study the ground state, but is not very useful for the study of excited states.

When a system is in the state ¥r.,;, the expectation value of the energy is given by [1, 3, 6, 9]

f l‘UTri H l‘UT*"ri d?
flPTri l‘lIT*"ri dF

(Erpi) = (2.10)

The variational principle gives the energy which is obtained from the expectation value of the
Hamiltonian operator from any ¥r,; (guessed wavefunction), as given by equation (2.10). This
energy is an upper bound to the true ground-state energy ¥,s. If ¥;,.; is normalized according
to equation (2.9), and ¥y,; equals to the ground state (Wr,; = ¥ss). This means E,; equals to

the exact ground state energy E;s. Now we can rewrite equation (2.10) for the ground state as

(Egs) = f Wes HWhs dF (2.11)

The normalized ¥,; can show that E;,; > E;s or Er; = Egs. Therefore the best choice

of ¥, isthe one in which E,.; is minimized [3, 4, 6].
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2.3 The Thomas-Fermi Model

The earliest attempts to use the electron density rather than the wavefunction for obtaining
information about the electronic structure of systems are nearly as old as quantum mechanics
itself. Using the early work of Llewellyn Thomas in 1926 and Enrico Fermi in 1928; they
created independently the same idea of trying to construct a model to approximate the kinetic
and potential energy as a functional of the electron density. In other words, the T-F model is a
guantum mechanical model defined by the energy functional for the ground state of the many-
body system. Therefore, it was the first attempt to use the electron density instead of the
wavefunction to solve the ground state Schrodinger equation for many body systems [7, 8, 12,
16, 17]. Despite the fact that the electrons are distributed non-uniformly in an atom, an
approximation was made by assuming that the electrons are distributed uniformly (based on
the uniform electron gas) in each small element of volume AV locally, while the electron
density n( 7) could be varied from AV to the next. Using this approximation, the kinetic energy

of the system is given by

Ty_p[n(7)] = G f (n(7)]5/3 d7 (2.12)

here Cr = % (3m%)?/3 = 2.8712 and n(7) represents the electron density.

In the same manner, we also can propose an approximation to determine the internal potential

energy U,,, due to the attractive interaction of N-electrons with M-nuclei

U,, = f n(FY VL (F) dF (2.13)
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where V,(7) is the potential energy of an electron due to the nuclear electric field (external

potential) which is given by

1 g g
) = — - g 2.14
SRR, o N o

where Z is the atomic number and e is the electron charge. The approximate electron-electron

repulsive energy is given by

11 an(?)n(r_") -

ce = pr |F ~ r_,,l dr (2.15)
The equations (2.12), (2.13) and (2.15) and the U,,,, term give the T-F model:

Fr_g [TL( F))] =Tr_p+ Uep + Uge + Upp (2-16)

The fourth term U,,,, in equation (2.16) is the nuclear-nuclear repulsion and it is an important,
constant which determines whether or not the nuclei are binding. For a M-nuclei in the system,

itisgivenby[1, 3,7, 8,12]

2.4 The Hohenberg-Kohn Theorems
DFT is based on the Hohenberg-Kohn theorems. In 1964, Hohenberg and Kohn
legitimized the use of the electron density, n(7"), to calculate the ground state energy [6, 17,

18].
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Theorem (1), states that for any interacting many-particle systems with an applied external
potential, V., (7), the ground-state density is uniquely determined. In other words, the density
n(7) may be used instead of the potential as a basic function uniquely characterising the
system. Conversely, the ground state density, n;s(7) determines the potential up to an

arbitrary constant [6, 10, 17, 19].

Originally, in their paper, this theorem is proven for densities with non-degenerate ground
states, and the proof is elementary and by contradiction [17]. Let us consider two different

external potentials Ve, (77) (1yand Vey:(77) () Which differ by more than a constant and yield

the same ground state density ngg(7"). Clearly, these potentials correspond to distinct

Hamiltonians which are He,:[(77)] 1) and Hex[(77)] (), these Hamiltonians give rise to

distinct wavefunctions which are Wo, [(7)] (1) and et [(T)] (2) -

Since we have the same ground state and according to the variational principle which states

that no wavefunction gives energy less than the energy of W, [(7)] (1) for Hexe [(7)] (1),

ie.,

(Ey) = [Py Ho Py dF < [W2) Hp) Py dF (2.17)

Because of the same ground state densities for two Hamiltonians, the equation (2.17) for non-

degenerate ground state becomes

f Yoy Hoy ¥y d7
(E(2))

== j 111(2) H(Z) lP(*Z) d?

(2.18)

n f (Ve (P )]ty = W (F )]y} s (7 dF
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By exchanging the labels in equation (2.18), we have:

f Yy Hez) Py dr =

(E(1))

= f Yy Hay Yy d7 239)
# [ (Ve = Ve (DI} s (7) d
Adding the equations (2.18) and (2.19) we obtain:
(Ey) +(E2)) < (E(z)) +(E(1)) (2.20)

Equation (2.20) evidently shows a contradiction. Thus, the theorem has been proven by

reductio ad absurdum.

Theorem (2), provides a variational ansatz for obtaining n(7"), i.e., searching for n(7") which
minimises the energy. In other words, it states that we can define a universal functional for the
energy E[n(7)] in terms of the density, n(7") . The exact ground state energy of the system
in particular (V. (7)) is the global minimum value of this functional and the density, n(7),
which minimizes the functional and represents the exact ground state density, ngg(7) [1, 6,

10, 17, 19].

Proof (2), the first theorem tells us that the total energy of the system is a functional of the

density, n(7"), and is given by

Etotal [n( ?)]

Fr_g[n(7)]
= Tt ()] + Use[n(7)] +fvext<f>n<f>df

=zero, for
non—interacting
system

(2.21)
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The first two terms in equation (2.21) ( Fy_g[n(7)]) are the kinetic energy, (Ti:), and the
electron-electron interaction energy, (U,.), is treated as the same for the whole system. Thus
Fy_k[n(7)] is a universal functional, it has been described as the Holy Grail of density
functional theory [12]. Assuming that the system is in the ground state, we can define the

energy uniquely by the ground state density, ngs(7"), as:

(Egs) = (E[ngs(7)]) = f Wes Hes Pos A7 (2.22)
According to the variational principle, the ground state energy corresponds to the ground state
density is the minimum energy, and any different density will necessarily provide higher
energy

(Egs) = (E[ngs(7)]) = f W5 Hes Wi AT < f‘I’ HY* dr 029)
2.23

=(E[n(7)]) =(E)

Once we know the functional, Fy_g[n(7 )], we can minimize the total energy with respect to
variations in the density function as given in equation (2.21), that leads to determining the exact
ground state properties of the system that we are looking for (we should take into account that
for the most practical calculations, the direct minimization will not provide us the ground state

energy, but by the simpler procedure of Kohn-Sham).

2.5 Kohn-Sham Method and Self-Consistent Field SFC

Kohn and Sham noticed that Hohenberg-Kohn theory applies to both interacting and
non-interacting systems. The DFT method avoids the interacting many-body problem. The
non-interacting system has one significant advantage over the interacting system, which is the

determination of the ground-state energy for a non-interacting system is achievable. In 1965,

27



Kohn and Sham came up with the idea of replacing the original Hamiltonian of the system by

an effective Hamiltonian (H,sf) of the non-interacting system that incorporates the effective
external potential, V,;+( 7 ), which gives rise to the same ground state density as the original

system. Since there is no clear recipe to calculate this, the Kohn-Sham method is considered as
an ansatz, but it is considerably easier to solve than the non-interacting problem. The Kohn-

Sham method is based on the Hohenberg-Kohn universal density [6, 9, 10, 20]:
Fy—g[n(7)] = Tine[n(7)] + Uge[n(7))] (2.24)

The Hohenberg-Kohn functional for non-interacting electrons have only the kinetic energy.

The energy functional of the Kohn-Sham ansatz Fy_g[n(7)], in contrast to (2.21), is given by
Fie-s n(7)) = Taonl2( ]+ Barel 0]+ [ Vere () )

+Exc[n(7)] (2.25)

where T, is the kinetic energy of the non-interacting system which is different from T;,,; (for
interaction system) in equation (2.21), while Ey,,: is the classical electrostatic energy or
classical self-interaction energy of the electron gas which is associated with density, n( 7).

The fourth term, E,., is the exchange-correlation energy functional and is given by

Epare[n(7#)]

fn(f’l n(7)

1 2.26
Evcln(7)] = Fy_n(7) — 5 aidf, — Toonln(P] %0

=

|7y —?zl

The first, second, and third terms in the equation (2.25) can be trivially cast into a functional

form. In contrast, there is, in general, no exact functional form exist for E,.. In the last couple
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of decades, enormous efforts have gone into finding a better approximation to E,... Currently,
the functionals can investigate and predict the physical properties of a wide range of solid state
systems and molecules. For the last three terms in the equation (2.25), we take the functional

derivatives to construct the effective single particle potential, V(7 ),

OEnare[n(7)] 4 9Fxc [n(7)]

2 — = 2.27
Now, we can use this potential to give the Hamiltonian of the single particle

Hyg_s = Thon + Veff (2.28)
By using this Hamiltonian, the Schrodinger equation becomes

[Thon + Versl¥Wk-s = EWk—s (2.29)

Equation (2.29) is known as Kohn-Sham equation. The ground state density, nXs5(7),
corresponds to the ground state wavefunction, W&5 | which minimizes the Kohn-Sham

functional subject to the orthonormalization constraints (¥;|¥;) = &;

ij» Which is determined by

a self-consistent calculation [1, 4, 14, 21].

Density functional theory uses a self-consistent field procedure. For example, let us suppose

that Epqrc and E,. can be accurately determined. Now the problem is that the V, s, cannot be

calculated until the correct ground state density is known and the correct density cannot be
obtained from the Kohn-Sham wavefunctions until equation (2.29) is solved with the correct

Verr. Therefore we solve this circular problem by carrying out a self-consistent cycle [3, 12,

22] as shown in figure 2.1.
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Calculate Effective Potential
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No

Self-consistent?

Compute Energy, Forces,
Stresses

Figure 2.1: A Schematic illustration of the self-consistent DFT cycle.

According to figure 2.1, the first step is to generate the pseudo-potential which represents the
electrostatic interaction between the valence electrons, the nuclei, and core electrons. The next
step is to build the required basis set with a selected kinetic energy cut off insert in the basis

set. This step will expand the density functional quantities.

Evidently, if the density is known, the energy functional is fully determined. An electronic
density, ni™tal (#), is chosen as an initial guess. This initial guess is used to calculate the

following quantity
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G = Epgre[n™0% ()] + Exc[n™5 ()] (2.30)

Then the anm?t—fal(?) and the effective potential V, s, are calculated. The effective potential is
used to solve the Kohn-Sham equation (2.29) which leads to finding the electronic
Hamiltonian. After obtaining the Hamiltonian, it is diagonalised in order to find the
eigenfunctions and the new electron density n™¢% () . Hopefully, this n™¢" (#) will be closer
to true ground state density and is checked.

For self-consistency, if the new electron density, n™¢" (#), agrees numerically with the density,
ninitial () which is used to build the Hamiltonian at the beginning of the SCF cycle. We have
reached the end of the loop. Now, we will calculate all the desired converged quantities such
as the total energy, the electronic band structure, density of states and so on. Otherwise, if the
new density, n™" (), does not agree with the initial density, n'™t¢ (#), one generates a new
input density and starts another SCF cycle, build the new density-dependent Hamiltonian, solve
and compute the density, and check for self-consistency [3, 17, 23].

The Kohn-Sham approach shows that a complicated many-body system can be mapped onto a
set of simple non-interacting equations exactly if the exchange-correlation functional is known.
However, the exchange-correlation functional is not known exactly, so approximations need to

be made.

2.6 The Exchange-Correlation Potential

DFT is very reliable and proven method, but it still uses an approximation for the kinetic
energy functional and the exchange-correlation functional in terms of the density. Enormous
efforts have been aimed at determining the reliable expressions for these functionals. The most

commonly exchange-correlation functional approximations are the Local Density
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Approximation (LDA), which depends only on the density, and the more complicated
Generalised Gradient Approximation (GGA), which includes the derivative of the density, the

information about the environment and therefore it is semi-local.

2.6.1 Local Density Approximation (LDA)

Based on Kohn-Sham method, the functional, E,., could be calculated for a homogenous
electron gas to approximate the many body particle problem as a simpler system [11]. Kohn-
Sham demonstrated that by slowly varying the density of a system, the E,. at point # can be
considered as acting in a uniform density. Therefore the E,. can be represented by a uniform

electron gas, Efo™O[n( 7 )], with a density, n(#).
In general, the LDA will not work for systems which are dominated by electron-electron

interactions. However, LDA supposes that the density is a constant in the local region around

any considered position and it is given by [6, 12]
BRAI()] = | Bl in(iIn(i a7 (231)

The exchange-correlation energy, Ef™°[n(#)], can be split into two terms as the sum of the
exchange energies, E*™°[n(#)], and the correlation energies, E*°™°[n(#)], which can be

found separately as

Exe™[n(#)] = Ex™°[n(#)] + E2°™° [n(7)] (2.32)
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The exchange term can be calculated analytically. It is well known and can be found in many

textbooks (see [6, 12]), and it is given by

3n

ERomo[n(#)] = - < (%ﬁ))l/3 (2.33)

The correlation energy, (ER°™°[n(#)]), cannot be obtained analytically, but it can be
calculated accurately using numerical methods. The most common and accurate method was
proposed by Ceperly and Alder (CA) [24] using quantum Monte-Carlo simulations. There are
several different interpretations of the Monte Carlo data. For example, Perdew and Zunger (PZ)

[25, 26] fitted this numerical data to an analytical expression as given by equation (2.34)

( —0.048+0.031In(r,) = 0.0116 7, +0.002 In(r) if 7, <1

Elomo[n(7)] = i B 0.1423 o 1} (2.34)
(1+1.9529 /1, + 0.3334 1, Yo

1
here r, = (ﬁﬁ is the average spacing between the electrons in the homogenous electron gas.

The LDA is a well known powerful functional. It is considered to be accurate for graphene and
carbon nanotubes or the systems where the electron density is not rapidly changing. A
significant error is expected for atoms with d and f orbitals. This functional to some extent has
many pitfalls, for example, the band gap in semiconductors and insulators is usually not
accurate with a large error (in the range of 0.5 to 2eV or 10-30%). For this reason, it is highly

advisable to seek better functionals [25, 27, 28].
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2.6.2 Generalized Gradient Approximation (GGA)

LDA treats all systems as homogeneous systems, but real systems are inhomogeneous. To
consider this inhomogeneous behavior, a step may be taken beyond the LDA and extend it by
including the derivative information of the density into the exchange-correlation functionals.
The only way to do this is by involving the gradient and the higher spatial derivatives of the
total charge density (|Vn(#)]|,|V?n(7#)|,...) into the approximation. Such a functional is
called the generalized gradient approximation (GGA). For this case, there is no closed
expression for the exchange part of the functional and therefore it has to be calculated along
with the correlation contributions using numerical methods. Similar to the LDA, many

parameterizations exist for the exchange-correlation energies in the GGA [29-32].

In this section, we are going to discuss the proposed functional form which is presented by
Perdew, Burke, and Ernzerhof (PBE) [29]. In this parameterization, there are two Sseparate

expressions; the first expression is the exchange energy, ES¢4[n(#)], which is given by

EZ4n(#)] = [n(7) Ex™[n(#)] F(s)dF, (2.35)

K

E(s)=1+k— RESYP

where  F.(s) is called the enhancement factor, x = 0.804, u = 0.21951, and s =

4 kr_F
Ta,

|Vn(7#)/2kn(7#)| is the dimensionless density gradient where kg = and kp_p =

(1z/m/3

s

is the Thomas-Fermi screening wavenumber whereas r; is the local Seitz radius.

The second expression is the correlation energy, ESS4[n(#)], and is given by

34



EGn(#)] = [(E™[n(#)] + x [n(#)DdF, (2.36)

B

- _i b .2 1+At2
)([n(r)]—aoyln(1+yt ),

1+At2+A%2t4

where ¥y = (1 —In(2)/n?, t =|Vn(7#)/2kr_gn(7#)| is another dimensionless density

gradient, 8 = 0.066725, and a, = — -
LDA and GGA are the two most commonly used approximations for exchange-correlation
energies in DFT. Also, there are several other functionals, which go beyond LDA and GGA.
In general, there is no robust theory for the validity of these functionals. It is determined via
testing the functional for various materials over a wide range of systems and comparing results

with reliable experimental data.

2.7 SIESTA

All calculations in this thesis were carried out by the implementation of DFT in the SIESTA
code. It is used to obtain the relaxed geometry of the discussed structures and also to carry out
the calculations to investigate their electronic properties. SIESTA is an acronym derived from
the Spanish Initiative for Electronic Simulations with Thousands of Atoms. It is a self-consistent
density functional theory technique, which uses norm-conserving pseudo-potentials and a
Linear Combination of Atomic Orbital Basis set (LCAOB) to perform efficient calculations
[33]. For more details about SIESTA code and what it provides in, see [34, 35]. There are two
different modes to perform DFT simulations using SIESTA. The first mode is a conventional

self-consistent field diagonalization method to solve the Kohn-Sham equations and the second
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is by direct minimization of a modified energy functional [36]. This section will describe some

of SIESTA’s components and how they are implemented within the code.

2.8 Localised Atomic Orbital Basis Sets (LAOBS)

One of the most important aspects of the SIESTA code is the type of the basis function
employed in the calculations. It uses a basis set composed of localized atomic orbitals which
compare well with other DFT schemes based on, eg, a plane wavefunction basis set [35]. The
benefits of using LAOBs are that they provide a closer representation of the chemical bond.
They can allow order-N calculations to be performed and also it gives an excellent base from
which a tight-binding Hamiltonian is generated. SIESTA uses confined orbitals, i.e., orbitals
are constrained to be zero outside of a certain radius (cut off radius r,.). This produces the
desired sparse form of the Hamiltonian as the overlap between basis functions is reduced. The
atomic orbitals inside this radius are products of a numerical radial function and a spherical

harmonic.

The simplest form of the atomic basis set for an atom (labeled as I) is called single-{ (also
called minimal) which represents a single basis function per electron orbital which is given as

Wl (7) = Ry () Vi (7) (237)

where w1, (#) is the single basis function which consists of two parts, the first part is the
radial wavefunction, R, and the second part is the spherical harmonic, Y;},,. Minimal or single
zeta basis set are constructed by using one basis function of each type occupied in the separate
atoms that comprise a molecule. If at least one p-type orbital is occupied in the atom, then the
complete set (3p-type) of the functions must be included in the basis set. For example, in the

carbon atom, the electron configuration is 1s? 2s? 2p?, therefore a minimal basis set for carbon
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atom consists of 1s, 2s, 2p,, 2p,, and 2p, orbitals which means that there are total five basis
functions as shown in table 2.1.

Higher accuracy basis sets called multiple-¢ are formed by adding other radial wavefunctions
for each included electron orbital. Double basis sets are constructed by using two basis
functions of each type for each electron orbital. For a carbon atom, a double zeta basis contains

ten basis functions corresponding to ten orbitals which are 1s, 1s’, 2s, 2s’, 2py, 2py, 2py,, 2Dy,

2p,, and 2p;,. For further accuracy, polarisation effects are included in double-¢ polarised basis
sets obtained by including wavefunctions with different angular momenta corresponding to
unoccupied orbitals. A polarization function is any higher angular momentum orbital used in a
basis set, which is unoccupied in the isolated atom. As an example, the hydrogen atom has only
one occupied orbital type that is s-type. Therefore, if p-type or d-type basis functions were
added to the hydrogen atom, they would be known as polarization functions. Carbon atoms

with polarization functions include d-type and f-type basis functions.

Atom valence SZ SZP DZ DZP
configuration

H (15) 1 4 2 5
C (252 25P?) 4 9 8 13
Au (651 5d1%) 6 9 12 15

Table 2.1: Examples of the radial basis sets functions per atom used in SIESTA code for
different precisions of the split-valence basis sets.
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Assume that the core electrons (non-valence electrons) of an atom are less affected by the
chemical environment than the valence electrons. This is called a split valence basis set. For
example, in the carbon atom, a split valence double zeta basis set would consist of a single 1s

orbital, along with 2s,2s’and 2p,, 2py, 2p,, 2py, 2p,, 2p, orbitals, for a total of 9 basis

functions.

In case of molecules, molecular orbitals can be represented as a Linear Combinations of Atomic

Orbitals (LCAO-MO) as given by

L

0i(7) =) ay Wy () (238)

v=1

where ¢; represents the molecular orbitals (basis functions), ¥, are atomic orbitals, a,; are

numerical coefficients and L is the total number of the atomic orbitals.

2.9 Basis Set Superposition Error Correction (BSSE) and
Counterpoise Correction (CP)

BSSE is one of the major factors affecting the accuracy of interaction energy calculations using
incomplete basis sets. It is most often discussed in the context of intermolecular interactions
and frequently for weakly interacting systems. The SIESTA implementation of DFT used in
this thesis means that the BSSE occurs using the linear combination of the atomic orbitals
formalism which consists of a finite basis set centered on the nuclei when atoms are close
enough to each other so that their basis functions will overlap. This might cause artificial
strengthening of the atomic interaction and artificial shortening of the atomic distances, and

therefore affect the total energy of the system.
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In 1970, Boys and Bernardi proposed a technique to eliminate the BSSE in molecular
complexes composed of two geometric configurations so-called the counterpoise correction
(CP) scheme [37-39]. Let us consider two molecular systems labeled as A and B which are

separated by a distance R. The energy of the interaction may be expressed as [40]

AE{E, (R) = E*B(R) — EA — E® (2.39)

where AEAE . is the overall energy of the supersystem, E4and EZ are the energies of the
isolated subsystems. The form of equation 2.40 shows the counterpoise correction [37]. Figure

2.3 highlights the counterpoise correction for dimers A and B.

(a) (b) (©) (d) (e)

Figure 2.3: Illustrating the Counterpoise method to calculate the binding energy. (a) represents
the basis functions for a total system where atoms are shown in white, and the basis functions
are in blue. (b) and (c) show the basis function for the individual monomers whereas (d) and
(e) represent the counterpoise correction. Every single molecule is evaluated with the same
basis function as the total system in (a) [38].

In figure 2.3 a, b and c represent the two isolated molecules with their individual and
corresponding basis functions while the shaded blue atoms in 2.3 d and e represent the ghost
states (basis set functions having no electrons or protons). The BSSE is obtained by

recalculating using the mixed basis sets realized by introducing the ghost orbitals and then
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subtracting the error from the uncorrected energy to calculate the binding energy Eg;,, which

is given by

Epin = Eq — (Ed + Ee) (2-40)

where E,, E; and E, are the total energy of (a), (d) and (e) systems in figure 2.3, respectively.
This is an important concept that has been successfully implemented in many systems to give

reliable and realistic results and will be utilised in chapter 4 [38,41,42].

40



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Argaman, N. and G. Makov, Density Functional Theory--an introduction. arXiv
preprint physics/9806013, 1998.

Dronskowski, R., Computational chemistry of solid state materials2005: Wiley Online

Library.

Eschrig, H., The Fundamentals of Density Functional Theory (revised and extended

version). Edition am Gutenbergplatz, Leipzig, Germany, 2003. 9.

Kohn, W., A.D. Becke, and R.G. Parr, Density functional theory of electronic structure.
The Journal of Physical Chemistry, 1996. 100(31): p. 12974-12980.

Martin, R.M., Electronic structure: basic theory and practical methods2004: Cambridge

university press.

Parr, R.G. and Y. Weitao, Density-functional theory of atoms and molecules. Vol. 16.
1994: Oxford University Press, USA.

Kumar, A., A Brief Introduction to Thomas-Fermi Model in Partial Differential
Equations. 2012.

Lieb, E.H., Thomas-Fermi and related theories of atoms and molecules. Reviews of
Modern Physics, 1981. 53(4): p. 603.

Gross, E.K. and R.M. Dreizler, Density functional theory. VVol. 337. 1995: Springer.

Hohenberg, P.a.W.K., Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B):
p. B864-B871.

Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and
Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.

Koch, W. and M.C. Holthausen, A chemist's guide to density functional theory. Vol. 2.
2001: Wiley-Vch Weinheim.

Geerlings, P., F. De Proft, and W. Langenaeker, Conceptual density functional theory.
Chemical Reviews-Columbus, 2003. 103(5): p. 1793-1874.

41



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Eschrig, H., K. Koepernik, and 1. Chaplygin, Density functional application to strongly
correlated electron systems. Journal of Solid State Chemistry, 2003. 176(2): p. 482-
495,

Ziesche, P. and F. Tasnadi, Methods for electronic-structure calculations: Overview
from a reduced-density-matrix point of view. International journal of quantum
chemistry, 2004. 100(4): p. 495-508.

Thomas, L.H. The calculation of atomic fields. in Mathematical Proceedings of the
Cambridge Philosophical Society. 1927. Cambridge Univ Press.

Burke, K., the ABC of DFT. Department of Chemistry, University of California, 2007.

Walker, B., C. Molteni, and N. Marzari, Ab initio molecular dynamics of metal
surfaces. Journal of Physics: Condensed Matter, 2004. 16(26): p. S2575.

Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density
functionals*. Reviews of Modern Physics, 1999. Vol. 71, No. 5: p. 1253-1266.

Levy, M., Electron densities in search of Hamiltonians. Physical Review A, 1982.
26(3): p. 1200.

Lima, N., L. Oliveira, and K. Capelle, Density-functional study of the Mott gap in the
Hubbard model. EPL (Europhysics Letters), 2007. 60(4): p. 601.

March, N.H., Self-consistent fields in atoms. 1975.

Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation
effects1965: APS.

Ceperley, D.M. and B. Alder, Ground state of the electron gas by a stochastic method.
Physical Review Letters, 1980. 45(7): p. 566-569.

Perdew, J.P. and A. Zunger, Self-interaction correction to density-functional
approximations for many-electron systems. Physical Review B, 1981. 23(10): p. 5048-
5079.

Naghavi, S.S., Theoretical Study of correlated systems using hybrid functionals2011.

Hedin, L. and S. Lundqvist, Effects of electron-electron and electron-phonon

interactions on the one-electron states of solids. Solid State Physics, 1970. 23: p. 1-181.
42



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Vosko, S.H., L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid
correlation energies for local spin density calculations: a critical analysis. Canadian
Journal of Physics, 1980. 58(8): p. 1200-1211.

Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made
simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.

Becke, A.D., Density-functional exchange-energy approximation with correct
asymptotic behavior. Physical Review A, 1988. 38(6): p. 3098.

Hammer, B., L.B. Hansen, and J.K. Ngrskov, Improved adsorption energetics within
density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical
Review B, 1999. 59(11): p. 7413.

Perdew, J.P. and Y. Wang, Accurate and simple analytic representation of the electron-
gas correlation energy. Physical Review B, 1992. 45(23): p. 13244-13249.

Soler, J.M., et al., The SIESTA method for ab initio order-N materials simulation.
Journal of Physics: Condensed Matter, 2002. 14(11): p. 2745.

Sanchez-Portal, D., et al., Density-functional method for very large systems with
LCAO basis sets. International journal of quantum chemistry, 1998. 65(5): p. 453-461.

E. Artacho, J.D.G., A. Junguera, R. M. Martin, P. Ordejon, D. Sanchez-Portal, and J.
M. Soler. SIESTA 3.1 User’s Guide. 2011.

Ordejon, P., et al., Unconstrained minimization approach for electronic computations
that scales linearly with system size. Physical Review B, 1993. 48(19): p. 14646.

Boys, S. and F.d. Bernardi, The calculation of small molecular interactions by the
differences of separate total energies. Some procedures with reduced errors. Molecular
Physics, 1970. 19(4): p. 553-566.

Haynes, P., et al., Elimination of basis set superposition error in linear-scaling density-
functional calculations with local orbitals optimised in situ. Chemical physics letters,
2006. 422(4): p. 345-349.

Mierzwicki, K. and Z. Latajka, Basis set superposition error in< i> N</i>-body clusters.
Chemical physics letters, 2003. 380(5): p. 654-664.

43



[40]

[41]

[42]

Senent, M. and S. Wilson, Intramolecular basis set superposition errors. International
journal of quantum chemistry, 2001. 82(6): p. 282-292.

Daza, M.C., et al., Basis set superposition error-counterpoise corrected potential energy
surfaces. Application to hydrogen peroxide:-- X (X= F—-, Cl-, Br—, Li+, Na+)
complexes. The Journal of Chemical Physics, 1999. 110(24): p. 11806-11813.

Boese, A.D., et al., Effects of counterpoise correction and basis set extrapolation on the
MP2 geometries of hydrogen bonded dimers of ammonia, water, and hydrogen fluoride.
Phys. Chem. Chem. Phys., 2010. 13(3): p. 1230-1238.

44



Chapter 3

Single Particle Transport

3.1 Introduction

In this chapter, I will start with a brief overview of the Landauer formula followed by an
introduction to the retarded Green's function for a one-dimensional tight binding chain. Next,
I will break the periodicity of this chain at a single connection and show that the Green's
function is related directly to the transmission coefficient across the scattering region. The
methods used on these simple systems will then be used to derive the transmission coefficient
of mesoscopic conductors of arbitrarily complex geometry. The method presented in this
chapter assumes negligible interaction between carriers, the absence of inelastic processes, and

zero temperature.

3.2 The Landauer Formula

The Landauer formula [1, 2] is the standard way to describe transport phenomena in non-
interacting mesoscopic systems and is applicable for phase coherent systems, where a single
wavefunction is sufficient to describe the electronic flow. It relates the conductance of a
mesoscopic sample to the transmission properties of electrons passing through it. The method

used to calculate the transmission properties will be discussed later in this chapter.
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Left Contact = Left Lead :  Scattering ERight Lead
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Right Contact

1291 HRr

Figure 3.1: A mesoscopic scatterer connected to contacts by ballistic leads. The chemical
potentials in the left and right contacts are p;, and pg respectively. If an incident wave packet

. . . . . . oqe -2 >
hits the scatterer from the left, it will be transmitted to the right with probability T = |t| = tt*

and reflected with probability R = |F|? = FF*. Since incident electrons must be either reflected
or transmitted, probability conservation implies R + T = 1.

To start, we consider a mesoscopic scatterer connected to the two contacts, which behave
as electron reservoirs, by means of two ideal ballistic leads (Figure 3.1). All inelastic relaxation
processes are limited to the reservoirs [3]. The reservoirs have slightly different chemical
potentials y; > up = py; — pur = 6E = edV > 0, which will drive electrons from the left to
the right reservoir. Initially, I will discuss the solution for one open channel (i.e. where only

one electron is allowed to travel in a given direction).

To calculate the current in such a system, we start by analysing the incident electric current

(61 i") generated by the chemical potential difference,
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in on on
SIM = evgﬁSE =evy o (UL, — Ug) 3.1

where e is the electronic charge, vy is the group velocity and dn/9E is the density of states

(DOS) per unit length in the lead in the energy window defined by the chemical potentials of

the contacts,

on Z(On ak) (32)

DOS:a_E: ﬁa_E

where the factor of 2 accounts for spin. In one dimension,97/ ok = 1/27T and 9%/ OF =

1/hv, . This simplifies equation (3.1) to,

. 2e 2e?
oI = T(ML — Ug) = T(W (3.3)

where &V is the voltage associated with the chemical potential mismatch. From equation

(3.3), it is clear that in the absence of a scattering region, the conductance of a quantum wire
2
with one open channel is 2e / h which is approximately 77.5 uS (or in other words, a

resistance of (12.9kQ). This is a reasonable quantity, typically appears on the circuit boards of

everyday electrical appliances.

Now, if we consider a scattering region, the current collected in the right contacts

(51°%%) will be,
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This is the well-known Landauer formula, relating the conductance (G), of a mesoscopic

scatterer to the transmission probability (T') of the electrons traveling through it. It describes
the linear response conductance. Hence it only holds for small bias voltages, 6V = 0. For larger

finite bias one needs to modify the formulation, which is beyond the scope of this thesis.

The Landauer formula has been generalized for the case of more than one open channel by
Biittiker [2]. In this case, the transmission coefficient is replaced by the sum of all the
transmission amplitudes which describe the electrons coming in from the left contact and
arriving to the right contact. The equation (3.3) (Landauer formula) for the open channels

therefore becomes,

510ut 262 - 2 282 -
ij

where Zi ; 1s the transmission amplitude describing the scattering from the j th channel of the
left lead to the i*" channel of the right lead. With the definition of the transmission amplitudes,
one can similarly introduce the reflection amplitudes T; ; which describe the scattering
processes where the particle is scattered from the j* channel of the left lead to the it" channel
of the same lead. Combining reflection and transmission amplitudes, one can define the S

matrix, which connects the states coming from the left lead to the right lead and vice versa.

4+ X7

=y
N———

(3.6)
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Here 7 and £ describe electrons coming from the left, while 7 and t describe electrons

coming from the right. Equation (3.5) suggests that 7, t, 7, and t are matrices for more than
one channel, and could be complex (in the presence of a magnetic field). On the other hand,
charge conservation demands the S matrix be unitary, SS = I. The S matrix is a central object
of the scattering theory. It is useful not just in describing the transport in the linear response

regime, but also in other problems such as adiabatic pumping [4].

The connection between heat, current, temperature, and voltage have been known since the
early 19th century with the discovery of the Seebeck, Peltier and Thompson effects. The
Seebeck effect describes the production of electrical current due to a temperature difference,
whereas the Peltier and Thompson effects describe the heating or cooling of a current carrying
conductor [5]. A more general system can be considered where the temperature AT and

potential drop AV across the system causing the charge and heat currents to flow.

To find expressions for the thermoelectric coefficients of a two terminal device, | now
show the generalised Landauer- Biittiker formulae for both the charge (I) and heat (Q) currents
in the linear bias and temperature regime. A system consisting of a scattering region connected
to two leads which are in turn connected to two electron reservoirs. Each reservoir is defined

by a chemical potential y; and ug, temperature J; and J, and the Fermi distribution function

[5],

E-py
fi (E) =(1+eksT)™? (3.7)
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By assuming that the reservoirs are connected to the leads such that there is no scattering
at their interface, so all the scattering effects are caused by the central scattering region. The
right moving charge current of a single k-state emanating from the left reservoir can be written
in terms of the number of electrons per unit length n, Fermi distribution f;,, group velocity v,
and transmission coefficient T of the scattering region. (Note that T represents the transmission

probability, and T is the temperature),

I = nevy(E(k)) T(E(K)) fL(E(K)) (3.8)

Therefore the total charge current from the right moving states can be found by summing

over all positive k states, where n = 1/L for the density of electrons and v, = % alzg{k). The
integral form becomes
11 9E(k +00 2
It =Yee 1+ S TEWR) fL(ECK) = [17 % T(E) f,(E) dE (3.9)
Similarly, for the left moving states,
- +00 2
Iy = |-, = T(E) fz(E) dE (3.10)
Therefore the total current moving to the right can be written as,
_ _ 2e +
I=1*—1"= = ["" T(E) (f,(E) — fr(E)) dE (3.11)

The equation (3.11) is the famous Landauer- Biittiker formula.
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A similar derivation can be carried out for the heat current (or energy current) of the same
system using the relation, @ = Env,. The result is similar to the previous results with the

addition of two extra energy terms.

2 + oo
Q=0*-0 =~ f T(E) ((E — m)fi(E) — (E — ) fa(E)) dE

h
where:
E—u—AT” - E—u+AT” -
AE) =1+ 2| | foB) = |1+ e=0-7)
Au Au
and M= HU+t—, HrR= U=~

3.3 One-Dimension

Before presenting the generalized methodology, it is useful to calculate the scattering
matrix for a simple one-dimensional structure. This will outline the basic skeleton of the
implemented methodology. Green's functions will be used in the derivation, so I will first
discuss the form of the Green’s function for a simple one dimensional discretised lattice
(section 3.3.1), followed by the calculation of the scattering matrix of a one-dimensional

scatterer (section 3.3.2).
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3.3.1 Perfect One-Dimensional Lattice
In this section, I will discuss the form of the Green’s function for a simple infinite one-
dimensional chain with on-site energies (&,) and hopping parameters (—y) as shown in figure

3.2.

B 7Z-1 yA ZH+1 e >

Figure 3.2: Tight-binding approximation of a one-dimensional periodic lattice with on-site
energies €, and couplings —y.

The Hamiltonian is constructed with the on-site energies (g,) along the diagonal, and the
hopping elements (—y ) along the first off-diagonal. The Hamiltonian can be written in the

matrix form as,

e ¢« 0 O O O0OTUO
* * 0 0 00O
0O e ¢ —y 0 00 O
10 0 —y* ¢ =y 0 0 O
H=lg o0 o0 200 20 (3.12)
0 0 0 0 —y* ¢ o O
0 0 o 0 0 e o o
0 0 o 0 0 0O o o

Within the tight-binding approximation, on substituting the equation (3.12) and the wave

function into the Schrodinger equation,(E — H)¥,) = 0 we obtain,
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e vy (E-g) -y 0 0 0 . ¥(z-1) 0

L 0 —]/* (E - 80) 4 0 0 . l[j(z) 0 3 13

. 0 0 -v" (E-g&) —v 0 Yoy | |0 (3.13)
\. 0 0 0 -y (E—¢y) =y . / \ Y / 0

Now, we can write the Schrodinger equation for row z of the Hamiltonian(H), as,

VY W+ (E—&)¥s —v¥riy =0 (3.14)

The only requirement for any function ¥,y to be a wavefunction is that it satisfies the
Schrédinger equation (equation (3.14)). The wave function for this perfect lattice takes the
form of a propagating Bloch state (equation (3.15)), normalized by its group velocity (v,) in
order for it to carry unit current flux. On substituting this into the equation (3.14)
(supposingy = y*, that is if y is real), a well-known relation, so-called the one-dimensional

energy dispersion relation is obtained (equation (3.16)),

1 .
LP(Z) = \/T_gelkz (315)
E=¢,—2ycosk (3.16)

Where, we introduced the quantum number (k) commonly referred to as the wavenumber.
The retarded Green’s function g(z, z") is closely related to the wavefunction and is in fact the

solution to an equation similar to that of the Schrédinger equation.
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(E—H) g’(Z;Z,) = 6(2,2’) =
(3.17)
—v'9(z—-1,z)+(E-&)g(zz)-yvglz+1,2) =6,

Where
5(2’21) =1, ifz=2
8(z2.") = 0, ifz#z2
Physically, the retarded Green’s function, g(z,z") describes the response of a system at a
point z due to an excitation at a point z'. Intuitively, we expect such an excitation gives rise to

two waves, traveling outwards from the point of excitation, with amplitudes B and D as shown

in figure 3.3.

z=7'

Z

Figure 3.3: The structure of Retarded Green's Function of an infinite one-dimensional lattice.
The excitation at z = z’causes wave to propagate left and right with amplitudes B and D
respectively.

These waves can be expressed simply as:

D etkz, z>7
B e ikz, z< 7'

g(z,z") = { (3.18)
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This solution satisfies the equation (3.17) at every point except at z = z'. To overcome this,

the Green's function must be continuous (equation (3.19)), so we equate the two at z = z',

[9(2,2)]1efe = [9(2,2)]Righe (3.19)
Be~ikz' = peikz’ (3.20)
B = De?ik?’ (3.21)

Substituting the equation (3.21) into the Green's functions (equation (3.18)) yields,

v

D etkz , z=>2z

Deikz’ g=ikz — qygikz’ yik(z'~z) 7 <z (3.22)

g&x0={

A modified form of equation (3.22) reveals a useful symmetry,

Deikz' gik(z-2") 7> 7
) —
Deikz’eik(z’—z)’ z<7

g@z0={

The power of the complex exponent is always positive. Therefore, the latter equation can be

written simply as,
g(z,z") = Detk?' giklz'~z|, Vz (3.23)

To define the constant D, we must consider the Green’s equation (equation (3.17)). We can
. hz 2 fl.vg 2 hk . . . .
write H as — %V , OF — EV (where v, = — s the group velocity), and substitute in the

Green’s function (equation (3.23)), so the equation becomes,
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oy o7

(E + 2k 9z2

) (Deikz’eik|z’_z|) = 8.0 (3.24)

If we integrate this function over a small distance, centred on z’, of width 2w™*, we find:

z'+ot fwg 92 | |
E+—9___ Deikz'eik z' -z dz =1 325
[ (5 ) 629
=Zero ,
o ( Z ot Sl Z+wt hvg 62 lk‘z _Z‘ \‘
De'’ Ef elklz~2| dz +f 7 356 dz |=1 (3.26)
7 —wt 7 —wt 2k aZ /
hv a ik|Z,—Z| Z’+w+ hv l‘k|Z’-Z‘ Z,+w+
Deikz | 4 ¢ = Detkz | —Like =1
2k 0z 2k
, , (3.27)
z—wT z—wT
Deit? V851 = 1 = peike = 1 (3.28)
2k ihv, '
Therefore, the retarded Green's function can be written as,
R ' 1 ik|z—z'|
g9 (2,2') =——e (3.29)

wag

Where the group velocity is obtained from differentiating the dispersion relation,
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_ _ 3.30
Ve TR ok 7 (3-30)

A more thorough derivation can be found in the literature [3, 6, 7]. It is also worth noting
that the another solution can be found to this problem. Above, I have shown the retarded
Green's function, g¢®(z, z'). The advanced (or source) Green's function, g (z, z'), is an equally

valid solution,

A(Z z') = ;e