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Abstract 

 Retail sales forecasting often requires forecasts for thousands of products for many stores. We present 

a meta-learning framework based on newly developed deep convolutional neural networks, which can 

first learn a feature representation from raw sales time series data automatically, and then link the learnt 

features with a set of weights which are used to combine a pool of base-forecasting methods. The 

experiments which are based on IRI weekly data show that the proposed meta learner provides superior 

forecasting performance compared with a number of state-of-art benchmarks, though the accuracy gains 

over some more sophisticated meta ensemble benchmarks are modest and the learnt features lack 

interpretability. When designing a meta-learner in forecasting retail sales, we recommend building a 

pool of base-forecasters including both individual and pooled forecasting methods, and target finding 

the best combination forecasts instead of the best individual method.  

 
Keywords: Forecasting; big data; retail sales forecasting; machine learning; forecasting many time 

series; meta learning; deep learning 
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1. Introduction 

Retail sales forecasting is often concerned with generating forecasts for a large number of products 

across many stores over a short forecasting horizon. Sales forecasts are the essential inputs to many 

managerial decisions, such as pricing, store space allocation, listing/delisting, ordering and inventory 

management for an item. Forecasts also provide the basis for distribution and replenishment plans. The 

ability of retail managers to estimate the expected sales quantity at the SKU (Stock Keeping Unit) × 

store level over the short term should lead to improved customer satisfaction, reduced waste, increased 

sales revenue and more effective and efficient distribution (Fildes, Ma, & Kolassa, 2020). A good  

sales forecasting system also allows retailers to simulate the results of their different promotional mixes, 

and then optimize the promotional schedules (Levy, Grewal, Kopalle, & Hess, 2004).  

Large retail chains accumulate huge amount of sales data through their POS (Point Of Sale) 

machines, however at store x item level the data is often scarce, as the assortments in each store can 

change rapidly due to the increasingly competitive retail market environment. Retail product demands 

are also driven by many factors, e.g., price changes, promotions, special events, seasons, holidays, and 

even weather. As a result, store item level sales data are characterized by high volatility and skewness, 

multiple seasonal cycles especially when combined with ‘special days’ (e.g., bank holidays), their often 

large volume, alternatively intermittence with zero sales frequently observed at store level, together 

with high dimensionality in any explanatory variable space. These issues make accurately forecasting 

item level sales a difficult task. 

Many methods have been proposed to improve the sales forecasting accuracy for retail products. 

But most studies have aimed at proposing a universal forecasting method which is used for all the sales 

time series under their study (Fildes, et al.,, 2020). None of research in retail forecasting has tried to use 

various forecasting methods according to the data characteristics of different store items. In this research, 

we propose a meta-learning framework based on newly developed deep convolutional neural networks, 

which first learns from knowledge of the forecasting performance of a given combination of base-

forecasting methods (forecasters) as this relates to the characteristics of the data used to fit these base-

forecasters, and then uses that knowledge to generate an optimal ensemble (combination) of forecasts 

to forecast the sales of a product according to its specific data history. Meta-learning methods therefore 

allows different ensemble models to be used to forecast different products at different periods of time, 

in contrast to relying on one model to forecast sales of all products in all time periods.  

The contributions of this paper are four fold. First, this is the first to empirically evaluate the 

performance of meta-learning in a retail product sales forecasting setting. Second, we propose a novel 

meta-learner which can learn a feature representation from raw time series data automatically. Third, 

we explore the impacts of the constituents of its base-forecasters on the forecasting performance of the 

meta-learner. Fourth, we investigate the value of extracting features from external potential influences, 
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in addition to the sales time series data on the forecasting performance of the proposed meta-learner. 

Overall, what we achieve here is a composite meta-learner providing improved accuracy performance, 

which can be applied automatically in complex problem areas such as that faced in retailing where the 

scale of the problem makes automatic method selection a key requirement. 

The outline of the paper is as follows. In Section two, we review related studies and introduce our 

innovations. In Section three we discuss associated methodological issues in our proposed solution. In 

Section four, we describe the data, introduce the experimental design and forecasting accuracy measures. 

We then present the empirical results in Section five. In the last section, we discuss the findings, offering 

conclusions as to forecasting practice and further academic research. 

2. Related research   

2.1. Retail sales forecasting  

Much effort has been devoted over the past several decades to the development and improvement 

of sales forecasting models in retail (see Fildes et al. (2020) for a deeper survey). The basic product 

sales forecasting methods are based on univariate forecasting models using only the past sales history. 

The techniques used in retail range from the traditional time series techniques, such as simpler moving 

averages, the exponential smoothing family or the more complicated Box–Jenkins ARIMA approach 

(Kalaoglu et al., 2015), Fourier analysis (Fumi, Pepe, Scarabotti, & Schiraldi, 2013), to state space 

models (Ramos, Santos, & Rebelo, 2015). 

Another stream of studies uses a model-based forecasting system to forecast product sales by 

directly taking into account promotional (and other) information. These methods are usually based on 

multiple linear regression models or more complex econometric models whose exogenous inputs 

correspond to seasonality, calendar events, weather conditions, price, and promotion features, as 

surveyed in Fildes et al. (2020). While some of these promotional inputs can be considered endogenous, 

for forecasting purposes nothing is typically gained from adopting a systems approach (Allen & Fildes, 

2001). Overall, the multivariate studies show substantial accuracy improvements for SKU level 

forecasts over univariate benchmarks.  

Nonlinear models include traditional nonlinear regressions, non- or semi-parametric regressions, 

and soft computing techniques. The models used include Back Propagation Neural Networks (Aburto 

& Weber, 2007; Ainscough & Aronson, 1999), Regression Trees (Gür Ali, Sayin, van Woensel, & 

Fransoo, 2009), Support Vector Machines (Gür Ali & Yaman, 2013; Pillo, Latorre, Lucidi, & Procacci, 

2016), Bayesian P-splines (Lang, Steiner, Weber, & Wechselberger, 2015), and recurrent neural 

networks (Salinas, Flunkert, Gasthaus, & Januschowski, 2019), etc. Most published research has found 

improvements in forecasting accuracy by using nonlinear models over linear regressions. But the 

positive evidence is probably enhanced by publication bias, which may be amplified by apparent poor 
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forecast evaluation practice in the machine learning community, along with a certain amount of hype. 

So wide ranging evidence of the benefits of machine learning algorithms is needed if we are to accept 

the hype that both researchers and software companies have generated. 

So far, existing research in retail sales forecasting has focused on using a universal forecasting 

method that can be applied to all the products under study. However, according to the no-free-lunch 

theorem of Wolpert and Macready (1997), there is no guarantee that any method, however complex it 

may be, performs better for a different set of series than another method; this implies that it is unlikely 

that one single method will dominate others for all products and all future time periods. Evidence on 

relative performance is specific to the application with retail sales (as here) having unique 

characteristics that do not correspond to the massive ‘competition’ studies (Makridakis & Petropoulos, 

2020). This underlines the importance of method selection to match the problem characteristics. Within 

the broad forecasting community there has been relatively little research that has explored the benefits 

of different approaches to selection, comparing individual selection and combination versus aggregate 

selection and combination but see (Fildes & Petropoulos, 2015). The F&P study found accuracy benefits 

from selecting a range of methods to match the data and series forecasting performance characteristics, 

which suggests there may be benefits to be had from extending this approach to retailing and including 

a wider range of methods and series features that capture the characteristics of retail data. In this paper, 

we contribute to the retail sales forecasting literature by proposing a meta-learning framework which 

can forecast each sales series with a different forecasting method designed according to the 

characteristics of the SKU’s sales series and its particular influential factors. 

2.2 Forecasting many time series with meta-learning 

The term meta-learning was first adopted in the context of forecasting many time series by 

Prudêncio and Ludermir (2004). A meta-learning framework for forecasting many time series usually 

consists of three components: a set of features extracted from the time series, a pool of base-forecasters, 

and a meta-learner. The meta-learner is used to learn the meta-knowledge that may be captured by 

linking the features summarizing characteristics of the time series to the forecasting performance of the 

base forecasters, and then the learnt knowledge is used to select an optimal forecasting method for each 

time series according to its data characteristics. While Fildes and Petropoulos used a priori features 

from which to select the forecasters, other research has employed machine learning algorithms. 

Prudêncio and Ludermir (2004) presented two case studies. In the first one, they defined ten 

features and two base forecasters, and used a C4.5 decision tree as the meta-learner to learn selection 

rules from 99 time series to identify when one base forecaster performs better than the remainder. Their 

results indicated that using the method recommended by the meta-learner on average provided more 

accurate forecasts than using either of the base forecasters as the default model. In the second case, they 

used a different meta-learner, named NOEMON which had been introduced by Kalousis and Theoharis 
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(1999), to rank three base forecasters. Wang, Smith-Miles, and Hyndman (2009) used a more 

comprehensive set of features, and, using both supervised and unsupervised meta-learners, provided 

selection rules, as well as visualizations in the feature space. They found that a derived weighting 

schema based on the rule induction that combined base forecasters could further improve forecasting 

accuracy over only using one of the base forecasters. Similarly, Lemke and Gabrys (2010) showed the 

superiority of a ranking-based combination with base forecasters over an aggregate model selection 

approach. Widodo and Budi (2013) proposed reducing the dimensionality of the feature set extracted 

from the time series by Principal Component Analysis before they are used for meta-learning. They 

found that the dimensionality reduction might help the meta-leaner to find the appropriate method. Kück, 

Crone, and Freitag (2016) proposed a meta-learner based on neural networks. They introduced a new 

set of features based on the forecasting errors of a set of commonly used forecasting methods and 

showed promising results when including error-based feature sets into the meta-learner for selecting 

between forecasters. Cerqueira, Torgo, Pinto, and Soares (2017) proposed a meta-learner to predict the 

absolute error of each of the base-forecasters, and then used the predicted error as the performance 

measure to ensemble base- forecasters. 

Recently, Talagala, Hyndman, and Athanasopoulos (2018) proposed a meta learning framework 

named FFORMS (Feature-based FORecast Model Selection) that uses Random Forest as the meta-

learner based on a set of 25 features for non-seasonal data and 30 features for seasonal data, to select 

the best single forecasting method from nine base forecasters. To build a reliable classifier, they 

proposed augmenting the set of observed time series by simulating new time series similar to those in 

the assumed population. Montero-Manso, Athanasopoulos, Hyndman, and Talagala (2018) built on 

FFORMS by using meta-learning to select the weights for a weighted forecast combination. Forecasts 

from all base forecasters were combined, and the weights used in the combination were chosen based 

on the features of each time series. They called this framework FFORMA (Feature-based FORecast 

Model Averaging). FFORMA resulted in the second most accurate point forecasts and prediction 

intervals amongst all competitors in the M4 competition (Makridakis & Petropoulos, 2019). One of the 

drawbacks of FFORMA is it targets minimizing the loss of combined errors of base-forecasters, not the 

loss from the combined forecasts directly, so it can result in suboptimal combinations. Table 1 provides 

a summary for a clear comparison of the research described here contrasting with earlier related works 

on meta-learning. 

As is shown in Table 1, the meta-learning framework proposed in this research contributes to this 

stream of literatures mainly in four aspects: 

(1) The proposed meta-learner targets identifying the best ensemble weights to combine the 

forecasts of base-forecasters to minimize the error loss directly.  

(2) Existing meta-learning methods depend totally on unsupervised judgmentally selected features. 

However, it is a difficult task to determine useful features only judgmentally in order to capture 
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intrinsic properties embedded in various time series data when the feature space is large. The workload 

from the calculation of these features is also substantial. To that end, in this research, inspired by the 

deep feature learning for image classification (Bengio, Courville, & Vincent, 2013; LeCun & Bengio, 

1995; LeCun, Kavukcuoglu, & Farabet, 2010), we design a meta-learning framework based on 

convolutional neural networks which can learn a supervised feature representation from raw multiple 

time series automatically.  

Table 1  Research studies on time series forecasting with meta learning 

Paper 

Number of Time 
series Feature extracting Base forecaster Meta learner 

Training Test 
Approach of 
the feature 
extraction  

Feature 
extracting 

from 
influential 

factors 

Number of 
individual 
forecasting 

models   

Number of 
pooled 

forecasting 
models 

Model Target 

Prudêncio and 
Ludermir 
(2004) 

99  99  Judgmental/ 
unsupervised No 2-3 None DT/ML

P 

Best 
forecaster/ 

ranking 
Wang et al. 
(2009) 315 315 Judgmental / 

unsupervised No 4 None SOM 
/DT  

Best 
forecaster 

Lemke and 
Gabrys (2010)  222 222 Judgmental / 

unsupervised No 4 None DT/SV
M/FNN 

Best 
forecaster / 

ranking 

Widodo and 
Budi (2013)  3003 1001 Judgmental / 

unsupervised No 4 None KNN Best 
forecaster 

Kück et al. 
(2016)  78 33 Judgmental / 

unsupervised No 4 None MLP Best 
forecaster 

Cerqueira et 
al. (2017)  14 14 Judgmental / 

unsupervised No 9 None RF 
Predict the 
absolute 

error 
Talagala et al. 
(2018)  

1001/ 
3003 

3003 / 
1001 

Judgmental / 
unsupervised No 9 None RF Best 

forecaster 

Montero-
Manso et al. 
(2018)  

100,000  100,000  Judgmental / 
unsupervised No 8 None GBRT 

Minimum 
loss of 

combined 
errors 

This study 83944 36194 Automatic/ 
supervised Yes 9 8 DCCN

N 

Minimum 
loss of 

combined 
forecasts 

Abbreviation of forecasting models in the table. DT：Decision Trees; MLP: Multi-

Layered Perceptron Neural Network; SOM: Self-Organizing Maps; SVM: Support Vector 

Machine; FNN: Feedforward Neural Network; KNN: K-Nearest Neighbour; RF: Random Forest; 

GBRT: Gradient Boosting Regression Trees; DCCNN: Double Channel Convolutional Neural 

Networks. 
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(3) We learn features from both sales time series and their influential factors, in contrast with the 

existing studies which have focused only on univariate time series. In the context of SKU level sales 

forecasting in retail, sales are affected significantly by a number of factors, such as price reduction, 

display, feature advertising, and special events. These factors are usually known in advance and can 

cover the whole forecasting horizon. Some earlier empirical research has shown that the performance 

of forecasting methods may be related to many influential factors. For example Gür Ali et al. (2009) 

and Ramos and Fildes (2017) found that while simple time series techniques performed well for 

periods without focal product promotions, for periods with promotions, methods including  

promotional drivers improved accuracy substantially. Fildes, et al. (2020) have summarized the 

research. 

 (4) The modeling strategies for forecasting many related time series can be classified into two 

categories: modeling each time series individually or modeling the group of time series together in a 

pooled fashion. Individual modelling can consider each time series’ own characteristics, such as 

seasonality, trend and promotional elasticities, but is inefficient as it fails to capture any cross-sectional 

common patterns. Also as the data is often limited at individual series level, modeling each SKU 

individually may lead to noisy and often nonsensical estimates of the series specific elasticities 

(Blattberg & George, 1991). Pooled modeling can enhance the relevant data availability and this has 

the potential to capture cross time series common patterns, thereby improving the robustness of the 

estimated parameters (Dekker, van Donselaar, & Ouwehand, 2004; Zotteri & Kalchschmidt, 2007). 

But as price and promotional elasticities potentially vary considerably among chains and brands, one 

overall model may be overly restrictive in the light of each SKU’s unique characteristics.  While 

existing researches have so far used only individual forecasters as the base, we propose to combine 

the two modelling strategies to build a mixed base which is constituted of both individual and pooled 

forecasters, thereby taking advantage of both strategies in the meta learning. 

3. Methodology 

3.1. Problem formulation 

In this research, we aim to forecast the SKU×Store level sales from time T+1 to T+H, given the 

data until time T. In addition to historical sales data, we also incorporate influential factors such as price, 

promotions, seasonality, and calendar events. We denote those influential factors for SKU i at time 

interval t as a vector itx , the sales history as[ ] 1:Tit t
y

=
, the goal being to predict  

[ ] [ ] ( )( ), 1: 1:1:
ˆ ,i T h it itt T t T Hh H
y f y+ = = +=
  =  x ,                       (1) 
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where ( )f ⋅  is the prediction function. In this research, the prediction function for each sales series is a 

weighted combination of a pool of base-forecasters, and the weights are obtained with a meta-learning 

algorithm.  

3.2. Overview of the meta-learning framework 

We propose a meta-learning framework with automatic feature learning for retail product sales 

forecasting, which is presented in Fig.1. Implementing the framework consists of two phases: meta-

learning and meta-forecasting.  

In the meta-learning phase, we need to first extract a large sub-set of sales time series and the 

corresponding history of influential factors from the historical database. Those extracted sales series 

should be similar to those we will be forecasting (same SKU, same category, or sold in the same stores). 

Large retailers have accumulated huge amounts of SKU level historical data, but because of the rapidly 

changing assortments, many SKUs have limited sales history at store level. We therefore do not assume 

that the sample of SKUs in the training set is the same as that in the test set. We only assume that the 

SKUs in both sets are forecasted with a rolling window of the same width, so that we can fit base-

forecasters using the same length of data during the meta-learning and meta-forecasting phases.  

 

Figure 1. A meta-learning framework for retail sales forecasting 
 

For each rolling period, we first fit a pool of base-forecasters, then generate H-step ahead forecasts 
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with the fitted models. The proposed meta-learner is an integration of two modules of neural networks 

(Fig.2). The raw time series that are used to fit the base-forecasters, are first fed into a module of 

convolutional neural networks, which is used to extract features from the time series data automatically. 

The extracted features are then fed into another module of the neural network to transform the features 

into a set of weights to combine the forecasts produced by the base-forecasters. The combined forecasts 

are further evaluated using the chosen loss function and then the network weights are updated through 

backpropagation algorithms. 

During the meta-forecasting phase, we also need first to fit the same pool of base-forecasters for 

each sales time series to be forecasted, and to generate forecasts with the fitted models. Then those 

forecasts together with the raw time series are fed into the trained meta-learner. The trained meta-

learner extracts the features from the time series, calculates combination weights, and generate a set 

of ensemble forecasts for each sales time series being forecast.  

3.3. The structure of the meta-learner  

Feature learning (or representation learning) has become an important field in the machine learning 

community in recent years (Bengio et al., 2013). The most successful feature learning framework 

adopts deep neural networks, which build hierarchical representations from raw data (LeCun & Bengio, 

1995; LeCun et al., 2010; Lee, Grosse, Ranganath, & Ng, 2009). Particularly, one deep networks, 

Convolutional Neural Networks (CNN) can automatically mine and generate deep features of input 

images or time series, and has shown a strong robustness against data translation, scaling and rotation, 

this strength deriving from three important ideas that differ from traditional forward neural networks; 

they are as follows: local receptive field, weights sharing and pooling (LeCun & Bengio, 1995).  

The convolutional neural network (CNN) has shown excellent performance in many computer 

vision, machine learning and pattern recognition problems, and especially, problems concerning 

feature learning from sequential data such as semantic role labelling (Santos & Zadrozny, 2014), 

sentence classification (Kim, 2014), machine translation (Kalchbrenner et al., 2016), audio synthesis 

(Oord et al., 2016), and time series classification (Zȩbik, Korytkowski, Angryk, & Scherer, 2017; 

Zheng, Liu, Chen, Ge, & Zhao, 2014). These earlier research works have highlighted the potential of 

CNNs showing better performance than traditional algorithms, and these findings have motivated us 

to investigate the feasibility of using feature learning in the meta-learning time series field. 

We propose a novel meta-learner based on a Double Channel Convolutional Neural Network 

(DCCNN), which is shown in Fig.2. One channel takes the sales time series , 1:i t t T
y

=
   as the input and 

the other inputs multivariate time series of influential factors[ ] 1:it t T H= +
x simultaneously. More formally, 

for a d dimensional multivariate time series input (or the output of the preceding layer) d T×∈z  , and 
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a 1-D filter sv∈ with stride s, the convolution operation C on time step t of the input z is defined as 

( )
1

,
1 0

( )
d s

i j t it
j i

C t v
−

−
= =

= ∗ =∑∑v z z .                       (2) 

If we have K filters, we can then write the outputs of a convolution layer as [ ]1 2, , , K=U u u u , where

( )
:k k t t s T=

 = ∗ u v z . 

 In the proposed DCCNN as shown in Fig.2, both convolutional channels contain three stacked 

temporal convolutional blocks, used as a feature extractor. Each convolutional block contains a 

convolutional layer and a ReLU activation ( ( ) max(0, )ReLU u u=  ).The first two convolutional 

blocks conclude with a squeeze and excite layer (Hu, Shen, Albanie, Sun, & Wu, 2019). The squeeze 

operation exploits the contextual information outside each filter’s focused feature of the input time 

series by using a global average pool to generate summary statistics over the learnt feature map. 

Specifically, the convolution layer output, U, is shrunk through temporal dimensions T to compute the 

summary statistics, U . The k-th element of U  is calculated by 

 

,
1

1 T

k k t
tT =

= ∑u u .                               (3) 

The summary information from the squeeze operation is followed by an excite operation, whose 

objective is to capture the dependencies among the learnt features. To achieve this, a simple gating 

mechanism is applied with a sigmoid activation, as follows: 

( )( )2 1ReLUσ=q w w U ,                         (4) 

where σ   is a sigmoid activation, 1

K K
r
×

∈w   and 2

KK
rw

×
∈  are learnable weights. w1 are the 

parameters of the dimensionality-reduction layer and w2 are the parameters of the dimensionality 

increasing layer. r is a dimensionality reduction ratio of the gating mechanism which can dynamically 

control the information flow based on the current input. Finally, the output of the block is rescaled as 

follows: 

k k kq= ⋅u u ,                                 (5) 

The excitation operator maps the summary statistics U to a set of weights. In this regard, the squeeze 

and excite block intrinsically introduces dynamics conditioned on the feature map U, which can be 

regarded as a self-attention function2 to allow placing more weights on the relevant features as needed. 

Hu et al. (2019) showed that the squeeze and excite block can improve the quality of representations 

produced by the convolutional layer. 

                             
2
 See Vaswani et al. (2017) for more information on attention mechanisms. 
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    The last temporal convolutional block is followed by a global average pooling layer, which is used 

to reduce the number of parameters in the network. The outputs of the global pooling layer from both 

channels are concatenated and then fed into a dropout layer to mitigate overfitting (Srivastava, Hinton, 

Krizhevsky, Sutskever, & Salakhutdinov, 2014). We then use a dense layer with a softmax activation to 

transform the learnt features into a set of weights whose dimension equals to the number of base-

forecasters.  

Simultaneously, the H step ahead forecasts ( )ˆ 1: 1:m
i,T+hy h H m M  = = ， ， , of the sales time series 

i given by the M base-forecasters are inputted. Using the weights obtaining from the dense layer with 

softmax activation, the M forecasts are weighted and summed to generate a set of combination forecasts, 

( ) ( )ˆ ˆm m
i,T+h i i,T+h

m
y w y=∑ ,                          (6) 

where ( )ˆ m
i,t+hy  is the forecasts generated from mth base-forecaster and w are ensemble weights from 

softmax layer and ( ) 1m
i

m
w =∑ . The combination forecasts are evaluated using a Scaled Mean Square 

Error (SMSE) loss function, which is defined as  

2
, ,

1

=1

1 ˆ( ( ) )
1( )

H

i T h i T hN
h=

i i

y y
HL

N S

θ
θ

+ +−
=

∑
∑ ,                      (7) 

whereθ is the set of all parameters to be estimated in the network，and Si is the averaged MSE of the 

M base forecasters, that is defined as  

( ) 2
, ,

1 1

1 ˆ( )
M H

m
i i T h i T h

m h=
S y y

MH + +
=

= −∑∑ .                       (8) 
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Figure 2 The network structure of the meta-learner 

3.4. Base forecasters 

To collect a pool of base forecasters for the proposed meta-learner, we consider forecasting 

methods based on two complementary modeling strategies: modeling each sales series separately, 

leading to a heterogeneous set of models and modeling all sales series in the study together resulting in 

a pooled homogenous model. 

We consider five forecasting methods under the individual modeling strategy. These methods are 

explained as follows: Most of them have been considered and shown promising forecasting 

performance in the retail sales forecasting literatures.  

(1) ExponenTial Smoothing (ETS) state space model. ETS is a univariate forecasting model using 

only the past sales history, and has been employed as benchmark in a number of researches in retail 

forecasting (e.g.,Ma, Fildes, & Huang, 2016; Ramos & Fildes, 2017). Those researchers have found 

that ETS performed well for periods with low promotional intensity or for products with a low price 

elasticity of demand. 

(2) Autoregressive Distributed Lag (ADL) model. ADL is a multiple linear regression model in 

nature whose exogenous inputs correspond to the lags of sales, calendar events, price reduction, and 

promotions. Huang, Fildes, and Soopramanien (2014) and Ma et al. (2016) evaluated ADL models on 

SKU level sales data in a number of stores. They found that ADL on average outperforms the univariate 

methods with gains typically above 10%. For promotional periods the gains are typically higher.  

(3) Autoregressive integrated moving average with external variables (ARIMAX) model. 

Compared with ADL, ARIMAX is more sophisticated as it includes complex error correlation structures 

though typically fewer variables in the feature set. Arunraj and Ahrens (2015) used an ARIMAX model 

to forecast the daily sales of bananas in a German retail store, and showed that the ARIMAX model 

outperformed an ARIMA model and two neural network models.  
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(4) Support Vector Regression (SVR). Support vector regression is an artificial intelligence 

forecasting tool based on statistical learning theory and a structural risk minimization principle (Vapnik, 

1999). Lu (2014) used the SVR as a benchmark for sales forecasting of computer products, but he did 

not find it provided superior performance on average over univariate time series models. Here SVR is 

considered as one of the base-forecasters as its increased generality might improve the potential pool to 

provide more accurate forecasts for some of the sales series under study. 

 (5) Extreme learning machines (ELM). The ELM is a learning algorithm for single-hidden-layer 

feedforward Neural Networks. It has been adopted in a number of fashion retail forecasting studies 

(Wong & Guo, 2010; Xia, Zhang, Weng, & Ye, 2012; Yu, Choi, & Hui, 2011). The experimental results 

have shown that the performance of the ELM is more effective than traditional Back Propagation Neural 

Networks (BPNN) models for fashion sales forecasting, though their accuracy in practice compared to 

BPNN is at best moot.  

Under the pooled modeling strategy, we consider four forecasting methods: 

(1) ADL with data Pooling (ADLP). Pooled regression is a practical approach to forecasting 

product level sales in retail. Andrews, Currim, Leeflang, and Lim (2008) found that accommodating 

store-level heterogeneity did not improve the accuracy of marketing mix elasticities relative to the 

homogeneous model, and the improvements in fit and forecasting accuracy were also modest. Gür Ali 

et al. (2009) also found that pooling observations across stores and subcategories provided better 

predictions than pooling across either only stores or only subcategories. Based on those empirical results, 

we adopt a homogeneous model that pools SKUs across stores and categories.  

(2) ELM with data Pooling (ELMP). Similar with ADLP, ELM (Extreme learning machines) can 

also be used to train a homogeneous model by pooling SKUs across stores and categories. Compared 

with individual ELMs, we consider a larger number of hidden neurons in ELMP compared to that of 

ELM, thereby increasing model complexity in order to adapt to the richer data condition arising from 

using the pooled data set. 

(3) Random Forest (RF). Random Forest is based on decision trees combined with aggregation and 

bootstrap ideas and was first proposed by Breiman (2001). The data are split in such a way as to train a 

large number of decision tree models separately with forecasts produced from each sub-model, then 

combined. Random Forest has widely been used in applications, see Ziegler and König (2014) for a 

recent survey. Recently, Ma and Fildes (2020) adopted RF as a benchmark model in forecasting 

customer flows with mobile payment data and showed its superior performance over pooled regression. 

(4) Gradient Boosting Regression Trees (GBRT). GBRT is one of most established gradient 

boosting algorithms, which uses a regression tree as the base weak learner (Friedman, 2001). GBRT has 

empirically proven itself to be highly effective for a vast array of classification, ranking and regression 

problems. It is one of the most preferred choices in data analytics competitions such as Kaggle and the 

KDD Cup and has also showed its potential in time series forecasting (Ma and Fildes, 2020). 
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4. Experimental design 

In this section we present the experiments carried out to test the performance of the proposed meta-

learning framework in forecasting SKU level sales. These address the following research questions: 

Q1: How does the forecasting performance of the proposed meta-learner compare to the 

performance of the base forecasters for the SKU level sales forecasting tasks? And to a simple 

combination of the forecasters? Whether there are circumstances when the meta-learner is particularly 

effective, e.g., for promoted periods? 

Q2: How does the performance of this novel meta-learner compare to the performance of the 

FFORMA meta-learner? 

Q3: How does the forecasting performance of the proposed supervised feature learning method 

compare to the performance of commonly used hand-selected features?  

Q4: Is it beneficial to extract features from potentially influential factors in addition to the historical 

sales time series? And to the past accuracy statistics of the forecasters? 

Q5: Is it beneficial to use a mixed pool of base-forecasters composing of forecasting methods using 

both individual and data pooling modelling strategies?  

Q6: Is it beneficial to target finding the best ensemble forecasts with the meta-leaner instead of 

looking to identify the best individual forecaster? 

Overall, by answering these research questions we aim to provide insight into how the new meta-

learner performs compares to key benchmarks and the circumstances when it is particularly (in)effective. 

4.1. Data  

The empirical data comes from the IRI dataset (Bronnenberg, Kruger, & Mela, 2008)3. The IRI 

dataset includes grocery and drug chain data from a sample of stores in 50 markets and 30 categories, 

involving approximately 25%-30% of the consumer packaged goods sales in a grocery store. This is 

weekly data by SKU and includes information on sales, price, feature advertisings and displays. Based 

on the objectives of this research, to mimic a retail chain wide forecasting requirements, we have 

selected 6 product categories, ‘milk’, ‘beer’, ‘mayo’, ‘yogurt’, ‘coffee’ and ‘laundet’(laundry detergent), 

and then randomly selected 100 stores which had sold these product for the last three years of the data 

set. These records of sales and promotions were then extracted for those categories and stores for the 

last 153 weeks. 

We used a fixed rolling window with the width of 55 weeks for estimation and forecasting. We 

moved the window forward every 7 weeks to generate 15 slots of data over 153 weeks of the data 

sample (Figure 3).  

                             
3
 All estimates and analyses in this paper based on Information Resources, Inc. data are by the 

author and not by Information Resources, Inc. 
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Figure 3 Data manipulation to generate training and test data 
The first 10 slots were used as training data for meta-learning, and the last 5 slots used to test the 

forecasting performance of the meta-learner. For each slot of data, the first 48 weeks of data were used 

to train the base forecasters, and the last 7 weeks of data used to evaluate the performance of 12 base 

forecasters. In each slot, SKUs with discontinued sales were excluded in our experiments as we do not 

know whether the missing sales were due to stockout (the IRI dataset does not provide inventory 

information) or intermittent demand. Table 2 presents the means of units sold per week and percentages 

of weeks concerning promotional activities, including price reductions (more than 5 percent), displays 

and features in both training and test data slots. 

Table 2 Description statistics of the data sample 

Data Num of 
Slots 

Num of 
SKUs 

Num of 
Sales time 

series 

Mean units 
sold per 

week 

Proportions of weeks concerning 
promotional activities 

Price 
reductions Displays Features 

Training 10 2944 83944 33.10 0.19 0.07 0.10 
Test 5 2039 36194 22.64 0.20 0.08 0.11 

4.2 Training base forecasters  

For each slot of data, we in turn trained 9 base forecasters using the first 48 weeks of data in the 

slots, and then generated forecasts with each trained model for the remaining 7 weeks. In table 3, we 

summarize some details for the training process, including the explanatory variables used in the model, 

the software tool to implement the method and the settings for the hyper-parameters.  

For ETS and ARIMAX, sales time series were used to train the model after a log transformation, 

and then the next 7 weeks of forecasts were generated recursively. To train the other base-forecasters, 

each SKU sales time series was transformed into a regression matrix and the dependent and 
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independent variables defined. We adopted a Direct strategy to generate multi-step ahead forecasts as 

it has been shown to be more robust than the recursive approach and is easy to implement, though it 

demands more computational time (Ma & Fildes, 2020). Specifically, the sales forecasting on SKU i 

by method m for horizon h for any given forecast origin is given by 

[ ] ( ) [ ] ( )( ):
(

:
) ( )

,ˆ ,it itt T
m m

i T L Th T Hh T t L
y f y+ = − = − +

= x .                  (9) 

For horizon h, only sales at least h steps before the target time period can be used to construct 

explanatory features, but the external explanatory variables, including lags of price reduction, display, 

feature advertising and calendar events, do not have such a limitation as they are assumed to be known 

in advance or under control.  

For base forecasters using individual forecasting, we estimated the model with 1 or 3 lags, i.e., L=1 

or 3; for base forecasters using data pooling, L is set to be 3 or 7 to allow more complex homogeneous 

models. Finally, to account for the log transformation bias, for each base-forecaster, m, we multiply 

their forecasts by a bias adjustment factor ( )mα , which is estimated with their respective forecasts in 

the training data to let  
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Table 3 Training settings for base forecasters 

Base 
forecaster Software tool Hyper-parameters 

1 ETS 
‘ets’ function in the ‘forecast’ R 
package v.8.4 (Hyndman & 
Khandakar, 2008)  

Under default settings 

2 ADL 
‘glmnet’ package v.2.0-16 in R 
(Friedman, Hastie, & Tibshirani, 
2010)  

The penalty parameter is determined by 10 
folds cross-validation 

3 ARIMAX 
‘auto.arima’ function in the 
‘forecast’ R package v.8.4 
(Hyndman & Khandakar, 2008)  

Under default settings 

4 SVR ‘e1071’ R package v 1.7.2 (Meyer 
et al., 2019) Using radial kernel under default settings 

5 ELM ‘elmNNRcpp’ R package v 1.0.1 
(Mouselimis & Gosso, 2018)  

Using 5 hidden neurons and linear activation, 
all others are under default settings 

6 ADLP ‘glmnet’ package v.2.0-16 in R 
(Friedman et al., 2010)  

The penalty parameter is determined by 10 
folds cross-validation 

7 ELMP ‘elmNNRcpp’ R package v 1.0.1  
(Mouselimis & Gosso, 2018)  

Using N/100 hidden neurons (N is the number 
of sales series in the data slot) and linear 
activation, all others are under default settings 

8 RF ‘Ranger’ package v.0.11.2 in R Under default settings 
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(Wright & Ziegler, 2017)  

9 GBRT ‘Xgboost’ package v. 0.82.1 in R 
(Chen & Guestrin, 2016)  

Arbitrary choosing 0.02 as the learning rate, 
and 1000 as the rounds of training, all others 
are under default settings 

 

4.3 Training meta-learners 

Benchmark meta-learners 

To investigate our research questions Q2 to Q6, based on the meta-learner introduced in the section 

3.2, we designed a series of meta-learners as benchmarks. Table 4 provides a comparative summary of 

the proposed meta-learner with benchmarks. M0 represents the meta-learner introduced in section 3.2, 

and M1 to M6 are described in detail in the following. 

 

 

Table 4 Comparative summary of meta-learners 

Meta 
learner 

Automatic 
feature learning 

Extracting features 
from influential 
factors 

Pool of base-
forecasters  Target  

M0 Yes Yes Mixed Best ensemble 

M1 No Yes Mixed Best ensemble 

M2 Yes No Mixed Best ensemble 

M3 Yes Yes Only methods using 
Individual forecasting Best ensemble 

M4 Yes Yes Only methods using 
Pooled forecasting Best ensemble 

M5 Yes Yes Mixed Best forecaster 

M6  Yes Yes Mixed Predict absolute 
errors 

FFORMA1 No No Mixed Best ensemble 

FFORMA2 No Yes Mixed Best ensemble 

 

(1) The meta-learner with unsupervised hand-selected features (M1).  

 We selected a set of hand-selected features describing the characteristics of weekly sales data in 
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our experiments which are listed in Table 5. All of the features have been previously used in Montero-

Manso et al. (2018), and the functions to calculate these are implemented in the ‘tsfeatures’ R package 

by Hyndman et al. (2019). In contrast to Montero-Manso et al. (2018) we extracted features from the 

sales time series to be forecasted, and additionally, from the multivariate time series of influential factors. 

As we no longer need to do feature learning when using hand-selected features, we designed a 

Fully Connected Neural Networks (FCNN) instead of DCCNN as meta-learner, which is shown in 

Figure 4. FCNN took the hand-selected features as the input, and used three layers of a fully connected 

neural network with 128, 64 and 32 units and ReLU activations to process the inputs. Then a dropout 

layer with rate 0.8 was applied to mitigate overfitting. The remaining features were then fed into a dense 

layer with softmax activation, which transforms them into a set of weights. The following components 

were the same as in M0. We did not search for the optimal FCNN networks with an automatic algorithm. 

Instead we considered FCNNs with different numbers of hidden layers, i.e., from two to four, and 

compared their forecasting performances on the validation data. We found the performances were in 

general quite robust to these changes in NN specification. So we arbitrarily selected the three layer 

FCNN structure for M1 to conduct the experiments. 

Table 5. Hand-selected features on Sales(S), Price reduction (P), and display & 

feature advertising (DF) 

Feature Description S P DF 
1 trend  strength of trend √   
2 linearity  linearity √   
3 curvature Curvature √   
4 spikiness  spikiness  √   
5 e_acf1 first ACF value of remainder series √   
6 e_acf10 sum of squares of first 10 ACF values of remainder series √   
7 stability  Stability √ √ √ 
8 lumpiness Lumpiness √ √ √ 
9 entropy spectral entropy √ √ √ 
10 hurst  Hurst exponent √ √ √ 
11 nonlinearity Nonlinearity √   
12 alpha  Alpha estimation in ETS(A,A,N) √   
13 beta  Beta estimation in ETS(A,A,N) √   
14 ur_pp  test statistic based on Phillips-Perron test √   
15 ur_kpss  test statistic based on KPSS test  √   
16 y_acf1 first ACF value of the original series √   
17 diff1y_acf1  first ACF value of the differenced series √   
18 diff2y_acf1  first ACF value of the twice-differenced series √   
19 y_acf10  sum of squares of first 10 ACF values of original series √   
20 diff1y_acf10  sum of squares of first 10 ACF values of differenced series √   
21 diff2y_acf10  sum of squares of first 10 ACF values of twice-differenced √   
22 y_pacf5  sum of squares of first 5 PACF values of original series √   
23 diff1y_pacf5  sum of squares of first 5 PACF values of differenced series √   
24 diff2y_pacf5  sum of squares of first 5 PACF values of twice-differenced √   
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25 crossing_point number of times the time series crosses the median √ √ √ 
26 flat_spots  number of flat spots, calculated by discretizing the series √ √ √ 
27 ARCH.LM  ARCH LM statistic  √   

 

 

Figure 4 The network structure of meta-learner using hand-selected features 

 
(2) The meta-learner without feature learning from influential factors (M2) 

This meta-learner is similar with the DCCNN shown in Figure 2, but used only the first channel to 

learn features from just the sales time series. 

(3) The meta-learner with base-forecasters that only used the individual modeling strategy (M3) 

This meta-learner has the same structure with the DCCNN shown in Figure 2, but using a limited 

pool of base-forecasters composing of only methods modeling and forecasting each SKU individually. 

(4) The meta-learner with base-forecasters only using pooled modeling strategy (M4) 

This meta-learner also has the same structure as the DCCNN shown in Figure 2, but using a limited 

pool of base-forecasters composing only methods modeling all SKUs in each of the data slots (Fig.3) 

in a pooled fashion. 

(5) The meta-learner targets identifying the best individual base-forecaster (M5). 

This meta-learner also uses DCCNN to extract features from sales and influential factors, and feeds 

these learned features into a softmax layer. But the outputs from the softmax are interpreted as the 

probabilities that each of the base-forecasters provides the most accurate forecasts for the current sales 

series, and is therefore a classification problem in this meta-learner (Figure 5). The loss function here 

is categorical cross-entropy which is defined as 

( )( ) ( )

1 1
( ) log

N M
m m

i i
i m

L l wθ
= =

= −∑∑ ,                         (11) 

where ( )m
iw is outputted from the softmax layer indicating the probability that the mth base-forecaster is 

the best method to forecast SKU i, and ( )m
il is the true label of either 1 or 0, indicating the mth base-

forecaster performs the best or not on SKU i. The label is evaluated by mean absolute error in the seven 

weeks of the forecasting horizon across base-forecasters. During the meta forecasting phase, the meta-

learner selects the base-forecaster which has maximum probability to be the best and this is then used 

to generate forecasts.  



 

 

~20 ~ 
 

 

 Figure 5 The network structure of the meta-learner targeting identifying the 

best performing base forecaster 

 
(6) The meta-learner predicts base-forecasters’ absolute errors (M6)  

This meta-learner is adopted from Cerqueira et al. (2017), which aims to predict the absolute 

forecasting errors arising from each base-forecaster. The structure of this meta-learner is illustrated in 

Figure 6.  

 

 

 Figure 6 The network structure of the meta-learner targeting at predicting 

forecasting error loss function 
 

The loss function here is defined as 
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e y y+ +−∑   represents the absolute errors generated by mth base-forecaster on 

forecasting SKU i, and ( )ˆ m
ie  is the output from the ReLU layer and represents the predicted error. 

During the Meta forecasting phase, the trained meta-learner generates absolute error predictions for 

each of the base-forecasters, and these are then used as weights in the ensemble of the base-forecasters 

according to their predicted performance:  
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(7) FFORMA 

FFORMA uses the gradient tree boosting model of xgboost (Chen & Guestrin, 2016) as the 

underlying implementation of the learning model (Montero-Manso et al., 2018). The original version 

of the FFORMA was developed for pure time series forecasting tasks, so it considered eight univariate 

time series methods as the base forecasters and adapted the Overall Weighted Average (OWA) error as 

the measure for forecasting loss, which adds together the Mean Absolute Scaled Error and the 

symmetric Mean Absolute Percentage Error. For a fair comparison, FFORMA as implemented in this 

research used the same pool of base forecasters as that in M0, and also used the SMSE as the loss 

measure. To train the xgboost, we adopted a set of hypermeters which had been optimized for the M4 

time series competition from the source code of FFORMA at github.com/robjhyndman/M4metalearning. 

To investigate the effects of using influential factors on the performance of FFORMA, we tested two 

versions of the model: the first is named as FFORMA1 which uses only features extracted from the 

sales series, and the other, FFORMA2, uses additional features extracted from influential factors (as 

with M1). 

Preprocessing and training process 

For all the meta-learners, we normalized the time series (hand-selected features for M1) by using 

z-normalization before inputting. To estimate the parameters of the neural networks, we utilized a 

gradient based optimization method to minimize the loss function. We used Keras with Tensorflow as 

the backend to implement our proposed model, and used Adam (Kingma & Ba, 2015) for optimization. 

All the experiments were run on a workstation with one NVIDIA Titan XP GPU. Neural networks 

are inherently parallel algorithms, and GPUs can take advantage of this parallelism to accelerate the 

training process. In our experiments, the time for each training epoch was between ten to thirty seconds, 

depending on the network structure of the meta learners. The batch size for training all the meta-leaners 
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in our experiment was set to be 4096. The first eight slots of the training samples were selected for 

training each model and the remaining 2 slots are in the validation set for parameter tuning. We find 

that 50 epochs are enough for all the meta learners to reach the minimum from our tuning results. The 

filters of three block of the convolution networks in the meta-learners are set to be 64, 128 and 64 

respectively and the dropout rate was set to be 0.8. In addition, we utilize the initialization proposed by 

He, Zhang, Ren, and Sun (2015) for all convolutional layers. 

4.4. Combination benchmarks 

We also employ three widely used combination approaches as the benchmarks. 

(1) Equivalent weights combination (E1). All base forecasters are simply averaged using the 

arithmetic mean. It is popular due to its ease of implementation, robustness, and good record in 

economic and business forecasting (Barrow & Kourentzes, 2016). 

(2) A weighted linear combination (E2). The weights are calculated according to their performance 

on the training data with a softmax function (Cerqueira et al., 2017).  

(3) Equivalent weights combination over selected base forecasters (E3). Instead of using all the base 

forecasters in the E1, we select the four best base forecasters according to their performance on the 

training data, and then combine those selected forecasters using the equivalent weights method. This 

combiner is employed due to the suggestion of one of the referees.   

OLS and constrained regression weights were also examined but performed poorly. 

4.5. Forecasting evaluation metrics and validation 

We use three error measures to compare the forecasting performance of the models. The first is 

sMAPE, symmetric Mean Absolute Percentage Error, defined for each forecast origin, which measures 

the difference between the prediction and the actual outcome, and is here defined as:  

=1 1
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y y
NH y y

+ −
= ∑ ∑ ,                       (14) 

where ˆihy  is the forecasts of SKU i in horizon h, and ihy  is the observed sales of SKU i in week h, 

N is the number of SKUs in the sample. It was chosen despite its known weaknesses because of its use 

in the M4 competition. The average Relative Mean Absolute Error (AvgRelMAE) is the second metric, 

which is proposed by Davydenko and Fildes (2013) for measuring forecasting accuracy at a 

disaggregate level (e.g. Store demand, SKU-level demand). It is a geometric mean of the ratio of the 

MAE between the candidate model and the benchmark model. 
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where 0ˆihy is the baseline statistical forecast for SKU i, ˆihy is the candidate model evaluated for SKU 

i. It has the advantage over sMAPE as removing outliers giving a more normal distribution and being 

readily interpretable. 

In order to measure the forecasting error bias, the Mean Percentage Error (MPE), that is defined 

here as the mean of the ratios of total error to total sales in the test periods per SKU, accumulated over 

the forecast horizon, i.e., 

( )
1

=1

1

100M
ˆ

PE

T H

ihN
h=T+

T H
i

ih
+

ih

h=T

y

N y

y
+

+

 − 
 =
 
 
 

∑
∑

∑
.                        (16) 

is used as the final criterion. 

 All these error measures are calculate for each forecast origin and then averaged over origins (in 

training or test data sets). 

In addition, to evaluate whether any forecast accuracy differences in methods that may appear are 

due to randomness, we employ the non-parametric Friedman test and the post-hoc Nemenyi test 

(Demšar, 2006; Koning, Franses, Hibon, & Stekler, 2005). We use the implementation of the tests 

available in the ‘tsutils’ R package (Kourentzes, 2019). 

The forecasting methods employed here are complex and even relatively simple procedures have 

often shown themselves to be not reproducible (Boylan, Goodwin, Mohammadipour, & Syntetos, 

2015). Although the individual modules have been validated by being based on established R libraries, 

the meta-learning schema as shown in Fig. 1 is novel. The code has been made available on 

github.com/Shawn-nau/retail-sales-forecasting-with-meta-learning to allow others to check 

replicability. The IRI dataset as noted can be accessed through Information Resources Inc. Finally, the 

results we report we claim have face validity. 

5. Results 

5.1. Forecasting performance of the base-forecasters 

The forecasting performance of all the base-forecasters on both training and test periods are shown 

in the Table 6 and Table 7 respectively. The ETS forecasts are used as the baseline for calculating 

AvgRelMAE. The results are very similar whichever of the two error measures are used. The results are 

also similar whether focusing on the training or test data sets. In both training and test periods, base-

https://github.com/Shawn-nau/retail-sales-forecasting-with-meta-learning


 

 

~24 ~ 
 

forecasters which model each SKU series individually perform worse than those trained with pooled 

data. The GBRT and random forest showed similar results (a 16% improvement over ETS), and both 

models provide superior accuracy than all other base-forecasters on both data sets and both accuracy 

metrics. Using median measures provided similar results qualitatively. 

Among individual forecasting models, models that used one lag have higher accuracy than the 

same model using three lags. On the contrary, models based on the pooled data using seven lags have 

better performance than the same model using three lags. The results also show that machine learning 

models, i.e., SVR and ELM, under the individual modeling strategy perform worse than simple ADL 

regressions. Under the data pooling strategy however, machine learning methods perform better than 

pooled regressions. The results provide further evidence that machine learning methods can provide 

more accurate forecasts than simple linear forecasting methods only when using data pooling. This 

implies that for forecasting methods using the individual modeling strategy it is better to keep the 

methods as simple as possible to avoid overfitting. Methods using the data pooling strategy should 

increase the model specification complexity to avoid underfitting.  

The bias adjustment factors for each base-forecasters are shown in last column in Table 6. Table 7 

shows that the adjustments work well, the maximum bias among all the base-forecasters is only around 

2 percent. 

 

 

 

 

Table 6  Forecasting performance of base-forecasters in training set     

Base 
forecaster 

 Horizon 
h=1 h=4 h=7  h=1-7 

sMAPE AvgRel
MAE sMAPE AvgRel

MAE sMAPE AvgRel
MAE  sMAPE AvgRel

MAE Bias adj. 

ETS 19.367 1.000 20.366 1.000 20.859 1.000  20.137 1.000 1.043 
ADL-1 16.717 0.871 17.516 0.862 17.672 0.840  17.200 0.855 1.017 
ADL-3 16.898 0.878 17.724 0.870 17.944 0.854  17.417 0.864 1.019 
ARX-1 17.198 0.897 17.976 0.885 18.210 0.874  17.716 0.884 0.997 
ARX-3 18.074 0.941 18.828 0.930 18.982 0.911  18.529 0.922 0.987 
ELM-1 18.142 0.952 19.441 0.981 19.356 0.931  18.902 0.944 0.980 
ELM-3 19.705 1.043 20.679 1.037 20.770 0.999  20.337 1.026 1.015 
SVM-1 17.164 0.912 17.812 0.897 17.915 0.870  17.534 0.886 1.001 
SVM-3 17.509 0.926 18.213 0.910 18.427 0.895  17.964 0.908 1.012 
GBRT-3 16.231 0.844 17.097 0.845 17.304 0.831  16.785 0.841 1.029 
GBRT-7 16.144 0.842 16.930 0.838 17.320 0.831  16.709 0.839 1.021 
ADLP-3 16.727 0.876 17.569 0.878 17.675 0.853  17.230 0.869 1.033 
ADLP-7 16.593 0.869 17.414 0.869 17.667 0.853  17.139 0.865 1.031 
RF-3 16.304 0.842 17.108 0.842 17.328 0.826  16.815 0.839 1.036 
RF-7 16.235 0.837 16.985 0.834 17.365 0.828  16.762 0.835 1.040 
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ELMP-3 16.614 0.866 17.532 0.875 17.638 0.853  17.173 0.867 1.033 
ELMP-7 16.496 0.858 17.345 0.863 17.670 0.851  17.090 0.862 1.035 
The top two performed models are shaded; The ETS forecasts are used as the baseline for calculating 

AvgRelMAE. 

 

Table 7  Forecasting performance of base-forecasters in test set     

Base 
forecaster 

 Horizon 
h=1 h=4 h=7  h=1-7 

sMAPE AvgRel
MAE sMAPE AvgRel

MAE sMAPE AvgRel
MAE  sMAPE AvgRel

MAE MPE 

ETS 19.305  1.000  20.105  1.000  21.152  1.000   20.219  1.000  2.163  
ADL-1 16.842  0.885  17.691  0.871  18.743  0.867   17.756  0.869  -0.339  
ADL-3 16.999  0.893  17.929  0.883  19.053  0.886   17.957  0.882  0.247  
ARX-1 17.246  0.907  18.059  0.904  18.996  0.894   18.190  0.902  1.045  
ARX-3 18.101  0.952  18.924  0.945  19.900  0.942   19.055  0.947  1.154  
ELM-1 17.959  0.932  19.280  0.956  20.629  0.984   19.448  0.970  0.254  
ELM-3 19.744  1.048  20.679  1.043  21.654  1.038   20.739  1.041  1.602  
SVM-1 17.175  0.915  17.950  0.909  18.833  0.894   18.058  0.907  1.283  
SVM-3 17.531  0.925  18.380  0.922  19.347  0.920   18.467  0.923  1.693  
GBRT-3 16.372  0.846  17.353  0.853  18.601  0.861   17.379  0.847  -1.653  
GBRT-7 16.201  0.844  17.137  0.842  18.597  0.870   17.301  0.847  -1.558  
ADLP-3 16.788  0.869  17.815  0.880  18.902  0.879   17.805  0.872  -1.927  
ADLP-7 16.673  0.863  17.608  0.868  18.868  0.881   17.692  0.867  -1.514  
RF-3 16.454  0.848  17.351  0.846  18.580  0.853   17.400  0.843  -1.328  
RF-7 16.318  0.836  17.186  0.840  18.554  0.856   17.293  0.837  -0.798  
ELMP-3 16.683  0.866  17.708  0.873  18.855  0.877   17.725  0.867  -1.570  
ELMP-7 16.525  0.856  17.464  0.861  18.856  0.879   17.581  0.860  -0.700  
The top two performed models are shaded; The ETS forecasts are used as the baseline for calculating 

AvgRelMAE 

 

In Fig. 7, the 95% confidence intervals of Nemenyi ranking test for the AvgRelMAE of 17 models 

in the test data are displayed. GBRT-7 is on average ranked as the best performance model, but the 95% 

interval of the GBRT-7 overlaps with that of RF-7 and GBRT-3, implies that RF-7 and GBRT-3 are not 

significantly worse than GBRT-7. But the intervals for the other models are outside the right interval 

boundary of GBRT-7 without any overlap, and hence, these models perform significantly worse than 

the GBRT-7. 
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Figure 7.  Nemenyi ranking test with AvgRelMAE at 5% significance level on test 

data 
 

In order to train the meta-learners, we selected 9 models among the 17 models listed in Table 6 and 

7 to build a pool of base-forecasters, based on their performance on the training data (Table 6). This 

consists of five individual forecasting models: ETS, ADL-1, ARX-1, ELM-1, SVM-1, and four pooled 

forecasting models, including ADLP-3, RF-7, GBRT-7 and ELM-7. Figure 8 shows that the proportion 

of the sales time series for which a base-forecaster performs as the best (evaluated with sMAPE). 

 
We see that the proportions where a forecaster performed best compared to all others are in general 

close in both the training and test periods, and the distribution of the proportions among base-forecasters 

is nearly balanced. It is interesting to find that ETS, though performing the worst among all the base-

forecasters on average (Table 6 & 7), outperformed its competitor forecasters most often. 
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 Figure 8 Proportions of the sales time series for which a particular base-

forecaster performs as the best 

5.2 Forecasting performance of the meta learners 

The forecasts generated by the selected base-forecasters are further processed by nine meta-

learners and three simple combination methods. The results are reported in Table 8, and this time the 

best performing base-forecaster, i.e. GBRT-7, works as the baseline for calculating AvgRelMAE. The 

meta-learner M3 uses all nine individual forecasting models and M4 uses all eight pooled forecasting 

models listed in Table 6 as the base-forecasters respectively.  

The meta-learner M0 provides the most accurate forecasts measured by all the accuracy metrics 

over all the horizons; the low bias measurement is also outstanding among all the meta-learners. Meta-

learner M1 which uses hand-selected features, together with M2 which uses automatic feature learning 

but without extracting information from influential factors, also provide superior forecasts than the other 

meta-learners, simple combination methods, and GBRT-7. While M5 which targets the individual 

selection of the best performing base-forecaster cannot even beat the aggregate performance of some 

base-forecasters, all the meta-learners integrated with ensemble methods provide better forecasts than 

the two simple ensemble benchmarks, as well as GBRT-7. This shows the importance of ensemble 

methods being included in the meta-learner. FFORMA2 performs better than FFORMA1 which shows 

the small additional value of the features extracted from the influential factors, but the performance is 

worse than M1 though both of them use the same set of hand-selected features.  

Another important finding is that meta-learners using the pool of base-forecasters either composing 

of only individual forecasting models (M3) or of pooled forecasting models (M4) perform poorly 

compared to those meta-learners using mixed models (M0 & M1). M4, especially, shows very limited 

improvements over GBRT-7, though GBRT-7 is one of its base-forecasters. The results show the 
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importance of using a pool of mixed base-forecasters in meta-learning when forecasting SKU level 

sales. 

Among the three ensemble benchmarks, the first two combiners, i.e., E1 and E2, perform better 

than the baseline, and close to some of the meta learners, e.g., FFORMA1, M4 and M6. But the 

combiner E3, the combination of four best performing forecasters in the training set, including GBRT-

7, RF-7, GBRT-7 and RF-7 which are all pooling methods, has very similar performance to the baseline. 

The comparisons of forecasting performance between E1 and E3 indicate that even traditional 

combination methods could benefit potentially from the combining of a mixed pool of base-forecasters 

(i.e. including forecasts from both pooling and individual base-forecasters). 

 

Table 8  Forecasting performance of nine meta-learners and three ensemble benchmarks 

in the test data  

Meta- 
learner 

 Horizon 
h=1 h=4 h=7 h=1-7 

sMAPE AvgRel
MAE sMAPE AvgRel

MAE sMAPE AvgRel
MAE  sMAPE AvgRel

MAE MPE 

M0 15.953  0.987  16.747  0.980  17.965  0.960   16.849  0.968  -0.170  
M1 15.980  0.989  16.765  0.981  17.972  0.964   16.865  0.970  -0.046  
M2 15.980  0.989  16.771  0.983  17.981  0.963   16.870  0.970  -0.034  
M3 16.183  0.997  17.114  1.001  18.514  0.993   17.231  0.995  -1.117  
M4 16.140  0.999  16.950  0.992  18.125  0.971   17.053  0.982  0.394  
M5 17.067  1.058  18.073  1.069  19.203  1.035   18.135  1.050  3.886  
M6 16.128  1.002  16.939  0.994  18.050  0.965   17.006  0.979  -0.077  
E1 16.171  1.004  16.985  0.997  18.161  0.977   17.078  0.986  -0.064  
E2 16.103  1.001  16.900  0.990  18.079  0.968   16.994  0.978  -0.292  
E3 16.237  1.001  17.169  1.006  18.501  0.992   17.247  0.996  -1.334  

FFORMA1 16.060  0.992  16.868  0.985  18.110  0.969   16.975  0.977  -0.060  
FFORMA2 16.023  0.992  16.824  0.983  18.049  0.965   16.928  0.974  0.254  
The best performance models are shaded; The GBRT-7 forecasts are used as the 

baseline for calculating AvgRelMAE 

 
Fig. 9 shows the Nemenyi test intervals calculated based on the ranks of AvgRelMAE with all 

methods in Table 8. It shows that though M0 has lowest mean rank, it is not significantly better than 

M1 and M2. But it is obvious that the meta-learner M0, M1 and M2 show significantly better 

performance than all the others. Perhaps surprisingly, M2 shows strong performance despite not using 

the influential features as shown in Table 5.  
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 Figure 9 Nemenyi test at 5% significance level on nine meta-learners, three 

simple combination methods and GBRT-7  

 

 

 
Figure 10. The boxplot of the weights of nine base-forecasters used by M0 when 

forecasting test periods. 

 

Friedman: 0.000 (Ha: Different) 
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Figure 11. The parallel coordinates plot on the weights of nine base-forecasters 

in M0 for forecasting ten randomly selected sale series 
 

To obtain a deeper understanding on the performance of the M0, in Figure 10, we depict the 

boxplots of the weights of nine base-forecasters on forecasting test periods. It shows that GBRT-7 is on 

average given largest weight averaged over time. Three individual forecasting methods including ETS, 

ALD-1 and ARX-1 also achieve more than 10 percent weight on average. ELM-1 and ADLP-3 are 

among the lowest contributors. To give a better insight into how the nine base forecasts are combined 

for different sales series, Figure 11 depicts the combination weights in M0 for forecasting a sample of 

sales time series. Both figures provide further evidences that, when using meta-learning to forecast SKU 

sales (or even in more general settings when forecasting many time series. e.g. Makridakis et al., 2019), 

it is better to pool base-forecasters composing of simple individual forecasting methods (with fewer 

lags) and complex pooled forecasting methods (with more lags).  

Table 10 reports the forecasting performance of the various meta learners segmented into 

promotion and non-promotion weeks separately. The promotion here is defined as meeting at least one 

of three conditions: price lower than the median of the prices during training periods, existing display, 

or feature advertising. All the methods’ relative forecasting performances in the two segments are in 

general consistent with their results of the full-sample evaluation reported in Table 9. M0 still 

outperforms all the others across all accuracy measures in both segments which shows its robust 

forecasting performance. We find that all the methods have better relative forecasting performance in 

promotion weeks than in non-promotion weeks. In promotion weeks, except for M3 and M5, all the 

meta learners deliver an additional three to six percent of improvements over the baseline, compared to 

their performance in non-promotional weeks as measured by AvgRelMAE.  

To explore the interpretability of the learned features, in this paper’s supplementary material, we 

provide some visualization results on how the convolutional filters work in M0. In the first 

convolutional layer, some filters are explainable easily, but after three layers, the features extracted are 

too complex to be interpreted. From their correlation table, we could not find any obvious corresponding 

relations between hand-selected features and automatically extracted features.  
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Table 10 Forecasting performance of eight meta-learners and three 

ensemble benchmarks in promotion and  non-promotion periods 
 Promotion Non-promotion 

  AvgRelMAE 
( to ETS ) 

AvgRelMAE 
( to GBRT -7 )  AvgRelMAE 

( to ETS ) 
AvgRelMAE 
( to GBRT -7 ) 

M0  0.760 0.950  0.830 0.984 
M1  0.762 0.952  0.831 0.985 
M2  0.762 0.951  0.832 0.986 
M3  0.794 0.992  0.842 0.998 
M4  0.770 0.962  0.843 0.999 
M5  0.836 1.044  0.890 1.055 
M6  0.772 0.964  0.838 0.993 
E1  0.780 0.974  0.845 1.001 
E2  0.770 0.962  0.838 0.993 
E3  0.795 0.994  0.842 0.999  

FFORMA1  0.771 0.963  0.834 0.989 
FFORMA2  0.770 0.962  0.833 0.987  

The best performance model is shaded. 

 

Similarly, Table 11 reports the forecasting performance of the various meta learners for existing 

and new SKUs. New SKUs here refer to the SKUs that are sold in a store in the test periods but are not 

sold in the same store in the training periods. Similar to the results reported in the Table 10, M0 again 

showed robust forecasting performance, it outperforms all the others across all accuracy measures in 

both SKU segments. All the methods have better forecasting performance for existing SKUs than their 

respective performance for new SKUs. Most of the meta learners obtain larger improvements over the 

baseline when forecasting existing SKUs compared to their performance for forecasting new SKUs in 

terms of AvgRelMAE.  

Table 11  Forecasting performance of eight meta-learners and 

three ensemble benchmarks for existing and new SKUs 
 Existing SKUs New SKUs 

  AvgRelMAE 
( to ETS ) 

AvgRelMAE 
( to GBRT -7 )  AvgRelMAE 

( to ETS ) 
AvgRelMAE 
( to GBRT -7 ) 

M0  0.814 0.966  0.843 0.975 
M1  0.816 0.968  0.845 0.977 
M2  0.816 0.968  0.845 0.977 
M3  0.839 0.995  0.861 0.995 
M4  0.826 0.980  0.856 0.990 
M5  0.886 1.051  0.904 1.045 
M6  0.824 0.978  0.853 0.986 
E1  0.829 0.984  0.859 0.992 
E2  0.823 0.976  0.853 0.986 
E3  0.839  0.996   0.861  0.995  

FFORMA1  0.822 0.975  0.851 0.983 
FFORMA2  0.820  0.973   0.848  0.980  

New SKUs here refer to the SKUs that are sold in a store in the test periods 
but are not sold in the same store in the training periods. 
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Table 12 Forecasting performance of the eight meta-learners and three 

ensemble benchmarks over six categories (evaluated with AvgRelMAE, the 

GBRT-7 forecasts are used as the baseline) 
 Milk Beer Mayo Coffee Yogurt Laundet 

M0 0.947 0.986 0.970 0.975 0.967 0.964 
M1 0.949 0.986 0.973 0.976 0.969 0.967 
M2 0.947 0.988 0.972 0.976 0.969 0.967 
M3 0.994 0.998 0.985 0.999 0.995 0.997 
M4 0.954 0.995 0.983 0.990 0.986 0.980  
M5 1.017 1.062 1.051 1.034 1.063 1.038 
M6 0.956 0.991 0.979 0.984 0.983 0.978 
E1 0.958 0.996 0.986 1.007 0.987 1.003 
E2 0.959 0.991 0.978 0.988 0.977 0.979 
E3 0.995  0.997  0.987  1.001  0.996  1.000  

FFORMA1 0.957 0.989 0.977 0.981 0.979 0.973 
FFORMA2 0.953  0.988  0.970  0.977  0.977  0.971  

 

In Table 12, we compare the forecasting results of the meta learners and benchmark methods for 

different categories, evaluated with AvgRelMAE and used the GBRT-7 as the baseline. In general, M0 

consistently outperform all the benchmark methods across all six categories. But the extent of the 

improvements varies among different categories. In the category Milk, it could improve the forecasts 

over the baseline more than 5 percent on average, while in category Beer, it can only achieve 

relatively limited forecasting improvements.  

5.3. Discussion  

We empirically showed the advantages of the proposed meta learner with respect to several variants 

and state-of-the-art approaches for store SKU weekly sales forecasting tasks. Now we discuss the results 

to answer the research questions listed in Section 4.  

(AQ1) The proposed meta-learner (M0) has significant superior forecasting performance over all 

the base forecasters and the simple average combinations of the forecasters. On average, M0 has 3.2 

percent improvements over the best performing base-forecaster (measured by AvgRelMAE in Table 9). 

The meta-learner is particularly effective during promotion weeks, which has 5 percent improvements 

over the best performing base-forecaster, compared to 1.6 percent of improvements in non-promotion 

weeks (Table 10). This could be explained by the observation that sales in non-promotional weeks are 

relatively stable and therefore easier to be forecasted. The meta-learner could improve the forecasting 

accuracy for both existing and new SKUs significantly, but is relatively more effective for existing 

SKUs. It is particularly effective for fast moving categories, and less effective for slow moving 

categories.   

(AQ2) Compared to FFORMA, the proposed meta-learner (M0) showed significantly superior 

forecasting performance (Figure 9). This indicates that the proposed method can provide better 
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combined forecasts than FFORMA. 

(AQ3) We find that the meta-learner using supervised feature learning (M0) consistently performs 

better than the meta-learner using unsupervised hand-selected features (M1), though the Nemenyi test 

did not show significant superiority. But another benefit of the automatic feature learning is that we no 

longer need to worry about the problem of how to extract features from time series under study before 

using meta-learning methods, so this simplifies the data processing effort and makes the meta-learning 

approach easy to implement. 

(AQ4) We find that the meta-learner which learns features from both the time series of sales and 

influential factors can improve forecasting performance potentially over the meta-learner using only 

sales time series as the input, though the ranking based Nemenyi test did not show the improvements to 

be significant (or impactful). One explanation of this results is that most of the variations due to the 

influential factors have already been reflected in the sales series, so influential factors contain limited 

additional information for the meta-learner to select the best ensembles. 

 Meta leaners including FFORMA and M6, and the combiner E2, are all combining base 

forecasters according to their past accuracy statistics. They have similar forecasting performance and 

are all superior to the best base forecaster, but they are all inferior to the proposed meta learner and its 

variants.  

(AQ5) We find that the meta-learners using a mixed pool of base-forecasters can improve the 

forecasting performance significantly over meta-learners using base-forecasters consisting of only 

individual or alternatively pooled forecasting methods. This is consistent with Smyl (2020), the winner 

of M4-competition, that a hybrid model using the two modeling strategies can improve forecasting 

performance.   

(AQ6) Though it is common and straightforward to target selecting the best performing base-

forecaster in meta-learner designing (Table 1), our findings show that this is a misleading practice. Our 

results highly recommend choosing to target the best combination of base-forecasters when using meta-

learning for forecasting retail sales. 

6. Conclusions 

Product level sales forecasting in retail is essential to sound retail business planning to improve 

their service performance in daily operations. Taking advantage of the huge amount of historical data 

accumulated by retailers, this paper is the first to evaluate the performance of meta-leaning methods in 

forecasting SKU×Store weekly sales. We proposed a novel meta-learner based on convolution neural 

networks, which can extract features automatically from raw sales time series and their influential 

factors using a supervised learning approach. This research is also the first to propose using a mixed 

pool of base-forecasters which includes forecasting methods of using both individual forecasting and 

pooled forecasting strategies. In addition to the novel meta-learning methodology we described, we 
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obtained a series of empirical findings through our forecasting experiments, which are important for 

guiding retail forecasting practice. 

In general, the proposed meta-learner can improve retail sales forecasting accuracy significantly. 

When design a meta learner to forecast retail sales, we recommend (1) the use of base-forecasters 

including both individual and pooled forecasting methods; (2) targeting finding a best combination 

forecasts instead of identifying just the best one; (3) considering the use of supervised feature learning 

instead of handcraft features; and (4) considering the extraction of features from external influential 

factors in addition to sales time series. We note that the differences between just including the sales 

history and the both time series of sales and the influential factors proved in this application to be small, 

suggesting that for longer horizons or in some applications greater benefit from considering exogenous 

features might prove more valuable.  

While the differences between some of the individual meta-learners are small compared to the base 

forecasters, the gains in retail applications should prove valuable, translating directly into better service/ 

lower inventory. They also suggest a route forward in software improvements where the methods 

employed for retail data are often based on simple selection routines and, for example, do not include 

the pooled methods which have proved so beneficial. Implementation and user acceptance may prove 

problematic as expert judgmental adjustment remains a common practice in retail forecasting (Fildes, 

et al., 2020). Whether such machine learning methods as those described here can deliver better value 

than those currently practiced remains an important research issue.  

The results, as with any empirical study, suffer from the limitations of using a particular data source. 

In retailing, additional retail data including different categories, SKUs and, of course, retailers including 

on-line, would help generalize the findings we report. Further research could also explore more 

sophisticated automatic feature extraction methods for time series data or apply our approach to many 

other practical forecasting scenarios, e.g., energy or financial forecasting applications, areas also 

concerned with the problems of forecasting many related time series with external influential factors. It 

would also be an interesting empirical question whether our conclusions would hold when the proposed 

meta learners are tested on more general univariate time series data like that found in the M3 or M4 

competitions.  
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