
 

   

 
 
 

Understanding the links 
between soil, plants, and 

pollinators. 
 

 

Submitted by 

 

Thomas Ifor David BSc, MSc. 

 

To the University of Lancaster as a thesis for the degree of Doctor of 
Philosophy in Biological Science, September 2019 

 

 

 





Thomas David                   Understanding the links between soil, plants, and pollinators 

i 
 

Declaration 

I certify that all material in this thesis is my own work, unless clearly 
stated, and that no material has been previously submitted and approved 
for the award of a degree by this or any other University. 

 

I certify that the world length of this thesis, not including bibliography, is within the 
guidelines of 80,000 words, as suggested by the University of Lancaster. The word 
length is 52,344 

 

 

Signature: …………………………………………………………… 

 

 

 

Chapter 1 has been edited from an article published in an internationally peer-
reviewed journal. The published article was entirely written by Thomas David, with 
guidance from Jonathan Storkey and Carly Stevens. 

 David, T. I., Storkey, J. and Stevens, C. J. (2019) ‘Understanding how changing soil 
nitrogen affects plant–pollinator interactions’, Arthropod-Plant Interactions. Springer 
Netherlands, (0123456789). doi: 10.1007/s11829-019-09714-y. 

 

Chapter 2 contains statistical analyses of data previously collected by others and used 
with permission. The data from UK acid grassland sites (results shown in Table 2.1, 
section 2.4.1) was collected by Stevens et al. (2004). The Park Grass Long-term 
Experiment data was procured from the electronic Rothamsted Archive (e-RA).  

  

  



Thomas David                   Understanding the links between soil, plants, and pollinators 

ii 
 

 

 



Thomas David                   Understanding the links between soil, plants, and pollinators 

iii 
 

Abstract 
 

Global nitrogen (N) deposition has risen steeply since the mid-19th Century and 

is forecasted to rise further. This increased flux of N to ecosystems is increasingly 

considered as a worldwide driver of environmental change. Impacts to botanical 

communities have been shown across a range of ecosystems and regions, but evidence 

on consequential impacts to further trophic levels is currently limited. Our 

understanding of how N affects plant-pollinator interactions is relatively poor. 

Declining trends in pollinating insects have been widely reported during recent 

decades and a key factor in this is losses of floral resources.  

The research chapters presented in this thesis seek to address the wide 

knowledge gap of how N affects pollinators by investigating how soil N affects 1) the 

composition of floral functional traits in a plant community, 2) intra-specific variation 

in key floral functional traits: phenology and nectar, and 3) the potential impacts to 

plant-pollinator interaction networks. This research was undertaken using the Park 

Grass Long-term Experiment (PGE) at Rothamsted Research, UK, a long-term nutrient-

enrichment experiment. The study found extensive impacts of N on the provision of 

floral resources. Floral resources were lost with N-enrichment, with morphologically 

specialised floral units particularly threatened. Flowering phenology of plant species 

was influenced by N-enrichment with a notable contrast between early-season 

species, which had an extended flowering duration, and peak-season species that had 

a reduced flowering duration. Responses of nectar traits varied across species but 

were shown to respond to N applications. The observed pollinator visitation networks 

were impacted by the soil treatments; N additions typically led to Diptera-dominant 

communities and networks that were potentially less robust to stochastic events. The 

research project provided evidence that soil N can act as an underlying driver of plant-

pollinator networks and should be considered as a factor in pollinator ecology and 

trends. 
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  Chapter 1. Introduction 
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CHAPTER 1 

 

 UNDERSTANDING HOW 

CHANGING SOIL NITROGEN 

AFFECTS PLANT-POLLINATOR 

INTERACTIONS 
 

This chapter has been edited from a review published in: 

Arthropod-Plant Interactions (2019); 13(5): 671–684  



  Chapter 1. Introduction 

2 
 

1.1 Abstract 

 

Many pollinating insects, across taxa and regions, have declined during the 20th 

century. Amongst the drivers of these trends, soil eutrophication and acidification 

caused by nitrogen (N) have not been broadly researched. Anthropogenic influences 

have greatly increased the global deposition of N to soils during the past century; this 

is increasingly recognised as a threat to global biodiversity. The fundamental role of 

soil in plant growth and health means that alterations to soil conditions will likely have 

consequences for plant-pollinator interactions. Soil-N can impact on botanical 

communities, often reducing species-richness due to quick growth of competitive 

grasses and altering the nutritional qualities of vegetation. Research shows this can 

affect other trophic levels, such as herbaceous insects, but little is known about the 

impacts to pollinators. There is evidence that relevant floral traits for pollinators, such 

as phenology and nectar traits, can be affected by soil-N. However, the extent of these 

impacts, across species, are poorly understood. Importantly, we currently lack 

sufficient research to determine if and how pollinators will be impacted by botanical 

responses to changing soil fertility. This review collates the research and evidence of 

how soil-N affects botanical species composition and relevant floral traits and 

discusses how pollinating insects and plant-pollinator interactions might be impacted. 

We conclude by identifying the key knowledge gaps in this subject; the lack of research 

that includes pollinators into studies of how N additions affect botanical traits, poor 

understanding of inter-specific variation in botanical responses to N, synthesis of 

botanical traits to form a comprehensive understanding, and the inclusion of other 

abiotic and biotic drivers into studies.  
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1.2 Introduction 

 

The life cycles of pollinating insects are sustained through flowering plants, 

which provide nutrition for adults and their progeny. Environmental impacts on plants 

can therefore have consequences for pollinators, and vice versa; if pollinators are 

affected it can have implications for the quality of pollination services delivered 

(Fontaine et al. 2006; Fründ et al. 2013). Plant-pollinator interactions are vital in 

supporting terrestrial biodiversity and the functional stability of ecosystems; it is 

estimated that 87.5% of global plant species rely on biotic pollination (Ollerton, 

Winfree and Tarrant, 2011). Pollinators are also important for the yields of many 

agricultural crops (Gallai et al. 2008; Garibaldi et al. 2011, 2014; Rader et al. 2016); 87 

of the 115 leading global food crops, accounting for 35% of our agricultural produce, 

rely on biotic pollination (Klein et al. 2007). Insects are the key pollinators in most 

systems (Gallai et al. 2009; Patiny, Rasmont and Michez, 2009; Potts et al. 2010; 

Wardhaugh, 2015; Ollerton, 2017). However, it is well-documented that insect 

pollinators are in decline across a range of taxa and ecoregions, due to a combination 

of factors that include habitat degradation, land-use change, parasites, pesticides, and 

the transport of non-native commercial pollinators (e.g. Williams and Osborne 2009; 

Potts et al. 2010; Winfree et al. 2011; Vanbergen et al. 2013; Rundlöf et al. 2015). Soil 

eutrophication, caused by atmospheric nitrogen deposition and increased use of 

inorganic and organic fertilisers, is known to contribute to declining habitat quality and 

is increasingly recognised as a substantial threat to global biodiversity (Phoenix et al. 

2006; Bobbink et al. 2010; Bleeker et al. 2011; Erisman et al. 2014; Schoukens 2017). 

However, the effect of elevated biologically-available nitrogen (N) on plant-pollinator 

interactions has received very little research attention (Harrison and Winfree, 2015).  

Excessive soil enrichment with N can occur through fertiliser application, 

agricultural run-off, and through atmospheric N deposition. We have an increasingly 

well-developed understanding of the multiple ways through which N deposition can 

impact plant communities (Bobbink et al. 2010). The eutrophication of soil by N, often 

a limiting nutrient, typically boosts above-ground primary productivity, which favours 

fast-growing, nitrophilic plants. This leads to taller vegetation and creates stronger 
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competition for light, with smaller and slower growing species often suffering as a 

result. (Mountford, Lakhani and Kirkham, 1993; Crawley et al., 2005). Excessive fluxes 

of N to soil can lead to soil acidification, particularly in poorly buffered soils (Dise et al. 

2011; Stevens et al. 2010), which can increase the availability of toxic compounds and 

heavy metals such as aluminium in the soil for plant take-up. This further drives 

changes to botanical communities through filtering the species pool according to plant 

tolerances to soil pH and heavy metal loadings (Dise et al. 2011; Stevens et al. 2010). 

When in the ammonia form, N can be directly toxic (Pearson and Stewart, 1993), 

although this is species-specific and associated with point source contamination 

(Bobbink et al. 2010). Soil-N enrichment poses varied further impacts through 

interactions with secondary stressors, such as climate change and other 

environmental factors (e.g. Caporn et al. 2000; Tylianakis et al. 2008; Porter et al. 

2013), altering soil microbial communities (e.g. Farrer and Suding 2016), and 

increasing susceptibility to pests and pathogens (e.g. Brunsting and Heil 1985; 

Strengbom et al. 2003, 2006). 

This introductory review will address the most widespread impacts: chronic 

eutrophication and, in poorly-buffered soils, acidification (Bobbink, Hornung and 

Roelofs, 1998). The review will begin by introducing the recent history of 

anthropogenic alterations of the N cycle and how this is shown to impact on 

invertebrates. The second part will discuss how pollinator-relevant botanical traits are 

impacted by N additions, and how pollinators might respond. The review will continue 

into a discussion of some key knowledge gaps. Finally, the review will give an overview 

of the research questions specifically addressed by thesis and how this will contribute 

to our understanding. 

 

1.3 Historic nitrogen production and deposition 

 

Humans have dramatically altered the N cycle, mostly through agricultural and 

energy industries (Vitousek et al., 1997; Cornell et al., 2003; Galloway et al., 2004; 

Fowler et al., 2013). Global anthropogenic N production increased from 15 Tg N yr-1 in 
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1860 to 187 Tg N yr-1 in 2005 (Galloway et al. 2008) and is now the dominant supply 

of biologically available N to soils. Global atmospheric N deposition consequentially 

increased from 34 Tg N yr-1 in 1860 to 100 Tg N yr-1 in 1995, and is estimated to double 

between 1995-2050 (Galloway et al. 2004). Inorganic fertiliser application increased in 

Europe during the last century, although some countries have decreased application 

since the 1980’s (Stoate et al., 2001). 

Atmospheric N deposition is currently highest in the developed temperate 

regions of the Northern Hemisphere (Dentener et al. 2006; Bleeker et al. 2011). Since 

the 1980’s, the deposition rate in Europe and North America has begun to level off and 

decrease in some areas, due to more efficient technologies and the plateauing of N 

fertiliser application (Cornell et al. 2003; Goulding et al. 2015); at current levels it is 

typically 10-25 kg N ha-1 yr-1 (Dentener et al. 2006; Bleeker et al. 2011). In many 

ecosystems this still falls above the estimated critical threshold for sensitive 

ecosystems of 15 kg N ha-1 yr-1 (Phoenix et al. 2006). In China, the rate can exceed 50 

kg N ha-1 yr-1 and is increasing (Liu et al. 2013). Atmospheric N deposition is typically 

lower in remote undeveloped areas of the Southern Hemisphere, although the rate is 

expected to increase dramatically in the future (Dentener et al. 2006; Galloway et al. 

2008). This is concerning, as many of the world’s biodiversity hotspots are found in the 

Southern Hemisphere and will be in danger of rising levels of N deposition in excess of 

the critical thresholds of sensitive ecosystems (Phoenix et al. 2006; Bleeker et al. 

2011). 

In the UK, N emissions rose from 312 kt N yr-1 in 1900 towards a peak of 787 kt 

N yr-1 between 1980-1990, and have since declined substantially, to 460 kt N yr-1, in 

2000 (Fowler et al. 2004). This fall in emissions is in part due to focussed policy 

programs (such as Clean Air Act legislation in 1993), more efficient technologies, and 

reducing emissions associated with transport and utilities (ROTAP, 2012). Despite this 

reduction in emissions, the flux of N deposition to terrestrial ecosystems changed little 

between 1980-2007, remaining close to 400 Gg N yr-1 (ROTAP, 2012). As such, 58% of 

N-sensitive habitats experienced deposition levels above critical levels in 2009, only 

decreasing from 62% in 1980. A noted priority is minimising ammonia (NH4) emissions 

resulting from agricultural practices; the UK has had more success in lessening oxidised 
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nitrogen (NOy) emissions than reduced nitrogen (NHx) emissions and so ambient 

atmospheric NHx concentrations remain high (Erisman et al. 2007; ROTAP, 2012). UK 

atmospheric levels and deposition fluxes have therefore become increasingly 

proportionally dominated by NHx. Acidification of habitats, associated with sulphur (S) 

or N deposition, is an ongoing but gradually alleviating problem in the UK. Particularly 

threatened are acid-sensitive habitats; 54% of acid-sensitive habitats in 2006-2008 

were strongly acidified above critical threshold levels (ROTAP, 2012).  

 

1.4 Soil N impacts on pollinators and other trophic interactions 

 

 Our knowledge of N-driven impacts to higher trophic levels is lacking (Stevens, 

David and Storkey, 2018). Research on plant-herbivore and plant-herbivore-predator 

interactions has demonstrated that plant-mediated impacts of soil-N enrichment can 

affect invertebrate development and populations (e.g. Jefferies and Maron, 1997; 

Haddad et al. 2000; Throop and Lerdau, 2004; Chen et al. 2010; Pöyry et al. 2017). It 

is acknowledged that the impacts to invertebrate herbivores can occur through 

various pathways, typically: alterations to the quantity of foliar N, alterations to 

dietary qualities of vegetation, microclimatic cooling, change in botanical species 

composition, and phenology (Nijssen et al. 2017; Poyry et al. 2017; Stevens, David and 

Storkey, 2018).  

Soil-N enrichment, and increased take-up by plants, typically leads to higher 

concentrations of foliar N and therefore increased N availability for herbivorous 

insects (Awmack and Leather, 2002). This often positively correlates with increased 

invertebrate growth rate and body size (Throop and Lerdau, 2004). A study of over 

1,000 Scandinavian lepidopterans found the larvae of butterflies and moths that use 

host plants with higher foliar N concentrations were larger (Poyry et al. 2017). These 

responses are understandable, given that larger animals typically have higher N 

content (Fagan et al. 2002). A study of Lycaena tityrus, however, found that, although 

larval size increased with high foliar N, adult size decreased (Fischer and Fiedler, 2000). 

This phenomenon could have been caused by the observed faster pupal development 
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times. The faster development rates of insects feeding from high-N plant material can 

also lead to increased voltinism (Fischer and Fiedler, 2000; Awmack and Leather, 2002; 

Poyry et al. 2017). Although voltinism typically indicates a positive response of 

population, Fischer and Fiedler (2000) found increased adult mortality in their study 

species, suggesting that faster development time could compromise adult success. 

Experimental tri-trophic interaction studies found increased aphid body size in 

individuals feeding from N-fertilised plants (Aqueel and Leather, 2012; Banfield-Zanin 

et al. 2012). There were implications for the coccinellid predators of aphids in these 

studies; the Coccinellidae ate fewer aphids, likely due to increased aphid body mass, 

(Aqueel and Leather, 2012) and Banfield-Zanin et al. (2012) found higher predator 

mortality when feeding on aphids from plants receiving high synthetic fertiliser 

applications. This shows the potential detrimental consequences of N deposition 

cascading through a food chain. 

 Increased foliar N can lead to the distortion of stoichiometric balances in 

vegetation, thus affecting the quality of diet for insects (Throop and Lerdau, 2004; 

Carnicer et al. 2015; Filipiak and Weiner, 2017). Shifted ratios of N with other key 

elements and nutrients such as carbon (C), phosphorous (P), calcium (Ca), and 

magnesium (Mg) can impact on the stoichiometric balances of animals through higher 

trophic levels (Audusseau et al. 2015). Herbivorous insects feeding on plant matter 

with proportionally higher N could encounter nutrient deficiency. Evidence shows that 

lepidopteran larvae feeding from high N:P vegetation have lower body mass and 

decreased chance of survival (Apple et al. 2009). Lepidopterans are typically P-limited 

organisms, with a low N:P ratio (Fagan et al. 2002), it’s possible that similarly nutrient-

limited herbivores could encounter developmental or growth problems when feeding 

from highly N-enriched vegetation. On the other hand, increased N proportionally to 

other nutrients and elements could favour larger insects and those not limited by 

other nutrients (Fagan et al. 2002). In addition to stoichiometric imbalances, dietary 

quality can be compromised through increased toxicity of plant defensive compounds 

(Tao et al. 2015).  

 Cooler microclimates amongst tall grass or near the ground can be created 

through N enrichment; as nitrophilic grasses grow, increasing the vegetative sward, 
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less light reaches the ground. Although causal research is somewhat lacking, 

correlative studies show that cooler microclimates could have a strong impact on 

invertebrate development and populations (Nijssen et al. 2017). This will most likely 

affect species that are reliant on warm springs and those undergoing important 

developmental stages during this time, such as egg-larvae hibernating lepidopterans 

(Wallisdevries and van Swaay, 2006). In a study of three separate N-driven 

mechanisms, Klop et al. (2015) found microclimatic cooling the most likely cause of 

Lasiommata megera declines in the Netherlands. This species hibernates as larvae, 

lepidopteran species that hibernate as pupae or adults are not severely impacted 

(Wallisdevries and van Swaay, 2006). 

 N-driven alterations to plant communities can lead to the loss of plant species 

with important ecological roles such as host plants for specialised insects. This can 

impose significant pressure on closely linked species. For example, Swedish butterfly 

species that are dependent on nutrient-poor habitats have declined substantially, 

concomitantly many species associated with nutrient-rich habitats benefitted from the 

changing botanical communities (Ockinger et al. 2005). This suggests a significant role 

of N-driven botanical species turnover in invertebrate communities. The availability of 

dietary resources is also dependent on phenological synchronicity. Soil-N enrichment 

can affect flowering phenology (e.g. Cleland et al. 2006), which may have implications 

for flower-visiting insects. Phenological changes in the emergence of new leaves could 

constrain the provision of suitable dietary vegetation for herbivores, as suggested by 

Throop and Lerdau (2004). Research into the effect of N deposition on this pathway is 

lacking and further work needs to be done to identify if synchronicity is affected. 

  Research into the impact of drivers of global change often considers species 

on a spectrum of generalists to specialists, with specialist species typically more 

vulnerable to environmental changes (e.g. Warren et al. 2001; Clavel et al. 2011; Potts 

et al. 2010; Carvalheiro et al. 2013). However, not all specialist and oligolectic 

invertebrate species respond in the same way to N-deposition. Responses of specialist 

insects to N deposition are often strong, but the direction of response may differ 

according to their lifestyle and host plants (Poyry et al. 2017). Those with an N-rich 

diet or utilising nitrophilic host plants could benefit, whereas those associated with N-
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poor habitats could decline, as observed in a study of the range expansions of 282 

Swedish butterfly species between 1973 and 2010 (Betzholtz et al. 2013). The 

increased concentrations of foliar N and shifts in botanical species composition led 

Poyry et al. (2017) to predict that large, dispersive, multivoltine insects and those with 

generalised habits or specialised to nitrophilic plants will dominate insect communities 

with increasing N deposition. This could lead to homogenisation of biodiversity and 

overall species loss with higher fluxes of N to terrestrial ecosystems; indeed, Haddad 

et al. (2000) found decreased insect diversity and species richness, across herbivores 

and predators, with N additions. 

 

 Although research into herbivorous invertebrates shows N deposition acts 

through higher trophic levels than plants, we still have a poor understanding of how 

insect pollinators are affected by N deposition. Bees, key insect pollinators, are 

obligate flower visitors and can technically be considered herbivores as they feed on 

plant produce: nectar and pollen. Given the recorded declines in many pollinating 

insects, including bees, identifying whether and how N acts as a driver is imperative. 

Consequential effects on pollination services and biodiversity could be severe if N acts 

as a substantial driver on insect pollinators. 

 Pollinating and flower-visiting insects could be strongly impacted by 

environmental drivers that act on plants, due to their intrinsic interactions with floral 

units. Therefore, N-driven botanical species turnover and loss of species richness could 

have strong implications for flower visiting insects by altering the landscape of floral 

dietary resources. The detrimental effect of botanical species loss on pollinator 

populations and diversity has been extensively shown (e.g. Potts et al. 2003; Carvel et 

al. 2006; Fründ et al. 2010; Senapathi et al. 2015). Specialist, oligolectic, pollinators 

are more threatened by losses or changes in floral resources (Weiner et al. 2011), as 

they lack the flexibility to use alternative resources, unlike generalists. As such, 

evidence shows a close correlation in the population trends of specialised pollinators 

and specialised entomophilous plants in Britain and the Netherlands (Biesmeijer et al. 

2006). The historic decline of key floral resources is shown to be a strong factor in 

historic declines of oligolectic pollinators in the Netherlands (Scheper et al. 2014).  
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 Bees are also shown to respond to the quality of floral resources such as sugar 

(Vandelook et al. 2019) and amino acid content (Cook et al. 2003). The quality and 

botanical origin of nectar and pollen can lead to stoichiometric shifts in key nutrients 

in the bee (Abbas et al. 2014), illustrating how stoichiometric changes caused by N 

deposition act through further trophic levels. An experimental study by Hoover et al. 

(2012) showed that bumblebees were more attracted to, and fed more from, synthetic 

nectar representative of N-enriched plants than synthetic control nectar. However, 

this nectar also induced a higher mortality rate in the foraging bumblebees. This 

emphasises the need to better understand the impacts of N deposition on pollinating 

insects. 

Baude et al. (2016) postulated that trends in UK pollinator diversity may be 

related to UK atmospheric N deposition during the past century. From the early 20th 

century until approximately the 1980s, atmospheric N deposition increased (Fowler et 

al. 2004; RoTAP 2012; Storkey et al. 2015) while total nectar provision, nectar diversity 

and pollinator diversity all decreased (Carvalheiro et al. 2013; Baude et al. 2016). Since 

the 1990’s, when N deposition in the UK began to plateau and decline, nectar diversity 

and total nectar provision increased alongside an alleviation in the decline of pollinator 

diversity (Carvalheiro et al. 2013; Baude et al. 2016). Research into the relationship 

between N deposition and plant-pollinator interactions and pollinator assemblages is 

required to determine if these correlative trends need to be considered more 

meaningfully in pollinator debates. With more data and evidence, we can begin to 

develop a mechanistic understanding of how pollinators are affected by changes in 

soil N across taxa and ecoregions in the context of the multitude of other factors 

impacting pollinator populations (Vanbergen et al. 2013). Long-term ecological 

experiments such as the Park Grass Experiment at Rothamsted Research 

(Hertfordshire, UK) have an important role to play in elucidating these mechanisms 

(Storkey et al. 2016).        
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1.5 Pathways of how N impacts on pollinators 

 

When pollinating insects forage in the natural world, they choose from a 

selection of floral resources. Botanical species pool and flowering phenology 

determine the availability and selection of these floral resources. The most common 

reward that pollinating insects seek is nectar. The increased availability of N, 

commonly a limiting nutrient, can potentially alter relevant botanical traits. Therefore, 

N addition could disrupt or, conversely, strengthen individual plant-pollinator 

interactions; possibly affecting the structure of networks, and pollinator communities 

(Fig. 1.1). Botanical species composition and two important floral traits, phenology and 

nectar, set out potential pathways through which N could impact plant-pollinator 

interactions and pollinator communities. These pathways will be the focus of the 

thesis, and the following sections of this chapter will review the scientific evidence for 

the effects of N on these pathways.   

 

Figure 1.1 Increased fluxes of N to soils can alter the landscape and affect available food 
resources for pollinators. 
The image depicts the loss of flowering species and dominance of grass typical of elevated N deposition 
in temperate grasslands. Our understanding of the impacts to floral traits, such as phenology and 
nectar, is lacking. 
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1.5.1 Species composition 

Soil eutrophication lessens the limitation of a key resource nutrient; 

consequentially altering plant competition dynamics, typically causing increased 

biomass of fast-growing competitive grasses at the expense of flowering forbs and 

legumes (e.g. Suding et al. 2005; Helsen et al. 2014; Goulding et al. 2015; Storkey et 

al. 2015). Soil acidification reduces pH, frees potentially toxic heavy metals such as 

aluminium, and decreases the cation-exchange capacity and availability of beneficial 

minerals (Stevens et al. 2010b; Phoenix et al. 2012). This causes further selectivity, 

with plants sensitive to low pH and heavy metals, such as aluminium, declining 

(Stevens et al. 2010b), especially in poorly-buffered soils such as acidic grasslands, 

heaths, and forests (Clark et al. 2007; Diekmann et al. 2014; Field et al. 2014). 

Therefore, soil eutrophication and acidification are important drivers of reduced 

botanical species richness (e.g. Stevens et al. 2010a, b; Duprè et al. 2010; Wesche et 

al. 2012; Field et al. 2014). However, even when species richness does not decrease 

there can be shift in botanical community structure and a decline in flowering forbs, 

reducing the richness of useful species for pollinators and other flower visiting insects 

(Phoenix et al. 2012).  

The dominance of grasses tolerant to N and low pH translates into reduced 

diversity and abundance of plants that provide nectar and pollen for pollinators 

(Wesche et al. 2012; Helsen et al. 2014). Habitat degradation and the loss of 

entomophilous plants is known to be a key factor in insect declines (e.g. González-Varo 

et al. 2013). The loss of nectar and pollen resources are a detriment for current and 

future generations of pollinator communities.  

Evidence from temperate and montane grasslands suggests that the rate of 

botanical species loss increases with higher levels of N deposition (Stevens et al. 

2010a; Humbert et al. 2016). Therefore, the impact to pollinators may be more severe 

at greater deposition levels. In the Northern Hemisphere, where N deposition has 

been high, this may have contributed to the negative trends of many insect pollinators 

during the 20th century (Wallisdevries, Van Swaay and Plate, 2012; Carvalheiro et al., 

2013), as suggested by Baude et al. (2016).  
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Studies from Mediterranean and tropical ecosystems show N deposition can 

encourage the spread of exotic nitrophilic plant species at the expense of native forbs 

(Bobbink et al. 2010). Encroachment of exotic grasses could greatly harm the native 

pollinator community by decreasing native nectar and pollen resources. The invasion 

of exotic entomophilous plants can have more complex dynamics for pollinator 

communities and the consequences will likely vary with botanical species and invaded 

community (Bartomeus, Vilà and Santamaría, 2008). The additional nectar and pollen 

resources can be beneficial for flower-visitors and attract many generalist pollinating 

insects. However, invasive plant species can compete with native species and 

potentially dominate pollen transport networks, which threatens the reproduction of 

native plant species (Lopezaraiza-Mikel et al. 2007). While generalist insect pollinators 

may benefit, there is a concern that specialised native pollinators will suffer if their 

associated food plants decline (Weiss 2009).  

There is a large diversity of plant-pollinator interactions, with plants and 

pollinators adapting specialised traits to improve the efficiency of their interaction. 

Insect pollinators occupy a range of niches and can be categorised into functional 

groups that reflect size, feeding apparatus, and foraging behaviours. Some functional 

groups are linked with certain functional groups of floral traits, such as long-tongued 

bees and the deep corollas of Trifolium pratense. To understand more accurately how 

soil-driven shifts in plant community composition affect pollinating insects, we need 

to know how specific plant functional groups, species, and traits within a community 

respond. The loss of certain botanical species and traits threatens specialist 

interactions and is a cause of historic pollinator loss (Kleijn and Raemakers 2008; 

Scheper et al. 2014). For example, in the Netherlands, declines in N-sensitive host 

plants has led to the local extinctions of their associated butterfly species (Öckinger et 

al. 2006). Meanwhile, butterflies that utilise nitrophilic host plants are increasing in 

abundance (Wallisdevries, Van Swaay and Plate, 2012; WallisDeVries and van Swaay, 

2017). The high levels of N deposition in Harpenden, UK during the 1970’s-1980’s 

dramatically reduced the ability of Fabaceae, such as Trifolium pratense, to grow 

naturally (Storkey et al. 2015). Since the 1990’s, the plateauing and decline of N 

deposition allowed Fabaceae to recover. This may have contributed to the pattern of 
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declines in long-tongued bumblebees, which were most severe during 1970-1989 and 

have become less accentuated since the 1990s (Carvalheiro et al. 2013). When closely 

associated food plants decline, the degree of impact to pollinators will depend on how 

severely the botanical trait is affected, whether the pollinator has a polylectic or 

oligolectic diet and if there are alternative food sources available, and whether 

oligolectic pollinators are able to show plasticity and adapt their foraging behaviour 

(Kleijn and Raemakers 2008). 

Functional trait analysis of the botanical community can identify whether 

specific floral traits will increase or decrease in a community with N deposition. This, 

in turn, can be used to inform us which pollinator functional groups will be more 

affected by N deposition. Reduced overall functional diversity of the plant 

communities, and a decrease in entomophilous plants, have been found in European 

grassland communities and in floodplains in North Germany (Wesche et al. 2012; 

Helsen et al. 2014). Reduced floral diversity equates to reduced diversity of functional 

nectar and pollen traits, which can lead to impoverished species richness of bee 

assemblages (Potts et al. 2003, 2010; Fründ, Linsenmair and Blüthgen 2010; Weiner et 

al. 2014). Stevens, David and Storkey (2018) performed a trait-analysis on a dataset of 

acidic grasslands across the UK to give an insight into how the botanical degradation 

caused by N deposition and soil acidification might affect upland pollinator 

communities. The authors found that plants with floral structures suited to larger bees 

(e.g. bumblebees) and long-tongued pollinators, such as zygomorphic flowers or deep 

corollas, were more absent in areas that experienced higher levels of N deposition and 

with more acidic topsoil. The reduction of suitable forage plants within these habitats, 

caused by high levels of N deposition, can impose stress upon and threaten the 

associated functional groups of pollinators, such as long-tongued bumblebees. 

Generalist floral resources typically visited by smaller bee species were not negatively 

affected by N deposition or soil acidification. The results suggest that, in acidic 

grasslands, bees that visit generalist open flowers will not be as heavily impacted as 

specialist, long-tongued pollinators and large-bodied bees. The analysis also found 

that plants with lower nectar production are more prevalent in areas with higher levels 
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of N deposition (Stevens, David and Storkey 2018), indicating that N deposition may 

reduce the overall quantity of nectar produced in upland acidic grasslands. 

Following the decline or termination of N application, botanical communities 

can remain in a state of low diversity that reflects historic soil enrichment. Experiments 

have shown these conditions can persist for over 20 years following the cessation of 

N addition (Isbell et al. 2013). Although the overall community structure may be slow 

to recover, in some communities the occurrence of N-sensitive species can increase 

within a couple of decades of declining N fluxes (Clark and Tilman 2008; Storkey et al. 

2015). Evidence from the Park Grass Long-Term Experiment has shown that the 

decreasing levels of atmospheric N deposition since the 1990’s has allowed a recent 

resurgence of Fabaceae and other important nectar and pollen resources (Storkey et 

al. 2015).  

 

1.5.2 Phenology 

Soil N content and additions can potentially alter the phenology of plants, but 

our understanding of how the flowering phenology of entomophilous plants responds 

across taxa is poor. The mechanisms through which flowering phenology responds to 

increased fluxes of N to soil are unclear. There are typically three mechanisms that 

cause a plant to move resource allocation from growth to reproduction; autonomous 

regulation, environmental cues, and stress (Simpson et al. 1999; Song et al. 2013; 

Takeno, 2016). It is possible that N could act on all three of these, dependent on local 

factors and the plant species. Autonomously, it’s been shown that flowering date 

clearly correlates with plant maximum height and the time at which the plant reaches 

a certain height (Vile et al. 2006; Sun and Frelich, 2011). Therefore, N could potentially 

delay flowering in dominant nitrophilic plants and those able to exploit the extra 

nutritional resources that grow taller with soil eutrophication. Alternatively, the 

increased vegetative sward leading to cooler microclimates amongst tall plants may 

limit the photoperiod accessible to smaller plants. This could theoretically delay 

flowering for small plants that are able to maintain populations amongst the sward. 

Finally, excessive soil N can induce stress in plants particularly if the N form, NHx or 

NOy, is not what the plant is adapted to, such as NHx inducing plan cell acidification in 
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calcareous grassland species (Bobbink et al. 1998). Stress often accelerates flowering, 

as the plant rushes to ensure reproductive success at the expense of immediate 

growth (Wada and Takeno, 2010; Takeno, 2016).  

 

Figure 1.2. A simple illustration depicting how N additions could affect the autonomous and 
environmental cues for flowering phenology.  
By increasing the potential for growth, nitrophilic flowering plants could spend more time in the growth 
phase before switching to reproductive phase. The increased vegetative sward limits the solar energy 
reaching smaller flowering plants, reducing their photoperiod and potentially delaying flowering. 

 

Evidence from a field trial of experimental plots in coastal Central California 

found that addition of N to soils delayed flowering in grasses and slightly accelerated 

flowering of annual forbs (Cleland et al. 2006). This may be due to annual forbs 

increasing the partitioning of newly acquired nutrition to reproduction, whereas 

perennial grasses that can spread vegetatively might not partition so much energy 

towards floral units. Alternatively, advanced stress-induced flowering could have 

occurred amongst forbs whereas the N-rich soil may have delayed the switch from 

growth to reproduction in nitrophilic grasses. In long-term experiments in UK, the 

ericaceous dwarf shrub Vaccinium myrtillus produced flower buds earlier with N 

additions (20 kg N ha-1 yr-1 in acidic grasslands, 60 kg N ha-1 yr-1 in heathlands). Hoover 

et al. (2012), also found that N enrichment accelerated the flowering of Cucurbita 

maxima in a potted experiment. Other studies show that forbs can vary in their 

phenological response to increased soil N, and do not always flower earlier. In a field 
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experiment in a temperate steppe of North China, the flowering phenology of most 

forbs did not respond to the experimental addition of 100 kg N ha-1 yr-1. However, 

Heteropappus altaicus had a delayed date of first flowering and Allium bidentatum had 

a shortened bloom duration (Xia and Wan 2013). In a Tibetan alpine meadow, the 

flowering phenology of three Ranunculaceae were monitored in response to N 

addition. Anemone trullifolia and Caltha scaposa responded; dates of first and last 

flowering were delayed. Trollius farreri showed no response (Liu et al. 2017). This is an 

example of inter-species variation of response within taxonomic families.  

The Park Grass Long-Term Experiment at Rothamsted Research, has shown 

that chronic eutrophication can lead to local adaptation in flowering phenology 

(Silvertown et al. 2006). The field plots have received consistent N applications for over 

150 years and populations of a grass species, Anthoxanthum odoratum, flower at 

alternative times according to soil treatment, preventing pollen exchange between 

some populations (Snaydon and Davies 1982). This asynchrony between populations 

can theoretically lead to speciation. There has not yet been a similar study published 

that investigates the divergence of populations of entomophilous plants in Park Grass.  

It is largely unknown how shifts in flowering phenology will influence pollinator 

communities (Miller-Rushing et al., 2010). Models predict that shifts in flowering 

phenology can disrupt interactions, potentially leading to network instability, reduced 

pollinator abundances, and potentially local extinctions (Memmott et al., 2007; 

Fabina, Abbott and Gilman, 2010). However, realistically, if species are able to adapt 

and find and utilise alternative food resources the impact should not be so severe 

(Benadi et al., 2014). Therefore, high plant species richness could buffer detrimental 

effects of phenological shifts, by providing alternative forage. The impact to pollinators 

will likely vary across ecosystems, depending on the plant and pollinator species 

present and on the extent of N enrichment. Unlike the effect of climatic warming, 

which can also accelerate insect emergence dates (Bartomeus et al., 2011; Ovaskainen 

et al., 2013), soil N enrichment will likely only affect plants, not their pollinators. 

Therefore, there is a potential for phenological asynchrony and of uncoupled 

specialised interactions, which can have negative implications for both pollinator 
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communities and plant reproduction (Burkle, Marlin and Knight, 2013; Kudo and Ida, 

2013). 

 

1.5.3 Floral production and morphology 

Nitrogen addition has been shown to affect floral production, however, the 

responses are species-specific and often dependent on the amount of N. Several 

studies found that low additions of N to soils can enhance floral production, meaning 

more floral units per plant (Muñoz et al. 2005; Burkle and Irwin 2009a, b; Hoover et 

al. 2012). Increased floral production, can drive an increase in pollinator visitation per 

plant (Muñoz et al., 2005; Burkle and Irwin, 2010), and has been linked with improved 

insect pollinator diversity (Potts et al. 2010). In long-term experiments in UK 

heathlands, with N applications ranging between 7.7-60 kg N ha-1 yr-1, flowering of the 

dominant shrub Calluna vulgaris increased with N, with flowering at a maximum at the 

highest levels of N addition (Phoenix et al. 2012). In a subalpine meadow field 

experiment, Burkle and Irwin (2010) found that total floral production per plot, when 

including all species, was highest with low levels of N additions (10 kg N ha-1 yr-1) 

compared to control or high N (200 kg N ha-1 yr-1) plots. These two studies indicate 

dose-dependent responses, but in contrasting ways. Dominant species may be more 

likely to maintain enhanced floral production with high N additions, as shown by 

Phoenix et al. (2012). On the other hand, for other species there is a narrow window 

of N addition in which enhanced floral production can benefit pollinators, but at higher 

levels floral production declines and positive effects diminish (Burkle and Irwin, 2010). 

In the aforementioned subalpine study, the floral production of Potentilla pulcherrima 

decreased with high N addition (200 kg N ha-1 yr-1) (Burkle and Irwin, 2010). Declines 

in forb floral production were also observed in long-term UK grassland experiments 

(Phoenix et al. 2012). The authors noted how forb flowers declined more noticeably 

than forb cover, and may be a more sensitive indicator of responses to N deposition. 

As floral production is a more important metric than vegetation cover for pollinators, 

this is important to bear in mind when considering data on species composition. 

Gijbels et al. (2015) and Burkle and Irwin (2010) did not find any effect of N on floral 

production per plant in Gymnadenia conopsea and Ipomopsis aggregata, respectively. 
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The range of responses of floral production to N addition shows that impacts to 

pollinators could vary across ecosystems, soil types, and botanical communities, as 

well as with levels of N addition. 

Burkle and Irwin (2010) found that low N addition increased the length and 

width of corollas of Ipomopsis aggregata flowers. In many flowering plants with 

elongated corollas, the floral morphology has evolved to restrict access to unwanted 

visitors and selectively favour certain insects (Nilsson 1988). Significant changes to 

corolla morphology caused by N addition occur on much faster timescales than the co-

evolved adaptations, and without the likewise adaptations of insect proboscises. 

Therefore, the elongation of corollas may exclude some of the preferred pollinators. 

Furthermore, if increased soil N causes corollas to widen, opportunistic and unwanted 

flower-visitors may have better access to the valuable nectar supply. However, there 

is no evidence to determine whether alterations of floral dimensions or morphology 

will impact upon specialised pollinators or pollination services in the real world.  

 

1.5.4 Floral rewards 

Pollinating insects visit flowers to obtain the nutritional rewards that sustain 

them; nectar and pollen. Although pollen is digested by some adult insects, and is 

required for the development of bee larvae, nectar is the most commonly sought 

reward and reason for visiting inflorescences. For this reason, the thesis will focus on 

nectar, specifically nectar sugars, as floral rewards. Nectar is sugar-rich and contains 

other compounds, including amino acids, lipids, and defensive compounds, and forms 

and integral part of the diet of many flower-visiting insects. Nectar secretion and sugar 

content varies greatly between plants (e.g. Petanidou et al. 2006; Heil et al. 2011; Hicks 

et al. 2016) and is affected by abiotic and biotic factors (Zimmerman, 1988). However, 

we lack a clear and in-depth mechanistic understanding of how various factors affect 

nectar traits (Heil et al. 2011). It has been demonstrated that below-ground conditions 

and plant-plant competitive dynamics affect nectar production and sugar content 

(Baude et al. 2011; Barber and Soper Gorden 2014). Therefore, soil N enrichment is 

likely to generate indirect impacts on nectar traits through alteration of plant 

competitive dynamics.  However, there are few studies exploring how nectar traits are 
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affected by soil N. Furthermore evidence shows the responses of nectar traits to soil 

eutrophication are not uniform; our ability to forecast impacts of N additions on nectar 

traits of plants is confounded by the evidence of inter-specific response variation.  

In a study on the effects of nutrient additions to nectar traits, N addition did 

not increase the nectar secretion of Trifolium pratense, an N-fixing Fabaceae, but it 

did increase secretion rate in Antirrhinum majus (Shuel 1956). In another study, nectar 

secretion increased in Ipomopsis aggregata but not in Linum lewisii or Potentilla 

pulcherrima (Burkle and Irwin 2009a; Burkle and Irwin 2010). However, the increase 

in nectar secretion of A. majus and I. aggregata was only observed at low levels of N 

addition (10 kg N ha-1 yr-1 for I. aggregata). At high levels of N addition (200 kg N ha-1 

yr-1 for I. aggregata), nectar secretion decreased for both species (Shuel 1956; Burkle 

and Irwin 2010). This suggests that while low N deposition might bring benefits for 

nectar-feeding insects, excessively high deposition will not. 

The composition of sugars within nectar is an important determinant of insect 

visitation and niche division. A more diverse selection of nectar sugar compositions 

can improve the richness of pollinator assemblages (Potts et al. 2003), due to the 

preferences and requirements of different pollinator guilds. For instance, 

Hymenoptera pollinators prefer high sucrose nectars, Diptera visit lower sucrose 

nectars, and Lepidopteran flower-visitors are intermediate (Petanidou 2005). Some 

species show sex-specific nectar niches; Rusterholtz and Erhardt (2000) found that 

females of Lysandra bellargus, a threatened European Lepidoptera, preferred high 

glucose nectars whereas males preferred high sucrose. Ceulemans et al. (2017), 

studying Succisa pratensis, demonstrated that the composition of sugars can be 

affected by soil nutrient enrichment with N and phosphorous (P); glucose 

proportionally decreased. Whether this response is uniform across more species is 

unknown; S. pratensis is an N-sensitive species (Hill 1999) and there may be inter-

specific response variation. It is possible that alterations to the composition of sugars 

in nectar can impact on the diets of pollinator guilds and disrupt the interaction niches. 

Whether the alteration of nectar sugar composition is enough to influence plant-

pollinator networks is unknown and requires further research. 
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Floral nectars contain many other compounds, in addition to sugars, that can 

directly impact the nutritional qualities and attractiveness of nectar (Alm et al. 1990; 

Carter and Thornburg 2004; González-Teuber and Heil 2009; Nepi et al. 2012; Nepi 

2014). Amino acids are found ubiquitously in nectar (Baker 1977), and are a necessary 

component of insect diets. The amino acid content of nectar can be a driver of bee 

health and mortality; Paoli et al. (2014) found high amino acid diets increased the 

lifespan of queen-right Apis mellifera workers, but decreased the lifespan of queenless 

workers. Excessively high levels of amino acids may be problematic or even dangerous 

for pollinating insects, for example naturally high concentrations of the non-protein 

amino acid β-alanine in the nectar of Gentiana lutea have been observed to stun and 

reduce motor skills in foraging bees (Nepi 2014).  

High soil N content, and N additions, have been shown to increase total amino 

acid content in most studies (Gardener and Gillman, 2001; Gijbels, Van den Ende and 

Honnay, 2014; Gijbels et al., 2015), with Gardener and Gillman (2001) observing a 

linear relationship between N addition and nectar amino acid content. Of the 

individual amino acids, asparagine and glutamine are commonly observed to increase 

with N addition (Gardener and Gillman 2001; Gijbels et al. 2015; Ceulemans et al. 

2017). Where levels of soil N are excessive, glutamine can be excreted from some plant 

species to avoid cellular damage, which could explain the increased proportion of 

glutamine in the nectar of fertilised plants (Gardener and Gillman 2001; Gijbels et al. 

2015). Other amino acids observed to increase with soil N addition in individual studies 

are serine in Gymnadenia conopsea, a Lepidoptera-pollinated Orchidaceae (Gijbels, 

Van den Ende and Honnay, 2014), and proline in Agrostemma githago (Gardener and 

Gillman 2001). There are no common trends in the amino acids that decrease in 

production; rather the responses are specific to individual experiments and study 

species. Gijbels et al. (2015) observed a decrease in arginine, aspartic acid, and 

glutamic acid in the nectar of Gymnadenia conopsea. These three amino acids inhibit 

the chemosensory cells of Diptera (Shiraishi and Kuwabara 1970). Although G. 

conopsea is Lepidoptera-pollinated, if this response is found in other plants it could 

affect the taste perception and foraging choices of Dipteran pollinators, such as 

Syrphideae (Gijbels et al. 2015). Gamma-aminobutyric acid (GABA), proline, and 
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glutamine share a common biosynthetic pathway from glutamine alpha-ketoglutarate. 

In a study on the effects of N addition to the nectar amino acid profile of Agrostemma 

githago, Gardener and Gillman (2001) observed a decrease in GABA alongside an 

increase in proline and glutamine. This suggests a potential response mechanism 

whereby proline and glutamine are present at higher concentrations at the expense 

of GABA (Gardener and Gillman 2001). GABA, and its close association with NaCl salt, 

has phagostimulatory effects on insects but can be dangerous for larvae at high 

concentrations (Nepi 2014). Therefore, it is not clear whether a decrease in GABA 

would affect pollinators positively or negatively. The increase in proline concentration 

could be useful for pollinators; it is rapidly metabolised and is useful for the conversion 

of energy in initialising flight in invertebrates (Carter et al. 2006). It also serves as an 

attractant; Bertazzini et al. (2010) found honeybees were more attracted to proline 

than serine, alanine, or control solutions. However, its attractiveness is highest at 

moderate levels, with bees becoming less interested at higher concentrations (Carter 

et al. 2006). 

As with sugars, amino acids in nectar are shown to be correlated with certain 

functional groups of pollinators. Petanidou et al. (2006), studying a Mediterranean 

plant community of 73 species, found pollinator preference was the strongest 

determinant of nectar amino acid composition, more so than life-history or taxonomic 

group. This is highly suggestive of an ecological role of nectar amino acids that 

influence plant-pollinator networks. For example, phenylalanine and γ-aminobutyric 

acid (GABA) are found in high concentrations in plants pollinated by bumblebees and 

long-tongued solitary bees (Petanidou et al. 2006; Nepi 2014). Petanidou et al. (2006) 

also observed that total amino acid content was correlated with the number of long-

tongued visitors. Sex-specific niches also exist with regards to amino acids; females of 

the threatened Lysandra bellargus butterfly prefer a diet high in amino acids 

(Rusterholtz and Erhardt 2000), potentially to enhance fecundity (Mevi-Schutz and 

Erhardt 2005). The variation in nectar preferences and niches across insect pollinator 

taxa suggests an important role for nectar chemistry in the diets of insects. However, 

it is not known if the changes to nectar brought about by N deposition will impact on 

plant-pollinator interactions. 
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We are lacking evidence of how soil N affects the production of defensive 

secondary compounds in floral nectar (González-Teuber and Heil 2009). Alkaloids, 

glycosides, and phenolics play a role in selectively limiting flower visitors (Carter and 

Thornburg 2004; Nepi 2014). At low levels these substances can be important for the 

health of pollinating bees, by reducing parasite loads (Richardson et al. 2015; 

Richardson, Bowers and Irwin 2016). However, in excessively high concentrations 

alkaloids are repellent and can reduce mobility and motor function of bees (Manson 

et al. 2013). The addition of N can increase the production of natural defensive 

compounds in vegetation (Chen, Olson and Ruberson, 2010); if a similar response is 

found in floral nectar there may be consequences for pollinating insects. There has 

also been no research into how floral volatiles, which are used by bees during early 

foraging trips to identify sources of nectar and pollen (Dötterl and Vereecken 2010), 

are affected by soil N. Without a broad understanding that encompasses the less 

prevalent components of nectar, it is difficult to forecast how nectar traits affected by 

soil N will impact pollinators.  

Although there are few studies into how soil N affects nectar traits, research 

that includes the impact on pollinators is even sparser. Ceulemans et al. (2017) housed 

colonies of Bombus terrestris with Succisa pratensis, to investigate the effects of 

nutrient enrichment on floral reward chemistry and colony development. The study 

found that colonies housed with enriched Succisa pratensis had more dead and 

ejected larvae from Bombus terrestris colonies, leading to a smaller colony with fewer 

workers during the colony’s mid-life. The study did not identify whether a specific 

component of nectar or pollen was the cause, but it is evidence that high soil 

enrichment may be detrimental to colony health. Hoover et al. (2012) artificially made 

Cucurbita maxima nectar from a ‘recipe’ of sugars and amino acids that represented 

the concentrations found in control and N-enriched plants. In this experiment, Bombus 

terrestris workers preferentially visited and consumed nectar of enriched plants, but 

their lifespan decreased. These two studies reveal negative impacts of soil N 

enrichment on the development and longevity of a key pollinating species, which could 

potentially lead to impoverished pollinator populations and pollination services. 

However, it should be noted that the artificial nectar used by Hoover et al. (2012) only 
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contained sugars and amino acids, without the less prevalent secondary compounds, 

so is not necessarily applicable to real-world responses. Evidence on other key 

pollinating species, such as wild solitary bees, would be useful to ascertain the 

occurrence of this response. 

 

Many flower-visitors feed on or collect pollen, including agricultural pests (such 

as the pollen beetle) and important pollinators. Bees collect pollen to rear their young, 

and the botanical origin, quantity, and chemistry of pollen can affect the health and 

mortality of future generations of these key pollinators (Roulston, Cane and 

Buchmann, 2000; Potts et al., 2003; Sedivy, Müller and Dorn, 2011; Vanderplanck et 

al., 2014). Foraging bees are able to recognise and preferentially forage pollen that 

has a higher content of essential amino acids (Cook et al. 2003). Pollen with higher 

protein and amino acid content lead to more and larger larvae (Génissel et al. 2002; 

Vanderplanck et al. 2014) and without sufficient amounts of key amino acids, larvae 

are unable to develop and survive (Roulston and Cane 2000). Therefore, the nutritional 

qualities of pollen are important for ensuring sustainable pollinator communities.  

Ceulemans et al. (2017) found soil enrichment with N and P altered the sugar 

composition of Succisa pratensis pollen; glucose increased, and fructose decreased. 

The authors also recorded a shift in the amino acid profile, with asparagine and 

ornithine increasing alongside a decrease in arginine, glycine, and threonine. However, 

as the content of proteins, amino acids, and other compounds in pollen varies across 

botanical species (Szczesna 2006), there is likely inter-species variation in the response 

to increasing soil N. As noted previously, Ceulemans et al. (2017) found that floral 

rewards from nutrient-enriched plants caused more dead and ejected larvae from 

Bombus terrestris colonies, although the study did not establish if this response was 

due to changes in nectar or pollen qualities. Burkle and Irwin (2010) did not find any 

change to the production of pollen per individual flower with N addition. However, the 

increase in floral production of Ipomopsis aggregata with low N addition (10 kg N ha-

1 yr-1) resulted in greater overall pollen production per plant. On the other hand, with 

high N addition (200 kg N ha-1 yr-1), Potentilla pulcherrima floral production decreased, 

causing an overall decrease in pollen production per plant. Lau and Stephenson (1993) 
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found that Cucurbita pepo pollen grains from high N soils were 5% larger, however, 

whether this translates to higher overall nutritional content was not explored. Bees 

develop dietary niches with pollen specialisms more often than nectar specialisms, 

due to the importance of pollen in rearing offspring. These are driven by secondary 

metabolites found in low concentrations in pollen, and closely-related bee species can 

differ in their tolerances of some pollen compounds (Sedivy, Müller and Dorn 2011). 

There is not yet any research into how soil N affects the defensive compounds of 

pollen; if so, this could create stress and mortality for the larvae of some pollen 

specialists. 

 

1.6 Knowledge gaps 

 

1.6.1 The impact to pollinators 

While there is some research that investigates how N additions affect the 

discussed botanical traits, we have very few studies concerning the actual impacts to 

pollinators. This is a key knowledge gap; the lack of causative research into how 

botanical traits affected by soil N consequentially affect pollinators. With N deposition 

set to rise in many parts of the globe in the future, it is important to know how 

pollinators will respond to background additions of N. Without research that 

incorporates pollinators into the experimental set-up it is impossible to know if, and 

how strongly, plant-pollinator interactions will be affected. It is important to know 

how the developmental and reproductive fitness of pollinators are affected by 

atmospheric N deposition or the addition of fertilisers. We also need to ascertain if 

responses are consistent across botanical and insect taxa, or if some interactions and 

functional groups are more threatened than others. Finally, there is also evidence that 

low additions of N can lead to changes in floral traits that may benefit pollinators, 

whereas the effects at higher rates of addition can be adverse (Muñoz et al. 2005; 

Burkle and Irwin 2009a, b; Burkle and Irwin 2010; Hoover et al. 2012). Clarity is 

required as to the thresholds beyond which N addition becomes detrimental for 

pollinators in various habitats. 
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Many studies use generalist pollinators, such as Apis mellifera, as a study-

species. It is important to consider the wider pollinator community, as some specialist 

pollinator functional groups or species may be more threatened by N deposition. 

WallisDeVries and van Swaay (2017) developed an N index for butterflies based on 

hostplants, which illustrates the species that have been most impacted by N 

deposition and soil eutrophication. It may be possible to develop similar indices to help 

forecast the effect of atmospheric N deposition on other pollinators. There are 

oligolectic bee species with narrow diet breadths, such as Chelostoma sp. (Sedivy et 

al. 2008; Denisow and Wrzesień 2015), and long-tongued bumblebees with 

identifiable key forage plants. However, most bee species forage relatively 

opportunistically, which complicates the development of an N-sensitivity index 

encompassing all bee species. Given the inconsistency of responses to increasing soil 

N between plant species across the range of processes discussed above, it is likely that 

whether N additions lead to a net positive or negative response of pollinators will be 

dependent on specific plant / invertebrate assemblages. Developing a predictive 

framework will, therefore, require network analyses of plant-pollinator interactions 

along a soil fertility gradient as opposed to correlative models of total pollinator 

abundance or diversity. 

 

1.6.2 Inter-specific variation and the synthesis of botanical traits 

Research into how soil N affects relevant botanical traits, including flowering 

phenology and, especially, nectar and pollen chemistry are lacking (Nijssen, Wallis De 

Vries and Siepel, 2017), making it difficult to understand the impacts of N additions to 

pollinators. This task is further confounded by the inter-species variation found for 

these traits, evidenced through the studies to date. Many experiments so far have 

used individual study-species, and therefore we lack enough data to be able to 

understand the mechanistic reasons for these species-specific responses. Further field 

studies incorporating a range of botanical taxa can help to address this knowledge gap. 

Life-history traits of plants, such as annuality and perenniality, or N-preferences as 

denoted by Ellenberg N values (Hill 1999), may offer a predictive tool for the responses 

of botanical traits (Burkle and Irwin 2009a). Developing our understanding of inter-
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specific response variation will enhance our ability to forecast how ecosystems will 

respond to N addition. 

To understand the overall impact of soil N on pollinator communities, we need 

to synthesise our understanding of the various botanical traits. This will improve the 

real-world applicability of research. For example, increased floral production and 

nectar secretion are beneficial responses for pollinators; but this may be completely 

negated, and the overall response detrimental, if the botanical species declines, if 

flowering phenology is dramatically shifted, or if production of toxic defensive 

compounds becomes excessive. When possible, future research should focus on a 

suite of botanical traits to more accurately determine the overall impact to insect 

pollinators. 

If we combine this with an improved understanding of inter-specific variation, 

we can synthesise knowledge of various botanical traits and botanical taxa. We can 

then more accurately forecast how N addition alters plant communities for 

prospective pollinating insects. It would be useful to incorporate knowledge of nectar 

and pollen chemistry into our understanding of the compositional changes in botanical 

species, to reflect the actual changes of nutritional resources in an affected plant 

community. For example, Taraxacum officinale agg. is N-tolerant and is popularly 

visited by insects for nectar and pollen. However, an increase in T. officinale at the 

expense of other flowering plants is not necessarily beneficial; its pollen is lacking in 

key amino acids and bee larvae cannot survive on it alone (Roulston and Cane 2000; 

Génissel et al. 2002). By understanding the responses of plants to N addition across 

taxa and traits, and synthesising this knowledge, we can more accurately understand 

the impact to pollinators. 

 

1.6.3 Biotic interactions 

A key impact of atmospheric N deposition or the addition of fertilisers is the 

changing dynamics of botanical competition for increased nutritional resources. The 

interactions of plants as they compete for resources can also be a factor that affects 

floral and nectar traits (Baude et al. 2011). Therefore, field studies, or at least potted 
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experiments that are representative of realistic botanical communities, will more 

reliably depict how plants respond to N addition. Studies of individual species might 

help to address general knowledge gaps in the subject, but we cannot be certain of 

the real-world applicability of these results without incorporating the effect of plant 

competition dynamics. 

 Soil biota and herbivores are affected by N deposition and impacts to these 

groups may have effects on pollinators. Below-ground biota and processes affect floral 

traits, and can alter pollinator visitation in a variety of ways (Scheu 2001; Barber and 

Soper Gorden 2014). Again, the responses of nectar and pollen chemistry are 

understudied; Barber and Soper Gordon (2014) note that little research has 

investigated the effect of soil biota on the nutritional value of floral rewards. 

Herbivory, which can be influenced by soil N (Phoenix et al. 2012), can also affect 

pollination, generally by reducing the attractiveness of plants (A’Bear, Johnson and 

Jones, 2014). The effects of atmospheric N deposition on ecosystems are complex, 

involving indirect interactions amongst trophic and functional groups of organisms. 

Therefore, synthesis of research into how N affects rhizosphere, plants, and herbivory 

would better inform our understanding of how N deposition affects pollinators. 

 

1.6.4 Abiotic interactions 

Future environmental scenarios will involve a complex system of multiple 

drivers. Studies have shown that aspects of climate change can act interactively with 

fertiliser use strategies, with the strength and direction of the interaction varying 

between studies (de Chazal and Rounsevell, 2009). Atmospheric N deposition is only a 

single driver of global environmental change and will not necessarily act alone 

(Tylianakis et al., 2008; Burkle and Alarcon, 2011; González-Varo et al., 2013). 

Realistically, an ecosystem will experience N deposition alongside increased 

atmospheric CO2 and a changing climate. Evidence shows these drivers can act 

interactively to alter botanical traits differently than when acting individually (Cleland 

et al. 2006; Tylianakis et al. 2008; Hoover et al. 2012). For example, although climate 

warming is known to accelerate flowering phenology of many plant species (Fitter et 

al., 1995; Thórhallsdóttir, 1998; Miller-Rushing and Primack, 2008), the response can 



  Chapter 1. Introduction 

29 
 

also be affected by soil N (Cleland et al. 2006, Hoover et al. 2012). Excessive soil N 

enrichment can exacerbate the stress plants experience from climatic events such as 

draughts and severe frost (Phoenix et al., 2012). If these events increase in frequency 

with future climate change, plants may suffer further.  

Our knowledge of the impacts of N deposition on pollinators is patchy. While 

studies that consider the effects of N are important and required, we should consider 

that botanical responses can be intensified or dampened by other drivers of 

environmental change. Research that addresses the combined effect of these drivers 

of environmental change are necessary to more clearly understand how pollinator 

communities will be affected in the future. 

 

1.7 Aims of the thesis; research approaches to address knowledge gaps in the 

impact of soil nitrogen on plant-pollinator interactions 

 

With this thesis, I have set out to study the impacts of soil N-enrichment on 

plant-pollinator interactions. To do this, I have conducted research on the Park Grass 

Long-term Experiment (PGE), based at Rothamsted Research, Harpenden, UK. This is 

a long-term chronic nutrient enrichment experiment based on a mesotrophic 

grassland (full description is given in Chapter 2, section 2.3.1). From the suggested 

pathways of potential N-driven impacts on plant-pollinator interactions, I sought to 

identify the impacts to the composition of floral resources in botanical communities, 

to two key floral traits, phenology and nectar, and to the pollinator communities 

observed interacting with the experimental plots (Fig. 1.2). As this area of research is 

still relatively unexplored, the proposed hypotheses are broad and aim to improve our 

understanding of this driver. 

Research has been conducted that shows loss of species richness and losses in 

overall forb cover (e.g. Stevens et al., 2004; Field et al., 2014), but this is not 

informative enough if we want to know the impacts to higher trophic levels such as 

pollinators. Depending on the species that are lost, loss of species richness and forb 

cover can mean different things for pollinators. The functional roles of floral resources 
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for pollinating insects vary, for example, from open morphology to restrictive specialist 

morphology, or from early-flowering to late-flowering plants. Functional traits 

analyses are a more accurate way of investigating the impacts of abiotic drivers to 

ecosystem characteristics, function, and stability (Díaz and Cabido, 2001; Garnier et 

al., 2007). By studying the functional trait level impacts, we can gain a more 

informative insight into the effects of N deposition or applications on the provision of 

floral resources in a plant community. However, few have used these analyses to study 

the floral traits of plant communities, and fewer still have taken an in-depth look at 

the impacts of N on the composition of floral traits within botanical communities. I 

explored these relationships in chapter 2. 

Previous research from Snaydon and Davies (1982) found evidence of local 

adaptation in the flowering phenology of a common grass, Anthoxanthum odoratum, 

in the PGE. This adaptation in phenology was recorded on the plot-scale in response 

to N treatments. However, similar studies have not been conducted on localised plot-

scale phenological adaptations of flowering forbs and legumes. Such effects could be 

impactful to pollinating insects by altering the abundance and provision of available 

resources. Given that the PGE has a history in showing evidence of phenological local 

adaptation, it is a suitable study site to investigate N-driven phenological shifts in a 

range of flowering forbs and legumes (chapter 3). 

The second floral trait I have studied, using the plant species from the PGE, is 

nectar (chapter 4). Nectar is more widely foraged from flowers than pollen, as it is the 

primary reason for many insects to visit flowers. Pollen is of course vital for bees for 

feeding their progeny, but other insects do not digest it so easily (Roulston and Cane, 

2000). To investigate the impacts to the broad pollinator community, nectar is 

potentially a more useful trait to study because of its wide-ranging usage. The 

nutritional values of nectar vary amongst plant species and the specific sugar 

compositional signatures can influence pollinator visitors according to traditionally-

thought pollinator syndromes (Petanidou, 2005; Abrahamczyk et al., 2017; Vandelook 

et al., 2019). Therefore, shifts in nectar traits could have implications for insect 

foraging behaviour. 
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Finally, in chapter 5 I assessed how pollinating insects respond to these 

alternative plant communities by studying the representative pollinator communities 

observed to visit separate PGE plots. All plots are subject to the same latent pollinator 

community, which may influence results by causing some overlap in species 

assemblages. The study investigated how N-driven impacts to the provision of floral 

resources impacts on pollinator visitation and foraging choices. Furthermore, the 

study showed whether certain functional groups of pollinators are favoured over 

others by N-enrichment. By recording the plant-pollinator interactions, I determined 

whether N-enrichment distorts plant-pollinator interaction networks and if this occurs 

in ways that could affect the ecosystem stability. 
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Figure 1.2. The structure of the PhD thesis. This figure broadly presents research questions and 
hypotheses of the four results chapters. 

 

  

RESEARCH QUESTIONS AND HYPOTHESES 

• PROVISION OF FLORAL RESOURCES, ON FUNCTIONAL TRAIT LEVEL. 

o N addition will lead to fewer insect-pollinated plants. 

o N addition will lead to the loss of morphologically specialist floral 

units, such as long corollas. 

o Floral trait composition will recover from eutrophication after 20 

years but will still differ from historic nil plots. 

• FLOWERING PHENOLOGY OF FORBS AND LEGUMES. 

O N additions will lead to changes in flowering phenology, but with 

inter-specific variation, due to different tolerances to N amongst 

species. 

O The patterns of community-scale in-flower species richness 

throughout the season will be affected by soil N. 

• NECTAR TRAITS  

O N addition will lead to changes in sugar composition and provision. 

O Inter-specific variation in responses will be recorded.  

• POLLINATOR COMMUNITIES AND INTERACTION NETWORKS 

o With N addition, the flower-visiting insect community will be less 

species-rich, with fewer specialised pollinators such as bumblebees. 

o With changes to the amount of specialist floral resources and 

pollinating insects, the nestedness of plant-pollinator networks will 

decline with N addition. 
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CHAPTER 2 

 

 IMPACTS OF NITROGEN 

ADDITIONS TO FLORAL 

FUNCTIONAL TRAIT COMPOSITION 

OF GRASSLANDS, AND THE 

RECOVERY OF COMMUNITIES 

FROM NITROGEN. 
 

Part of this chapter is based on an analysis conducted by the author, as 

part of a joint review, published in: 

Functional Ecology (2018); 32(7): 1757–1769 
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2.1 Abstract 

 

Declines in insect pollinators have been widely recorded. It has been 

established that these are due to many contributing factors, of which loss of floral 

resources and habitat degradation are key. However, there has been insufficient 

research conducted on how nitrogen (N)-driven changes to botanical communities 

affect pollinating insects. There is evidence that N-enrichment of soils leads to loss of 

botanical species richness in temperate grasslands, but not enough research on the 

effects to the structure of the botanical community, for example the functional traits. 

In this study, I used functional traits analyses, using community weighted means of 

relevant floral traits, to determine how N deposition and applications affect botanical 

communities in ways that are impactful for pollinators and other flower-visiting 

insects. I studied two different temperate grassland types, acid grasslands and 

mesotrophic grasslands, to identify if there are similarities or contrasts across 

community types. The analysis showed that morphologically specialist flowers are 

more likely to be impacted by N additions. Importantly, nectar-rich plants were 

observed to decline, leading to reduced nectar-provision. The study found differences 

between the two forms of N applied to mesotrophic grassland communities, and 

further differences between the acidic and mesotrophic grasslands. Therefore, to 

forecast impacts of N enrichment to pollinator communities, it will be important to 

take the ecosystem type and the form of N additions, the ratio of oxidised and reduced 

N, into account. Furthermore, soil pH was shown to mitigate against severe impacts to 

the floral community. The most detrimental impacts were observed in plots with 

poorly buffered soil, in which soil acidification occurred alongside N additions.  
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2.2 Introduction 

 

2.2.1 Nitrogen deposition and applications 

The industrialisation of energy and agriculture during the 19th century led to 

severely escalated trends in nitrogen (N) production (Galloway, 1998; Galloway et al., 

2004; Fowler et al., 2013). This consequentially increased the fluxes of N addition to 

ecosystems, whether through atmospheric deposition or via fertiliser application. 

From 1860–1995, global atmospheric N deposition tripled, with deposition projected 

to rise further in the future, potentially doubling between 1995–2050 (Galloway et al., 

2004). Deposition levels are not uniform across the world; higher deposition occurs 

around more heavily industrialised regions. For example, China, India, North-West 

Europe, and Eastern USA experience high levels of N deposition relative to the 

Southern Hemisphere (Dentener et al., 2006; Galloway et al., 2008; Kanakidou et al., 

2016). In China and India, these levels are expected to rise further, whereas in North-

West Europe deposition rates have plateaued and begun to decline since the 1990s 

(Sutton et al. 2011). Many regions in the Southern Hemisphere experience lower levels 

of N deposition, although fluxes are predicted to rise in the near-future above 

potentially critical threshold levels for sensitive ecosystems (Phoenix et al., 2006; 

Bobbink et al., 2010; Bleeker et al., 2011).  

Research from a range of bioregions shows N deposition affects botanical 

communities (Bobbink et al., 1998; Bobbink et al., 2010). Recent studies have shown 

that N-driven impacts on plant individuals and communities can consequentially affect 

higher trophic levels (Aqueel and Leather, 2012; Banfield-Zanin et al., 2012; 

Ceulemans et al., 2017; Nijssen et al., 2017; Pöyry et al., 2017). However, our overall 

understanding of the impacts to consumers remains littered with knowledge gaps that 

need to be addressed (Stevens et al., 2018). The impact of N-driven changes to 

botanical communities on insect pollinators is a specific knowledge gap that needs 

further study (Harrison and Winfree, 2015; David et al., 2019). 

The two most common forms of nitrogen that enter ecosystems via the soil are 

reduced, NHx, and oxidised, NOy. The primary sources of NHx and NOy, respectively, 
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are agriculture and fossil fuel combustion (Galloway, 1998; Stevens et al., 2011). 

Although, globally, NHx is the dominant form of N entering terrestrial ecosystems 

(Dentener et al., 2006; Stevens et al., 2011), deposition of these two forms varies 

temporally and spatially, leading to wide-ranging NHx:NOy deposition levels and soil 

contents. For example, since 1860 the NHx:NOy ratio has decreased in North America 

and Europe, but has increased in South and Central America, East Africa, and China 

(Dentener et al., 2006). The ratio is expected to increase in these three regions in the 

near future (Dentener et al., 2006). However, it is not entirely clear whether there is a 

difference in how deposition of the two separate forms of N affect botanical 

communities and traits. Historic total N deposition is well correlated with historic NHx 

deposition, so separating their effects can be challenging (Stevens et al., 2011). 

Furthermore, the form of N in soils is highly changeable, depending on soil factors, 

meaning that deposition of NHx can be nitrified into NOy by nitrifying bacteria 

(Galloway, 1998; Van Den Berg et al., 2016). However, in poorly buffered grassland 

soils, it is likely that NHx could be more severe. The nitrification of NHx into NOy species 

leads to increased soil acidification and base cation leaching, freeing up potentially 

toxic aluminium in the process (Stevens et al., 2011). Faster-growing annual plants 

found in grassland communities are typically more adapted to high nitrification soils 

and so preferably take up NOy, as assimilation of NHx can cause cell acidification in 

these plants (Britto and Kronzucker, 2002; Lucassen et al., 2003). 

 

2.2.2 Pollinator declines 

Insect pollinators fulfil an invaluable ecosystem service; carrying out or 

improving the reproduction and yield, globally, of an estimated 87.5% of plant species 

(Ollerton et al., 2011), accounting for 35% of our total agricultural produce (Klein et 

al., 2007). Nevertheless, during the last century many pollinating insects have 

declined, in species richness, abundances, and ranges (Biesmeijer et al., 2006; Potts et 

al., 2010; Burkle and Alarcon, 2011; Vanbergen et al., 2013; Ollerton, 2017). It is now 

established that this is due to a plethora of factors, acting independently and 

interactively, although a key reason in many systems is the degradation or loss of floral 

landscapes and resulting lack of nectar and pollen foraging resources (Carvell et al., 
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2006; Rader et al., 2014; Senapathi et al., 2015). Enrichment of soils by N is known to 

affect primary productivity and alter botanical communities, so could contribute to 

the state of floral communities available to pollinating insects. Improving our 

understanding of how N deposition impacts botanical communities can inform our 

understanding of historic pollinator trends and give us improved insight into how 

pollinator communities will respond to the deposition or application of N in the future 

and the potential for mitigation or habitat restoration.  

 

2.2.3 Impacts of N to botanical communities 

In temperate grasslands, N additions are shown to lead to a decline in botanical 

species richness, through a filtering of the species pool (Suding et al., 2005; Clark and 

Tilman, 2008; Maskell et al., 2010; Southon et al., 2013). The most common driver of 

these declines is the excessively increased fertility of soils (Bobbink et al., 1998; 

Crawley et al., 2005). Increasing N, a limiting nutrient for plant growth in many 

ecosystems, typically leads to a boom in primary productivity with competitive and 

fast-growing plants exploiting the enhanced resources. This comes at the expense of 

smaller and slower-growing plant species, which are generally outcompeted and thus 

decline. Typically, this shift in botanical community composition is represented by an 

increase in grasses, and a decrease in legumes and flowering forbs. High plant diversity 

improves ecosystem functioning and stability (Weisser et al., 2017), and has 

specifically been linked to increased diversity of pollinating insects (Potts et al., 2003; 

Fründ et al., 2010; Weisser et al., 2017). 

To improve our understanding of how assemblages of pollinating insects are 

impacted by shifts in botanical communities, we need a more informative metric than 

species richness or diversity. The use of functional traits analyses has recently gained 

momentum as a useful method that gives a more informative view of how shifts in 

biodiversity impact ecosystem functioning (Tilman et al., 1997; Díaz and Cabido, 2001; 

Heemsbergen et al., 2006; Garnier et al., 2007). Recent research focussing on the traits 

that respond to environmental change (‘response traits’ sensu Lavorel and Garnier, 

2002) revealed that N deposition impacts the functional trait composition of a plant 

community, independent of species loss (Helsen et al., 2014). This study showed that 
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insect-pollinated plants declined with N deposition whilst wind-pollinated plants 

flourished. However, the study did not consider more specific traits that take into 

account the wide diversity of plant-pollinator interactions (so called ‘effect traits’ 

sensu Lavorel and Garnier, 2002).  

The interactions between plants and pollinators are varied, from accidental 

and opportunistic insect visits on simple open flower heads to more specialised 

interactions based on morphological adaptations or the metabolisation of secondary 

metabolites (Fenster et al., 2004; Whittall and Hodges, 2007; Krömer et al., 2008; 

Sedivy et al., 2011; Vanderplanck et al., 2014). The relevancy, extent, and applicability 

of pollinator syndromes is still debated (Johnson and Steiner, 2000; Fenster et al., 

2004; Ollerton et al., 2009). However, plants do play different roles within a pollinator 

network, some have more central roles, linking many visitors as generalists, while 

others have more selective interactions (Bascompte et al., 2003; Vázquez and Aizen, 

2004; Dupont and Olesen, 2009). Floral morphological structures are shown to have 

evolved alongside pollinator feeding apparatus (Borrell, 2005; Rodríguez-Gironés and 

Santamaría, 2006; Johnson and Anderson, 2010). Furthermore, plants with more 

specialist pollination or nectar presentation mechanisms, such as vibratile pollination 

or the long-corollas of Fabaceae, often produce highly nutritional floral rewards 

(Roulston et al., 2000; Hanley et al., 2008). The effect, therefore, of losing two different 

floral resources could have contrasting impacts on a pollinator community. For 

instance, losing more specialised floral resources that provide nutritious resources for 

oligolectic insects could impact a narrow group of pollinators, potentially severely. On 

the other hand, losing plants with functionally simplistic open flowers visited by 

polylectic insects will have a different effect; if the plant produces plentiful high-

quality nectar and is visited by a diverse array of insects, the consequences of losing a 

widely-utilised, well-linked, resource could be significant for the insect community, 

although detrimental impacts could be buffered if alternative functionally similar floral 

resources are available.  
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2.2.4 Aims of the study 

With this study, I aimed to determine how N-enrichment of soils affects the 

composition of floral resources in botanical communities. With declines in forbs and 

legumes commonly observed, it is expected that there are fewer insect-pollinated 

plants with greater soil-N additions. Using functional trait analyses, with a community 

weighted mean (CWM) approach, the study will investigate which specific groups of 

floral traits are most affected by N-driven shifts in botanical composition. This will give 

insight into which functional groups of insect pollinators are most or least threatened 

by future levels of N deposition and application. This analysis can also reveal the likely 

impacts of historical N deposition on pollinator communities, thereby supporting our 

understanding of pollinator trends in recent decades. 

The responses of different ecosystems and ecoregions to N-enrichment can 

vary (Bobbink et al., 2010; Maskell et al., 2010; Field et al., 2014), so I considered two 

different types of temperate grasslands; acidic grasslands and a mesotrophic grassland 

meadow. Both grassland types, in a natural state, are potentially nectar-rich and able 

to support pollinator communities (Baude et al., 2016).  To study acid grassland sites, 

I utilised nationwide data previously collected by Stevens et al. (2004). For a 

representative mesotrophic grassland meadow community, I studied the Park Grass 

Long-term Experiment (PGE), based at Rothamsted Research, which has had nutrient 

treatments applied consistently since its founding in 1856. The treatment structure of 

the PGE allows the effects of two common forms of reactive N entering soils, ammonia 

(NH4) and nitrate (NO3), to be separated from each other and from the effect of 

changes in soil pH. This is useful, as it can be challenging in studies of atmospheric N 

deposition to distinguish between the effects of total N, NH4, and soil acidification 

(Bobbink et al., 1998; Stevens et al., 2011). Applications and deposition of N can acidify 

soils with poor buffering capacity, through the release of H+ protons from NH4 

nitrification or through leaching of NO3 (Barak et al., 1997; Schroder et al., 2011; Lu et 

al., 2014). Soil acidification represents an additional selection pressure on the plant 

community, often reducing species richness further (Clark and Tilman, 2008; Stevens 

et al., 2010; Diekmann et al., 2014; Field et al., 2014). With declines in forb richness 

recorded in temperate grasslands with N deposition and soil acidification (Duprè et al., 
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2010; Stevens, Thompson, et al., 2010; Field et al., 2014; Helsen et al., 2014) I 

hypothesised that 1) there will be fewer insect-pollinated plants, specifically 2) fewer 

plants with morphologically specialised floral units. 

Finally, the decline of N deposition rates in some regions, such as North-West 

Europe, has led to a keen interest in the response and recovery of botanical 

communities to declining rates of N deposition. Although there are indications that 

some N-sensitive species can recover in abundance following the cessation of N 

addition (Clark and Tilman, 2008; Storkey et al., 2015), the plant community can retain 

relics of historic N-enrichment for many years, such as low-diversity (Isbell et al., 

2013). Therefore, in addition to studying the effects of N-enrichment on functional 

traits, I also determined how temperate grassland communities recover from historic 

N additions over time using time series of data from PGE plots that have had N fertiliser 

withheld for the last three decades. Considering prior research, I further hypothesised 

that 3) the floral trait composition of N-enriched plant communities will slowly recover 

from eutrophication, but not to the extent that they are perfectly comparable with 

historic nil plots. 

 

2.3 Materials and methods 

 

2.3.1 The Park Grass Long-term Experiment 

The Park Grass Experiment (PGE), based at Rothamsted Research, 

Hertfordshire, UK, is a field-based nutrient-addition long-term experiment. The 

experiment was founded in 1856 to study the effects of fertilisers on hay yield. It is 

now a unique and useful resource for studying the long-term effects of chronic N 

addition, mineral addition, and soil acidification, on temperate mesotrophic 

grasslands.  When the experiment began, the 2.8 ha field had been a permanent 

grassland for at least 100 years, was a uniform site on silty clay loam soil, near-level, 

moderately well-drained, with pH 5.5 topsoil, and would have been classified as an 

MG5 type mesotrophic grassland according to the National Vegetation Classification 

(Rodwell 1992; Dodd et al., 1994; Silvertown et al., 2006). The PGE was grazed by 
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sheep from 1856-1875, but since 1875 a second cut has been taken and immediately 

removed in October each year. Therefore, grazing is not a variable that needs to be 

considered for modern experiments using the PGE. The original fertiliser treatments 

continue to be applied to the PGE, with minor alterations to treatment structure in 

some plots. 

There are 19 main plots (numbered 1–4, 6–20) (Fig. 2.1). Plot 3 and 12 receive 

no fertiliser or minerals and are effectively control plots. In total, 15 of the main plots 

receive consistent N and mineral treatments in various combinations and levels. N is 

applied as one of two separate forms, ammonium sulphate (delivering NH4) or sodium 

nitrate (delivering NO3), and generally at three different levels (48 kg ha-1 yr-1, 96 kg 

ha-1 yr-1, 144 kg ha-1 yr-1). Recently, plot 15 had a 144 kg NO3 ha-1 yr-1 treatment 

incorporated, so now there are plots receiving 144 kg N of both forms of N (although 

the changes to plot 15 are not shown in Fig. 2.2). A 30 kg ha-1 yr-1 treatment is also 

used on plot 20 in conjunction with organic farmyard manure. Organic manure 

treatments are applied uniquely to two of the plots, plot 19 and 13. Plot 19 receives 

farmyard manure once every four years, plot 13 also receives farmyard manure once 

every four years but also pelleted poultry manure once every four years in the 

intermediate years. The provision of nutrients by organic manure treatments is shown 

in Fig 2.2. The minerals applied to the PGE are phosphorous (P), potassium (K), sodium 

(Na), and magnesium (Mg). Mineral treatments are applied as either P, K, Na, Mg; P, 

Na, Mg; P, K; P; K, using the following quantities: P 35 kg ha-1 yr-1, K 225 kg ha-1 yr-1, Na 

15 kg ha-1 yr-1, Mg 10 kg ha-1 yr-1. However, from 2017 onwards P application was 

scaled back to 17 kg ha-1 yr-1. There is one plot that also receives 135 kg silicone (Si) 

ha-1 yr-1.  From 1903, liming treatments began to be incorporated, to prevent soil 

acidification that was occurring in some plots. Between 1903–1964, plots were divided 

into two; limed and unlimed. From 1965, the liming treatment was expanded to divide 

plots 1–18 into four subplots; a (limed to pH 7), b (limed to pH 6), c (limed to pH 5), 

and d (unlimed). Plots 19, 20, and part of plot 18 have had liming treatments withheld 

since 1968. From 1990, plots receiving 96 kg N ha-1 yr-1 of either form (NH4 on plot 9, 

NO3 on plot 14) were divided into two, the N treatments were continued in one half 

and withheld from the other half. From 1995 the same system was applied to the 
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farmyard manure treatments in plot 13. From 2015 plot 7, receiving P K Na Mg, was 

also divided, with P withheld from one half. These plots are now 9/1, 9/2, 14/1, 14/2, 

13/1, 13/2, 7/1, 7/2, with treatments withheld from all x/1 plots – now called 

‘transition plots’. Today, 101 subplots exist, a full plan can be found in Fig. 2.2. The 

PGE was designed and created before modern statistical theory was developed by Sir 

Ronald Fischer (in fact Fischer developed his statistical theories partly from his 

experience of working on the Rothamsted Research classical experiments, such as the 

PGE). Therefore, it lacks spatial replication of plots, and researchers must find ways to 

account for this, such as using spatial pseudo-replication across subplots or from 

separate individuals within larger plots, or by taking replicates across time. The PGE is 

cut in mid-June to sample and record biomass. The herbage is left to dry in-situ for up 

to a week, which allows seeds to return to the soil. Following sampling, the plots are 

completely mown and cleared, and are left to regrow for a second, summer-autumn, 

season. The field site is then cut a second time in mid-October. 
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Figure 2.1. Original plan of the Park Grass Long-term Experiment from 1865, its founding year, 
showing placement of plots and treatment application table (Rothamsted Research e-RA, 
2019). 
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Figure 2.2. Plan of the Park Grass Experiment from 1965 onwards, showing plots and 
treatments (Rothamsted Research e-RA, 2019). 
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Figure 2.3. The PGE study plots used for the Chapter 2 analyses.  
Blue plots in a) are plots 1, 3, and 17; studying 48 kg ha-1 yr-1 N additions. Yellow plots in b) are 
plots 7/2, 9/2, and 14/2; studying 96 kg ha-1 yr-1 N additions. Red plots in c) are plots 7/2, 9/1, 
9/2, 14/1, 14/2; studying recovery from 96 kg ha-1 yr-1 N additions. 
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2.3.2 Park Grass Experiment study-plots and acid grassland sites 

For the study of CWM of floral traits, I selected study plots with a comparable 

treatment structure for the analyses (Fig. 2.3). Plots 3 (control; no N addition), 1 (48 

kg ha-1 yr-1 NH4), and 17 (48 kg ha-1 yr-1 NO3) were studied to investigate the effects of 

N addition on functional botanical trait composition. 48 kg ha-1 yr-1 N, alongside 

background N deposition calculated as 6.84 kg N ha-1 yr-1 in 2013 (Storkey et al., 2015), 

is comparable with the highest levels of N deposition found in regions of China, India, 

North Europe, and Eastern USA, and will reflect more widespread potential near-

future deposition levels if global fluxes continue to rise. I also used plots 7/2 (control; 

no N addition), 9/2 (96 kg ha-1 yr-1 NH4), and 14/2 (96 kg ha-1 yr-1 NO3), all of which 

receive the P, K, Na, Mg mineral treatment in addition to N. The subplots used for 

these analyses were ‘b’ (pH 6) and ‘d’ (unlimed). I acquired species abundance data 

from previous field studies conducted on the PGE (Crawley et al., 2005; Storkey et al., 

2015). Data from 1991-2000 and from 2010-2012 was used. Data were relative 

biomass of each species per plot and year calculated on dry weights. 

To study the recovery of botanical communities when N is withheld, we used 

the plots that had been split in 1990 to test the recovery of communities from a state 

of high N application; plots 9/2, 9/1, 14/2, and 14/1. Plots 9/2 (96 kg ha-1 yr-1 NH4) and 

14/2 (96 kg ha-1 yr-1 NO3) continue to have the N treatments applied in addition to P, 

K, Na, Mg mineral applications. Since 1990, plots 9/1 and 14/1 have not had any N 

additions, and only receive the mineral applications. The comparable control plot to 

the applied N and withheld N plots is plot 7/2, which has always received the mineral 

applications and without N applications.  

Data from the acid grassland sites was collected by Stevens et al. (2004). All 

sites were grazed and protected for conservation. In total, the authors surveyed 68 

acidic grasslands in the UK on a gradient of N deposition ranging from 6.2–36.3 kg ha-

1 yr-1 during the years 2002–2003. The sites ranged in altitude between 15–692 m 

altitude, 50.5–58.2° latitude, 6.6–10.6ᵒ C mean annual temperature, 594–3038 mm 

annual precipitation, and 3.7–5.7 pH (Stevens et al., 2004). The sites were classified as 

U4 according to the National Vegetation Classification (Rodwell, 1992). The authors 

sampled the grassland communities with 2 m by 2 m quadrats identifying all higher 
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plants and bryophytes to a species level and estimating percentage cover, taking a 

total of 5 replicates per site. 

 

2.3.3 Functional traits 

Botanical trait data was assembled using the following sources: flowering 

phenology, floral colour, typical insect-visitors, and pollinator syndrome morphology 

from the BIOFLOR database (Klotz et al. 2002), provision of nectar volume and nectar-

sugars from the Agriland database (Baude et al., 2016), flowering phenology and floral 

dimensions from the “The wildflower key” (Rose and O’Reilly, 2006), and Ellenberg 

values were taken from the ECOFACT report (Hill, 1999). Further information can be 

found in Appendix 1.  

CWM scores were calculated from the species abundance data for each 

botanical trait response. For continuous variables (nectar traits, floral sizes), the CWM 

denotes a mean score of that trait in the community. For traits with ordinal levels 

(month of flowering phenology, Ellenberg value), the CWM is the mean level across 

the community. For categorical variables (taxonomic family, floral colour, pollinator 

syndrome, and typical insect-visitors), the CWM is the proportion that each level of 

the variable is represented within the botanical community. When analysing the effect 

to phenology as a response trait, grasses were omitted from the study, to focus on the 

flowering times of useful inflorescences. When studying all other response traits, all 

botanical species, including grasses, were included, to reveal the impact to the overall 

community. Meteorological data was obtained from direct measurements taken by 

the Rothamsted meteorological enclosure. Mean daily rainfall and temperature values 

from 1st March until the sampling date were used in the analyses. These dates cover 

the typical growing season of the PGE and using data from 1st March has been 

previously shown to be significantly related to biodiversity and yield mass (Silvertown 

et al., 1994).  
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2.3.4 Statistical analysis 

All data analysis was conducted using RStudio (R Core Team, 2018) with the 

lme4 package (Bates et al., 2015), graphs were produced using the ggplot2 package 

(Wickham, 2016). Mixed-effects models, with REML, were fitted to analyse the data 

(Garnier et al., 2007). The random effects used for all models using the PGE data were 

sample date (continuous; 167–190 Julian date), wet N deposition (continuous; 4.62–

9.88 kg N ha-1 yr-1), mean daily temperature (continuous; 8.21–11.07ᵒ C), mean daily 

rainfall (continuous; 0.81–3.55 mm), and year (categorical; 1991–2000, 2010–2012). 

All continuous random effects were nested within year for the analyses. Wet N 

deposition was included as a random effect here to account for background 

atmospheric N deposition which can alter the PGE plant communities independently 

of the experimental treatments (Storkey et al., 2015). The functional traits were 

analysed as independent response variables throughout. To determine the effect of N 

addition on PGE communities, the following fixed effects were used: N form 

(categorical; nil, NH4, NO3), pH (continuous; 3.4–7.2), and the interaction between N 

form and pH. To account for the possibility that the two forms of N additions would 

affect the assemblages differently, thus creating different baselines from which to 

study recovery, we analysed the recovery from NH4 and NO3 separately. The fixed-

effects used for the recovery analysis were: N status (categorical; applied, withheld) 

and years of recovery (continuous; 1–22 counting the years since cessation in 1990). 

For the recovery analysis, pH was incorporated as a random effect to focus on the 

effects of withholding N. To determine the extent of recovery after 20 years, the N-

recovery communities were compared directly with historic control plots, using data 

from 2010–2012. For these mixed-effects models, the fixed effects were: N status 

(categorical; nil, withheld NH4, withheld NO3), pH (continuous; 4.3–7.1), and the 

interaction between N status and pH.  

The mixed-effects models for analysing the acidic grassland communities 

incorporated N deposition (continuous; 7.7–40.86 kg N ha-1 yr-1), topsoil pH 

(continuous; 3.69–5.37), and the interactive term as fixed effects. The random effects 

were altitude (continuous; 15–500 m), mean annual precipitation (continuous; 486.6–

719.1 mm), and latitude (continuous; 50.54–59.23ᵒ N). Previous analysis of the data 
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by Stevens et al. (2004) showed that altitude and mean annual precipitation were the 

environmental variables that best explained changes in species richness, whilst 

latitude accounted for factors that can influence the geographic ranges of plant 

species. These variables were utilised as random effects for a more elegant and 

succinct analysis. Other environmental and management variables, such as grazing, 

that were not so impactful to species richness (Stevens et al. 2004), were not included 

in the analysis. 

All models were simplified with stepwise regression, by removing the least 

significant term beginning with the interactive variables. At each step the models were 

assessed for goodness of fit of the data by checking the standardised residuals, the 

Akaike information criterion (AIC), and the Bayesian information criterion (BIC) scores, 

and the Hessian convergence matrix. 

 

2.4 Results 

 

2.4.1 UK-wide acid grassland sites 

Stevens et al. (2004) found that species richness declined with N deposition 

across the surveyed UK acidic grassland sites. In agreement with Stevens et al. (2006), 

the analysis also shows that the proportion of forbs decreased at sites with higher N 

deposition (Table 2.1). The proportion of legumes, however, was unaffected. Of the 

dominant forb families, only Ericaceae, and Ranunculaceae showed a significant 

response to the fixed-effect variables. Ericaceae declined with N deposition, 

Ranunculaceae declined with more acidic soils. 

Overall, there were proportionally fewer insect-pollinated plants with higher 

levels of N deposition (Table 2.1). The only morphologically adapted flower types 

observed to significantly decline were those with bell-style flowers. Higher N 

deposition led to fewer nectar-rich plants, meaning an overall reduction in potential 

nectar production with higher N deposition. Plants with smaller inflorescences were 

more common in acidic soils. Plants with blue-purple or yellow flowers, and those with 
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UV-patterned flowers, were less common in acidic soils. The average date of flowering 

cessation was also earlier at sites with more acidic pH. 

Table 2.1. Output of LMER models studying the impact of N deposition, topsoil pH, and the 
interactive term on the floral functional trait composition of UK acid grasslands. 
 The rows show all response variables that were impacted significantly by the explanatory variables.  All 
values are statistically significant (t > 2) effect sizes given by the final simplified (“+” denotes increases, 
“-“ decreases).  

 
N deposition 

(kg N ha-1 yr-1) 

Topsoil pH N deposition * 

Topsoil pH 

Lifeform & Family (change in proportion composition) 

Forb -0.00335 
  

• Ericaceae -0.00209 
  

• Ranunculaceae 
 

+0.00337 
 

Insect-pollinated -0.00421   

Morphological pollinator syndrome (change in proportion composition) 

Bell -0.00226   

Nectar traits (change in provision; kg-1 ha-1 yr-1 production, ug-1 fl-1 day-1 sugar) 

Nectar production -1.366 
  

Floral size (change in size, mm) 

Landing area  +2.87  

Floral colour (change in proportion composition) 

Blue-Purple 
 

+0.0753 -0.00365 

Yellow 
 

+0.0392 
 

White +0.00261 
  

UV pattern 
 

+0.0364 
 

Flowering phenology (change in month of phenological event) 

End flower 
 

+0.0597 
 

 

2.4.2 Park Grass Experiment – 48 kg N ha-1 yr-1 treatments, without minerals 

Ammonia, NH4, application to the experimental grassland sites led to botanical 

communities with proportionally more grasses, fewer legumes, and fewer forbs (Table 

2.2). Of the dominant forb families, Lamiaceae and Ranunculaceae uniformly 

decreased in proportion, whereas the decline in Apiaceae was buffered by high pH. In 

soils with pH exceeding 6, Apiaceae was more common with NH4 addition.  
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Table 2.2. Output of LMER models studying the impact of 48 kg N ha-1 yr-1 N applications and 
topsoil pH on the CWM of floral functional traits of the PGE field site. 
The rows show all response variables that were impacted significantly by the explanatory variables.  All 
values are statistically significant (t > 2) effect sizes given by the final simplified (“+” denotes increases, 
“-“ decreases).  

 
NH4 NO3 pH NH4*pH NO3*pH 

Lifeform & Family (change in proportion composition) 

Grass +0.0906 
 

-0.187 
  

Legume -0.0359 -0.0355 
   

Forb -0.0619 
 

+0.177 
  

• Apiaceae -0.0761 -0.181 
 

+0.0152 +0.0316 

• Asteraceae 
 

+0.0602 +0.111 
  

• Lamiaceae -0.00373 -0.00223 
   

• Ranunculaceae -0.00936 
    

Insect-pollinated -0.0554  +0.124   

Morphological pollinator syndrome (change in proportion composition) 

Simple flower -0.258  -0.0282 +0.0413  

Bee-form -0.0327 -0.0406 +0.00933   

Lip -0.00392 -0.00242    

Nectar traits (change in provision; kg-1 ha-1 yr-1 production, ug-1 fl-1 day-1 sugar) 

Nectar production -688.15   +125.17  

Nectar sugars   +10.153   

Floral size (change in size; mm) 

Landing area 
  

+3.56 
  

Corolla depth -1.285 -1.119 +0.62 
  

Floral colour (change in proportion composition) 

Blue-Purple 
  

+0.0342 
  

Yellow -0.0466 +0.0519 +0.0736 
  

White -0.166 -0.0302 
 

+0.0264 +0.048 

UV pattern 
 

+0.077 +0.0622 
  

Flowering phenology (change in month of phenological event) 

Start flower +0.13     

End flower  +0.294 +0.188   

Duration  +0.792    

Season +0.3801     
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There were overall fewer insect-pollinated plants, with both generalist and 

specialist floral-units declining. Nectar-rich plants sharply declined with NH4 additions 

in acidic soils, but in soils with pH above 6, there was no such decline. NH4 enrichment 

favoured plants with shallower corollas. Plants bearing yellow flowers declined with 

NH4 addition, those bearing white flowers, such as Apiaceae declined at low pH, but 

increased at high pH. The typical flowering phenology of NH4-enriched plant 

communities was found to be delayed slightly, with a later peak flowering date.  

NO3-enrichment caused a decrease in legumes, but no significant effects to the 

proportion of total forbs or grasses (Table 2.2). Of the dominant forb families, 

Apiaceae declined with NO3 addition in low pH soils, but increased in soils above pH 6. 

Lamiaceae declined in proportion and Asteraceae increased.  

With 48 kg NO3 ha-1 yr-1 applications, in the absence of other minerals, there 

was no significant impact found in the proportion of total insect-pollinated plants 

(Table 2.2). As with NH4-enrichment, plants with shallower corollas were favoured. 

Plants with flowers morphologically adapted for bee visitors, such as flag and lip 

blossoms, declined, but those with simple open flowers were not impacted by NO3. 

The typical nectar provision was unaffected by NO3-enrichment. Plants bearing yellow 

flowers and those bearing flowers with UV reflectivity patterns both increased with 

NO3 addition. Plants bearing white flowers declined in low pH but were more stable in 

high pH soils. The average start of flowering was unaffected, as was the peak flowering 

season. The average end date of community flowering was delayed by NO3-

enrichment and there was an increased prevalence of plants with a longer flowering 

duration. 

Soil pH, which ranged between pH 4–7.1, was an important factor, with more 

acidic soils having an overall detrimental effect on plant communities (Table 2.2). Soil 

acidification led to higher proportions of grasses and fewer forbs, although legume 

proportion was unaffected. With more acidic soils, Asteraceae also declined in both 

treatments and control plots, Apiaceae declined in N-enriched plots. Insect-pollinated 

plants overall decline with more acidic soils, especially those with specialised 

morphological adaptations, although there were more plants with simple open 
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flowers. Acidic soils favoured plants with smaller flowers, shallower corollas, and less 

rewarding nectars. 

 

2.4.3 Park Grass Experiment – 96 kg N ha-1 yr-1 treatments, with minerals 

The higher addition of NH4, when applied to mineral-enriched soils, caused 

more severe effects to the plant community. Grass proportions increased, and forb 

and legume proportions decreased, by larger values than the 48 kg N ha-1 yr-1 additions 

(Table 2.3). Asteraceae and Ranunculaceae declined with NH4 addition, Asteraceae 

declined with NH4 addition in plots with low pH, no forb family increased in proportion.  

Overall, there were fewer insect-pollinated and morphologically specialised 

plants (Table 2.3). Only the proportion of plants bearing simplistic open flowers was 

unaffected by NH4 addition. These all declined more steeply under 96 kg N ha-1 yr-1 

additions than 48 kg N ha-1 yr-1 additions. The plant community became less rich in 

overall nectar provision and nectar sugars. There was a decline in plants bearing blue-

purple, yellow, and UV patterned flowers, although the proportion of plants bearing 

white flowers was unaffected. Overall, NH4 enrichment also led to plants with larger 

floral units or with shallower corolla depth becoming more prevalent. 

NO3 additions of 96 kg N ha-1 yr-1 caused a proportional decline in forbs and 

legumes, alongside an increase in grasses (Table 2.3). However, the decline of forbs 

was not uniform across taxonomic families. Apiaceae increased by a small amount, 

while Asteraceae was dramatically reduced in soils with lower pH.  

Overall, the proportion of insect-pollinated plants was reduced by NO3 

enrichment (Table 2.3). Plants with simple open floral units thrived with high NO3 

addition. The average nectar production of plants was unaffected, but we found plants 

producing nectar with lower sugar content became more prevalent. As with NH4 

enrichment, we observed declines in plants bearing blue-purple, white, and UV 

patterned flowers, but an increase in the proportion of plants bearing white flowers. 

This is potentially driven by the increased Apiaceae composition. Overall, NO3-

enrichment favoured plants with an earlier flowering date and an earlier peak bloom 

window.  
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Table 2.3. Output of LMER models studying the impact of 96 kg N ha-1 yr-1 N applications and 
topsoil pH on the CWM of floral functional traits of the PGE field site. 
 The rows show all response variables that were impacted significantly by the explanatory variables.  All 
values are statistically significant (t > 2) effect sizes given by the final simplified (“+” denotes increases, 
“-“ decreases).  

 
NH4 NO3 pH NH4*pH NO3*pH 

Lifeform & Family (change in proportion composition) 

Grass +0.329 +0.282 -0.0767 
  

Legume -0.162 -0.211 +0.0225 
  

Forb -0.166 -0.0714 +0.0544 
  

• Apiaceae 
 

+0.0701 +0.035 
  

• Asteraceae -0.626 -0.546 -0.0873 +0.0999 +0.0852 

• Ranunculaceae -0.0222 
    

Insect-pollinated -0.263 -0.216 +0.0572   

Morphological pollinator syndrome (change in proportion composition) 

Simple flower  +0.0745 +0.0424   

Bee-form  -0.109  +0.0337   

Nectar traits (change in provision; kg-1 ha-1 yr-1 production, ug-1 fl-1 day-1 sugar) 

Nectar production -1144.21  -113.08 +164.89  

Nectar sugars -70.385 -88.686 +12.068   

Floral size (change in size; mm) 

Landing area +31.601 +18.892 
   

Corolla depth -2.153 
 

+1.202 
  

Floral colour (change in proportion composition) 

Blue-Purple -0.176 -0.186 
   

Yellow -0.0694 -0.0769 +0.0279 
  

White 
 

+0.0495 +0.0288 
  

UV pattern -0.0644 -0.0713 +0.0283 
  

Flowering phenology (change in month of phenological event) 

Start flower  -0.261 -0.529   

End flower   -0.165   

Duration   +0.482   

Season  -0.451 -0.743   
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Soil pH was an important factor with applications of 96 kg N ha-1 yr-1. At more 

acidic pH, there were overall less insect-pollinated plants; fewer forbs and legumes, 

and more grasses (Table 2.3). There were fewer Apiaceae and, in nil soils without N 

addition, more Asteraceae. More acidic soils led to proportional decreases in both 

plants producing open simplistic flowers and flowers morphologically specialised for 

bees. With NH4-enrihcment, plants with higher nectar production became more 

prevalent with higher pH. In plots without NH4 addition, more acidic soils led to 

increased dominance of plants with lower nectar production, but with more sugar-rich 

nectars. Soils with higher pH were favourable for plants with deeper corollas, and for 

plants bearing yellow, white, and UV-patterned flowers. We also found plants with an 

earlier flowering season, but a prolonged flowering window were associated with 

higher soil pH.  

   

2.4.4 Park Grass Experiment – Effect of withholding N from plots 

Withholding the application of N to the experimental plots caused a shift in the 

pollinator-relevant functional traits of the botanical communities. There are effects 

caused by both the cessation of NH4 and NO3 application (Table 2.4). Most of the 

studied botanical traits respond instantly when NO3 is applied and then withheld, 

indicating a quicker recovery rate. On the other hand, we see fewer immediate 

reactions to NH4 cessation. Recovery from NH4 application is often seen over the long-

term, indicating that communities will take longer to recover from NH4 additions.   

When N is withheld, grasses decreased in abundance and both forbs and 

legumes increase. With NH4 cessation, this effect is gradual, occurring over years, 

whereas we see more immediate effects when NO3 is withheld (Table 2.4). With 

regards to the dominant forb families, Apiaceae typically decrease in abundance 

following N cessation, over time with NH4 cessation and more immediately with NO3 

cessation. Asteraceae and Ranunculaceae increase in abundance with NH4 recovery. 

In the case of NO3 recovery, Asteraceae and Ranunculaceae initially increase, but in 

the long-term decrease in overall composition, possibly due to the proportional 

increase in Fabaceae. Overall insect-pollinated plants increase in plant communities 
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recovering from N application, immediately in the case of NO3 cessation, and in the 

long-term in the case NH4 cessation. 

Plants with floral units morphologically adapted to bee pollination increase 

with the retention of both N treatments, more gradually with NH4 (Table 2.4). Plants 

bearing simple flowers only increase in proportion in communities recovering from 

NO3, not those recovering from NH4. When plant communities recover from N 

applications, flowers with more rewarding nectar increase in proportion, immediately 

in the case of NO3 recovery, and more gradually in the case of NH4 recovery. With long-

term recovery from NH4 additions, we find more plants with smaller inflorescences, 

but there are no other significant effects to floral size. 

There is an increase in plants producing blue flowers when either form of N is 

withheld (Table 2.4). Communities recovering from NH4 addition have a long-term 

increase in plants with yellow inflorescences, and an immediate increase in plants with 

UV pattern. On the other hand, communities recovering from NO3 addition have an 

immediate increase in plants with yellow and UV signalling blossoms, which plateaus 

over the long-term. Plants with white inflorescences, however, immediately decline 

following N cessation, but begin to increase over the long-term. 

The average flowering phenology of the plant communities are affected by NO3 

withdrawal (Table 2.4). The average peak flowering season is delayed, as are the 

average first and last flowering dates. Over time, plants with shorter flowering 

duration increased in proportion in NO3 recovery plots. Withholding NH4 led to early-

flowering plants becoming more dominant. Over time, this response declined. 
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Table 2.4. Output of LMER models studying the change in the CWM of the functional floral 
traits when N is withheld. 
The rows show all response variables that were impacted significantly by the explanatory variables.  All 
values are statistically significant (t > 2) effect sizes given by the final simplified (“+” denotes increases, 
“-“ decreases).  

  NH4 withheld yrs. recovery  NO3 withheld yrs. recovery  

Stress tolerance (average value of community) 

Ellenberg N -0.286 -0.0189 -0.872  

Ellenberg R -0.365 +0.0161 -0.089  

Lifeform & Family (change in proportion composition) 

Grass 
 

-0.015 -0.303 
 

Legume 
 

+0.0109 +0.112 +0.011 

Forb  +0.0045 +0.162 -0.009 

• Apiaceae 
 

-0.00151 -0.0312 -0.00215 

• Asteraceae +0.0443   +0.0364 -0.00151 

• Ranunculaceae 
 

+0.000385 +0.0815 -0.00516 

Insect-pollinated  +0.0118 +0.245  

Morphological pollinator syndrome (change in proportion composition) 

Simple flower   +0.0467 -0.00492 

Bee-form  +0.0109 +0.113 +0.0113 

Nectar traits (change in provision; kg-1 ha-1 yr-1 production, ug-1 fl-1 day-1 sugar) 

Nectar production  +9.626 +141.335 +5.552 

Nectar sugars  +1.322 +27.829  

Floral size (change in size; mm) 

landing area  -0.813   

Floral colour (change in proportion composition) 

Blue 
 

+0.00967 +0.102 +0.00494 

Yellow 
 

+0.0609 +0.159 -0.00585 

White 
 

  -0.053 +0.00449 

UV +0.0523   +0.15 -0.00572 

Flowering phenology (change in month of phenological event) 

Start flower -0.68 +0.0495 +0.321 +0.0147 

End flower    +0.347 -0.0172 

Duration     -0.0285 

Season -0.579 +0.0522 +0.315 +0.0293 
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2.4.5 Park Grass Experiment – 20 years of recovery from N additions 

After 22 years of recovery from N additions, there are fewer significant 

differences between the nil plots and recovery plots (7, 9/1, 14/1) than between the 

nil plots and the N addition plots (7, 9/2, 14/2) (Table 2.5). Communities recovering 

from NH4 addition still have higher compositions of grasses, although this is alleviated 

slightly in high-pH soils. The proportion of legumes in plant communities recovering 

from N addition is not significantly different from historical nil plots. However, the 

proportion of forbs remains lower in the recovery plots than the historic nil plots. The 

proportion of Apiaceae and Asteraceae is relatively unchanged by withholding N 

additions for 22 years, as they show the same responses found in N-addition plots. 

However, withholding N has allowed Ranunculaceae to increase. The proportion of 

Ranunculaceae in communities recovering from NH4 is similar to historic nil plots, and 

it is greater in NO3-recovery plots.  

When comparing historic nil plots with N-recovery plots, there is no significant 

difference in the proportion of insect-pollinated plants (Table 2.5). This shows 

recovery from the impoverished entomophilous proportion found in N-application 

plots. The proportion of plants bearing simple flowers, after 22 years of recovery, is 

now greater in communities recovering from NO3 than in historic nil plots, whilst 

communities recovering from NH4 addition remain poor with regards to foraging 

resources for generalist Diptera species. The shift towards poor nectar production 

caused by NH4 additions has recovered after 20 years of withheld N. However, plots 

recovering from N addition still have typically lower nectar sugar provision. Plant 

communities recovering from NO3 addition still have more plants with larger 

inflorescences, but there was no difference in average corolla length found between 

historic nil plots and recovery plots 

The proportion of blue, purple, and yellow flowers, which declined with N 

addition, has recovered after 22 years (Table 2.5). There is now no discernible 

difference between historic nil plots and recovery plots. This is also the case for plants 

that bear flowers with UV patterns. However, the proportion of plants with white 

flowers remains low in low-pH NO3-enriched plots.  
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After 22 years of withholding N, there is little difference in the average 

flowering phenologies of the plant communities (Table 2.5). Plots recovering from NO3 

addition maintain a slightly higher proportion of early-flowering plants, but this no 

longer translates into an early peak flowering season. 

In the recovery of plant communities, pH played an important role for the 

compactions of forbs, particularly Asteraceae, increasing these at higher pH in more 

buffered soils (Table 2.5). Grasses were less dominant in plant communities recovering 

from NH4 addition in high pH soils. Well-buffered soils helped the recovery of plants 

producing white flowers in plant communities recovering from NO3 additions. Overall, 

considering all plots soil pH had wide-reaching impacts on the floral community. The 

detrimental effect of soil acidification was reasonably uniform across functional traits. 

Plants producing simple flowers and morphologically specialises flowers both declined 

with soil acidification, although bee-specialised flowers declined at a faster rate. There 

was a decline in plants producing yellow and UV patterned flowers with soil 

acidification. The shift in botanical community caused by soil acidification typically led 

to increased dominance of plants with an early flowering season, although this did not 

affect overall flowering duration. 
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Table 2.5. Output of LMER models studying the recovery of CWM floral functional traits 
following 20 years of withheld N, in comparison to historic control plots. 
The rows show all response variables that were impacted significantly by the explanatory variables.  All 
values are statistically significant (t > 2) effect sizes given by the final simplified (“+” denotes increases, 
“-“ decreases).  

 
NH4 

recovery 

NO3 

recovery 

pH NH4 

recovery*pH 

NO3 

recovery*pH 

Lifeform & Family (change in proportion composition) 

Grass +1.725 
  

-0.29 
 

Legume 
  

+0.104 
  

Forb -1.327 -1.096 -0.134 +0.219 +0.184 

• Apiaceae 
 

+0.0552 +0.0322 
  

• Asteraceae -0.817 -0.792 -0.129 +0.14 +0.129 

• Ranunculaceae 
 

+0.0294 
   

Insect-pollinated   +0.138   

Morphological pollinator syndrome (change in proportion composition) 

Simple flower  +0.0808 +0.0405   

Bee-form   +0.104   

Nectar traits (change in provision; kg-1 ha-1 yr-1 production, ug-1 fl-1 day-1 sugar) 

Nectar production   +85.53   

Nectar sugars -71.039 -71.175 +12.375   

Floral size (change in size; mm) 

Landing area 
 

+16.741 +12.609 
  

Corolla depth 
     

Floral colour (change in proportion composition) 

Blue-purple 
     

Yellow 
  

+0.0431 
  

White 
 

-1.087 
  

+0.202 

UV pattern 
  

+0.0427 
  

Flowering phenology (change in month of phenological event) 

Start flowering  -0.191 -0.166   

End flowering   -0.105   

Duration flowering      

Season   -0.383   
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2.5 Discussion 

 

The findings are in agreement with previous analyses of these datasets that 

showed increased grass proportions and decreased forbs and legumes with higher 

levels of N additions to soils (Stevens et al., 2004; Storkey et al., 2015). It is also in 

agreement with other studies from grasslands (e.g. Duprè et al., 2010; Stevens, Duprè, 

et al., 2010) and other habitats (e.g. Maskell et al., 2010; Field et al., 2014; Humbert 

et al., 2016). Furthermore, the analyses confirmed that N-driven impacts to the 

botanical community alters the array of functional floral resources in ways that could 

be impactful for pollinator assemblages. This suggests that, in regions with higher 

deposition, N may have acted as a driver of negative pollinator trends during the 

recent century. Increasing deposition levels in the Southern Hemisphere could impact 

on the composition of floral resources available to pollinators in the future. The impact 

to floral communities was not uniform; responses varied between functional floral 

groups and taxonomic families. Furthermore, responses varied according to the level 

of N addition and between the two grassland types, acidic and mesotrophic. 

Therefore, the precise responses of grassland communities to escalating N deposition 

or additions, and subsequent consequences for pollinators, will be dependent on the 

local habitat context. 

 

2.5.1 The response of taxonomic families 

 The response of taxonomic families was non-uniform, with families differing in 

their response to N additions. However, there were some consistencies in the 

responses of individual botanical families across study systems and N application 

levels. For example, Ranunculaceae were consistently sensitive to NH4, in the PGE they 

declined at both levels of NH4 addition whilst they declined in acid grasslands with 

increasing soil acidification, a common consequence of NH4 deposition or applications 

in poorly buffered soils (Barak et al., 1997; Duprè et al., 2010; Stevens et al., 2011; Van 

Den Berg et al., 2016). On the other hand, Ranunculaceae did not notably decline with 

NO3 additions. It may be that this taxonomic family is, in general, less able to tolerate 
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the potential cell acidification and toxicity resulting from high levels of NH4 uptake 

(Britto and Kronzucker, 2002; Lucassen et al., 2003; Stevens et al., 2011). Many 

Ranunculaceae species are used by wide groups of insect pollinators, including 

dipterans and hymenopterans (Appendix 5), although there is also evidence of 

specialisation through toxicity of secondary compounds to the larvae of some bee 

species (Sedivy, Müller and Dorn, 2011). The proportion of Apiaceae and Asteraceae, 

when compared across N applications levels, showed an interesting inverse in their 

responses. With 48 kg N ha-1 yr-1, Apiaceae declined in unbuffered N-enriched plots 

but increased with higher levels of NO3 applied with minerals. On the other hand, 

Asteraceae increased with 48 kg N ha-1 yr-1 applications of NO3 but declined in 

unbuffered plots with high levels of N applied with minerals. There was no response 

in Apiaceae or Asteraceae abundance in acid grassland sites to N deposition or topsoil 

pH, so the responses could be dependent on the context of the ecosystem; these two 

taxonomic families were more prevalent in the PGE and had a low baseline in the acid 

grassland sites. Ericaceae did not grow in the mesotrophic PGE site as it is typically 

found on more acidic grasslands (Rodwell, 1992). Legumes, on the other hand, did not 

decline in acid grassland sites with N deposition or soil acidification, but declined 

consistently with N application in the PGE site, with greater losses observed at higher 

applications of N.  

Leguminous flowers tend to produce nutritious nectar, high in protein and 

essential amino acids (Cook et al., 2003; Hanley et al., 2008). The decline in legumes 

represents a loss of significant floral resources that are rewarding, and relatively 

specialised. Previous studies have also found linear losses of overall botanical species 

richness with N addition (Stevens et al., 2010; Humbert et al., 2016), so clearly the 

level of N input is an important determinant of the extent of impact. The primary 

mechanism of species loss in temperate grasslands is the altered competitive 

dynamics, due to increased soil fertility, and resulting increase in grass biomass 

(Bobbink et al., 1998). Legumes, which fix N through their rhizobium, are likely to lose 

a competitive advantage with excessive N additions (Suding et al., 2005; Skogen et al. 

2011). Interestingly, legumes did not significantly decline with N deposition in the UK 

acid grassland sites. This is likely because the proportion of legumes in these 
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communities was already considerably low (mean = 0.0268, standard deviation = 

0.063), even in sites with the lowest levels of deposition. Deposition levels in Europe 

were typically higher during the late 20th Century, which had impacts on plant 

communities (Storkey et al., 2015). This could have shifted the baseline of legume 

proportions in acid grassland sites and obscured results. 

The loss of forbs was not uniform across families. In the PGE, Ranunculaceae 

consistently declined with NH4 enrichments. Apiaceae and Asteraceae also frequently 

declined in poorly buffered soils with N additions. However, in well-buffered soils with 

pH 6 or greater, Apiaceae and Asteraceae plants proportionally increase. The most 

common Ranunculaceae found in the PGE are Ranunculus acris and Ranunculus 

bulbosus, both of which have relatively low Ellenberg N values (Hill, 1999). Therefore, 

although the more N-tolerant, but infrequent, Ranunculus ficaria and Ranunculus 

auricomus can maintain populations despite N additions, the more abundant 

Ranunculaceae species are threatened by N additions. Conversely, the most common 

Apiaceae, Anthriscus sylvestris and Heracleum sphondylium have high Ellenberg N 

values (Hill, 1999), which allow N-enriched plots to maintain high proportions of 

Apiaceae. In the acid grassland sites, the decline of Ericaceae plants is a concerning 

result for bee species of acid grasslands. Ericaceae are incredibly rewarding nectar and 

pollen resources (Baude et al., 2016) that are visited by a wide suite of bees. 

Furthermore, Ericaceae were one of the more prevalent and dominant taxonomic 

families across the acid grassland sites, so the loss of these plants with N deposition 

reflects a loss of a significant floral resource for pollinating insects. 

 

2.5.2 Impacts to functional trait composition 

Morphological floral structure 

Higher N additions, whether as applications to the PGE or deposition to the 

acid grassland sites, consistently led to declines in plants that bear more specialised 

flowers, that are typically favoured by bees. For example, the loss of the bell flowers 

of Ericaceae and Liliaceae in acid grassland sites depletes important resources utilised 

by a range of bee species (Cane et al., 1985; Scott et al., 2016). In the PGE, 48 kg N ha-
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1 yr-1 applications in the absence of other minerals led to declines in the lip-form 

flowers of Lamiaceae. Labiate flowers are often highly specialised for pollination by 

bees, rather than generalist insects (Claßen-Bockhoff, 2007; Wester and Claßen-

Bockhoff, 2007; Westerkamp and Claßen-Bockhoff, 2007). The labiate Lamiaceae 

flowers found in the PGE, such as Ajuga reptans and Prunella vulgaris, suit visitation 

by bees. In fact, in the PGE, N additions of 48 kg N ha-1 yr-1 caused declines in overall 

‘bee-form’ flowers. These include the flag-blossoms of Fabaceae, labiate blossoms of 

Lamiaceae, and the bell flowers of Liliaceae. This finding also helps to explain the 

decline in average corolla size found with 48 kg N ha-1 yr-1 additions, of either N form. 

Longer corollas have typically co-evolved with specialist pollinators with long tongues 

(Nilsson 1988; Johnson and Anderson, 2010), such as some bumblebees. Research has 

also shown that plants that selectively favour specialist pollinators produce more 

rewarding pollen (Hanley et al., 2008) and nectar (Petanidou et al., 2006; Vandelook 

et al., 2019). Therefore, more oligolectic bee species that have strongly linked 

interactions with these plants may be more at risk from the impacts of N deposition, 

regardless of the form of N. Furthermore, the loss of these floral types implies a 

deterioration of the quality of floral rewards provided by a floral community.  

Historic N deposition levels from the 20th Century have been high in Europe, 

North America, China, and India. The loss of specialist floral resources, such as 

Fabaceae, could have contributed to the declines of more specialised pollinating 

insects, such as long-tongued bees (Rasmont et al., 2005; Biesmeijer et al., 2006; 

Patiny et al., 2009; Baude et al., 2016). With global N deposition levels set to increase 

in most regions of the world, with the possible exception of Europe (Dentener et al., 

2006; Galloway et al., 2008), this poses an ongoing threat to many insect pollinators 

that are already impacted by a myriad of detrimental factors (Potts et al., 2010; 

Vanbergen et al., 2013). Many regions in the Southern Hemisphere currently 

experience low, but rising N deposition (Galloway, 1998; Dentener et al., 2006; Fowler 

et al., 2013). We lack research regarding the impact of N deposition to many 

biologically diverse regions in the Southern Hemisphere (Bobbink et al., 2010). 

However, it’s likely that these regions have not yet experienced the same 

consequences of N deposition that the Northern Hemisphere has during recent 
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decades. If deposition levels continue to rise in the future in the Southern Hemisphere, 

there could be detrimental impacts to oligolectic pollinators and wider pollinator 

communities.  

However, this is not the full picture; many pollinators that exhibit specialised 

feeding apparatus still forage opportunistically from alternative floral resources. 

Therefore, those pollinators that do show plasticity and flexibility in their foraging 

choices will not be so impacted if plant communities remain biodiverse enough to 

ensure alternative floral resources. In this respect, there is a difference between the 

two forms of N. In the PGE, applications of NH4 drove a decline in simple flowers as 

well as specialised flowers, whereas NO3 additions led to increases in simple flowers. 

Furthermore, high levels of NO3 addition favoured plants that produce larger open 

flowers. The detrimental impact of NH4 to all floral resources in the mesotrophic 

grassland site could be due to the inherent adaptations and tolerances of many plant 

species commonly found in such grasslands. These plant favourably take up NO3, not 

NH4, as they are unable to tolerate the cell acidification caused by NH4 uptake (Britto 

and Kronzucker, 2002; Lucassen et al., 2003; Stevens et al., 2011). On the other hand, 

NO3 additions did not completely deplete floral resources, but altered the structure of 

the floral community, towards communities dominated by the larger simplistic flowers 

of Apiaceae and more generalist Asteraceae such Taraxacum officinale agg. and 

Leontodon hispidus. These plants produce copious amounts of sugar-rich nectar 

(Baude et al., 2016; Hicks et al., 2016), so benefit a wide range of flower-visiting 

insects. Furthermore, their large blossoms can cater to a larger abundance of insects, 

with many feeding simultaneously from the same floral unit. Mesotrophic grasslands 

in Europe and Eastern USA, that currently have a low NHx:NOy ratio (Dentener et al., 

2006; Stevens et al., 2011), could see a shift towards such floral communities. 

However, many regions across the world, including India, China, and the majority of 

the Southern Hemisphere currently experience high NHx:NOy rations. In these regions, 

the loss of floral resources across floral groups should be a real concern if N deposition 

continues to increase.  

 

 



 Chapter 2. Composition of floral functional traits 

66 
 

Floral colour 

Although it is not clear to what extent floral colour influences pollinator 

foraging choices, there is evidence of insect flower-visitors and pollinators showing 

strong preferences for certain colours or for UV reflectivity (Dyer et al., 2006; Forrest 

and Thomson, 2009; Reverté et al., 2016). For instance, Reverté et al. (2016) found 

bees were commonly associated with purple flowers, lepidopterans with lilac flowers, 

coleopterans with white flowers, and dipterans and wasps with UV-yellow flowers. 

The decline in blue-purple flowers at high levels, 96 kg N ha-1 yr-1 in the PGE (in the 

presence of other minerals) therefore suggests a decline in flowers that are visually 

more attractive to bees. With a lack of these floral units, naïve bees might be less likely 

to be attracted to and forage in these locations, possibly moving on to more appealing 

habitats. The increase in yellow and UV patterned blooms with 48 kg NO3 ha-1 yr-1 

additions is possibly driven by the increase in Asteraceae such as T. officinale and L. 

hispidus. This emphasises the positive impact NO3 addition can have on these 

generalist resources, which are commonly favoured by dipterans such as Syrphidae 

(Reverté et al., 2016). This shift in the floral community, along with the increase in 

simplistic open flowers, could promote the visitation of dipterans and wasps to plant 

communities undergoing high NO3 additions. Of course, if plants bearing flowers of 

the preferred colour decline, flower visitors will in all likeliness opportunistically forage 

alternative blossoms if able.  

 

Floral nectar 

Although the applicability of morphological pollinator syndromes in plant-

pollinator interactions is not fully clear, the necessity of nectar for pollinating insects 

is incontrovertible. Nectar is the vital reason for why most insects visit flowers, and so 

N-driven changes to the provision of floral nectar by a botanical community will likely 

have consequences for the broad pollinator community. As previously noted, certain 

nectar-rich plants were observed to decline with N additions, such as Ericaceae in acid 

grasslands. Nectar-rich plants declined with N deposition in acid grasslands and with 

low levels of NH4 and high levels of both N forms in the PGE. The nectar production of 

plant communities with low levels of NO3 applied was not affected, possibly due to the 
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increased growth of Asteraceae and Apiaceae, many species of which are relatively 

nectar-rich plants (Baude et al., 2011; Hicks et al., 2016). Although the overall volume 

of nectar provided by plant communities decreased, the average nectar-sugar 

provision only declined under the highest levels of N additions in the PGE. The high 

levels, 96 kg N ha-1 yr-1, are not necessarily field-realistic and are far higher than typical 

background deposition in the Northern Hemisphere. However, this does serve as a 

warning of escalating N deposition.  

 

Flowering phenology 

The N-driven alterations to plant communities could lead to shifts in the 

phenology of floral resources, for example, if earlier blooming or later blooming plants 

are favoured. With 48 kg NH4 ha-1 yr-1 application in the PGE, the plant community 

moved towards later flowering plants, which could lead to a delayed onset of flowering 

and peak flowering date. Furthermore, as there was no change in the typical cessation 

of flowering, this suggests a curtailed flowering season caused by NH4 additions. A 

shorter flowering season limits the floral resources available to pollinators and can 

have impacts on the pollinator community (Memmott et al., 2007). However, there 

were contrasting impacts caused by NO3 applications. With 48 kg NO3 ha-1 yr-1, there 

was no impact to early flowering plants, but NO3 additions seemed to favour species 

with a later flowering date. In contrast, 96 kg NO3 ha-1 yr-1 applications with minerals 

favoured early flowering plant species, but not late flowering species. The lack of a 

positive effect on late flowering species here could be caused by the strong increase 

in soil fertility and competitive dynamics from N and mineral applications, that does 

not allow late-flowering species to thrive in the same way that early species can. 

Nevertheless, the results suggest that NO3 additions can lead to plant communities 

with extended flowering seasons, while NH4 additions lead to shorter flowering 

seasons. This is an interesting contrast between the two N forms. When we consider 

real-world N deposition, clearly the ratio of NHx:NOy will be an important determinant 

of the impact to pollinator communities. In both acidic grasslands and mesotrophic 

grasslands, we found that more acidic pH led to a decline in late-flowering plants. 

Therefore, the buffering capacity of soils undergoing N deposition or applications will 
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help to determine the effect to pollinators active late in the season. This trend in acidic 

soils could be problematic, for example, for newly produced gynes of bumblebee 

colonies that require plentiful nectar and pollen resources to prepare for winter 

hibernation.  

 

2.5.3 Soil acidification 

 In studies of atmospheric N deposition, it can be difficult to separate the effects 

of N and pH, especially with NHx which are highly correlated with soil acidification and 

total historic N deposition (Bobbink et al., 1998; Stevens et al., 2011). A benefit of using 

the PGE, is the treatment structure that distinguishes between N applications and soil 

pH. The findings presented in this chapter reveal the importance of well-buffered soil 

in mesotrophic grasslands for floral resources and therefore for pollinator 

communities. Soil acidification caused plant communities to become more grass-

dominant, at the expense of forbs, with an overall decline in insect-pollinated plants. 

This is in agreement with other studies, that have shown the detrimental impact of N-

driven soil acidification on plant communities (Stevens et al., 2010; Diekmann et al., 

2014; Field et al., 2014). Notably, Asteraceae and Apiaceae declined with more acidic 

pH. As previously discussed, plants from these families are important nectar and 

pollen resources in communities with NO3-enrichment. The decline of these plants 

with soil acidification shows how much more threatened plant communities on poorly 

buffered soils are by N deposition. The detrimental impact to pollinators with soil 

acidification is further emphasised by the decline in sugar-rich nectars, thereby 

limiting not only the availability of floral resources, but the nutritional quality of the 

floristic communities.  

 Many plants found in acid grassland sites will be more tolerant of, and naturally 

adapted to, the soil acidification and plant cell acidification caused by NHx deposition 

than mesotrophic grassland sites (Britto and Kronzucker, 2002; Stevens et al., 2011). 

Nevertheless, we observed impacts of soil acidification on the floral community, in 

agreement with Stevens et al. (2004). Furthermore, some of the observed responses 

were similar to the responses found in the PGE, suggesting that there may be common 

trends in the responses of plant communities to N-driven soil acidification. This is a 
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useful finding, as variation in responses to N deposition and soil acidification is a factor 

that tends to complicate the accuracy of forecasting consequences. In both ecosystem 

types, there was a shift towards plants with smaller inflorescences, and losses in plants 

that bear blue-purple, yellow, or UV patterned flowers. These are flowers 

preferentially foraged by bees, wasps, and dipterans (Reverté et al., 2016). 

 

2.5.4 Recovery from high N additions 

Studies of plant communities recovering from high levels of N deposition and 

addition have shown conflicting signs of recovery; while N-sensitive plant species can 

increase in abundance, improving overall species richness (Storkey et al., 2015), in 

other experiments, the overall abundance of flowering units seems to remain 

stagnated, with a community structure that remains representative of N-enrichment: 

the dominance of grasses (Isbell et al., 2013). CWM analysis with the mass ratio 

hypothesis can give insight into the state of recovering plant communities (Grime, 

1998; Diaz et al., 2007; Kimball et al., 2016). Unlike previous studies which found 

increased forb presence in plant communities recovering from eutrophication, this 

study gave insights into the recovery of specific floral functional traits therefore 

showing the recovery of plant communities in the context of plant-pollinator 

interactions. 

The results show that withholding N application allowed plant communities to 

recover, and there are promising signs for plant communities and interacting 

pollinators in regions where N deposition sharply drops in the future. However, whilst 

these signs are positive, the extent and speed of recovery depended on the form of N 

that the plant communities were recovering from. Recovery from NH4 occurred over 

a longer time frame than recovery from NO3 enrichment, which was more immediate. 

After 22 years of recovery, from 1990–2012, the plant communities still retained slight 

relics of historic N-enrichment. Communities recovering from NH4 addition retained 

high grass proportions representative of historic N pollution. Although proportions of 

forbs in communities recovering from N pollution remained low, proportions of 

legumes had recovered. Legumes seem to be more able to capitalise on the decline of 

grasses and the new opportunities for growth freed up by a decline in grasses. This 
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could be due to their N-fixing rhizobium, with which they can take advantage of low-

nutrient soils. The finding is in agreement with Storkey et al. (2015), although the 

authors also found numerous recovering forb species in addition to legumes. The 

recovery of legumes is promising for many bee species, particularly bumblebees that 

commonly visit legumes such as T. pratense and L. corniculatus. If this response has 

also occurred with decreasing N deposition in Northwest Europe and Britain, it may be 

having positive effects for these important pollinator species. An analysis of 

bumblebee trends during the recent decades revealed that bumblebee declines were 

strongest pre-1990, after which they were somewhat  alleviated (Carvalheiro et al., 

2013). This reflects the trends of N deposition in the UK, which escalated towards a 

peak in the late 1980’s before beginning to plateau and decline from the 1990’s 

onwards (Fowler et al., 2004; Storkey et al., 2015). With N deposition rates forecasted 

to continue dropping in Northwest Europe, this is a promising sign, but only if the 

associated plant and pollinator species can recolonise areas from which they have 

been lost. The forb community showed signs of recovery, but not to the same extent 

as legumes. The recovery dynamics of forbs differed between communities recovering 

from NH4 and NO3. While communities recovering from NH4 have shown a slow 

increase in forb proportion, communities recovering from NO3 had an immediate 

boost in forb proportion, which has since plateaued, potentially due to legumes 

becoming more dominant. That the forb community recovered to higher levels in 

higher soil pH shows the importance of soil pH not only in preventing species loss from 

N additions, but also in the recovery of plant communities and recolonization of N- 

and pH-sensitive species.  

The immediate recovery of plants exhibiting many pollinator-relevant traits 

from NO3 addition is encouraging, as is the albeit slower recovery rate from NH4 

addition. After 22 years of recovery there was no statistical difference between nil 

plots and recovery plots in the proportions of plant species that bear flowers 

morphologically suited to bee visitation, such as labiate flowers, bell flowers, and flag 

flowers. In addition, the continued high presence of simplistic open flowers with NO3 

recovery shows that the recovery of morphologically specialised plants was not at the 

expense of simplistic floral structures, which are important resources for a wider suite 
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of pollinating insects. The proportions of blue-purple, yellow, and UV patterned 

flowers in communities recovering from N additions were not statistically different 

from nil plots, which also suggests that with recovery from N attractive floral resources 

for bees and dipterans is available. The flowering phenology, too, was relatively similar 

to that found in nil plots, although plant communities recovering from historic NO3 

enrichment had a greater density of early-flowering plants. This did not come at the 

expense of late-flowering species or flowering duration. The tendency towards early-

blooming plants is potentially a positive consequence for early-emerging bee species 

that will be foraging for reinvigorating nectar and pollen to start nests and colonies. 

However, despite the many positive signs of recovery, there is one important way in 

which plant communities did not recover, the provision of sugar-rich nectars. Although 

many nectar-rich plants recover, these were not necessarily rich in nectar-sugars, 

which is an important factor to support an abundant and diverse pollinator 

assemblage (Potts et al., 2003; Fründ, Linsenmair and Blüthgen, 2010; Weiner et al., 

2014). 

 

2.5.5 Caveats to consider and limitations of the study. 

The response variables used in the analyses of this chapter data refer to 

vegetative biomass. The data used are from previous years (1990-2000, 2010-2012 for 

PGE; 2002-2003 for UK acid grasslands), collected by other researchers, and does not 

contain information on flowering units. I inferred floral resource provision from these 

datasets. This is an important caveat to consider, as true floral production within 

species will vary across sites and communities. Abiotic drivers, including N, can affect 

floral production (e.g. Burkle and Irwin, 2010). Furthermore, trait values used in the 

analysis were standardised within species, with values obtained from trait databases 

such as BIOFLOR (Klotz et al. 2002). Realistically, floral traits such as phenology, floral 

dimensions, and nectar secretion are relatively plastic and vary with abiotic conditions, 

including N. The full range of expression of these traits is not taken into consideration. 

In consideration of the two caveats described above, the results should be regarded 

with care, as the veracity of the results relies on biological simplifications. Realistically, 

the response of plant communities will vary according to locally mediated conditions. 
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The study does, however, offer a novel view with useful insights of how N and pH act 

as drivers on the supply of floral resources to pollinator communities. 

The PGE plots recovering from eutrophication had high levels of N applied 

historically; 96 kg N ha-1 yr-1. This is incredibly high in the context of current N 

deposition levels but could be applicable to future deposition levels, if fluxes continue 

to increase in regions such as China that currently experience high N deposition 

(Galloway et al. 2004). Furthermore, the PGE N-recovery plots also receive mineral 

fertilisation (P, K, Na, Mg). Therefore, the results of recovery reported in this chapter 

could be symptomatic of high-fertility soils and associated plant communities. 

Recovery responses of plant communities could vary across sites due to localised soil 

conditions. Importantly, however, the study shows that plant communities can 

recover from severe soil eutrophication, an important finding.  

The consideration of phylogenetic constraints in studies of functional traits has 

been heavily debated (e.g. Ackerly and Donoghue, 1995; Westoby et al. 1995; 

Freckleton et al. 2002). The independence of functional traits from phylogeny varies 

with traits, for example quantitative traits such as floral dimensions or nectar 

production are often less constrained by phylogenetic nonindependence (Westoby et 

al. 1995). In this analysis, traits that were more heavily influenced by phylogeny were 

yellow flowers with Asteraceae (8 of 24 acid grassland species; 7 of 17 PGE species), 

and white flowers with Apiaceae in the PGE (4 of 10 species). Other functional trait 

groups were well represented across phylogenetic group. For example, ‘bee-form’ 

flowers included species of Asteraceae (e.g. C. nigra), Lamiaceae (e.g. A. reptans), 

Fabaceae (e.g. T. pratense), and other taxonomical families.  

Phylogenetic and ecology are not mutually exclusive, and phylogenetic 

correction can under-represent variation derived from ecology or environmental 

drivers (Westoby et al. 1995). The importance of phylogenetic correction of datasets 

for comparative analysis is dependent on the research question (Ackerly and 

Donoghue, 1995). The aim of this study was to determine how soil N and pH affect the 

floral landscape and resources for prospective foraging pollinators. For this research 

question, the phylogenetic correction of trait analysis was not deemed necessary.  
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2.6 Conclusion 

 

The study applied an informative analysis towards determining the potential 

impact of N deposition and addition on the floral landscape. Degradation of the floral 

landscapes, particularly in grasslands, has been noted as a key driving factor of 

shrinking pollinator insect diversity and abundances in recent decades (Goulson et al., 

2008; Potts et al., 2010; Vanbergen et al., 2013; Senapathi et al., 2015). The role of N-

enrichment, a driving factor of shifts in botanical communities, warrants research 

efforts. As the study showed, responses of botanical communities can differ across 

different types of ecosystems; this study considered two types of grasslands, but 

responses could vary even more between further unlike ecosystems such as 

temperate grasslands and tropical forests. Furthermore, the impacts of N deposition 

are further confounded by the different impacts caused by NHx and NOy, meaning that 

responses of botanical communities could vary depending on the localised NHx:NOy 

deposition ratios. Ambitious research undertaken across a range of ecoregions could 

help inform world-wide ecosystems. With deposition levels already high and forecast 

to increase further in China and India may already be experiencing impacts that will 

intensify further. The southern Hemisphere, where current deposition levels are 

relatively low, houses many biologically rich hotspots, and is at risk of the impacts of 

rising N deposition levels surpassing critical loads (Phoenix et al., 2006; Bleeker et al., 

2011).  

This study showed, with functional trait analysis, that recording loss in species 

richness does not necessarily give enough insight into the shift in functional traits of 

the botanical communities. Certain floral traits remain stable in the face of N 

deposition, whereas others are more susceptible to declines. However, the different 

responses caused by NH4 and NO3 illustrate the varied responses that could be caused 

by atmospheric N deposition and the complexity in forecasting these. Impacts to plant-

pollinator interactions will likely be influenced by the ratio of NHx:NOy. The study also 

showed the importance of soil buffering capacity; many of the traits studied, 

particularly key pollinator traits, declined further with soil acidification. Throughout 

the study, the results suggested that more specialist floral units will likely decline in 
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the face of increasing N deposition and application rates. Losses of these key resources 

could have had impacts on declines of insect pollinators during the 20th Century 

(Rasmont et al., 2005; Carvalheiro et al., 2013; Baude et al., 2016). The evidence of 

recovery of floral communities, with N cessation, shows that there is a ray of hope. 

Efforts have been made to decrease N deposition, with levels in Europe plateauing and 

declining (Fowler et al., 2004; Storkey et al., 2015). If deposition rates in Europe 

continue to drop, and if such trends are observed across the world, this will help 

pollinator communities which are already under stress of numerous other factors 

(Goulson et al., 2008; Potts et al., 2010; Vanbergen et al., 2013).  
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3.1 Abstract 

 

It is recognised that soil eutrophication and acidification from nitrogen (N) 

addition impacts botanical communities, and that this may have understudied 

implications for further trophic levels. The health of many pollinators is tied to plants; 

for example, bees, key pollinators in many systems, must forage nectar and pollen to 

develop their colonies. Flowering phenology also determines the abundance and 

diversity of floral resources available to pollinators. This botanical trait can be affected 

by abiotic drivers, although research is lacking on the impact of soil N. In light of insect 

pollinator declines, we need to improve our understanding of this. Using the Park 

Grass Experiment (PGE), I set out to determine how different forms and levels of N 

applications, as well as soil acidification, affect flowering phenology. By collecting data 

over an 8-year period, I was able to study the many treatments of the PGE with good 

statistical power. I found impacts to flowering phenology caused by N, and contrasting 

effects of the two forms, ammonia (NH4) and nitrate (NO3). NH4 delayed flowering 

onset and shortened the overall flowering duration for many species. NO3 had a more 

varied effect. Overall, there was a contrast in the responses of early-flowering species 

and late-flowering species. The onset of flowering was advanced, and flowering 

duration increased for the earliest species, while flowering was curtailed with a shorter 

duration observed for later-flowering plants. Inter-specific variation is a common 

problem in forecasting responses to soil-N additions, but the contrast between these 

groups is suggestive of a pattern. The boost in early-flowering species is positive for 

newly emerging insect pollinators, while the early curtailment of later-flowering 

species is detrimental during the peak season for many pollinating insects. 
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3.2 Introduction 

 

3.2.1 Nitrogen deposition and impacts of nitrogen to flowering phenology 

Globally, atmospheric nitrogen deposition has risen sharply since the 

industrialisation of the mid-19th century and is forecast to continue increasing in the 

near-future (Galloway et al., 2004, 2008; Dentener et al., 2006; Fowler et al., 2013). 

From 1860 to 1990 global atmospheric deposition tripled, from 31.6 to 103 Tg N yr-1, 

and is expected to approximately double between 1990-2050 (Galloway et al., 2004). 

These rises are not uniform worldwide, however. The deposition rate is highest in the 

northern hemisphere and, despite plateauing in Europe and North America, is 

continuing to rise in other regions, such as China (Liu et al., 2013). In the southern 

hemisphere, the deposition rate is lower, but is predicted to increase in the near-

future, with potential consequences to biologically rich ecosystems (Phoenix et al., 

2006; Bleeker et al., 2011).  

Increases in nitrogen deposition affect plant community composition; in 

grasslands, this is primarily through heightened competition due to increased soil 

fertility  (Bobbink, Hornung and Roelofs, 1998; Crawley et al., 2005; Bobbink et al., 

2010; Field et al., 2014; Helsen et al., 2014; Storkey et al., 2015). However, the 

fundamental role of N in plant growth means that changes in soil-N could have further 

effects on botanical traits. These impacts are largely understudied and represent a 

knowledge gap (Nijssen, Wallis De Vries and Siepel, 2017; Stevens, David and Storkey, 

2018). There has been little research conducted into how nitrogen additions affect 

flowering phenology; furthermore, the evidence we do have illustrates variation 

across studies, species, and systems. In the field, overall forb communities have been 

observed to flower earlier (Cleland et al., 2006) and later (Smith et al., 2012) in 

response to nitrogen additions. Recent research into the effects of nitrogen 

fertilisation on flowering phenology has not differentiated between reduced (NHx) 

oxidised (NOy) nitrogen and has only considered specific forms, either NHx (Smith et 

al., 2012; Xi et al., 2015; Liu et al., 2017) or NOy (Cleland et al., 2006), or an NHxNOy 

mixture (Xia and Wan, 2013). As the two forms have varying effects to botanical 
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communities, across ecosystems and soil types (Southon et al., 2013; Van Den Berg et 

al., 2016), distinguishing between them could improve our understanding of potential 

responses across regions and NHx:NOy ratios. Furthermore, studies have shown that 

flowering phenology responses varies amongst species (Xia and Wan, 2013; Xi et al., 

2015; Liu et al., 2017). This inter-specific variation is a common theme that confounds 

the development of a clear overview of how plant communities and ecosystems might 

respond to increased soil nitrogen. Within a plant community, the functional traits and 

the key interactions plants share with other trophic groups varies across species. To 

improve our understanding of the inter-specific variation in botanical responses to 

nitrogen, and thus improve the accuracy of our forecasting ability, it is useful to study 

a wide range of species across taxonomic group, season, and ecoregion. A collection 

of evidence across a wider range of species will give us more insight into the varied 

responses of ecosystems to nitrogen additions and help to show under-lying patterns 

in how responses are linked between species.  

 

3.2.2 Importance of flowering phenology for pollinating insects 

Flowering phenology is an important botanical trait for pollinating insects that 

can affect the provision of floral nectar and pollen resources. Flowering phenology is 

a relatively plastic trait that can shift in response to abiotic conditions, such as climate 

warming (Fitter and Fitter, 2002; Parmesan and Yohe, 2003; Cleland et al., 2007; 

Hegland et al., 2009), with the potential to decrease the food supply for pollinating 

insects (Memmott et al., 2007). Whereas climate warming can directly lead to earlier 

pollinator emergence as well as flowering (Gordo and Sanz, 2006), soil-N additions will 

likely only impact plant phenology, not pollinator phenology directly. Shifts in plant 

phenology without likewise shifts in pollinator emergence and activity dates could 

potentially lead to phenological mismatches. Considering recent declining trends of 

pollinator insects (Biesmeijer et al., 2006; Patiny, Rasmont and Michez, 2009; Potts et 

al., 2010; Powney et al., 2019), this is an area that requires further research. It is now 

acknowledged that declining trends are due to many interacting factors, of which the 

loss of floral resources and foraging opportunities is a key driver (Potts et al., 2003; 

Brown and Paxton, 2009; Scheper et al., 2014). Therefore, drivers that limit the 
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abundance of floral nectar and pollen resources, such as shifting flowering phenology, 

need to be strongly considered as a factor. Bees, obligate flower visitors, are key 

pollinators in many systems. The mistiming of key floral resources for oligolectic bee 

species, such as Chelostoma sp. (Sedivy, Müller and Dorn, 2011) or long-tongued 

bumblebees, could exert stresses upon individuals and colonies. For polylectic bees 

and other generalist insect pollinators, the detrimental impacts of shifting floral 

phenology could be buffered and somewhat negated by high botanical biodiversity 

(Bartomeus et al., 2013). However, with insufficient alternative floral resources, shifts 

in flowering phenology could impose limitations on the broad insect-pollinator 

community. Therefore, it is useful to know how the flowering phenology of a botanical 

community is affected, not only individual species. By furthering our understanding of 

how soil N affects the flowering phenology of individuals and communities we can 

more broadly forecast the impacts to pollinator communities.   

 

3.2.3 Aims of the study 

Using the Park Grass Long-Term Experiment (PGE), at Rothamsted Research 

(Hertfordshire, UK), I investigated the impacts of the form of N, the amount of N, and 

topsoil pH on the flowering phenology of common calcareous grassland plant species 

that are visited by pollinators. With the treatment structure of the PGE, it is possible 

separate these effects to make hypotheses of N independent of pH, something that 

can be challenging in other studies (Stevens et al., 2011). The mechanisms that cause 

a plant to begin flowering are typically autonomous, environmental, or stress-induced 

(Takeno, 2016), therefore I hypothesised 1) species-specific responses to the 

treatments. This would be in accordance with other studies that have found 

contrasting responses of flowering phenology to N additions (e.g. Cleland et al. 2006; 

Xia and Wan, 2013, Liu et al 2017). Furthermore that 2) the form of N will be an 

important factor, as plant species vary in their tolerances to reduced or oxidised N 

forms. I further hypothesised that 3) onset of flowering will be related to the species’ 

tolerance to N, with nitrophilic species flowering later. Also, that smaller plants will 

flower later with N additions, due to reduced photoperiod caused by larger vegetative 

sward. In this study I also measured the effects of the N treatments on the in-flower 
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species-richness of plant communities throughout the season. Alongside the lower 

species richness that is typically caused by N addition, I also hypothesised that 4) the 

patterns of community-scale in-flower species richness throughout the season would 

be affected by the increased soil resources. This study is informative in two ways; it 

separates the effects of nitrogen form, amount, and topsoil pH in a study into 

flowering phenology, and it relates changes in community-scale flowering phenology 

caused by nitrogen addition to the species richness that is useful for flower-visitors 

and pollinators. 

 

3.3 Materials and Methods 

 

3.3.1 Field site; Park Grass Long-Term Experiment 

The full description of the PGE can be found in Chapter 2 (section 2.3.1). The 

study presented in this chapter uses data collected from 78 of the 101 subplots, 

encompassing the full range of treatments applied to the PGE. Plots 7/1, 9/1, 13/1, 

14/1, and 15 were excluded from the analysis (Fig. 3.1), as these have had treatment 

alterations in recent years, as explained in section 2.3.1.  Our study is interested in the 

effects of long-term, chronic, nitrogen addition and these 5 plots are not comparable 

to the other PGE plots in this sense. Plot 20 was also excluded, as it contains a unique 

treatment combination that incorporates an alternative level of N (30 kg ha-1 yr-1) in 

addition to organic farmyard manure. 
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Figure 3.1 The PGE plan of plots used for Chapter 3.  
Shaded plots were not used in the analysis as the treatments have been altered within the last 
20 years, all other plots were used.  



 Chapter 3. Flowering phenology 

82 
 

 

3.3.2 Phenology monitoring and data collection 

Flowering phenology was monitored across all PGE plots between 2011-2018, 

during the first cut season from the first flowering until mid-June. The second cut 

season was not monitored, as the June cut date varies between years and would 

influence the date of regrowth. To develop the dataset, I walked around each plot 

approximately twice a week from the time the first flower was observed until the first 

cut in June, recording all botanical species in flower, including grasses. This gives 

community-scale data on the first-flowering dates (FFD) for all plant species found on 

PGE. The dataset also shows the last-flowering date (LFD) and duration of flowering 

for all species that cease flowering prior to the June cut. Furthermore, the dataset 

shows the species richness of in-flower plants for each plot community throughout the 

season.  

In total, 61 species of plants were recorded; 15 grasses, nine legumes, and 37 

forbs. Of the forbs and legumes, 15 forbs and three legumes, flowered consistently in 

the first season, in enough plots that it was viable to assess the impact of the soil 

treatments on FFD. The June cut interrupts the flowering season of 8 of these 18 

species, and so I studied the LFD and overall flowering duration of the 10 species for 

which it was possible to do so, all of which were forbs (Table 3.1).  
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Table 3.1 Chapter 3 study species, representative codes used in the study, taxonomic family, 
response variables tested, and PGE flowering season. 
‘Code’ shows the species code, which is used to refer to the species throughout further figures and 
tables. ‘Response var.’ denotes the response variables that were studied for each species; first-
flowering date (FFD), last-flowering date (LFD), and total flowering duration (duration). ‘Season’ 
denotes the months during which the plant is in flower in the PGE, cut means the species is still in flower 
at the time of the cut in late-June   

Code Species Family Response var. Season 

To Taraxacum officinale Asteraceae FFD, LFD, duration Feb–May 

Ra Ranunculus acris Ranunculaceae FFD Feb–cut 

Rf Ranunculus ficaria Ranunculaceae FFD, LFD, duration Feb–April 

Fm Fritillaria meleagris Liliaceae FFD, LFD, duration March–April 

As Anthriscus sylvestris Apiaceae FFD, LFD, duration April–May 

Rb Ranunculus bulbosus Ranunculaceae FFD, LFD, duration April–May 

Pl Plantago lanceolata Plantaginaceae FFD April–cut 

Ar Ajuga reptans Lamiaceae FFD, LFD, duration April–June 

Cf Cerastium fontanum Caryophyllaceae FFD, LFD, duration April–June 

Tp Trifolium pratense Fabaceae FFD April–cut 

Vc Veronica chamaedrys Plantaginaceae FFD, LFD, duration April–June 

Cm Conopodium majus Apiaceae FFD, LFD, duration April–June 

Sm Sanguisorba minor Rosaceae FFD, LFD, duration April–June 

Trag Tragopogon pratensis Asteraceae FFD April–cut 

Hr Hypochaeris radicata Asteraceae FFD May–cut 

Lh Leontodon hispidus Asteraceae FFD May–cut 

Lc Lotus corniculatus Fabaceae FFD May–cut 

Lp Lathyrus pratensis Fabaceae FFD May–cut 

 

3.3.3 Statistical analysis 

Flowering phenology of individual species 

The impacts of the treatments on the FFD, LFD and the overall flowering 

duration of species within the communities were analysed using mixed-effects models 

with the lme4 package (Bates et al., 2015) in RStudio (R Core Team, 2018). Mixed-

effects, fitted with REML, incorporated relevant treatments as fixed-effects and other 

treatments, plots, and years as random-effects. The fixed-effects were nitrogen type 
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(categorical; nil, NH4, NO3), nitrogen amount (continuous; 0–144 kg N ha-1 yr-1), pH 

(continuous; 3.6–7.2), and the two-way and three-way interactions between these 

variables. To focus on the research question, the effect of N, I incorporated the 

following random-effects: P (categorical; applied, not applied), K (categorical; applied, 

not applied), Na and Mg (categorical; applied, not applied), organic farmyard manure 

(categorical; applied, not applied), year (categorical; 2011–2018) and plot 

(categorical). Initially, I used Julian day and growing-day degrees, with thresholds of 0° 

C and 5° C, as response variables. Growing-day degrees with a threshold of 5° C 

(henceforth referred to as GDD5) fit the data best and helped to account for inter-

annual variations in temperature, so the final statistical analyses were run with GDD5 

as the response variable. For Ranunculus acris, the data was not normal and required 

a log-transformation to determine the best model. The GDD5 response variable for 

other species was normally distributed and did not require transformation. The initial 

models were simplified by removing the least significant variables, one-by-one and 

beginning with the interaction terms, checking the residuals and model assumptions 

at each step.  

 

Community in-flower species richness and seasonal phenology 

From the dataset, I calculated the total species richness of blooming plants in 

each plot for each day in which phenology was monitored over the 8 years. Using the 

ggplot2 package (Wickham, 2016) in RStudio, I plotted the data of species richness 

against GDD5 to investigate how N addition affected the overall species richness of in-

flower plants throughout the season. GDD5 was more accurate in fitting the data than 

both Julian day and growing-day degrees with a threshold of 0° C, as it helped account 

for inter-annual temperature variation. The data was plotted with 95% confidence 

intervals to show statistically significant differences between the treatments 

throughout the season. For the remainder of this chapter, the term ‘species-richness’ 

will refer to the in-flower species-richness, counting only species in flower and not 

those in a purely vegetative state. 

During the 2016-2018 seasons, I conducted pollinator transects of the PGE 

plots, recording insect flower-visitors (data is analysed and presented in full in chapter 
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5). Using this dataset, I identified simple phenological markers of important seasonal 

times for the bee communities, in GDD5: the date of first recorded activity in a season 

to represent first emergence, and the median dates of bumblebee, honeybee, and 

solitary bee activity to represent the dates of peak activity for these groups. These 

seasonal markers were used in this chapter to compare how N addition form, amount, 

or topsoil pH affect the species-richness of floral resources at important times during 

the season for insect pollinators. 

 

3.4 Results 

 

3.4.1 First flowering date (FFD) 

Of the 18 study-species analysed for FFD response, 17 responded in some way 

to the treatments; only Tragopogon pratensis did not show a response to any 

explanatory variables (Table 3.2). Sixteen of the study species responded to the 

quantitative amount of N applied (whether independently or interactively); all but T. 

pratensis and Hypochaeris radicata. Responses to the two forms of N treatments, NH4 

and NO3, varied. Applications of NO3 caused a varied range of responses amongst the 

species; significantly delaying FFD for two species, accelerating five species, and not 

being significant for the other 10. The responses to the reduced form, NH4, were more 

consistent; delaying the FFD of five species and not being a significant factor for the 

other 12. In fact, a simple plot of the mean FFD of the study species from control plots, 

NH4 plots, and NO3 plots shows that no species had an earlier FFD under NH4-

enrichment (Fig. 3.2). NH4 did not delay the flowering of Leontodon hispidus 

independently, but the interactive with pH shows that L. hispidus FFD will be delayed 

in communities with high pH and NH4 addition. The FFD response of six species was 

further affected by the amount of N applied; two advanced and four delayed with 

higher N applications.  

We often find a significant effect by an N variable accompanied by a significant 

interaction between the N variable and pH (Table 3.2). In nine of the 18 occasions in 

which an N variable acts as a significant independent variable, there were non-additive 
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significant interactions between the N and pH. Where there is a significant interactive 

term between an N variable and pH, the response caused by N form or addition will 

vary depending on the pH of the soil. Acting independently, soil pH affected the FFD 

of six species in contrasting ways; at higher pH, FFD was accelerated for three species 

and delayed for three species.  

 

 

Figure 3.2. Summary figure showing the mean effect of NH4 and NO3 treatments on the first-
flowering date (FFD) of all 18 study species.  
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Table 3.2. Output of LMER models studying the impact of treatments on first-flowering date (FFD) of the study-species.  
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models (“+” denotes a delayed GDD5, “-“ denotes an earlier GDD5).  

Species  NH4 NO3 N amount pH NH4:N amount NH4:pH NO3:pH N amount:pH 

To +60.0 -83.4 
 

+14.0 
 

-10.0 +13.1 
 

Ra 
  

-1.4 -6.3 +0.9 
  

+0.2 

Rf 
  

-0.3 
     

Fm  -498.9     +68.6  

As 
   

-12.9 
   

+0.1 

Rb 
 

+210.2 
    

-28.9 
 

Pl 
 

-59.1 
      

Ar +31.9 
       

Cf  +67.38       

Tp +146.2 
 

+0.7 
  

-22.8 
  

Vc   +2.08      

Cm +66.2 -130.9 +0.4 +20.9 
 

-14.3 +15.3 
 

Sm 
   

-20.9 
    

Trag  
 

 
 

 
  

 

Hr 
   

+84.3 
    

Lh 
 

-195.8 
   

+18.3 
  

Lc +84.5 
       

Lp   +0.06      
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3.4.2 Last flowering date (LFD) 

Mixed-effects models of LFD for the 10 study-species also reveal inter-specific 

variation (Table 3.3), although Ranunculus ficaria and Ranunculus bulbosus, from the 

same taxonomic family, share similar responses to the treatments. The LFD of both is 

earlier with higher additions of nitrogen. The earlier LFD caused by high additions of N 

is not as severe in higher pH soils, as shown by the significant interaction between N 

amount and pH.   

Table 3.3. Output of LMER models studying the impacts of the treatments on the last-flowering 
date (LFD) of the study-species. 
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(“+” denotes a delayed GDD5, “-“ denotes an earlier GDD5). The years column indicates the number of 
years for which it was possible to analyse the flowering duration (The full flowering season of some 
species was sometimes interrupted by the PGE cut). 

  

The amount of N applied, regardless of form, was an important factor affecting 

the LFD for many species. Higher applications of N prolonged the LFD for Taraxacum 

officinale agg. but curtailed the LFD for five species. We found significant interactions 

between nitrogen amount and pH for R. ficaria, R. bulbosus, and Sanguisorba minor. 

With high N addition, the LFD of these three species is later in high-pH soils. Regarding 

the form of N, NH4 was not an independent significant factor for the LFD response of 

any species, but interactively with higher pH delays the LFD of Conopodium majus. NO3 

only caused a significant effect to the LFD of Cerastium fontanum, delaying the 

cessation of flowering. Soil pH acts as a significant independent factor for several 

Species  Years NH4 NO3 N amount pH NH4: pH NO3:pH N amount:pH 

To 8   +0.3 +14.5    

Rf 8 
  

-2.9 
   

+0.5 

Fm 8 
   

-17.6 
   

As 3    +19.8    

Rb 4 
  

-2.1 
   

+0.3 

Ar 5 
   

+12.4 
   

Cf 2  +66.4 -1.2 
 

   

Vc 5    +33.2    

Cm 3  
 

-1.2 -16.0 +16.2   

Sm 2 
  

-10.4 +43.2 
  

+1.4 
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species, but with a varied effect between species. In higher pH soils, the LFD is earlier 

for two species, delayed for five species, and unaffected for three species. 

 

3.4.3 Flowering duration 

There was often overlap in the flowering seasons of many of the studied 

species (Fig. 3.3).  However, there was a slight divide between the flowering season of 

the three earliest species, T. officinale, R. ficaria, and Fritillaria Meleagris, and the 

season of other species. The three earliest species began flowering before any grasses 

in the PGE, whereas other study species flowered amongst grass species. 

 

 

Figure 3.3. The recorded flowering times for the 10 study species for flowering duration.  
All data points, each observation from every survey bout, is shown here. Therefore, the figure shows 
each day in which the 10 species were in flower across the PGE between 2011-2019 (1st cut only; January 
– June). 
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The amount of N applied is a significant factor for the overall community-scale 

flowering duration of eight of the 10 study-species (Table 3.4). Higher amounts of N 

addition increased the flowering duration of the two of the three earliest species: R. 

ficaria, and F. meleagris. Two of the early species also had extended flowering duration 

caused by the form of N; NO3 application increased duration of F. meleagris flowering, 

the interaction of high pH and NH4 application increased duration of T. officinale 

flowering. The flowering duration of Anthriscus sylvestris and Ajuga reptans was not 

affected by the amount of N applied, but all other species had shortened flowering 

duration with higher amounts of N application. The durations of A. reptans and C. 

majus were also reduced further when N was in the NH4 form. The contrast between 

the flowering duration of early and later species in response to N is also clearly visible 

when mean values across all experimental plots were taken (Fig. 3.4). 

Table 3.4. Output of LMER models studying the impact of the treatments on flowering duration 
of the study-species. 
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(“+” denotes a delayed GDD5, “-“ denotes an earlier GDD5. The years column indicates the number of 
years for which it was possible to analyse the flowering duration (The full flowering season of some 
species was sometimes interrupted by the PGE cut). 

 

 

 

Species Years NH4 NO3 N amount pH NH4: pH N amount: pH 

To 8     +12.6  

Rf 8 
  

+0.5 
   

Fm 8 
 

+50.7 +0.8 -34.1 
  

As 3 
   

+26.206 
  

Rb 4 
  

-2.378 
  

+0.29 

Ar 5 -72.2 
     

Cf 2 
  

-0.9 
   

Vc 5   -1.98 +46.64   

Cm 3 -180.1 
 

-1.5 -38.2 +35 
 

Sm 2 
  

-3 +77.7 
  



 Chapter 3. Flowering phenology 

91 
 

Independently, higher soil pH increased the overall flowering duration of three 

species, decreased the duration of two species, and did not affect the flowering 

duration of the other five species. There were interactive terms between nitrogen 

amount and pH, for R. bulbosus, and between NH4 and pH, for T. officinale and C. 

majus. There were no significant interactive effects between NO3 and pH. For all three 

species, the flowering duration is longer when nitrogen is added to high-pH soils rather 

than low-pH soils. 

 

Figure 3.4. Summary figure showing the mean impact of the N treatments on the flowering 
duration of the 10 study-species. 
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3.4.4 Community phenology 

In total, 1117 bee visitations to flowers were observed, 613 by bumblebees, 

335 by solitary bees, and 169 by honeybees (Table 3.5). The median earliest 

observations of solitary bees and bumblebees visiting a flower was 156.5 GDD5, for 

honeybees this was 168.8 GDD5. The median observation, across all observations of 

all years, in GDD5 was 491.2 for all bees, 565.3 for bumblebees, 294.9 for solitary bees, 

and 301.8 for honeybees. For the comparisons of community phenology and species 

richness, I used the data for all bees, solitary bees, and bumblebees. Honeybees were 

excluded as their median date closely resembled that of solitary bees, and relatively 

few honeybees were encountered in the transects.  

Table 3.5. Phenological markers used for the emergence and peak activity of bees, obtained 
from pollinator transect surveys. ‘1st Emergence’ and ‘median’ values are given in GDD5.  

Pollinators No. observations 1st emergence Median 

All bees 1117 156.5 491.2 

Bumblebee sp. 613 156.5 565.3 

Solitary sp. 335 156.5 294.9 

Honeybee 169 168.8 301.8 

 

Nitrogen additions of both forms decreased species-richness of flowering 

plants in the mid-season (Fig. 3.5). NH4 additions decreased in-flower species richness 

more than NO3 additions. Plots receiving NH4 additions had the lowest species richness 

of flowering plants throughout the entire season. Plots with NO3 addition had an 

intermediary species-richness during the mid-season.  

The overall shape of the pattern in species richness throughout the season was 

similar between control and NH4 plots, despite the significantly more diverse 

assemblage of flowering plants in nil plots (Fig. 3.5). The application of NO3 led to a 

shifted pattern in community-scale flowering phenology, with a much sharper initial 

increase in the richness of flowering plants in the early season. NO3-enriched plots 

were, on average, earlier to have a species in flower than control plots or NH4-enriched 

plots. This early flourish led to a small early peak at the time of bee emergence during 

which NO3-enriched plots were the most florally species-rich. This was followed by a 

far more gradual rise in species-richness, resulting in control plots surpassing NO3 plots 
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in floral species-richness at approximately 275 GDD5, shortly before the median time 

of peak solitary bee and honeybee activity. The slowing of the NO3 increase occurs 

from 200 GDD5, approximately the same time as the first peak of flowering grasses 

(Fig. 3.6). For the remainder of the season, throughout the times of peak bee activity, 

control plots had the highest species richness. At the very end of the season, there was 

no significant difference between plots receiving either form of N, both of which were 

lower than control plots (Fig. 3.5).  

 

 

Figure 3.5. Species-richness of in-flower plants throughout the season, for all the PGE plots. 
95% confidence interval is shown by the shaded area of each treatment line. The phenological markers 
of bee activity are shown by the vertical lines; median dates of first emergence, solitary bee activity, all 
bee activity, and bumblebee activity. Red data points show nil N plots, blue data points NO3-enriched 
plots, and green data points NH4-enriched plots. 
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Figure 3.6. Density graphs showing flowering activity throughout the season for all grass 
species in a) NH4-enriched plots and b) NO3-enriched plots. 
 

The magnitude of decline in flowering species-richness caused by N 

applications was affected by the amount of N added (Fig. 3.7). At lower additions (48 

kg N ha-1 yr-1), the decline was not so severe, particularly for plots receiving NH4 

additions. At the time of median solitary bee activity, there was no difference between 

NO3-enriched plots and control plots. During the seasons of median bumblebee and 

overall bee activity, there was no significant difference in the species-richness 

between plots receiving the two forms of N, although both treatment types were more 

species-poor than control plots. At high levels of N addition (96 kg N ha-1 yr-1), the plots 

receiving N treatments were far more species poor, with reduced species-richness 

throughout the median seasons of bee activity. 

With liming treatment, which buffers against soil acidification, seasonal 

species-richness trends reflect the overall trends shown across all plots. In plots 

without liming treatment, in which soil acidification can occur, there are strong 

detrimental effects of NH4 addition (Fig. 3.8). On average, there are no flowering plants 

in plant communities receiving NH4 additions in unbuffered soils throughout the entire 

growing season. On the other hand, unlimed plots with NO3 addition have the 

characteristic high early-season peak of NO3-enriched plots. 
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Figure 3.7. Species-richness of in-flower plants throughout the season, for a) plots receiving 48 
kg N ha-1 yr-1, b) plots receiving 96 kg N ha-1 yr-1. 
95% confidence interval is shown by the shaded area of each treatment line. The phenological markers 
of bee activity are shown by the vertical lines; median dates of first emergence, solitary bee activity, all 
bee activity, and bumblebee activity.  
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Figure 3.8. Species-richness of in-flower plants throughout the season, for a) limed plots, b) 
unlimed plots. 
95% confidence interval is shown by the shaded area of each treatment line. The phenological markers 
of bee activity are shown by the vertical lines; median dates of first emergence, solitary bee activity, all 
bee activity, and bumblebee activity.  
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3.5 Discussion 

 

3.5.1 General impact of N additions and N form 

The results of the mixed-effects models show us that N additions to soil clearly 

influence the flowering phenology of plants in-situ. For almost all study species, N-

driven changes to the dates of first-flowering, last flowering, and overall flowering 

duration were observed. The study also found that NO3 addition shifted the typical 

seasonal species-richness curve. Some research has shown evidence of linear 

responses of species-richness to N additions, with more severe losses occurring with 

higher N inputs (Stevens, Duprè, et al., 2010; Humbert et al., 2016). The presented 

results agree with these studies; while N additions deplete flowering species richness 

in the peak season, the greatest loss of species was found with higher inputs of N (Fig. 

3.7). A species-poor plant community that is dominated by grasses will likely reduce 

the range of nutritional values available to pollinating insects, with detrimental 

consequences for pollinator communities (Potts et al., 2003, 2010; Fründ, Linsenmair 

and Blüthgen, 2010; Weiner et al., 2011) and the development of bee larvae and 

colonies (Génissel et al., 2002). 

The findings of this study also show that the level of N additions can be 

important for flowering phenology, with more exacerbated changes to phenology 

occurring with higher inputs of N. Therefore, high levels of addition and deposition to 

soils could be impactful to ecosystems in multiple ways. The response of pollinators to 

soil N will be determined by N-driven impacts to floral traits, such as phenology, not 

only by changes in species composition. Even if flowering forbs and legumes rich in 

nectar and pollen maintain populations under N-enrichment, shifts in flowering 

phenology will affect the provision of floral resources. The flowering cessation and 

flowering duration were more frequently explained by the amount of N applied, rather 

than the form of N. Therefore, changes in soil fertility could determine the flowering 

duration of many botanical species within plant communities rather than the different 

soil processes and mechanisms of nutrient uptake associated with alternate N forms. 

The prevalence of N amount as a significant factor suggests that impacts to flowering 
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phenology could occur across the globe regardless of spatial variation in NHx:NOy 

ratios.  

Although the impacts to flowering cessation and duration were more 

commonly driven by the amount of N applied, the form of N was revealed as an 

important determinant of the onset of flowering for many species. Previous studies 

into the impacts of N on flowering phenology have focused on individual forms of N 

or on an NHx:NOy mix. None have researched both NHx and NOy and considered them 

as separate entities with potentially different effects or response mechanisms. 

Nonetheless, the collection of previous research has suggested contrasting effects 

between the two forms of N, with NOy more commonly advanced forb flowering 

(Cleland et al., 2006; Smith et al., 2012; Xia and Wan, 2013; Liu et al., 2017). In the 

PGE, when NH4 was applied to experimental plots, all 18 study-species had a mean 

date of first flowering that was either the same or later than control plots; no species 

had an advanced FFD mean (Fig. 3.2), although the mixed-effects models only show 

statistically significant effects for five of the species. This finding is consistent with 

other studies that also found delayed effects to flowering caused by NHx additions 

(Smith et al., 2012; Xia and Wan, 2013; Liu et al., 2017). On the other hand, FFD 

responses to NO3 additions were far more varied (Fig. 3.2), mixed-effects models 

showing statistically significant responses that were both delayed and advanced 

across the various study-species. The clear contrast in responses between the two 

forms suggests mechanistic differences in how the separate forms of N affect plants, 

whether through changes in competitive dynamics, soil processes, or uptake by plants.  

Evidence of the impacts of soil N on flowering phenology could be of use 

alongside research into the effects of climatic warming on phenology. Insect 

emergence and flowering phenology can both be advanced by climatic warming (Fitter 

and Fitter, 2002; Hovenden et al., 2008; Khanduri, Sharma and Singh, 2008; Hegland 

et al., 2009; Ibáñez et al., 2010; Thackeray et al., 2010). In some cases, insect 

emergence is more sensitive to warming and is accelerated further than flowering 

phenology (Gordo and Sanz, 2006; Parmesan, 2007; Forrest, 2016), although this is not 

necessarily an ubiquitous phenomenon. As N-enrichment likely will only impact 

directly on flowering phenology, not on insect emergence, there is the potential for 
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phenological mismatches where NH4 causes FFD delays whilst pollinators emerge 

earlier. However, global drivers of environmental change, such as temperature, 

atmospheric carbon, and nitrogen deposition, acts together and can have interactive 

effects on flowering phenology (Cleland et al., 2006; Hoover et al., 2012). A greater 

research effort to synergise this research would be helpful in understanding the 

impacts of these drivers across the globe. 

 

3.5.2 Inter-specific variation; taxonomic families 

There were no clear links between the species-specific responses and N-driven 

impacts on the common triggers of flowering (autonomous, environmental, or stress-

induced). I hypothesised that nitrophilic plants may flower considerably later, due to 

the increased potential for vegetative growth, also that the smallest plants would 

flower considerably later due to reducing photoperiod from shading. However, there 

was no discernible pattern in flowering onset amongst the inter-species variation. Of 

the three most nitrophilic plant species, A. sylvestris, R. ficaria, and T. officinale, 

(respective Ellenberg N scores of 7, 6, 6 (Hill et al. 1999)), A. sylvestris was one of the 

more delayed plants by N. However, flowering of R. ficaria and T. officinale was not 

strongly delayed by N additions. The smaller peak-season species prone to being 

overshadowed were C. fontanum, C. majus, and V. chamaedrys. With NH4 addition, V. 

chamaedrys flowering was especially delayed, however there were negligible delays 

with NO3 additions, or for the flowering of C. majus and C. fontanum with either N 

additions.  

Inter-specific variation in responses to N additions can complicate 

predictability; addressing this variation by determining factors that group responses 

can improve our ability to forecast consequences which will improve conservation or 

mitigation attempts. Burkle and Irwin (2009) posited that life-history traits, namely 

annuality and perenniality, were important in explaining inter-specific variation of 

responses to N additions. All species used in the study of the PGE were perennial, so 

it was not possible to agree or disagree with this suggestion. However, it was possible 

to gain some insight into the variation of responses within taxonomic families. The 
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study species cover a range of taxonomic families, although the numbers of species 

within taxonomic families is low. All 3 Fabaceae species, L. corniculatus, L. pratensis 

and T. pratense, had delayed FFD in response to N additions. Another study, on the 

legume Cicer arietinum, also showed delayed onset of flowering in response to N 

additions (Namvar and Sharifi, 2011). Fabaceae possess rhizobacteria in their roots 

that fix N from the air; therefore, they do not exploit increased soil fertility in the same 

way as other plants, which could lead to differences in the responses of floral traits of 

legumes and forbs. For Fabaceae that maintain populations in N-enriched soils, the 

shift in competition dynamics could limiting flowering opportunities, thus delaying the 

onset of flowering or leading to shortened duration. It was not possible to study the 

duration of flowering for the Fabaceae species in the PGE, as the flowering seasons of 

these plants are interrupted by the mid-Summer cut. Fabaceae produce protein-rich 

floral rewards (Hanley et al., 2008) that are favoured by many bees (Carvell, 2002), 

and so the delayed flowering could have consequences for bumblebee species.  

However, the relevance of taxonomic family in grouping phenological responses to N 

additions was inconsistent and therefore is not reliable. The two early Ranunculaceae, 

R. acris and R. ficaria, had a slightly advanced date of flowering onset with higher levels 

of N addition but R. bulbosus did not fit this pattern. However, there were interesting 

similarities in the flowering cessation of Ranunculaceae, with earlier flowering 

cessation in both R. bulbosus and R. ficaria in response to N additions. Furthermore, 

the magnitude of the response of both species was exacerbated in acidic soils. 

Although similarities were recorded in the phenological responses of Ranunculaceae, 

further similarities throughout the family are not supported by the literature; a study 

of the flowering phenology of three montane Ranunculaceae species found 

contrasting responses to N additions (Liu et al., 2017). Furthermore, the lack of similar 

responses within Asteraceae and Apiaceae suggests that taxonomic family is an 

unreliable indicative factor and should not be used widely for predicting inter-specific 

variation of flowering phenology responses.  
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3.5.3 Seasonality as an explanatory factor of inter-species variation patterns 

Throughout the results there is a clear contrast in how early-flowering and late-

flowering species responded to N additions. Four species in the PGE commonly flower 

before any grass species flowers, T. officinale, R. ficaria, R. acris, and F. meleagris. After 

this, the earliest grasses begin thriving and flowering, e.g. Anthoxanthum odoratum, 

Alopecurus pratensis, Carex flacca, and Luzula pratensis. During and following this, the 

remaining forbs and legumes flower. Results from the mixed-effects models 

consistently showed a contrast between species flowering before and after the first 

group of grasses. The primary impact of N on species richness is through changes in 

competitive dynamics, which causes grasses to thrive at the expense of forbs and 

legumes (Bobbink, Hornung and Roelofs, 1998; Crawley et al., 2005). The alteration of 

competitive relations could be the mechanism that explains the contrast between 

these two response groups. Before the grasses thrive, the earliest flowering plant 

species can take advantage of the extra soil nutrition and exploit the available space 

and light. Vigorous grass growth during the Spring then leads to a loss in flowering 

opportunities for forbs and legumes, causing curtailed flowering for many species 

(Table 3.3; Table 3.4). Alternatively, the accelerated flowering of early plants could be 

explained by increased stress caused by soil nitrogen applications. Stress, whether 

through temperature, water availability, salinity or pathogens can lead to earlier 

flowering of plants as they look to ensure the successful continuation of future 

generations (Kazan and Lyons, 2016). However, R. ficaria and T. officinale are relatively 

tolerant of N, although F. meleagris is less so (Hill, 1999). Furthermore, this mechanism 

does not explain the clear contrast between early species and mid-season species. 

When considering the N applications as separate forms, NH4 and NO3, we see 

that the positive effects of N application on the flowering duration of early plant 

species are more commonly associated with NO3 application, with less benefit from 

NH4 application.  For example, the flowering durations of R. ficaria and F. meleagris 

were prolonged by NO3 additions, whereas they were not able to tolerate or grow in 

NH4 plots. These plant species are more typical of neutral or calcareous grasslands 

than acidic grasslands (Rodwell 1992). Therefore they are likely not so well adapted to 
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the cell acidification that can occur with NH4 uptake (Britto and Kronzucker, 2002; 

Lucassen et al., 2003; Stevens et al., 2011).  

The boost to early flowering provided by NO3 is well-illustrated by the seasonal 

patterns in community flowering species-richness (Fig. 3.5). The NO3-enriched plant 

communities were first to flower and had higher in-flower species-richness during the 

early season, when the first bees were observed foraging. Plant communities 

experiencing NO3 deposition with relatively little NH4 will likely have a more diverse 

array of floral resources for newly emerging bee species, such as Bombus terrestris, 

Bombus pratorum, and many Andrena sp.. The increased variety of resources can be 

important for queens emerging from hibernation, in need of nectar to reenergise and 

pollen to establish new colonies and rear initial workers and offspring. For example, 

plant communities featuring only T. officinale in the early season may pose problems 

for developing bee colonies (Génissel et al., 2002); this plant species, although 

producing abundant sugar-rich nectar (Hicks et al., 2016), lacks several important 

amino acids (Roulston and Cane, 2000), causing problems in larval development when 

foraged on its own (Génissel et al., 2002). However, most regions across the world 

experience deposition ratios that are NH4-dominant or relatively even (Dentener et 

al., 2006). Therefore, in real-world plant communities, these positive effects to early 

plants might be distorted by the detrimental impacts caused by NH4. 

In the mid-Spring season, the effect of limited flowering opportunities is 

revealed. The flowering species richness of NO3 plant communities slowing, whilst that 

of control plots continues rising and eventually surpasses NO3-enriched plots between 

250–300 GDD5. Depending on the year, this is generally between mid-March – mid-

April. Therefore, from approximately mid-April through the remainder of Spring and 

Summer, control plots were clearly the most species rich. It is at this time that colonies 

of bumblebees are at their largest and require a large amount of nectar and pollen to 

feed adult bees and newly produced workers, gynes, and males. A more diverse 

selection of floral resources benefits the diversity and density of bee communities 

(Potts et al., 2003; Fründ, Linsenmair and Blüthgen, 2010; Weiner et al., 2011; Vaudo 

et al., 2015) and can aid bees against other detrimental factors such as parasitism (Di 

Pasquale et al., 2013). The stagnation of species richness in NO3-enriched plots could 
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cause colonies, which may be well established due to rich early resources, to become 

stressed as floral resources dwindle during the peak season. The time frame for the 

restriction of flowering species richness in NO3 plots overlays the typical period of early 

grass flowering (Fig. 3.6), which further emphasises the possibility that grasses are 

limiting flowering opportunities for N-tolerant forbs.  

 

3.5.4 Soil acidification 

The structure of the PGE allows us to separate the effects of N addition and pH 

and shows that topsoil pH can be an important interactive factor that influences 

flowering phenology and species richness. As an independent variable, the effect of 

pH on phenology varied, but when incorporated as an interactive term, cautionary 

impacts of soil acidification on flowering phenology were revealed. Often, a significant 

effect of N was accompanied by a significant interaction between N and pH that 

signified the ability of well-buffered soils to mitigate severe impacts of N additions. In 

soils where the pH was maintained at 6 or 7, there was often less impact caused by N 

to many species. Plant-pollinator networks in poorly buffered soils undergoing high N 

deposition could therefore be more prone to phenological asynchrony. With regards 

to the species richness of plants in flower, the impacts of NH4 in poorly buffered soils 

is severe, with a near total loss of flowering plants throughout the season. 

 

3.5.5 Limitations of the study and caveats to consider. 

 The treatment structure of the PGE has useful attributes, such as the 

separation of N and pH as drivers. However, the separation of NO3 and NH4 leads to 

difficulty in the inference of realistic responses. Atmospheric N deposition occurs as a 

mixture of oxidised and reduced N, albeit on a gradient of NHx dominance to NOy 

dominance. It would be useful to study the responses of flowering phenology to a mix 

of N forms. The study was conducted using the PGE, a single field site that simulates 

various nutrient enrichment scenarios and the subsequent plant communities. N 

deposition is a driver of global change, affecting ecosystems across the world with 

varying effects and magnitudes (Bobbink et al. 2010). The findings of this chapter are 
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informative, but only pertain to temperate grasslands. The impact of soil 

eutrophication and acidification on flowering phenology could vary across 

communities according to locally mediated biotic and abiotic factors. Further research 

to ascertain, first if the results of the PGE study are applicable to other temperate 

grasslands, and second to identify responses in other ecoregions and ecosystem types 

would be useful. This may help us to gauge the magnitude of soil eutrophication and 

acidification as driving factors of pollinator populations and pollination services.   

 

3.6 Conclusion 

 

Applications of N to the mesotrophic soils of the PGE affected the flowering 

phenology of a wide suite of plants. The prevalence of impacts of N additions, on FFD, 

LFD, and duration, of all study species, suggests that chronic N additions and 

deposition could have wide-reaching effects on plant-pollinator interactions through 

floral traits. Real-world predictability of the impacts of N-enrichment can be 

complicated by the varied responses amongst plant species, but in this study a clear 

contrast between early flowering plants and those in the peak season was shown.  A 

possible mechanism for this was suggested to be the increased grass biomass 

associated with N-enriched soils, with the enhanced competitive relations limiting 

flowering opportunities. While there were potentially positive impacts to the 

flowering duration of early flowering-plants, plants in the important peak season of 

bee activity had reduced flowering durations, thereby limiting the total provision of 

floral resources during the season of highest insect-pollinator abundance.  

A contrast was also found between the two forms of N applied in the PGE, 

reflecting the alternate preferences and tolerances of plants to uptake certain forms 

of N. This will cause plant communities to respond differently depending on the ratio 

of NHx:NOy they are receiving. Understanding the difference in responses to the 

different forms of N will help to improve the accuracy with which we can forecast 

impacts of N. This can then improve our ability to plan mitigation or conservation 

approaches to tackle negative consequences of N deposition.  
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The flowering durations of most study species responded to the amount of N 

applied, regardless of the form. This suggests that with higher levels of N deposition 

or application, limitations to flowering duration could occur which could impact on the 

provision of floral resources of nectar and pollen to wild pollinators. The consequences 

of the reported impacts to flowering phenology to pollinators will likely be species- 

and interaction-dependent. For example, strongly specialist pollinators with a narrow 

diet breadth could be more severely impacted than generalists if their primary floral 

resources have a reduced flowering duration. The impact to pollinators could be 

buffered by high biodiversity of flowering plants (Bartomeus et al., 2013), although N 

applications were also shown to decrease the species richness of in-flower forbs and 

legumes during the peak season.   
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4.1 Abstract 

 

Many insects visit flowering plants primarily for the floral nectars produced by 

nectary glands. Visiting insects gain energy through feeding on the carbohydrate-rich 

viscous liquid. Nectar traits, such as secretion, sugar composition, and sugar 

concentration, vary across plant species and can influence insect visitation. Nectar 

traits are also relatively plastic and can vary within plant species in response to abiotic 

drivers. The impact of soil nitrogen (N), a pervasive driver of global change through N 

deposition, on variation of nectar traits remains poorly understood. This is one of 

many knowledge gaps in the question of how N-enrichment of soils affects plant-

pollinator interactions. In this chapter, I study the impact of N applications, topsoil pH, 

and other mineral applications on six entomophilous plant species that grow in 

mesotrophic grasslands and supply rich nectar and pollen resources to a range of 

insects. The study found nectar trait responses to N in most of the study species. 

Strong responses of Ajuga reptans to NH4 additions were recorded, with reduced 

nectar volume and lower sugar concentration of nectar in plots where the treatment 

was applied. The nectar volume of Centaurea nigra also responded to both forms of N 

treatment, NH4 and NO3, resulting in lower provision of sugars per flower. The 

concentration of sugars in C. nigra nectar were strongly affected by the application of 

other minerals. The two Apiaceae species, Anthriscus sylvestris and Heracleum 

sphondylium, both had lower proportions of sucrose with increasing levels of N 

addition. On the other hand, Trifolium pratense and Knautia arvensis did not respond 

to N treatments. This shows that, although inter-specific variation is apparent, 

deposition and applications of N to soils can have detrimental impacts on the nectar 

traits of a wide range of plants, such as reduced provision of sucrose and total sugars. 

The richness and reward of nectar traits throughout a plant community can have 

implications for the richness of pollinator assemblages. Therefore, when studying the 

impacts of N on pollinators, it is important to look beyond species richness, and 

consider floral traits. 
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4.2 Introduction 

 

4.2.1 The importance of floral nectars for insect pollinators and flower-visitors 

Floral nectars are an important source of nutrition for insect pollinators and 

other flower visitors. Nectar is the primary reason for insects to visit flowers. To feed 

their progeny, bees also forage for pollen, but many other adult insects have 

difficulties consuming pollen (Roulston and Cane, 2000). There are other instances of 

bees foraging flowers for fatty oils (Steiner and Whitehead, 1991), but nectar is the 

key reward that is sought after by insects across taxa including hymenopterans, 

dipterans, coleopterans and lepidopterans. Insects feed on this viscous sugar-rich 

liquid, produced by the nectary gland, to gain the energy they require to function. The 

predominant components of nectar are water and sugar; the most common sugars are 

disaccharide sucrose and the hexose monosaccharides fructose and glucose, which are 

found in floral nectars from nearly all plants species (Wykes, 1952; Percival, 1961; 

Southwick, Loper and Sadwick, 1981). Other sugars can be present, such as maltose, 

melibiose, and raffinose, but in far lower concentrations (Wykes, 1952; Percival, 1961). 

Floral nectars also contain other components, including amino acids, alkaloids, and 

lipids, that may have important roles in insect dietary nutrition, bacterial immunity, 

and potentially for protecting nectar from unwanted visitors (Baker, 1977; Adler, 2000; 

Carter and Thornburg, 2004; González-Teuber and Heil, 2009; Nepi et al., 2012). 

Sugars, as the predominant components of nectar, and the primary draw of insect 

visitors due to their calorific reward, are the focus of this study. 

The concentration of total sugars in floral nectars range widely, but median 

and mean values tend to fall around 40% (Pamminger et al., 2019). As such, insect 

pollinators forage nectars with a wide range of sugar concentrations (Roubik and 

Buchmann, 1984; Forcone, Galetto and Bernardello, 1997; Kajobe, 2007), although 

evidence suggests that certain groups of insects preferentially forage nectar with 

specific sugar-richness. When a flower-visitor is feeding from nectar, the optimal 

sugar-concentration is a trade-off between the calorific gain given by the sugars and 

the energy required to access and drink the viscous liquid (Kim, Gilet and Bush, 2011). 

Following this logic, deeper corollas, which typically require more energy to forage 
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than open simplistic flowers, should be more rewarding (Harder, 1986). Furthermore, 

different insect groups have varying energy demands; for example, a large bee will 

require more energy than a dipteran to initiate and maintain flight muscles. As such, 

long-tongued bees that forage longer corollas prefer more concentrate nectar than, 

for example, generalist dipterans that forage open flowers (Krömer et al., 2008; Kim, 

Gilet and Bush, 2011; Vandelook et al., 2019). The optimum range of sugar 

concentrations for bees therefore, to give them net energy gain in order to power 

flight muscles, is 55-60% (Kim, Gilet and Bush, 2011). For hymenopterans foraging for 

nectar, the aim is to maximise efficiency; overly long corollas can cost energy to forage, 

whereas corollas that are too short often contain nectar that is not rewarding enough 

(Klumpers, Stang and Klinkhamer, 2019). Other insect groups typically forage more 

dilute nectar, 30-40% for lepidopterans, and lower still for dipterans (Kim, Gilet and 

Bush, 2011; Vandelook et al., 2019). Pyke and Waser (1981) found that bird-pollinated 

flowers were typically more dilute than bee-pollinated flowers, also relating 

concentration to pollinator syndrome, potentially because of the larger appetite and 

feeding apparatus of birds compared to bees.  

An important characteristic of floral nectar is the composition of the main 

sugars. Studies of sucrose:glucose:fructose, or more commonly sucrose:hexose, ratios 

have shown sugar compositions vary across species. The compositions are relatively 

stable within species (Wykes, 1953), but can be affected by abiotic conditions such as 

relative humidity (Corbet, Unwin and Prys-Jones, 1979). Interestingly, the majority of 

studies suggest that nectar sugar composition, specifically the proportion of sucrose, 

is strongly linked with proposed pollinator syndromes, floral morphologies, and typical 

visitors (Percival, 1961; Southwick, Loper and Sadwick, 1981; Krömer et al., 2008; Witt, 

Jürgens and Gottsberger, 2013; Abrahamczyk et al., 2017; Vandelook et al., 2019), 

although not all studies have found this relationship (Chalcoff, Aizen and Galetto, 

2006). For example, bee-pollinated flowers with longer corollas, such as various 

Fabaceae and Lamiaceae, tend to have sucrose-dominant nectars (Wykes, 1953; 

Southwick, Loper and Sadwick, 1981; Petanidou, 2005). In turn, specific functional 

groups of pollinators, when foraging, have developed corresponding preferences for 

certain nectar profiles. Long-tongued bees preferentially forage from plants producing 
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high sucrose nectars (Elisens and Freeman, 1988; Petanidou, 2005; Petanidou et al., 

2006). Furthermore, long-tongued bees are able to detect increases in sucrose and 

adapt their foraging behaviour accordingly (Cnaani, Thomson and Papaj, 2006), 

suggesting an adaptive preference for such nectars. Short-tongued bees and 

lepidopterans prefer more balanced nectars and the most generalist insect flower 

visitors, such as many dipterans and coleopterans, preferentially feed from hexose-

dominant nectars (Elisens and Freeman, 1988; Petanidou et al., 2006). Whilst plants 

with deep corollas produce sucrose-dominant nectar, the open floral structures of 

Apiaceae and Rosaceae have hexose-dominant nectars and Asteraceae and 

Dipsacaceae more evenly balanced sugar profiles (Southwick, Loper and Sadwick, 

1981; Petanidou, 2005). These species are visited by a wider suite of insects, from 

generalist bees to dipterans. The range of sugar compositions found in floral nectars 

and corresponding insect preferences suggests that nectar traits have a role in the 

adaptive evolution of pollinator foraging habits and plant-pollinator interactions 

(Abrahamczyk et al., 2017; Vandelook et al., 2019). Specialist nectar-feeding bird 

species can digest and assimilate polysaccharide sucrose sugars whereas opportunistic 

nectivorous birds are only able to assimilate monosaccharide hexose sugars such as 

glucose and fructose (Martinez del Rio, 1990; Martinez del Rio, Baker and Baker, 1992; 

Dupont et al. 2004). There is insufficient evidence to ascertain if this contrast is also 

true between specialist insect pollinators, such as bees, and opportunistic nectar 

feeders, such as many dipterans.  In addition to the nectar niches according to 

pollinator functional groups are possible gender-specific preferences for certain 

nectar types. Rusterholtz and Erhardt (2000) found that females of the threatened 

lepidopteran Lysandra bellargus preferred to forage glucose-rich nectars whereas the 

males preferred high-sucrose nectars. 

 

4.2.2 How might nitrogen impact on floral nectars, and the consequences for 

pollinators? 

Although patterns have been found in nectar traits, the secretion and chemical 

composition of floral nectars is not necessarily stable within species across plants and 

flowers, or even within flowers across time (Corbet et al., 1979; Roubik and Buchmann, 
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1984; Herrera, Pérez and Alonso, 2006; Kajobe, 2007). Abiotic and biotic factors affect 

nectar traits, and this is therefore a relatively plastic trait that can vary according to 

environmental change. The chemical composition of nectar can change throughout 

the day, as temperatures increase and relative humidity falls, typically leading to 

higher sugar richness (Southwick, Loper and Sadwick, 1981; Roubik and Buchmann, 

1984; Kajobe, 2007) and sucrose proportions (Corbet et al., 1979; Corbet, Unwin and 

Prys-Jones, 1979) being found around midday. There is evidence that aboveground 

herbivory and belowground microbiota can also affect nectar traits although this is an 

area that needs further research to reveal the extent (Barber and Soper Gorden, 2014). 

Abiotic drivers of global change, for example increased atmospheric carbon dioxide 

(Osborne et al., 1997; Rusterholz and Erhardt, 1998; Lake and Hughes, 1999; Erhardt, 

Rusterholz and Stöcklin, 2005) and climatic warming (Hoover et al., 2012; Scaven and 

Rafferty, 2013; Mu et al., 2015; Takkis et al., 2015), can affect nectar production and 

composition.  

Nitrogen (N) deposition, a driver of global change, and direct applications of N 

to soil also have impacts on nectar traits. This could consequentially have effects on 

plant-pollinator interactions, pollinator net energy gain, and therefore pollinator 

populations. However, research into the subject is limited and we lack a thorough 

understanding. Nectar trait responses can vary according to the rates of addition. 

Burkle and Irwin (2009, 2010) found increased nectar production in Ipomopsis 

aggregata at low levels of N additions, but not at high levels. Furthermore, species-

specific responses are apparent across studies (e.g. Shuel 1956; Petanidou et al. 1999; 

Burkle and Irwin 2009, 2010; Baude et al. 2011). The functional lifecycles, N take-up 

strategies, and taxonomic differences between plants could explain some of this inter-

specific variation in nectar trait response. For example, Shuel (1956) found 

Antirrhinum majus had increased nectar production with N and nutrient additions 

while Trifolium pratense, a Fabaceae, showed no response. A study using litter 

amendments also did not record any response from a leguminous plant Medicago 

sativa (Baude et al. 2011). Leguminous plants take up N through N-fixing 

rhizobacterium, so do not exploit increases in soil N like grasses and flowering forbs. 

This could explain why the responses of legumes can differ from those of forbs. Annual 
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plants and perennial plants are also shown to differ in their nectar trait responses. 

Ipomopsis aggregata, an annual plant, increased nectar production with N additions, 

whereas the perennial Linum lewisii did not (Burkle and Irwin, 2009). In a separate 

study, the addition of plant litter amendments to soil caused the nectar sugar content 

of Lamium amplexicaule, an annual herb, to increase (Baude et al. 2011). The nectar 

traits of a semi-perennial herb, Mimulus guttatus, did not respond to litter 

amendments. It should be noted that increasing soil N can also lead to decreased 

nectar production, Gymnadenia conopsea growing in higher N soil produced less floral 

nectar (Gijbels et al. 2014). Petanidou et al. (1999) found the nectar trait responses to 

nutrient additions (N, potassium (K), and phosphorous (P)) of an herbaceous species 

differed from that of woody species. Glucose proportionally increased in the nectar of 

woody species, Thymus capitatus and Satureja thymbra, whilst in the herbaceous 

Stachys cretica sucrose increased. Other studies have similarly found changes to the 

sugar profiles of floral nectar with N or nutrient additions. Glucose proportionally 

decreased in Succisa pratensis nectar with nutrient additions (Ceulemans et al. 2017). 

In Cucurbita pepo, glucose decreased relative to fructose with NH4NO3 additions, while 

a proportional decrease in sucrose was also recorded (Hoover et al. 2012).  

Increased soil N has often been shown to increase amino acid content of floral 

nectars (Gardener and Gillman, 2001; Gijbels et al. 2014, 2015), although not in all 

studies, Petanidou et al. (1999) did not find any change to amino acid content in the 

nectars of phrygana plants. Changes to amino acid profiles caused by N and nutrient 

additions (Gardener and Gillman, 2001; Ceulemans et al. 2017) could also affect 

pollinator feeding habits, as certain guilds of pollinators are shown to prefer specific 

amino acids in high concentrations, such as Megachilidae with gamma-aminobutyric 

acid (GABA). 

 The most prevalent way that N affects plant communities is through a change 

in competitive dynamics, which can also affect nectar traits (Baude et al., 2011). The 

presence of strongly competitive species can negatively impact the nectar traits of 

adjacent annual herbaceous species, with a study showing decreased nectar 

production and sugar provision in L. amplexicaule when grown with M. guttatus 

(Baude et al. 2011). There could be other indirect biotic effects from herbivory. 
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Herbivory can increase with N addition, and this can have implications for nectar 

production and quality (Adler et al. 2006). Therefore, whether through increased 

stress, nutrition, or competitive dynamics, it’s possible that N can act as a factor on 

plant-pollinator interactions through nectar traits. The altered floral rewards and 

interactions could have consequential impacts on the development and stability of 

colonies of important pollinators (Ceulemans et al., 2017). 

 

Global N deposition has risen sharply during the last 150 or so years, tripling 

from 34 Tg N yr-1 in 1860 to 100 Tg N yr-1 in 1995, and with further increases predicted 

(Galloway et al., 2004). Direct applications of N to soils as agricultural practice further 

adds to the flux of N to soils and ecosystems. Historically, higher N additions are 

spatially related to regions of more intensive industry, such as Europe, North America, 

India, and China, with lower fluxes in the Southern Hemisphere. While global 

deposition rates are expected to continue rising, deposition in Europe has recently 

begun to plateau and decline (Erisman, Grennfelt and Sutton, 2003; Fowler et al., 

2004). The impact of this is gaining consideration as a driver of global change, and 

researchers are increasingly concerned about how ecosystems might be affected 

(Tylianakis et al., 2008; Nijssen, Wallis De Vries and Siepel, 2017; Stevens, David and 

Storkey, 2018). Our understanding of the effect to botanical species compositions is 

relatively good, despite knowledge gaps regarding some ecoregions, such as the 

tropics (Bobbink et al., 2010). However, our knowledge of the impacts to higher 

trophic levels is patchy (Stevens, David and Storkey, 2018), with a particular lack of 

knowledge regarding plant-pollinator interactions (David, Storkey and Stevens, 2019). 

Habitat degradation is considered a major driver of pollinator declines (Vanbergen and 

Iniative, 2013; Rader et al., 2014). Excessive N-enrichment could well contribute 

towards this driver by reducing botanical species richness. However, N additions could 

also lead to changes in the quality of resources. The interactions between plants and 

pollinators are strongly influenced not only by botanical species composition, but also 

floral traits, such as nectar quantity, composition, and quality. With insect pollinators 

declining across taxa and ecoregion to a plethora of factors, the role of N-driven 

alterations to botanical communities demands further research.  
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4.2.3 Aims of the study 

With this study, I aimed to determine how chronic N additions and soil 

acidification affect the nectar traits of some key floral resources, with a view of the 

impact to nectar provision for foraging insect pollinators. Due to the varied responses 

observed through the literature, it is necessary to study several species. Using the Park 

Grass Experiment (PGE), at Rothamsted Research, species have been selected that 

span a range of pollinator syndromes, tolerances, and life history traits as well as 

occurring on a range of fertiliser treatment plots. The impact of nitrogen applications, 

soil acidification, and mineral additions on nectar quantity, composition, and quality 

were studied, with a view to how plant-pollinator interactions might be impacted. The 

study will address the hypotheses that 1) N additions will lead to changes in floral 

nectar traits and that 2) species will differ in their responses, with forbs showing more 

response than the legume species. Finally, the study addresses the hypothesis that 3) 

soil eutrophication will lead to a degradation in nectar sugar provision by plant 

communities, due to changes to nectar traits and floral abundance. 

 

4.3 Materials and methods 

 

4.3.1 Park Grass Long-term Experiment 

Nectar samples were taken from the PGE (See Chapter 2 for full summary of 

the PGE). Samples were taken from plots 3b, 3d, 1b, 1c, 17b, 17d, 7/2b, 7/2d, 16b, 

16d, 14/2b, 14/2d, 13/2b, 13/2d (Fig. 4.1). These plots incorporate a range of N 

treatment forms (nil, NH4, NO3, organic farmyard manure), N amounts (0, 48 kg ha-1 

yr-1, 96 kg ha-1 yr-1), pH (5–6.3), and mineral applications (with or without P, K, Na, Mg), 

as shown in Table 4.1. The plots were chosen to give comparisons across forms of N, 

amounts of N, and soil pH. Incorporating plots receiving minerals into the study gives 

an extra dimension to study the application of N. As the Park Grass Experiment lacks 

pure plot replication, it is important to look for hidden replication that can improve 

the statistical power of analyses. The plots also encompass a range of botanical species 

richness. 
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Figure 4.1 The Park Grass Experiment plan, showing all study plots used for nectar sampling. 
Shaded plots show the PGE plots from which nectar samples were taken.  
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Table 4.1 The PGE study plots used to sample nectar; the N and mineral treatments, and soil 
pH. 
‘Org’ denotes organic farmyard manure applications, the “*” symbol in mineral column denotes 
minerals in the form of farmyard manure applications. Organic manure is a rotation of farmyard manure 
(supplying c. 240 kg N ha-1 yr-1, 45 kg P ha-1 yr-1, 350 kg K ha-1 yr-1, 25 kg Na ha-1 yr-1, 25 kg Mg ha-1 yr-1, 
40 kg S ha-1 yr-1, 135 kg Ca ha-1 yr-1) and poultry manure (supplying c. 65 kg N ha-1 yr-1), applied every 2 
years on rotation. For mineral application, “+” is applied and “-“ is not applied. Mineral application is 
225 kg K ha-1 yr-1, 15 kg Na ha-1 yr-1, 10 kg Mg ha-1 yr-1, 122 kg S ha-1 yr-1, 17 kg P ha-1 yr-1 (in 2016)/35 kg 
P ha-1 yr-1 (in 2017 and 2018, to account for P accumulation). 

Plot N form N amount pH Minerals 

3b Nil 0 6.1 - 

3d Nil 0 5.1 - 

1b NH4 48 6.0 - 

1c NH4 48 5.1 - 

17b NO3 48 6.2 - 

17d NO3 48 5.8 - 

7/2b Nil 0 6.1 + 

7/2d Nil 0 5.1 + 

16b NO3 48 6.0 + 

16d NO3 48 5.6 + 

14/2b NO3 96 6.3 + 

14/2d NO3 96 6.1 + 

13/2b Org 72.5 6.0 * 

13/2d Org 72.5 5.2 * 

 

 

4.3.2 Nectar collection  

Nectar was collected from a range of plant species across the Park Grass 

experiment over three years, 2016, 2017, 2018. Three factors were important in 

selecting species to sample; 1) that they were important nectar sources for pollinating 

insects, 2) that they grew in enough experimental plots to make investigating the 

impacts of the N treatments possible, and 3) that it was possible to obtain raw nectar 

from the plant, without the need for rinsing or diluting methods. Rinsing the nectary 

gland with water dilutes the nectar and some of the solution can be lost through 

evaporation or by falling from the nectary gland, which makes it difficult to accurately 

determine actual concentrations. Also, when rinsing the nectary gland with water, it 

can take up to 30 minutes for the amount of sugar taken up into the solution to plateau 

(Corbet et al., 1979), which is a significant time constraint. Therefore, I focused on 

plants from which raw floral nectar could be obtained. The plants that matched this 
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criterion were Ajuga reptans, Anthriscus sylvestris, Centaurea nigra, Heracleum 

sphondylium, Knautia arvensis, and Trifolium pratense (Table 4.2). 

A. reptans, C. nigra, and T. pratense were the focus of the study, and were 

sampled more (Table 4.3), for the following reasons. Firstly, they have large 

populations in several plots across treatments. Secondly, they are important nectar 

resources visited by bees (Carvell et al., 2006) for their rich nectar and pollen rewards 

(Hanley et al., 2008; Hicks et al., 2016). Thirdly, they have contrasting life history traits: 

T. pratense is a Fabaceae with N-fixing rhizobacteria, C. nigra is a competitive plant 

species that grows in all of the studied PGE plots including the competitive high N 

plots, A. reptans is smaller plant that has been crowded out and lost from the more 

competitive plots – those with high N or mineral applications. 

 

Table 4.2. The study species from which nectar samples were obtained. 
Code denotes the two-lettered code used to refer to the species for the remainder of the chapter. The 
PGE plots are the study-plots in which the species grow, with applied treatments shown by the N 
treatments column (Org is organic farmyard manure). 

Species Code Family PG plots N 
treatments 

Typical 
pollinators 

Ajuga 
reptans 

Ar Lamiaceae 3b, 3d, 
17b, 17d, 
1b, 1c, 
13b, 13d 

Nil, NO3, 
NH4, Org  

Bumblebees 

Anthriscus 
sylvestris 

As Apiaceae 7b, 14b, 
14d, 16b, 
16d, 13b, 
13d 

Nil, NO3, Org Diptera 
Hymenoptera 
Coleoptera 

Centaurea 
nigra 

Cn Asteraceae All plots 
 
 

Nil, NO3, 
NH4, Org 

Bumblebees 
Solitary bees 

Heracleum 
sphondylium 

Hs Apiaceae 7b, 14b, 
14d, 16b, 
16d, 13b, 
13d 

Nil, NO3, Org  Diptera 
Hymenoptera 
Coleoptera 

Knautia 
arvensis 

Ka Caprifoliaceae 3b, 3d, 1b, 
1c 
 

Nil, NH4 Bumblebees 
Solitary bees 

Trifolium 
pratense 

Tp Asteraceae 3b, 3d, 
17b, 17d, 
7b, 7d, 
16b, 16d, 
14b, 14d, 
13b, 13d 

Nil, NO3, 
NH4, Org 

Bumblebees 
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Table 4.3. The number of nectar samples taken from the study species from each plot. 
Sp. Park Grass Experimental Plots 
 

3b 3d 1b 1c 17b 17d 7b 7d 16b 16d 14b 14d 13b 13d 

Standing crop 

Ar  21 20 6 8 34 22 
      

10 16 

As  
      

3 
 

3 3 3 3 3 3 

Cn  23 17 6 6 10 13 18 22 4 16 
  

9 22 

Hs  
      

3 
 

3 3 3 3 
  

Ka 9 
 

4 4 
          

Tp 23 6 
  

7 7 17 6 14 6 8 6 6 13 

24-hour nectar secretion 

Ar  12 11 4 4 14 10 
      

6 8 

Cn 6 8 6 6 
 

4 
   

10 
   

12 

 

 

To sample the standing crop of nectar, floral units were bagged with finely 

meshed bags of organza fabric for 24 hours prior to nectar collection (as per Corbet, 

2003). Mesh organza/bridal veil fabric bags have the smallest influence on nectar 

secretion and chemistry, so are the preferred material for plant bagging (Wyatt et al., 

1992). The entire umbel of Apiaceae, the entire capitulum of Asteraceae, 

Caprifoliaceae, and Fabaceae, and the entire flowering spike of Lamiaceae were 

bagged (Fig. 4.2). This restricts visitation by insects and allows nectar stores to build 

up so that nectar can be collected. The following day, 24 hours after a floral unit was 

bagged, microcapillary tubes (Drummond; 1µl) were used to collect the nectar from 

the nectary glands of the flowers. The volume of the nectar gathered by the 

microcapillary tubes was measured, using digital callipers, and the microcapillary 

tubes were then placed in a labelled Eppendorf and frozen at -20 o C prior to laboratory 

analysis. Several flowers were sampled per plant (Ajuga reptans 5–28 flowers; 

Anthriscus sylvestris 10–20; Centaurea nigra 4–32; Heracleum sphondylium 8–27; 

Knautia arvensis 7–20; Trifolium pratense 5–12. Means and standard errors shown in 

Table 4.4), for two reasons. Firstly, HPLC analysis required 20 µl of diluted sample to 

run. Secondly, nectar production commonly varies across flowers of an individual 

plant, and with flower age (Petanidou, Van Laere and Smets, 1996; Herrera, Pérez and 

Alonso, 2006); sampling several flowers per plant replicate would give us a mean value 

per flower per plant replicate. As nectar traits can vary according to the time of day 
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and relative humidity (Corbet et al., 1979; Corbet, Unwin and Prys-Jones, 1979; 

Southwick, Loper and Sadwick, 1981), nectar sampling was conducted with a blocked 

design structure; morning, midday, and afternoon. Nectar sampling of each plant 

species from specific plots were distributed evenly across these blocks. To account for 

the lack of plot replication in the Park Grass Experiment, replicates were taken from 

the same plot but always from separate groups of plants, on the opposite sides of a 

plot.  

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 4.2. Examples of 4 bagged flowers. (clockwise from top left) Centaurea nigra, Heracleum 
sphondylium, Trifolium pratensis, Knautia arvensis. 
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To sample the 24-hour nectar production, floral units that had been sampled for the 

nectar standing crop were bagged again for another 24 hours. Nectar was sampled 

from the same flowers 24 hours later. Only A. reptans and C. nigra were effectively 

sampled for 24-hour nectar secretion on a large scale, as the plants have larger 

flowers with open corollas which could be sampled on subsequent days without 

damaging the floral tissue with microcapillary tubes. Again, the samples were 

measured and stored at -20 ᵒC prior to laboratory analysis. 

 

4.3.3 Laboratory analysis  

The nectar samples were analysed for sugar content using high performance 

liquid chromatography (HPLC). Samples were thawed, re-measured, and expelled into 

filtered HPLC-grade H2O, at first to a 1:30 dilution. I then determined the optimum 

dilution for each sample with pilot HPLC runs. A Dionex ICS-3000 (Thermo Scientific) 

system was used to analyse the samples. The flow rate was 0.25 ml min-1. Elution 

buffers were HPLC-grade H2O (A), 1 M sodium acetate (B), 0.5 M sodium hydroxide 

(C). The running conditions began with 80% A:20% C at 0 minutes, changing on a 

gradient towards 100% C at 5 minutes. 100% C was maintained between 5–8 minutes. 

Between 8–8.5 minutes the gradient changed to 80% B:20% C, which was maintained 

between 8.5–11 minutes. At 11.5 minutes the gradient changed to 80% A:20% C, 

which was maintained until the run ended at 17 minutes. Each run injected 20 µl of a 

sample onto a CarboPack PA1 column (column 2 mm x 250 mm), at a temperature of 

25ᵒ C. A pulsed amperometric detection (PAD) detector, with gold electrode, was used 

to detect the analytes. A mix of glucose, fructose, and sucrose standards were used, 

at 1 µM, 2 µM, 5 µM, 10 µM, 15 µM, 20 µM, and 25 µM concentrations. Standards 

were run before and after the sample runs, and a blank H2O sample was run every 10 

samples to check for contamination. Calibration curves were calculated for glucose, 

fructose, and sucrose from the external standards. This data was used to transform 

the results of the HPLC sample runs into µM and µg µl-1 concentrations. 
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4.3.4 Surveys of floral abundance to determine nectar sugar provision per area 

The overall floral abundance of study species in the plant communities was 

surveyed throughout the seasons by using quadrats. Quadrats, sized 0.25m2, were 

thrown 20 times systematically around each study plot. The total number of floral 

units for each plant species was counted for every quadrat. Quadrat surveys were 

conducted approximately every two weeks, around the same time as nectar sampling.  

 

4.3.5 Statistical analysis 

All statistical analyses were performed using R Studio (R Core Team, 2018). 

Graphs were produced in R Studio, using the ggplot2 package (Wickham, 2016). The 

analysis of nectar production and sugar concentration was split into two broad groups, 

standing crop and 24-hour production, to differentiate between the latent nectar that 

has been resting in the corolla and freshly produced nectar. The impacts of the 

treatments were analysed with linear mixed-effects models, using the lme4 package 

for R Studio (Bates et al., 2015). N treatment (categorical; nil, NH4, NO3, organic 

farmyard manure), N amount (continuous; 0 kg N yr1, 48 kg N yr1, 96 kg N yr1), pH 

(continuous; 5.0–6.3), and P, K, Na, Mg Minerals (categorical; applied, not applied, 

organic farmyard manure) were fixed effects. Biomass (continuous; 0.822–6.300 kg 

dry weight samples), nested within year (categorical; 2016, 2017, 2018), were random 

effects. These models were implemented to find the effects of the treatments on the 

response variables: nectar volume and production, sucrose:hexose ratio, 

concentration of sugars per volume and per flower. To analyse the effect on sugar 

concentration per volume, nectar volume per flower was incorporated (continuous; 

0.004–0.783) nested within year as a random effect, to account for variation caused 

by volume.  

The total counts of floral abundance from quadrats (0.25m2 quadrats thrown 

20 times) were divided by four for each plot, giving mean floral abundance m-2. For 

each nectar sample, the total concentration of sugars was multiplied by the 

contemporaneous information on floral abundance to give the provision of sugars (µg 

m-2) for each species in the studied plant communities. Mixed-effects models were 
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used to ascertain the effect of the treatments on sugar provision. The response 

variable was total quantity of sugars (continuous; 0-115748 µg m-2), the fixed effects 

were N treatment (categorical; nil, NH4, NO3, organic farmyard manure), N amount 

(continuous; 0 kg N yr1, 48 kg N yr1, 96 kg N yr1), pH (continuous; 5.0–6.3), and P, K, 

Na, Mg Minerals (categorical; applied, not applied, organic farmyard manure). Year 

(categorical; 2016, 2017, 2018) was the random effect. 

All models were simplified step-wise by removing the least significant variable, 

checking residuals and model assumptions at each step, until we obtained the final 

model. Post hoc Tukey HSD tests were conducted on the final models to ascertain the 

significance of between-level comparisons. 

 

4.4 Results 

 

 In total, 596 nectar samples were taken across the three years for the study 

species. The observed mean values of the nectar traits varied amongst the study 

species (Table 4.4; Fig 4.3). Across all plots, regardless of treatments, the flowers with 

the most voluminous nectar rewards were understandably those of A. reptans, with 

the open flowers of the Apiaceae species A. sylvestris and H. sphondylium having the 

lowest volume nectar standing crops. In agreement with other studies, the 

sucrose:hexose ratio is high in flowers requiring long-tongued insect visitors and lower 

in the open flowers of the Apiaceae species. Due to the larger volume of nectar found 

in the flowers, A. reptans have the most sugar-rich nectar per flower, but other species 

were more rewarding in terms of the sugar-richness per volume. Nectars from A. 

sylvestris, C. nigra, H. sphondylium, and T. pratense were all more concentrate than A. 

reptans nectar, whilst nectar from K. arvensis was the most dilute. 
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Figure 4.3. Summary of key nectar traits from the six study-species; volume standing crop per 
flower, sucrose:hexose ratio, total sugars per µl, and total sugars per flower. 
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Table 4.4. Summary statistics of the nectar samples from the study species. 
The table shows the mean value, and standard error of the means, for the number of flowers sampled 
per replicate, the volume of nectar per flower, the ratio of sucrose:hexose, the concentration µg sugars 
per µl, and total the µg sugars per flower. 

Species Fl. rep-1 Vol. fl-1 (µl) S:H ratio Sugars (µg µl-1) Sugars (µg fl-1) 

Standing crop 

Ar 14.63 ± 0.50 0.19 ± 0.011 7.32 ± 0.30 888.70 ± 22.39 157.85 ± 8.48 

As 15.17 ± 1.04 0.0091 ± 
0.0010 

2.364 ± 
0.15 

1097.95 ± 78.42 10.08 ± 1.27 

Cn 24.55 ± 0.60 0.076 ± 
0.0031 

2.62 ± 0.10 1026.18 ± 52.98 70.77 ± 3.87 

Hs 19.62 ± 1.47 0.013 ± 
0.0017 

0.270 ± 
0.040 

1152.51 ± 53.90 15.16 ± 2.14 

Ka 12.87 ± 0.99 0.070 ± 
0.0098 

0.445 ± 
0.085 

532.16 ± 58.89 35.15 ± 6.30 

Tp 9.58 ± 0.14 0.044 ± 
0.0025 

2.449 ± 
0.12 

1211.91 ± 55.19 48.08 ± 2.65 

24-hour nectar 

Ar 14.37 ± 0.50 0.28 ± 0.016 5.59 ± 0.29 598.56 ± 18.80 167.46 ± 9.68 

Cn 13.46 ± 0.49 0.045 ± 
0.002 

3.29 ± 0.25 1799.14 ± 
152.86 

80.16 ± 6.65 

 

 

4.4.1 Nectar production 

The application of NH4 caused a detrimental effect on the 24-hour nectar 

secretion rate of A. reptans and C. nigra. The mean 24-hour nectar volume of A. 

reptans in NH4 plots was 44% lower than plants in control plots (0.167 µl compared to 

0.291 µl), while mean 24-hour nectar volume of C. nigra was 40% lower than plants 

from control plots (0.0308 µl compared to 0.0514 µl). Furthermore, that standing crop 

in flowers of A. reptans and C. nigra was also lower when in NH4-enriched communities 

(Table 4.5, Fig. 4.4). The standing crop of C. nigra was negatively affected by both 

forms of N, A. reptans by NH4 and not NO3. Conversely, the standing crop of A. reptans 

nectar was higher in soils with organic farmyard manure applied, and in experimental 

plots with higher topsoil pH. For the leguminous T. pratense, only mineral applications 

affected nectar standing crop, increasing the volume.  
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Table 4.5. Output of LMER models studying the impact of treatments on the volume of nectar 
standing crop and 24-hour nectar secretion (µl).  
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(‘+’ denotes positive effects, ‘-‘ denotes negative effects). Shaded cells show that where a species could 
not be sampled from a treatment in sufficient quantities. 

 

 

 

Figure 4.4. The 24 hour-nectar secretion of A. reptans and C. nigra, shown across nil and N 
treatment plots.  
Significant difference between N treatments and nil plots, from post hoc Tukey tests, are shown. * 
p<0.05; ** p<0.01; *** p<0.001. 

 

 

 

Species NH4 NO3 Org N amount pH Minerals 

Standing crop 

Ar -0.119  +0.198  +0.103  

As       

Cn -0.0372 -0.015     

Hs       

Ka       

Tp      +0.0145 

24-hour nectar  

Ar -0.125      

Cn -0.028      
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4.4.2 Sugar composition 

The experimental treatments caused variation in the composition of nectar-

sugars within the species (Table 4.6). NH4 applications decreased the relative 

sucrose:hexose (S:H) ratio in A. reptans nectar (Fig. 4.5), while NO3 application reduced 

the ratio in A. sylvestris and H. sphondylium, with more substantial drops in sucrose 

proportion at higher levels of NO3 application (Fig. 4.6). Organic farmyard manure 

application increased the S:H ratio in A. reptans. In A. reptans, the impact of NH4 to 

the S:H ratio was driven by the strong increase in fructose production (Fig. 4.7). The 

S:H ratios of C. nigra, T. pratense, and K. arvensis were not affect by the N treatments.   

Table 4.6. Output of LMER models studying the impact of the treatments on the sucrose:hexose 
ratio of nectar. 
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(‘+’ denotes positive effects, ‘-‘ denotes negative effects). Shaded cells show that where a species could 
not be sampled from a treatment in sufficient quantities. 

Species NH4 NO3 Org N amount pH Minerals 

Ar -2.597  +2.716    

As    -0.00103   

Cn       

Hs    -0.00111   

Ka       

Tp       

 

 

 

Figure 4.5. The S:H ratio of A. reptans nectar for plants from nil plots and all N treatment plots.  
Significant difference between N treatments and nil plots, from post hoc Tukey tests, are shown. * 
p<0.05; ** p<0.01; *** p<0.001. 
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Figure 4.6. The impact of N addition levels on the S:H ratio of Apiaceae nectar. 
The shaded region shows the 95% confidence interval. 

 

 

4.4.3 Nectar quality; sugar concentration 

In the latent nectar standing crop of A. reptans, organic fertilisers led to an 

overall decrease in sugars per volume (Table 4.7; Fig. 4.7). In A. reptans in NO3-

enriched plots, glucose concentration was lower, while fructose increased in 

concentration with NH4-enrichment (Fig. 4.7). The concentration of sucrose in H. 

sphondylium nectar declined with higher levels of N additions. The total sugar 

concentration per volume of A. reptans was lower at higher soil pH. Mineral (P, K, Na, 

Mg) additions increased the total sugar concentration of C. nigra nectar, driven by 

increases of sucrose. Non-significant Tukey post hoc testing showed that I was not able 

to confidently ascertain a significant effect of N treatments on the nectar sugar 

concentrations of freshly secreted (24hr) A. reptans nectar. Only soil pH had a 

significant effect here, with lower glucose concentrations found at higher soil pH. 

Mineral additions increased the concentration of all three sugars, and total sugar 

concentration, in freshly secreted nectar of C. nigra (nectar secreted within 24 hr) 

(Table 4.7).  

When studying total sugars produced per flower (Table 4.8), we see significant 

impacts of NH4 to both A. reptans and C. nigra standing crops. There was lower glucose 
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and sucrose provision, and lower total sugar concentration, per flower in A. reptans 

plants undergoing NH4 enrichment, this was true for both nectar standing crop and for 

freshly secreted nectar over 24 hours (Fig. 4.8). There were fewer sugars found in the 

standing crop of C. nigra nectar in NH4-enriched plots (Fig. 4.9). However, the N 

treatments did not affect the provision of sugars secreted in 24 hours by C. nigra; the 

sugar secretion was instead positively driven by mineral additions (Fig. 4.10). There 

were no other significant impacts on total sugar production, although other 

treatments had effects on individual major sugars. Higher soil pH led to an increase in 

the provision of fructose in A. reptans standing crop, and of glucose and fructose in T. 

pratense standing crop. Organic fertiliser led to increased provision of fructose and 

sucrose in A. reptans flowers. Higher levels of N application led to reduced sucrose 

provision in the standing crop of H. sphondylium flowers.  
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Table 4.7. Output of LMER models studying the treatments on the concentration of individual 
and total sugars per volume (µg µl-1). 
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(‘+’ denotes positive effects, ‘-‘ denotes negative effects). Shaded cells show that where a species could 
not be sampled from a treatment in sufficient quantities. For each species, the effect to total sugars 
(Total), glucose (Glu.), fructose (Fru.), and sucrose (Suc.) is given.  

Species Sugar NH4 NO3 Org N amount pH Minerals 

Standing crop 

Ar  Total 
  

-235.20 
 

-150.79 
 

Glu. 
 

-9.953 -17.394 
   

Fru. +93.853 
 

-32.475 
   

Suc. 
  

-183.20 
 

-141.18 
 

As Total 
      

Glu. 
      

Fru. 
      

Suc. 
      

Cn Total 
     

+349.61 

Glu. 
      

Fru. 
      

Suc. 
     

+217.83 

Hs Total 
      

Glu. 
      

Fru. 
      

Suc. 
   

-2.163 
  

Ka Total 
      

Glu. 
      

Fru. 
      

Suc. 
      

Tp Total 
      

Glu. 
      

Fru. 
      

Suc. 
     

 

24-hour nectar secretion 

Ar  Total 
      

Glu. 
    

-10.068 
 

Fru. 
      

Suc. 
      

Cn Total 
     

+1557.8 

Glu. 
     

+280.62 

Fru. 
     

+301.49 

Suc. 
     

+909.3 
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Table 4.8. Output of LMER models studying the impact of the treatments on the 
concentration of total and individual sugars per flower (µg flower-1) 
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(‘+’ denotes positive effects, ‘-‘ denotes negative effects). Shaded cells show that where a species could 
not be sampled from a treatment in sufficient quantities. For each species, the effect to total sugars 
(Total), glucose (Glu.), fructose (Fru.), and sucrose (Suc.) is given.  

Species Sugar NH4 NO3 Org N amount pH Minerals 

Standing crop 

Ar Total -133.444 
 

+39.78 
   

 
Glu. -8.9 

     

 
Fru. 

    
+9.55 

 

 
Suc. -94.514 

     

As Total 
      

 
Glu. 

      

 
Fru. 

      

 
Suc. 

      

Cn Total -40.28 
     

 
Glu. -10.769 

     

 
Fru. -16.491 

     

 
Suc. -47.627 

     

Hs Total 
      

 
Glu. 

      

 
Fru. 

      

 
Suc. 

   
-0.046 

  

Ka Total 
      

 
Glu. 

      

 
Fru. 

      

 
Suc. 

      

Tp Total 
      

 
Glu. 

    
+2.946 

 

 
Fru. 

    
+6.353 

 

 
Suc. 

      

24-hour nectar secretion 

Ar Total -89.33 
     

 
Glu. -5.814 

     

 
Fru. 

      

 
Suc. -67.542 

     

Cn Total 
     

+58.41  
Glu. 

     
+10.617  

Fru. 
     

+11.528  
Suc. 
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Figure 4.7. Concentration of individual sugars per volume (µg µl-1) in A. reptans nectar, 
comparing amongst nil and N treatments. 
The three separate sugar types are shown across facets. Significant difference between N treatments 
and nil plots, from post hoc Tukey tests, are shown. * p<0.05; ** p<0.01; *** p<0.001. 

 

Figure 4.8. Concentration of individual sugars per flower (µg flower-1) in A. reptans nectar, 
comparing amongst nil and N treatments.  
The three separate sugar types are shown across facets. Significant difference between N treatments 
and nil plots, from post hoc Tukey tests, are shown. * p<0.05; ** p<0.01; *** p<0.001. 
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Figure 4.9. Concentration of individual sugars per flower (µg flower-1) in C. nigra nectar, 
comparing amongst nil and N treatments. 
The three separate sugar types are shown across facets. Significant difference between N treatments 
and nil plots, from post hoc Tukey tests, are shown. * p<0.05; ** p<0.01; *** p<0.001. 

 

Figure 4.10. Concentration of individual sugars per flower (µg flower-1) in C. nigra nectar, 
comparing amongst mineral treatments. 
The three separate sugar types are shown across facets. Significant difference between N treatments 
and nil plots, from post hoc Tukey tests, are shown. * p<0.05; ** p<0.01; *** p<0.001. 
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4.4.4 Provision of sugars per unit area 

The treatments had numerous effects on the quantity of nectar sugar provision 

per unit area (Table 4.9). The total sugar provision per area was lower in NH4-enriched 

plots for all three species sampled from these plots, A. reptans, C. nigra, and K. arvensis 

(Fig. 4.11). Nectar sugar provision by C. nigra and T. pratense was lower in plant 

communities with NO3 added. Only C. nigra provided fewer nectar sugars in plant 

communities enriched with organic farmyard manure. Soil pH had a significant effect 

on the sugar provision per area of four species. Acidification caused lower nectar sugar 

provision from A. reptans and the two Apiaceae, A. Sylvestris and H. sphondylium, but 

led to greater sugar provision by C. nigra (Fig. 4.12). Additions of minerals (P, K, Na, 

Mg) to plant communities increased T. pratense nectar sugar provision. The impacts 

to floral unit abundance closely reflect impacts to sugar provision (Table 4.10), with a 

single exception. Mineral additions caused greater C. nigra floral unit abundance but 

was not a significant driver of nectar sugar quantities. 

 

Table 4.9. Output of LMER models studying the mean provision of total sugars per area (µg m-

2) for each species and the effect of treatment on sugar provision. 
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(‘+’ denotes positive effects, ‘-‘ denotes negative effects). Shaded cells show that where a species could 
not be sampled from a treatment in sufficient quantities. 

Species Mean NH4 NO3 Organic pH Minerals 

Ar 484.88 -428.78   +290.64  

As 9396.28    +13204  

Cn 412.93 -492.96 -235.66 -220.07 -471.76  

Hs 1591.77    +3936  

Ka 438.19 -437.8     

Tp 9493  -9701.297   +14732.437 
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Table 4.10. Output of LMER models studying the mean floral abundance m-2 for each species 
and the effect of treatment on floral abundance. 
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(‘+’ denotes positive effects, ‘-‘ denotes negative effects). Shaded cells show that where a species could 
not be sampled from a treatment in sufficient quantities. 

Species Mean NH4 NO3 Organic pH Minerals 

Ar 3.17 -2.6197   +1.28  

As 858.18    +1287.9  

Cn 5.34 -3.0206 -3.1585 -1.8157 -4.9874 +1.7005 

Hs 112.73    +384.29  

Ka 13 -13.611     

Tp 170.61  -176.752   +265.483 

 
 

 

Figure 4.11. Comparative plots showing the total provision of sugars by a species per unit area 
(µg m-2), across nil plots and N treatment plots. 
Treatments that were significantly different from nil plots, from post hoc Tukey tests, are shown with * 
p<0.05; ** p<0.01; *** p<0.001. 
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Figure 4.12. Comparative plots showing the total provision of sugars by a species per unit area 
(µg m-2), across a pH gradient. 
The shaded region of graphs indicates the 95% confidence interval. 

 

4.5 Discussion 

 

The results showed that soil N-enrichment led to varied changes in the nectar 

traits of most study species. The nectar traits of the forb A. reptans responded widely 

to the treatments, with many detrimental responses recorded with NH4, mixed 

responses to organic farmyard manure treatments, but relatively few responses to 

NO3 applications. The nectar secretion rate over 24 hours of the forb C. nigra 

responded negatively to NH4-enrichment, which led to decreases in sugar content per 

flower. The legume T. pratense was less sensitive to N treatments, with no observed 

significant impacts to nectar traits. This could be due to the fundamental difference in 

how forbs and legumes take up N, forbs through the soil, and legumes through N-fixing 
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rhizobium drawing it in from the air. However, sugar concentration of T. pratense 

nectar did decrease with soil acidification, so N deposition could indirectly affect the 

nectar traits of this species. Sucrose concentration was observed to decrease with 

higher additions of N in the two Apiaceae species, A. sylvestris and H. sphondylium, 

suggesting a taxonomically shared response trait. Soil nitrogen, pH, and fertility were 

widely impactful to the provision of nectar sugars by plant communities, with these 

impacts stemming from changes to nectar traits and the abundance of floral units. The 

following sections will discuss the results thematically according to their responses.  

 

4.5.1 Impacts of N treatments; focus on Ajuga reptans and Centaurea nigra 

NH4 additions had negative effects on the nectar secretion rate over 24 hours 

of A. reptans and C. nigra. Furthermore, this seems to have had an impact on the 

standing crop of their nectar, as flowers of both species showed a reduced volume of 

standing crop when treated with NH4. The standing crop of C. nigra was also depleted 

in plots where NO3 had been applied, although NO3 additions did not have a 

discernible effect on the 24-hour nectar production of C. nigra. The different 

responses to the two forms of N could be due to the natural tolerances and 

adaptations of the two plant species. Both are typically found in mesotrophic 

grasslands, and therefore are not so adapted to acidification caused by the nitrification 

of NH4 and subsequent release of H+ ions or through the inability to exchange H+ ions 

with the rhizosphere during the process of uptake and metabolisation (Lucassen et al., 

2003; Van Den Berg et al., 2005; Stevens et al., 2011). This could cause stress to the 

plant. Nectar production is an energetically costly mechanism and, if under stress, the 

plant could focus less energy into nectar secretion.  

The lower volumes of nectar provided in C. nigra flowers enriched with NH4 or 

NO3 were no more concentrated than nectar from C. nigra flowers in control plots. 

Therefore, the lower nectar volume simply equates to a reduction in the provision of 

sugars for prospective insect pollinators. All sugars declined in concentration in C. 

nigra flowers with NH4 additions, with a steeper decline in sucrose than glucose or 

fructose. The disaccharide sucrose is thought to be an important nectar sugar for long-

tongued bees, which respond positively to experimental increases in sucrose (Cnaani, 
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Thomson and Papaj, 2006) and are frequently observed to forage sucrose-rich plants 

(Elisens and Freeman, 1988; Petanidou, 2005; Petanidou et al., 2006). As C. nigra is an 

important late-season resources for many bee species, the lower provision of sucrose 

and total sugars is a potentially negative effect for the prospects of long-tongued bees 

foraging in the late-season, such as gynes and males of Bombus hortorum or the 

nationally scarce Bombus ruderatus (Falk, 1991). 

The nectar produced by A. reptans in NH4-enriched plant communities was not 

only less voluminous, but less sugar-rich (when expressed on a volumetric basis) and 

with a reduced sucrose:hexose ratio. Over a 24-hour period, A. reptans flowers 

produced less glucose and sucrose in NH4-enriched soils. Therefore, NH4 additions to 

soil or deposition of NH4 will lead less rewarding flowers, especially for long-tongued 

bees that preferentially forage sucrose-rich nectar (Elisens and Freeman, 1988; 

Petanidou, 2005; Cnaani, Thomson and Papaj, 2006; Petanidou et al., 2006). As A. 

reptans flowers require handling skills and an expenditure of energy to forage, as bees 

activate flight muscles to fly between flowers, the lessened reward makes these 

flowers less able to support intensive foraging bouts. There was, however, no negative 

impact of NO3 addition on the nectar traits of A. reptans, perhaps due to the lack of 

plant cell acidification during NO3 uptake (Stevens et al., 2011). Therefore, if A. reptans 

experiences atmospheric N deposition that is more heavily composed of NO3, the 

effect to nectar traits may not be so impactful. On the other hand, NH4-dominant 

deposition, as occurs in most regions across the world (Stevens et al., 2011), could be 

more impactful to the nectar of A. reptans, C. nigra, and other forbs that respond 

similarly. 

Although A. reptans nectar standing crop in organic farmyard manure-treated 

plots was far higher than nil plots, there was no increase in 24hr nectar production 

associated with organic plots. As organic manure applications did not increase the 

production rate, it stands to reason that a build-up of nectar was occurring in plots 

with organic manure applications, possibly due to high biomass obscuring flowers or 

selective visiting of bees to alternative plants. The analysis of overall sugar 

concentrations per volume showed that the A. reptans nectar from organic plots was 

far less concentrated, with fewer total sugars, than nil and NO3 plots. A. reptans 
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flowers in organic manure-treated plots had similar levels of sugars to flowers from 

control plots, but in a more dilute and voluminous form. The mechanism for this is not 

clear, it could be that the high biomass of organic plots shades the plants and create a 

cooler microclimate that lessens evaporation of water from flowers. The creation of 

cooler microclimates amongst taller vegetation has been proposed as a pathway for 

impacts of N on fauna (WallisDeVries and Van Swaay, 2006; Nijssen, Wallis De Vries 

and Siepel, 2017), it’s possible that this pathway can indirectly affect fauna through 

changes on food resources such as nectar for pollinators.  When foraging more dilute 

nectar, the lack of calorific reward per sampling effort might have put bee visitors off 

and encouraged them to preferentially forage more rewarding plants. Often bees will 

forage for the most calorific rewarding nectar (Southwick, Loper and Sadwick, 1981), 

and the act of foraging for nectar is an important trade-off between the reward and 

the effort and energy expended whilst foraging (Kim, Gilet and Bush, 2011). In 

morphically specialised plants, the energy expenditure in foraging is greater and so the 

nectar needs to be more rewarding in order to provide a net energy gain (Harder, 

1986). With an insufficient reward that does not give a net gain in energy, bees might 

simply look elsewhere. Due to the increased volume of the nectar standing crop, the 

sugar provision per A. reptans flower is actually not so different from nil plots. 

However, larger volumes of nectar require more energy to forage and a bee can only 

take up so much nectar (Kim, Gilet and Bush, 2011), furthermore bees typically prefer 

sugar-rich nectars (Krömer et al., 2008; Klumpers, Stang and Klinkhamer, 2019; 

Vandelook et al., 2019). Therefore, despite providing the same amount of total sugars, 

the dilute nectar is likely not as attractive or rewarding. 

A. reptans nectar standing crop was lower in more acidified soil. The analysis 

of sugar concentrations per volume showed that, although A. reptans nectar in 

acidified soil was less voluminous, it was more concentrated. This suggests that there 

was no limit imposed by soil acidification on sugar production, only on the volume of 

water expelled through the nectary gland. Therefore, although soil acidification led to 

less nectar in A. reptans flowers, which perhaps could limit the abundance of long-

tongued pollinators able to forage, the nectar was more rewarding which should 

render it more attractive to insects that will need to expend less energy to forage it. 
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A. reptans has an Ellenberg R value of 5, on a scale of 1-9, indicating that the plant is 

able to grow in slightly acidic grasslands (Hill, 1999). It was more acid tolerant than the 

other study species, which had Ellenberg R values ranging from 6-8. The fact that soil 

pH did not affect the output of sugars from A. reptans and did not affect the nectar 

traits of other species, suggests that it is not a prominent factor that will affect how N 

impacts of the attractiveness and nutritional qualities of nectar. 

 

4.5.2 Trifolium pratense and the effect of mineral additions on nectar traits. 

The volume of nectar standing crop of Trifolium pratense was not affected by 

the N treatments, or by pH, only by mineral additions. Furthermore, the other nectar 

traits of T. pratense, composition or quality, were not affected by N additions either. 

Legumes, due to the way they take up N, by fixing it from the atmosphere, do not 

exploit applications of N to soil in the same way other competitive plants do. This can 

cause them to decline in biomass due to competitive exclusion (Skogen, Holsinger and 

Cardon, 2011; Storkey et al., 2015). However, the inability to exploit N applications 

could render them less susceptible to N-driven variation in floral traits. Shuel (1956) 

also found that T. pratense did not have altered nectar secretion in response to N, 

whereas a forb, Antirrhinum majus, did. The inter-specific variation in responses to N 

additions is something that complicates generating an overall view of how N affects 

ecosystems. Therefore, predictive patterns in responses, such as the contrast between 

legumes and forbs, is useful. Soil pH did have a small effect on the concentration of 

fructose and glucose available in the standing crop of T. pratense nectar. This suggests 

that, although N might not directly alter leguminous nectar traits, it is important to be 

wary of indirect impacts. Soil acidification is a locally mediated effect of N deposition, 

the severity depends on soil conditions and buffering capacity. This facet of N 

deposition could lead to changes in the provision of calorific floral resources for 

pollinators in communities that are under stress of acidification. 

Previous research has shown the importance of phosphorous (P) for the N-

fixing rhizobacterium of legumes and that, while N additions disadvantage legumes, 

additions of P can be beneficial (Ae et al., 1990; Kirkham, Mountford and Wilkins, 

1996; Vance, Uhde-Stone and Allan, 2003; Hasan et al., 2016; van de Wiel, van der 
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Linden and Scholten, 2016). The growth of legumes, such as T. pratense, therefore 

responds directly to P additions. It is logical that the nectar traits of T. pratense showed 

more response to mineral additions than N additions. Mineral applications were also 

revealed to be a significant positive factor in the production of nectar-sugars by C. 

nigra. The volume of nectar production and the composition of sugars produced were 

not affected by the addition of minerals, but this treatment did drive an increase in 

sugar production, per volume and per flower. The increased soil nutrition from 

minerals, including P and potassium (K), could therefore greatly benefit pollinating 

insects through this increased calorific provision.  

 

4.5.3 The nectar trait responses of the two Apiaceae species to N addition. 

A limitation of the study is the small sample size obtained for some species. 

Nectar traits can vary between plants and flowers of the same species (Corbet, Unwin 

and Prys-Jones, 1979; Herrera, Pérez and Alonso, 2006) and, whilst taking cumulative 

samples across many flowers can help to account for inter-floral variation (Corbet, 

2003), ideally more samples were needed from A. sylvestris, H. sphondylium, and K. 

arvensis to identify impacts from N additions. However, we did find consistent effects 

of N addition on the sucrose:hexose ratios of nectars from A. sylvestris and H. 

sphondylium. The two species are both from the Apiaceae family, and this response 

was not recorded in any other species. This could be an indication that nectar trait 

responses can be linked to taxonomic family, but we should be tentative with this 

conclusion. These are only two species and investigations of other Apiaceae species 

should be undertaken to confirm this. The response of sucrose:hexose ratios in 

Apiaceae nectar to N additions was linear, with the proportion of sucrose declining 

further with higher levels of N addition (Fig. 4.6). The flowers of A. sylvestris and H. 

sphondylium are large generalist umbellifers, visited by a wide suite of insects 

including dipterans, coleopterans, lepidopterans, and hymenopterans. Most bee 

species observed foraging these floral units in the Park Grass Experiment (Appendix 5) 

were short-tongued generalist species, that tend to prefer mixed or hexose-dominant 

nectars (Petanidou et al., 2006), with few long-tongued bumblebees that prefer 

sucrose-rich nectars. Dipterans and coleopterans also, typically, prefer hexose-
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dominant nectars (Elisens and Freeman, 1988; Petanidou et al., 2006). The N-driven 

shift in sugar ratios hexose will likely improve the attractiveness of A. sylvestris and H. 

sphondylium, and potentially other Apiaceae, to dipterans, coleopterans, and 

generalist short-tongued bees, whilst decreasing the attractiveness to more specialist 

bee species. The concentration of total sugars was not affected in either species, or in 

K. arvensis, in response to N. Given forecasted increases in global N deposition, this is 

perhaps a good sign, as the interaction between these important nectar resource and 

a wide assemblage of pollinators should not be too impacted by changes to the floral 

rewards. 

 

4.5.4 Impacts to community-scale nectar provision 

The detrimental impact of NH4 on the nectar traits of calcareous grassland 

species is apparent throughout this chapter. All three study species of NH4-enriched 

plots provided far less sugar to flower visitors. NH4 is known to negatively affect the 

botanical communities of temperate grasslands (e.g. Pearson and Stewart, 1993; 

Stevens et al. 2011; Southon et al. 2013), including by reducing floral abundance. 

Furthermore, the analyses showed how NH4 caused reduced nectar secretion (Table 

4.5) and concurrently lower sugar concentrations per flower (Table 4.8). Through 

combining nectar traits data with quadrat-derived floral abundance data, the strong 

detrimental impact of NH4-enrichment on sugar provision became clearly apparent. 

Although N deposition in the UK has plateaued and showed signs of decreasing in 

recent decades (ROTAP, 2012), NH4-enrichment of terrestrial ecosystems remains a 

clear issue. The declines of insect pollinators are through a myriad of reasons, here I 

show that declines in the provision of calorific dietary resources due to soil 

eutrophication could be a contributing factor to pollinator declines. Given the 

continued high NH4 deposition levels in the UK, this detrimental impact to floral 

resources could continue to stress pollinator insect communities in the future.  

Soil acidification is also shown to contribute to reduced nectar sugar provision 

by plant communities. The two Apiaceae species studied, A. sylvestris and H. 

sphondylium supplied fewer sugars to prospective pollinators in soils with lower pH. 

Soil acidification did not alter the nectar traits of these plants, so this result is likely 
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driven by the sharp fall in floral abundance with soil acidification (Table 4.10). The 

results show that it is important to consider multiple facets of N-enrichment. The 

nectar sugar provision of the Apiaceae species was not affected by N treatments, but 

in acid-sensitive soils with low buffering capacity, N deposition could indirectly impact 

on resource provision for flower-visiting insects. These two species are nectar-rich and 

serve the resource acquisition needs of a wide range of pollinators. The significant hit 

to sugar provision suggests N-driven soil acidification could greatly impact pollinator 

communities broadly.  

Negative effects of soil acidification were not ubiquitous across study species, 

reflecting the common theme of species-specific responses to N. The sugar provision 

of C. nigra was in fact higher in more acid soils. In the UK, C. nigra has an Ellenberg R 

value of 6, implying adaptability to weakly acid or basic soils, however in Central 

Europe the Ellenberg R value is 3, suggesting it grows primarily in acid soils (Hill et al, 

1999). The nectar traits of C. nigra did not respond to soil acidity in this study, so the 

likely driver of sugar provision was floral abundance, which increased in more acidic 

soils. The studied topsoil pH was consistently greater than pH 5; we cannot infer if the 

positive trend of sugar provision with soil acidification would continue in strongly 

acidic soils, but it is unlikely to do so where soil pH diverges from what the species can 

tolerate. Although weakly acid soil was beneficial for C. nigra sugar provision overall, 

N-driven soil acidification could cause a net decrease in nectar sugar provision, as all 

N treatments decreased nectar sugars per unit area. 

A major problem of N deposition is the negative impacts it can have on 

leguminous plants (Storkey et al, 2015). This could be a substantial issue for bees, key 

pollinating insects, as leguminous plants are key floral resources. The nectar and pollen 

of legumes is often highly nutritious (Carvell et al. 2006) and can form an integral part 

of the diet of some long-tongued oligolectic and bees (Goulson and Darvill, 2004). This 

study emphasised the strong negative potential of N deposition for bees. Although N 

did not affect nectar traits of T. pratense, the reduction in floral abundance with N 

additions led to plant communities providing significantly less T. pratense floral sugar 

resources. Leguminous plants take up N through atmospheric fixation by 

rhizobacteria, thus when N is added to soils T. pratense loses a competitive edge due 
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to the increased resources available to nitrophilic plants. Many long-tongued bees 

have declined in the UK in recent decades (Biesmeijer et al. 2006), particularly pre-

1990 (Carvalheiro et al. 2013), when N deposition was high. It has been suggested by 

other authors (Carvalheiro et al. 2013; Baude et al. 2016) that N deposition could have 

contributed to a decline in the provision of floral resources for pollinators with 

detrimental consequences for associated pollinator species. The findings presented 

here, namely the decline of nectar sugar provision with N additions, emphasise this. 

Conversely, T. pratense floral sugar provision increased with mineral additions (P, K, 

Na, Mg), likely due to increased floral abundance. Studies have shown the positive 

impact P and K can have on the growth and N-fixing capabilities of Fabaceae 

(Premaratne and Oetrli, 1994; Carsky et al. 2001; Mmbaga et al. 2014). The mineral 

additions in the PGE allowed T. pratense to maintain high populations, which 

contributed to increased floral abundance and the resultant high sugar provision of 

mineral-enriched plant communities. 

 

4.5.5 Limitations and caveats of the study, suggested future research 

A caveat of the study is that only a select group of plant species were studied; 

those from which raw nectar sampling was possible without dilution. As mentioned in 

the methods section, dilution of nectar can lead to uncertainties in calculating true 

concentrations of sugars, and therefore in the inference of results. If all plant species 

in the community were sampled, it would be possible to determine the impact of N 

and soil pH on the total provision of sugars by a plant community. This would be 

incredibly useful and informative for addressing our lack of understanding of how 

these drivers effect pollinator populations.  

Nectar production and composition is known to vary across flowers and 

individuals within a species, particularly due local abiotic drivers such as relative 

humidity and temperature (e.g. Corbet et al. 1979) and so large sample sizes are 

required to be sure of conclusions. Relatively few samples were taken from A. 

Sylvestris, H. sphondylium, and K. arvensis. This reduced the power of analysis and 

made the reporting and inference of significant results difficult for these species. 
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The experiments reported in this chapter were conducted in a field site. With 

this I was able to determine the impacts to representative plant communities under 

realistic conditions (i.e. with plant competitive dynamics and climate). It would be 

useful to support this study with controlled experiments and spatially distributed field 

studies. Laboratory or greenhouse experiments in controlled environments can be 

useful to verify the impacts to individual study species. Furthermore, it could be useful 

to test for heritable nectar traits by using seeds from PGE populations. Alternatively, 

representative communities with multiple species could be constructed in controlled 

studies. This would incorporate alterations to plant competitive dynamics, a key 

aspect of soil eutrophication, into the study. The study of plant communities in 

spatially separated field sites across the UK or temperate European grasslands would 

also support this research. The PGE contains distinct plant communities that are 

representative of communities undergoing various soil additions. However, they are 

not spatially replicated or independent. Studying plant communities across a gradient 

of N deposition and soil acidification would help to show real impacts to the provision 

of floral resources. 

 

4.6 Conclusion 

 

 In this chapter it was shown that changes in soil N content can impact on 

important floral traits; nectar production, composition, and quality. This is an 

important finding, as it shows the consequences of N deposition on plant-pollinator 

communities could be affected by nuanced responses in floral traits. Nectar-sugar 

traits have been shown to influence pollinator visitation (Southwick, Loper and 

Sadwick, 1981; Petanidou, 2005), the health of individual pollinators, and the diversity 

of wider pollinator communities (Potts et al., 2003). Therefore, when considering the 

role of N deposition on plant-pollinator interactions and currently declining trends in 

pollinators, it is important to look beyond species composition and consider the 

quality of resources, not just the quantity, as previously suggested by Nijssen, Wallis 

De Vries and Siepel (2017). There were detrimental effects caused by NH4 additions, 

whilst NO3 additions led to few changes in floral nectar traits across the species. 
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Therefore, impacts to plant-pollinator interactions could vary spatially according to 

NHx:NOy deposition ratios. To improve our understand further, we should consider 

other nectar traits, for example the provision of amino acids which also influence 

pollinator visitation (Petanidou et al., 2006) and health (Nepi et al., 2012), or 

secondary metabolites that can acts as deterrents (Adler, 2000) or help fight parasitic 

infections (Richardson et al., 2015). 
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5.1 Abstract 

 

With pollinating insects declining around the world across taxa and ecoregion, 

it is imperative to understand these trends to improve our ability to forecast, mitigate, 

and prevent further declines and extinctions. The ecosystem service provided by 

pollinating insects, for wild plants and crops, is hugely important and valuable. The 

role of nitrogen (N) deposition and direct applications of N to plant-pollinator 

interactions and pollinator communities is relatively unknown and requires further 

consideration as a potential factor in pollinator ecology. In this study, the impact of N 

enrichment on pollinator communities and plant-pollination interaction networks was 

studied, using the Park Grass Long-term Experiment (PGE) at Rothamsted Research, 

UK. Some plots on the PGE have received chronic N additions, either as inorganic 

fertilisers or organic manures, for over 160 years which has led to the establishment 

of varied plant communities due to the selective pressures of eutrophication, and 

acidification. The pollinator communities and network were assessed by conducting 

transects through the growing seasons of 3 years, in addition to surveying the 

provision of floral units by the experimental plots. Nitrogen enrichment did impact on 

pollinator visitation; fewer pollinators were observed foraging in nitrogen enriched 

plots. Although overall flower abundance was unaffected by N addition, functional 

diversity of the floral community decreased regardless of whether N was added as 

inorganic fertiliser or manure. N addition also led to a decreased proportion of 

Fabaceae. Bees were particularly affected, the loss of floral functional diversity led to 

reduced bee abundances and more Diptera-dominant pollinator assemblages. The 

relatively high connectance found in all plots suggests a latent robustness of 

mesotrophic grassland plant-pollinator communities in the face of N pollution.  The 

changes to floral and pollinator communities led to altered interaction networks that 

were less nested, an indication of lower resilience to species loss or stochastic events.  
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5.2 Introduction 

 

5.2.1 Pollinating insects 

 It is estimated that 87% of global plant species rely on biotic pollination from 

flower-visiting animals (Ollerton, Winfree and Tarrant, 2011). In wild ecosystems, this 

service can help to maintain and support biodiversity and wider ecosystem function. 

Biotic pollination is also an important ecosystem service in agriculture; approximately 

35% of agricultural produce, from 87 food crops, requires biotic pollination to some 

extent (Klein et al., 2007). Overall, insects are the most prevalent and common 

pollinators (Ollerton, Winfree and Tarrant, 2011). Species of birds (Stiles, 1978), bats 

(Fleming, Geiselman and Kress, 2009), mammals (Goldingay, Carthew and Whelan, 

1991), and reptiles (Valencia-Aguilar, Cortés-Gómez and Ruiz-Agudelo, 2013) also act 

as pollinators of some plants around the world, whether through adapted specialised 

interactions or through accidental pollination through movement. However next to 

insect-pollination, these are comparatively rare cases. The behaviours of many insects 

are closely tied with flowers; whether for territory or looking for mates, predators 

searching for insect prey, or, commonly, to feed on the rewarding sugar-rich nectar 

that is produced by the nectary glands of flowers. Bees, especially, are key pollinators 

for many wild plants and crops. Due to the need to forage pollen for their progeny, 

visiting flowers is a necessity for bees. Because of this close bond, they have 

adaptations that make them highly effective pollinators, such as hairy bodies with 

corbicula for collecting pollen. In turn, certain flowers have adapted floral 

morphologies and mechanisms to encourage the efficient pollination service that bees 

can supply. However, bees are not the only insect pollinators (Jauker and Wolters, 

2008; Orford, Vaughan and Memmott, 2015; Hahn and Bruhl, 2016; Rader et al., 2016). 

Many studies of pollinator communities focus only on bees, despite evidence that 

other insects can acts as pollinators, which can lead to a narrow and obscured view of 

actual pollinator communities. It is important to consider the broader picture when 

we study pollinator communities. 

In recent decades, broad declines in insect pollinators have been recorded, 

although these trends are not uniform across taxa (Rader et al., 2014; Powney et al., 
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2019). The declines in pollinating insects are due to many, often interacting, factors 

(Goulson, Lye and Darvill, 2008; Potts et al., 2010; Vanbergen and Iniative, 2013). 

Habitat loss, in particular, is a key driver of insect pollinator declines (Winfree, 

Bartomeus and Cariveau, 2011; Rader et al., 2014; Senapathi et al., 2015). The loss of 

floral resources constitutes a decline in food resources for pollinators, meaning that 

insects are not able to gain the nutrition they need to function and to reproduce. 

Studies show that insect pollinators that have a more narrow diet breadth typically are 

most vulnerable to habitat degradation and the loss of floral resources (Winfree, 

Bartomeus and Cariveau, 2011; Rader et al., 2014; Powney et al., 2019). Generalist 

insects that are flexible in their foraging behaviour and visit more generalist plants to 

support their diet are typically less threatened. 

 

5.2.2 Structure of plant-pollinator networks 

The interactions of plants and pollinators can be viewed as networks, 

specifically as mutualistic networks; as both plant and pollinator benefit from the 

interactions. It is in effect a food web, whereby the flower-visiting insects are feeding 

from plant material (Ings et al., 2009). Therefore, plants can affect the pollinator 

community, through the provision of resources. More abundant and diverse floral 

communities, with a variety of floral niches, enhances pollinator abundance and 

diversity (Potts et al., 2003; Bartomeus et al., 2013; Vaudo et al., 2015). Similarly, 

higher levels of pollinator diversity improves pollination services and can positively 

drive increases in plant diversity (Fontaine et al., 2006; Woodcock et al., 2019) and can 

improve the seed set and reproduction of plants in the community (Hoehn et al., 2008; 

Albrecht et al., 2012). Enhanced biodiversity, functional richness, and abundance of 

plants and pollinators generally increases the number of interactions in a network 

(Bascompte et al., 2003; Vázquez and Aizen, 2004). This complexity promotes a more 

stable community, and so a more biologically-rich network is typically more resilient 

to losses, extinctions, or stochastic events (Memmott, Waser and Price, 2004). This is 

important, as research from agricultural landscapes has shown that plant-pollinator 

networks have the potential to be fragile without a stable structure (Pocock, Evans and 

Memmott, 2012). 
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The study of interaction networks has become more sophisticated, with the 

development of topographical metrics that describe the characteristics and structure 

of networks (Dormann et al., 2009; Vázquez et al., 2009; Blüthgen, 2010). The concept 

of specialisation versus generalisation is much debated, and recently doubted, in 

pollinator theory (Waser et al., 1996; Fenster et al., 2004; Ollerton et al., 2009), 

although there is evidence to show that floral morphologies and traits can influence 

the identity of insect foragers (Fenster et al., 2004; Rosas-Guerrero et al., 2014). Plant-

pollinator networks are typically far more specialised than seed disperser networks, 

for example (Blüthgen et al., 2007; Stang, Klinkhamer and Van Der Meijden, 2007). 

Although there are cases of close-tied specialist interactions (Vázquez and Aizen, 

2003), there are indications that true, strong specialisation is likely overestimated in 

plant-pollinator networks (Vázquez and Aizen, 2004; Petanidou et al., 2008). Instead, 

plant-pollinator networks tend to exhibit asymmetric specialisation, i.e. specialists 

frequently interact with a subset of generalists in addition to more specialised 

individuals (Vázquez and Aizen, 2004). If the populations of food resources are stable 

across years, being a specialist pollinator can be beneficial (Waser et al., 1996). 

Likewise, if populations of closely associated specialist pollinators are stable, plants 

can benefit from more selective pollinator visitation. However, if abundances vary 

across years and are liable to external pressures, in general it is safer to exhibit 

generalist behaviours or reproductive morphology (Waser et al., 1996). In this way, 

flexible feeding behaviour and high plant diversity can buffer against impacts of global 

change, such as altered flowering phenology (Bartomeus et al., 2013).  

The structure of specialist insects interacting with both specialist and generalist 

plants, leads to high nestedness, another common feature of plant-pollinator 

networks (Bascompte et al., 2003). Highly nested networks are typically more robust 

and resilient to species loss, due to the varied interactions and resources visited by 

specialist species (Burgos et al., 2007; Almeida-Neto et al., 2008). However, the extent 

of potential damage caused by lost species is dependent on that species connectance. 

While nested networks are robust against the loss of poorly-linked species, losses of 

species with many links in the network can be potentially catastrophic (Memmott, 

Waser and Price, 2004; Vázquez et al., 2009). Higher levels of overall connectance 
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throughout the network typically denotes better network stability in the face of 

stochastic events and loss of species richness, as more alternative feeding resources 

are utilised by the upper trophic level (Gilbert, 2009). Although network metrics, such 

as these, are useful and descriptive, they are liable to manipulation or errors through 

rarely occurring species or lack of sampling effort (Jordano, 1987; Blüthgen, Menzel 

and Blüthgen, 2006; Blüthgen et al., 2008; Petanidou et al., 2008). An observation of a 

single unique interaction can be mistakenly identified as a specialist interaction, even 

if the interaction occurs between two generalists (Jordano, 1987). This can distort the 

estimation of specialisation of networks and as a result, true specialisation is often 

overestimated (Petanidou et al., 2008). Furthermore, each appearance of a new 

species causes connectance metrics to decrease, as the proportion of all possible links 

is now fewer (Jordano, 1987). On the other hand, nestedness tends to increase with 

species richness (Bascompte et al., 2003; Vázquez and Aizen, 2004). 

Interaction networks are a useful tool for identifying the impacts of global 

environmental change (Tylianakis et al., 2008; Burkle and Alarcon, 2011). Interactions 

helps support biodiversity, and typically proffer a better insight into ecosystem 

function, stability, and services than species richness. The functioning and stability of 

real-world ecosystems is built around interacting organisms, not species that are 

isolated from each other. By studying interaction networks, we can see the impacts to 

species richness, but also to the function of ecosystems ,how species interact with 

each other, whether losses of food resources are occurring, and we can also identify if 

networks become hinged on interactions that if lost will severely impact the 

assemblage (Tylianakis, Tscharntke and Lewis, 2007). Given current pressures of 

drivers of global environmental change (Tylianakis et al., 2008), the use of interaction 

networks offer a more insightful view of how drivers can impact our ecosystems in the 

future (Burkle and Alarcon, 2011). 

 

5.2.3 Nitrogen as a driver of environmental change 

 Nitrogen (N) deposition, which globally has escalated steeply since the 

industrialisation of the mid-19th Century (Galloway et al., 2004; Dentener et al., 2006; 

Fowler et al., 2013), and direct applications of N to soils can impact on botanical 
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communities (Stevens et al., 2004; Bobbink et al., 2010; Field et al., 2014; Storkey et 

al., 2015). The most prevalent mechanism is though soil eutrophication and altered 

competition dynamics (Bobbink, Hornung and Roelofs, 1998; Bobbink et al., 2010). 

Typically, competitive grasses take advantage of the increased soil nutrition and 

exclude slower-growing and smaller species, in effect causing declines in many 

flowering forbs and legumes (Crawley et al., 2005). This is, in effect, a floral 

deterioration of the landscape, with foraging resources for pollinating insects being 

lost. Habitat loss is regarded as a key driver of pollinator declines (Vanbergen and 

Iniative, 2013; Rader et al., 2014; Harrison and Winfree, 2015), but the contribution of 

plant community responses to eutrophication is poorly understood. Plants with more 

specialised floral structures were observed to decline more with N additions (Chapter 

2). Floral morphology can be a significant predictor of pollinator identity for many 

plants (Lázaro, Hegland and Totland, 2008), with many deeper flowers often providing 

more rewarding nectars (Klumpers, Stang and Klinkhamer, 2019). Therefore, it’s likely 

that specialist insects are most threatened by N-deposition, as is also the case with 

habitat loss (Winfree, Bartomeus and Cariveau, 2011; Rader et al., 2014). As such, N-

pollution should be considered a contributor to the degradation of pollinator habitats.  

Beyond the impacts to botanical composition, there is evidence of soil N 

causing variation in the expression of floral traits that can be key in attracting insects 

and supplying them with nutritional benefits (David, Storkey and Stevens, 2019), such 

as phenology (e.g. Cleland et al., 2007), nectar quantity and quality (e.g. Gijbels, Van 

den Ende and Honnay, 2014), and morphology (e.g. Hoover et al., 2012). Despite the 

numerous knowledge gaps in our understanding of how N pollution impacts on plant-

pollinator interactions and pollinator communities, this subject is gaining 

consideration as a potential driver (Ings et al., 2009; Harrison and Winfree, 2015; 

David, Storkey and Stevens, 2019). Incorporating our understanding of N-pollution 

impacts to botanical communities into pollinator research can help to improve our 

knowledge of pollinator trends and give insight to targeted conservation means or 

preventative strategies.  

 There are very few studies that have incorporated pollinators into studies of N-

driven impacts on floral traits, and these have contrasting results. Burkle and Irwin 
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(2010) found that low additions (10 kg N ha-1 yr-1) of N to soil in experimental plots in 

the Rocky Mountains actually promoted forb growth and flower production, which 

enhanced pollinator visitation. Positive effects, however, were not observed with 20 

kg N ha-1 yr-1 additions. The field site used by the authors received low background N 

deposition, just over 4 kg N ha-1 yr-1 (Burkle and Irwin, 2010). The results suggest that 

low N deposition levels currently being experienced by some regions in the Southern 

Hemisphere could in fact benefit floral production of temperate and montane 

grasslands. However, these positive effects will diminish with rising N deposition in the 

near future, and with further escalating levels impacts could become detrimental 

(Phoenix et al., 2006; Bleeker et al., 2011). The N deposition levels experienced by 

many regions in the Northern Hemisphere are currently far in excess of the low, 10 kg 

N ha-1 yr-1, N treatment level used by Burkle and Irwin (2010), so the positive effects 

reported by the authors likely do not apply to grasslands in these regions. Although 

low N additions caused some potentially beneficial responses, other studies found N 

addition detrimentally impacted the potential for nectar resources to support 

bumblebee colonies (Hoover et al., 2012; Ceulemans et al., 2017). Artificially-made 

nectar that was representative of Cucurbita pepo nectar produced under N-

enrichment was more attractive to bumblebees than nectar representative of no N 

additions, but it led to increased mortality of workers (Hoover et al., 2012). 

Furthermore, another study of nutrient enrichment on Succisa pratensis and 

bumblebees found that colonies feeding on nutrient-enriched plants had more dead 

larvae during the colonies’ early-mid lifespan (Ceulemans et al., 2017).  

Research into the effects of N on plant-pollinator interaction networks are 

limited and findings have thus far been inconclusive. Burkle and Irwin (2009; 2010) 

found that, although floral abundance and pollinator visitation were linked and 

affected by N additions, network structure and the core plants and pollinators were 

not. However, the experimental N-addition was only applied during the three years of 

sampling. Therefore, the study could only monitor immediate changes to a 

heterogenous pollinator community caused by immediate responses to N applications 

and was not able to explore the impact of chronic N increases. Studies of long-term N-
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applications can give a better insight of the effects of N deposition and chronic N 

pollution (Ings et al., 2009). .   

 

5.2.4 Aims of the study 

 For this study, I used the Park Grass Long-Term Experiment (PGE) at 

Rothamsted Research, UK, to investigate the effects of chronic N additions on 

pollinator communities and plant-pollinator networks. The PGE has received 

consistent N treatment applications for over 160 years, so reveals the impacts of long-

term N-enrichment on plant communities. Although the experimental plots are 

located within the same field site, so have the same local pollinator community, the 

botanical communities and floral resources differ strongly between plots due to the 

long-term treatments. Therefore, we can predict how high levels of N deposition could 

selectively narrow down pollinator assemblages in real-world scenarios when scaled 

up to the landscape scale. As N-enriched plots typically have lower species richness 

and functional richness of important floral resources (Crawley et al., 2005; Silvertown 

et al., 2006), I hypothesised that 1) the flower-visiting insect community will be less 

species-rich and with fewer specialised pollinators such as bumblebees. Furthermore, 

that due to the loss of specialist floral resources, 2) the nestedness and complexity of 

plant-pollinator networks will decline with N addition. Investigating how pollinator 

communities and plant-pollinator interaction networks are affected by N additions can 

help inform management and conservation efforts in the future, with global N 

deposition rising and pollinators facing numerous stress-inducing factors. 

 

5.3 Materials and methods 

 

5.3.1 Park Grass Long-Term Experiment 

The study used the Park Grass Long-Term Experiment (PGE), of which a full 

description is given in Chapter 2 (section 2.3.1). Sampling all 101 plots of PGE is not 

feasible, so a subset of study-plots was selected. In Europe, atmospheric N deposition 
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is becoming more NO3-dominant (Dentener et al., 2006), and the impacts of NO3 to 

floral traits are more mixed than the impacts of NH4, which makes predicting the 

impacts of NO3 addition to pollinators more difficult. Therefore, this chapter focused 

on the experimental plots receiving NO3 application to identify if this form of N-

enrichment affected plant-pollinator interactions and pollinator communities. A 

problem with conducting experiments on the PGE is the lack of plot replication, the 

experiment was designed prior to modern statistical theory, and so there is no 

replication of treatment. To account for this, researchers must use temporal 

replication and search for hidden replicates by using treatments as blocking factors. 

For this study, I used subplots with different topsoil pH and plots receiving mineral 

applications to create more replicates with which to study the impacts of N addition 

(Table 5.1; Fig. 5.1).  

Table 5.1. Study plots used for pollinator transect sampling and the studied treatments for 
each plot. 
Organic manure is a rotation of farmyard manure (supplying c. 240 kg N ha-1 yr-1, 45 kg P ha-1 yr-1, 350 
kg K ha-1 yr-1, 25 kg Na ha-1 yr-1, 25 kg Mg ha-1 yr-1, 40 kg S ha-1 yr-1, 135 kg Ca ha-1 yr-1) and poultry manure 
(supplying c. 65 kg N ha-1 yr-1), applied every 2 years on rotation. For mineral application, “+” is applied 
and “-“ is not applied. Mineral application is 225 kg K ha-1 yr-1, 15 kg Na ha-1 yr-1, 10 kg Mg ha-1 yr-1, 122 
kg S ha-1 yr-1, 17 kg P ha-1 yr-1 (in 2016)/35 kg P ha-1 yr-1 (in 2017 and 2018, to account for P accumulation). 

Plot N application pH Mineral application 

3b Nil 6.1 - 

3d Nil 5.1 - 

17b NO3 48 kg N ha-1 yr-1 6.2 - 

17d NO3 48 kg N ha-1 yr-1 5.8 - 

7/2b Nil 6.1 + 

7/2d Nil 5 + 

16b NO3 48 kg N ha-1 yr-1 6 + 

16d NO3 48 kg N ha-1 yr-1 5.6 + 

14/2b NO3 96 kg N ha-1 yr-1 6.3 + 

14/2d NO3 96 kg N ha-1 yr-1 6.1 + 

13/2b Organic manure 6 - 

13/2d Organic manure 5.2 - 

 



  Chapter 5. Pollinator communities 

156 
 

 

Figure 5.1. The Park Grass Experiment, with chapter 5 study plots clearly shaded. 
Shaded plots show the PGE plots where plant-pollinator interactions were recorded.  
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5.3.2 Pollinator transect sampling 

 Pollinator transects were conducted in the spring, summer, and 

autumn of 2016, 2017, and 2018. Transects were chosen as the sampling method as 

they more accurately show the true network structure, are time efficient, and are the 

optimum method for grassland meadow habitats (Gibson et al., 2011). I conducted the 

pollinator transects by walking the perimeter of a plot, recording each interaction 

between an insect and flower within two metres of the plot’s edge, as recommended 

by Gibson et al. (2011). Only insects feeding from the nectar or contacting the sexual 

parts of the flower were recorded. The sizes of the PGE study plots are not equal. The 

smallest study plots, 14/2d and 14/2b, have a perimeter of 34.64 m, to compensate I 

only surveyed 34.64 m of all the PGE study plots per transect. Insects were caught and 

frozen for identification under microscope. Bees were identified to species level; other 

insects were identified to family level. The plant species visited was also recorded.  

Each year’s sampling commenced when all the study plots were in flower, with 

replicate transects taken during the growing season until the PGE cut date at the end 

of June, when the vegetation on all plots was cut. Pollinator transect sampling then 

continued when the regrowth brought each study plot back into flower, typically early 

August, until the final cut in October. Each sampling day was split into three blocks: 

morning (08:00–11:00), midday (12:00–15:00), afternoon (16:00–18:00), to account 

for the effect of time of day on the active pollinator community. All plots were studied 

within a single day, with four plots in each block. Sampling bouts were therefore 

grouped into three full sampling days, within which each plot was sampled three 

times, once in each block. The three sampling days were conducted within a week 

when the climatic conditions were similar across all three days. I aimed to conduct a 

group of three sampling days approximately every two weeks throughout the growing 

period. Overall, I made eight of these bouts in 2016 and 2017, and nine bouts in 2018 

(Table 5.2). This amounted to 24 transects per plot in 2016 and 2017, and 27 transects 

per plot in 2018; a total of 75 transects per plot over the three years.  

Pollinator transects were carried out in suitable weather, using the insect 

pollinator sampling protocol of the national pollinator and pollination monitoring pilot 

as a guide (Carvell et al. 2016). Transects were conducted in a minimum of 13° C, and 



  Chapter 5. Pollinator communities 

158 
 

in temperatures between 13 – 17° C, cloud cover was to be <50%. When possible, 

sampling days took place when wind speed was below Beaufort Scale 5 (mean wind 

speed 10 m s-1). However, this was not possible in extended windy periods, the 

maximum mean wind speed during a sampling day was 15 m s-1. The blocking structure 

of conducting transects across three days took this into account, and so wind speed 

was similar across plots within a sampling bout. 

 

Table 5.2. The sampling dates for pollinator transect sampling. 
The dates show when pollinator transects were conducted. Within each period, the blocked structure 
of three transects per plot were conducted. 

 

 

 

 

 

 

 

 

 

 

 

 

   

5.3.3 Floral quadrat survey 

For each bout of three pollinator transect surveys, the floral community of the 

PGE study plots was also assessed. This was done with 0.25 m2 quadrats, 20 quadrats 

were thrown along the surveyed transect route in each study plot. For each quadrat I 

counted the number of floral units of each plant species. Trait data was used to 

compute metrics that described the floral community of each plot, Rao’s quadratic 

entropy, functional divergence, functional evenness, and functional richness. Trait 

data was acquired from the following sources: floral colour, typical insect visitors, and 

pollinator syndrome morphology from the BIOFLOR database (Klotz et al. 2002), nectar 

Month 2016 2017 2018 

April 
 
 
May 
 
 
June 
 
 
August 
 
 
September 
 
October 

28/04 – 06/05 
 
 
19/05 – 23/05 
 
 
07/06 – 09/06 
30/06 – 03/07 
 
12/08 – 17/08 
26/08 – 31/08 
 
13/09 – 14/09 
 
14/10 – 17/10 

10/04 – 12/04 
29/04 – 02/05 
 
13/05 – 16/05 
22/05 – 26/05 
 
07/06 – 11/06 
 
 
06/08 – 10/08 
14/08 – 16/08 
 
22/09 – 25/09 

18/04 – 20/04 
 
 
07/05 – 08/05 
08/05 – 09/05 
 
06/06 – 08/06 
13/06 – 15/06 
 
05/08 – 07/08 
30/08 – 02/09 
 
07/09 – 10/09 
 
10/10 – 10/10 
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traits from the Agriland database (Baude et al., 2016), flowering phenology and floral 

size measurements trait data was collected from direct measurements in PGE.  

 

5.3.4 Statistical analysis 

All statistical analyses was conducted using R Studio (R Core Team, 2018), with 

graphics produced using the ggplot2 (Wickham, 2016) and bipartite (Dormann, Gruber 

and Fründ, 2008) packages. The transects resulted in a large dataset of observations. 

To study the impact to the pollinator community, this was compiled into summary 

statistics with each data point representing a study plot within a year. With the floral 

quadrat data and traits information, the following indices of functional diversity were 

calculated: Rao’s quadratic entropy (Rao, 1982; Botta-Dukát, 2005), functional 

divergence (Fdiv), functional evenness (FEve), and functional richness (FRic) (Mason et 

al., 2005) (Table 5.3); these metrics integrate the contribution of multiple traits and 

are weighted by species abundance. The functional diversity indices were calculated 

using the ‘FD’ package in R Studio (Laliberté et al. 2010, 2014). The mean abundance 

of floral unit per quadrat and the proportion of Fabaceae, Apiaceae, Asteraceae, 

Ranunculaceae, and Lamiaceae floral units was also calculated for each plot and year. 

These five plant families were the most dominant and common forb and legume 

families throughout the PGE plots. The impacts of treatments on the floral community 

were tested with ANOVA, the explanatory variables were N treatment (categorical; nil, 

NO3, organic farmyard manure), N amount (continuous; 0-96 kg N ha-1 yr-1), mineral 

application (categorical; not applied, applied, applied as organic farmyard manure), 

and pH (continuous; 5-6.3). 
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Table 5.3. The functional diversity indices used for the analyses.  
The four indices are defined, and illustrative theoretical examples are given for functional evenness, 
richness, and divergence. 

Index Definition 

Functional 

evenness 

(FEve) 

The evenness of trait expression within niche space. High FEve occurs where 

a functional trait is evenly distributed across values through niche space. Low 

FEve occurs where specific trait expressions are proportionally more common.  

 

Functional 

richness 

(FRic) 

The richness of expressions of a functional trait. High FRic occurs when niche 

space is broadly occupied, low FRic when fewer values of niche space are filled.  

 

Functional 

divergence 

(Fdiv) 

The divergence between functional trait expressions in niche space of a 

community. High FDiv occurs when traits are distantly separated across niche 

space, low FDiv when traits occupy a closely grouped area of niche space. 

 

Rao’s 

quadratic 

entropy 

Rao’s index combines an index of species diversity with measurements of 

species distinctiveness (effectively the mean Euclidian distance between the 

functional traits of species). It is a measure of dissimilarity between species 

and is weighted by abundance and diversity. 
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All explanatory variables (N treatment, N amount, pH, mineral addition, and all 

floral indices) and response variables of the insect pollinator community were used to 

form a factor analysis of mixed data (FAMD) plot, to identify explanatory and response 

variables that could be grouped. The FAMD plot was constructed and analysed using 

the ‘FactoMineR’ package (Le et al. 2008). FAMD is a principal component analysis that 

can analyse data of quantitative and qualitative variables simultaneously. This is unlike 

principal component analyses (PCA) or multiple correspondence analyses (MCA) which 

study only quantitative and qualitative variables, respectively. Variables are scaled and 

normalised to allow balanced analysis of the variables. This method of analysis is useful 

for studying datasets composed of mixed variables and for graphically portraying the 

relationships and grouped associations between the variables. A MANOVA was also 

used to give further evidence of linked groups and identify drivers of the response 

variables. Linear mixed-effects models, using the lme4 package (Bates et al. 2015), 

were used to determine the direction and magnitude of the identified explanatory 

variables for each response variable. Year was incorporated as a random effect to 

account for the effect of year on insect abundances. These models were reduced with 

stepwise simplification, removing the least significant terms and checking model 

assumptions at each step to achieve the final simplified model. 

To study the structure of the plant-pollinator interaction networks the raw 

dataset was converted to quantitative interaction matrixes, one for each plot within a 

year. The bipartite package in R Studio (Dormann, Gruber and Fründ, 2008; Dormann 

et al., 2009) was used to calculate the following networks metrics for each interaction 

network: “nestedness metric based on overlap and decreasing fill” (NODF) (Almeida-

Neto et al., 2008; Almeida-Neto and Ulrich, 2011), weighted NODF, connectance, 

weighted connectance, links per species, Alatalo interaction evenness, the number of 

compartments, and H2’ (Table 5.4). Null models of each interaction network were 

generated and the network metrics of these were compared to the true observed 

network. The null model approach can help to correct for network distortions caused 

by network size or infrequent interactions (Vázquez and Aizen, 2003; Dormann, 2011; 

Gibson et al., 2011). The ‘r2d’ null model method holds the observed values for rows 

and columns but allows the number of links to vary with null model creation. I used 
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r2d null models for connectance, weighted connectance, links per species, and the 

number of compartments, as these metrics describe the quantity and strength of 

interactions. The ‘swap’ null model method is more conservative, holding the row and 

column values in addition to the number of interactions. This method was used to 

create null models for NODF, weighted NODF, Alatalo interaction evenness, and H2’. 

For each null model, 1,000 iterations were generated, and these were used to 

determine if the real networks differed from null models in a way that was statistically 

significant. The difference between the null models and true observed networks for 

each network metric was calculated – this difference is known as the D-Value (Vázquez 

and Aizen, 2003). The bottom-up robustness of the pollinator community for each 

observed network, of a plot within a year, was also calculated using the bipartite 

package (Dormann, Gruber and Fründ, 2008) in RStudio. The robustness function 

models extinction cascades following the loss of species; with 1,000 iterations, plant 

species were removed systematically beginning with the one with least abundance, 

and the impact on pollinator species richness was calculated. The robustness score 

was also used as a response variable to test for the impacts of the nutrient and pH 

treatments. To analyse how the treatments impacted network metrics, I used linear 

mixed effects models, incorporating N (categorical; NO3 and Organic), N amount 

(continuous; 0–96), and pH (continuous; 5.1–6.3) as fixed effects, and year 

(categorical; 2016, 2017, 2018) and minerals (categorical; applied or not) as a random 

effect. Linear models were used to investigate the interaction between N treatment 

and year. The network metrics were response variables, explanatory variables were N 

treatment, year, and the interactive term. For all linear mixed effects models and 

linear models described, I simplified the models using stepwise simplification, 

dropping the least significant term and checking the model assumptions at each step. 

Post hoc Tukey tests were utilised to check the accuracy of significant comparisons. 
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Table 5.4. Network metrics used for plant-pollinator network analysis. Metrics are defined 
and the suitable null model method stated. 

Network metric Definition Null model 
method  

Connectance The proportion of all possible interactions that are 
observed (Dunne, Williams and Martinez, 2002). 

R2d 

Weighted 
connectance 

Useful for quantitative webs. The metric is 
weighted by the strength of interactions (Dunne, 
Williams and Martinez, 2002). 

R2d 

Links per species The mean amount of links per species node. R2d 

Number of 
compartments 

Compartments are isolated subsets within the 
network, not connected to another compartment. 

R2d 

NODF A more consistent index for nestedness (Almeida-
Neto et al. (2008, 2011). 

Swap 

Weighted NODF A quantitative NODF metric that takes network 
strengths into account (Almeida-Neto et al., 2008; 
Almeida-Neto and Ulrich, 2011). 

Swap 

Alatalo interaction 
evenness 

An index of evenness that is suitable for bipartite 
networks and handles outliers well (Alatalo, 1981; 
Muller et al., 1999). 

Swap 

H2' A measure of specialisation ranging from 0 (no 
specialisation) to 1 (complete specialisation) . 

Swap 

 

 

 

5.4 Results 

 

5.4.1 Summary statistics of the insect community 

Across the 3 years of pollinator transects, encompassing 75 transects for each 

of the 12 plots, 5076 interactions were observed between plants and flower-visiting 

insects (Appendix 2; Appendix 3). Overall, Diptera were the most numerous taxonomic 

order at 3145 observations (61.9%), followed by Hymenoptera at 1569 (30.9%); 1115 

of which were bees (21.9%). The composition and abundance of insects in the insect 

communities was not uniform across plots (Table 5.6). Neither was the data uniform 

across years (Table 5.5). The year had a significant effect on the abundances of insects 

observed, with far fewer insects observed visiting flowers in 2018; notably the reduced 

abundance led to lower taxonomic richness. However, the composition of the 

observed flower-visiting community was more stable across years, as there was no 

significant effect of year on the proportions of Diptera and bees (Fig. 5.2).  The 
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sampling season of 2018 was notably hotter and drier than 2016 and 2017 (mean 

temperature, with standard errors, from 1st March–31st September was 14.54 ± 0.31ᵒ 

C in 2016, 14.35 ± 0.28 ᵒ C in 2017, and 15.4 ± 0.3 ᵒ C in 2018. Mean rainfall, with 

standard errors, from 1st March–31st September was 1.71 ± 0.28 mm in 2016, 1.9 ± 0.3 

mm in 2017, and 1.39 ± 0.27 mm in 2018). 

Table 5.5. Output of ANOVA of the impact of sampling year on insect pollinator observations 
and community. 
Response variables for which study year was a significant factor are indicated by * p<0.05; ** p<0.01; 
*** p<0.001.  

df F-value P-value 

Total abundance 2 5.82 0.0069 ** 

Insect family richness 2 5.68 0.0076 ** 

Total bees 2 6.23 0.0051 ** 

Total Bombus 2 3.38 0.046 * 

Total Apis 2 7.56 0.0020 ** 

Total solitary bees 2 7.59 0.0019 ** 

Total Diptera 2 3.40 0.045 * 

Total Syrphidae 2 6.41 0.0044 ** 

Total wasps 2 8.94 0.00079 *** 

Total sawflies 2 11.88 0.00013 *** 

Total Coleoptera 2 2.42 0.10 

Total Lepidoptera 2 2.43 0.10 

Proportion bees 2 0.16 0.86 

Proportion Diptera 2 0.24 0.79 

Bee species richness 2 4.80 0.015 * 

Unique interactions (all-family) 2 7.48 0.0021 ** 

Unique interactions (bees-species) 2 5.90 0.0064 ** 
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Figure 5.2. Aspects of the observed insect community across the 3 study years. 
Significantly different years are indicated by * p<0.05; ** p<0.01; *** p<0.001. 
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Table 5.6. Summary statistics of the insect communities of each plot, with mean values across three study years.  
3b 3d 17b 17d 7b 7d 16b 16d 14b 14d 13b 13d 

Overall abundance 214.00 139.00 137.67 115.00 398.67 96.00 332.33 110.67 418.67 171.33 118.00 183.00 

Insect family richness 22.33 20.33 19.67 14.00 16.33 12.67 18.00 14.33 18.67 17.33 17.33 18.33 

Bee species richness 13.33 9.33 8.67 9.00 9.00 8.33 8.33 8.33 9.00 6.67 7.67 10.00 

Unique interactions 
(family) 

45.67 40.00 37.00 26.33 35.00 21.67 32.00 27.33 32.33 31.00 32.67 37.33 

Unique bee 
interactions (species) 

22.00 14.67 9.67 10.33 15.33 13.00 11.00 10.67 11.00 10.50 10.33 12.67 

Bee abundance 65.00 20.67 16.00 18.67 50.67 37.67 38.33 25.67 30.00 17.00 28.00 24.67 

Bombus abundance 42.67 10.67 4.67 4.67 35.67 27.33 22.00 14.00 14.33 3.67 12.67 12.00 

Apis abundance 13.67 5.00 3.00 3.67 6.67 5.33 5.00 3.67 4.00 2.00 2.67 1.33 

Solitary bee 
abundance 

8.67 5.00 8.33 10.33 8.33 4.33 11.33 8.00 11.67 11.33 12.67 11.33 

Diptera abundance 113.33 92.67 94.33 86.33 317.00 42.00 268.00 81.67 369.33 138.00 72.33 125.00 

Syrphidae abundance 25.33 20.00 23.33 18.67 17.00 4.33 13.33 9.67 15.33 15.67 15.33 17.00 

Wasps abundance 2.67 2.67 0.67 0.33 2.00 0.00 3.33 1.00 4.33 3.00 0.33 1.67 

Sawflies abundance 22.33 11.00 6.33 2.00 18.00 4.00 12.00 3.00 9.00 5.00 6.00 11.67 

Coleoptera 
abundance 

5.33 7.67 16.67 6.67 11.33 4.67 6.33 6.00 4.33 6.33 7.67 14.00 

Lepidoptera 
abundance 

4.00 5.67 3.67 1.00 0.33 7.67 1.33 0.00 0.33 2.00 3.33 3.00 

Proportion bees 0.34 0.21 0.14 0.23 0.14 0.39 0.10 0.22 0.07 0.09 0.24 0.14 

Proportion Diptera 0.47 0.57 0.64 0.65 0.79 0.42 0.83 0.72 0.88 0.81 0.62 0.66 
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5.4.2 Floral assay of botanical communities 

The N treatments impacted the floral composition of the plant communities 

(Table 5.7). NO3-enrichment led to reduced species richness, but not organic farmyard 

manure additions did not. Both forms of N addition, NO3 and organic farmyard manure 

decreased the functional divergence and richness of the floral communities (Fig. 5.3). 

Plots receiving NO3 or organic manure treatments also had smaller proportions of 

Fabaceae but larger proportions of Ranunculaceae. The N treatments did not 

significantly affect other aspects of the floral community. The relative proportions of 

Apiaceae and Asteraceae were also similar between control and N- or manure-treated 

plots. Mineral treatments also affected floral communities (Table 5.7), leading to floral 

communities that were less functionally rich, less taxonomically rich, and with higher 

proportions of Fabaceae and Ranunculaceae flowers alongside lower proportions of 

Asteraceae and Lamiaceae flowers (Fig. 5.4). Other aspects of floral community were 

unaffected by mineral treatments.  

 Table 5.7. Output of ANOVA of the effect of N treatments and mineral treatments on the floral 
community of the study plots. 
Significant factors are indicated by . p<0.1; * p<0.05; ** p<0.01; *** p<0.001. 

 N treatment Mineral treatment 

 
df F-value P-value df F-value P-value 

FDiv 2 12.62 0.000085 *** 2 3.11 0.058 . 

FEve 2 1.18 0.32 2 0.43 0.96 

FRic 2 5.62 0.0079 ** 2 17.65 0.000061 *** 

Rao’s QE 2 1.41 0.26 2 1.83 0.18 

species richness 2 6.20 0.0052 ** 2 10.4 0.00031 *** 

floral abundance 2 0.06 0.94 2 2.60 0.090 . 

% Fabaceae 2 10.76 0.00025 *** 2 3.61 0.038 * 

% Asteraceae 2 1.55 0.23 2 15.10 0.000022 *** 

% Apiaceae 2 0.20 0.82 2 0.86 0.43 

% Ranunculaceae 2 14.97 0.000024 *** 2 3.43 0.0044 * 

% Lamiaceae 2 1.28 0.29 2 6.11 0.0055 ** 
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Figure 5.3. The significant effects of NO3 and organic (Org) treatments on the floral community 
of the study plots, contrasted with nil N. 
Treatments that are significant different from control are indicated by * p<0.05; ** p<0.01; *** p<0.001. 
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Figure 5.4. The significant effects of mineral and organic (Org) treatments on the floral 
community of the study plots, contrasted with nil minerals. 
Treatments that are significant different from control are indicated by * p<0.05; ** p<0.01; *** p<0.001. 

 

 

5.4.3 Multivariate analysis of insect community 

The first two dimensions of the FAMD explained 42.8% of the variation of the 

data and revealed a clear separation in the floral and pollinator communities of the 

study plots across years, with nil plots separated from NO3, which overlapped slightly 

with the manure-treated plots (Fig. 5.5). When studying the grouped response and 

explanatory variables, certain aspects of the floral and pollinator communities are 

revealed to be grouped (Fig. 5.6). N amount, the proportion of Ranunculaceae flowers, 

and the proportion of Diptera were well grouped, with the proportion of Apiaceae 
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acting in the same direction but contributing less. In opposition is the strong grouping 

of the proportion of Fabaceae, the proportion of bees, and two indices of floral 

functional diversity; Rao’s quadratic entropy and functional divergence, with 

functional evenness contributing in the same direction but with less magnitude. Close 

to this group is the total abundance of Lepidoptera, the floral functional richness, plant 

species richness, and the proportion of Lamiaceae which contributes less but in the 

same direction. The total number of bees, bumblebees, honeybees, bee species 

richness and unique bee interactions are also tightly-grouped. Other variables, such as 

the abundance of Diptera, wasps, sawflies, solitary bees, and insect family richness are 

loosely grouped around the overall total abundance of insects in a plot. Many of the 

described groups were confirmed by the MANOVA analysis (Appendix 4). 
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Figure 5.5. FAMD correspondence analysis plot of individual plant-pollinator networks of plots 
for each year, grouped by N treatment. 
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Figure 5.6. FAMD correspondence analysis plot of the quantitative variables, showing direction 
and contribution towards the data’s variation.   
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The results of the univariate mixed-effects models, with year as a random 

factor, showed the effect sizes and significant factors influencing the insect pollinator 

community (Table 5.8). N additions, in the NO3 form, decreased the overall abundance 

of flower-visiting insects and the number of taxonomically unique interactions 

observed. In particular, NO3-enrichment led to declines in lepidopterans and bees, of 

which bumblebees and honeybees noticeably declined, and also declines in the 

number of unique interactions involving bees. With greater levels of NO3 addition, the 

pollinator community shifted further towards being Diptera-dominant. Organic 

manure applications also led to fewer honeybees and fewer unique interactions 

involving bees. Despite this finding, the abundance of solitary bees increased in plots 

receiving either NO3 or organic manure. Sawfly abundance decreased with NO3 and 

with organic manure applications. With higher pH soils, several aspects of the insect 

community increased; overall insect abundance, overall bee, bumblebee, Diptera, and 

Syrphidae abundances, and the number of unique interactions. Several significant 

effects were caused by the floral community, independent of N additions. Higher 

functional divergence of the floral resources increased bee species richness and the 

amount of unique bee interactions. It also caused a shift in the community towards 

bees becoming proportionally more prevalent and Diptera less so. Functional 

evenness, functional richness, and Rao’s quadratic entropy did not register significant 

effects on the pollinator community. Plant communities producing more floral units 

had higher overall bee visitation, with more solitary bees and also more wasps and 

sawflies. Higher proportions of Fabaceae led to higher proportions of bees, potentially 

driven by increased bumblebee abundance, in addition to fewer sawflies. The 

proportion of Apiaceae was positively linked with the proportion of Diptera, while the 

proportions of Asteraceae, Lamiaceae and Ranunculaceae were not significant factors. 
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Table 5.8. Output of LMER models studying the impacts of treatments and botanical explanatory factors on response variables of the pollinator 
communities.  
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models (‘+’ denotes positive effects, ‘-‘ denotes negative effects). FDiv 
is the Functional divergence of floral community, fl abun is floral abundance. %Fab, %Apia are the proportion of Fabaceae, and Apiaceae.  

NO3 Org N amount pH Minerals FDiv fl abun %Fab %Apia 

Overall abundance -55.85 
  

+72.9 
     

Insect family richness 
    

-2.86 
    

Bee species richness 
     

+10.91 
   

Unique interactions (family) -6.92   +6.98 -7.92     

Unique bee interactions 
(sp.) 

-5.22 -3.75  +3.71  +17.7    

Bee abundance -18.68 
  

+23.62 
  

+76.58 
  

Bombus abundance -11.7 
  

+15.11 
   

+44.23 
 

Apis abundance -4.11 -5.67 
       

Solitary bee abundance +3.76 +5.73 
    

+1.78 
  

Diptera abundance 
   

+102.71 +69.33 
   

+246.56 

Syrphidae abundance 
   

+6.03 -9.58 
    

wasp abundance 
      

+1.08 
  

sawfly abundance -13.3 -9.47 
    

+5.98 -20.98 
 

Coleoptera abundance 
         

Lepidoptera abundance -2.06 
        

Proportion bees   -0.001   +0.59  +0.27  

Proportion Diptera   +0.002   -1.21    
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Table 5.9. D-values of network metrics: NODF, weighted NODF, connectance, weighted 
connectance, links per sp., Alatalo interaction evenness, number of compartments, and H2’.  
Statistical significance between null and real models is shown by * p<0.05; ** p<0.01; *** p<0.001. 

 Plot NODF W. NODF Connectance W. Connectance 

  D-value Sig D-value Sig D-value Sig D-value Sig 

3b.16 4.753 
 

9.466 *** 0.063 *** 0.065 *** 

3b.17 3.815 
 

5.272 
 

0.094 *** 0.053 *** 

3b.18 7.899 
 

10.648 ** 0.038 *** 0.061 *** 

3d.16 -4.539 
 

0.282 
 

0.032 *** 0.033 ** 

3d.17 -0.014 
 

11.856 ** 0.039 *** 0.026 *** 

3d.18 1.050 
 

0.659 
 

0.041 *** 0.041 *** 

17b.16 3.183 
 

6.354 
 

0.041 *** 0.054 *** 

17b.17 1.385 
 

1.495 
 

0.083 *** 0.077 *** 

17b.18 2.650 
 

1.857 
 

0.094 *** 0.071 *** 

17d.16 -0.047 
 

2.549 
 

0.127 *** 0.085 *** 

17d.17 2.033 
 

4.774 
 

0.090 *** 0.067 *** 

17d.18 4.485 
 

1.630 
 

0.057 *** 0.046 ** 

7b.16 9.838 
 

17.885 *** 0.124 *** 0.103 *** 

7b.17 2.350 
 

12.384 ** 0.103 *** 0.069 *** 

7b.18 -0.653 
 

10.340 * 0.133 *** 0.110 *** 

7d.16 11.242 * 15.696 ** 0.108 *** 0.100 *** 

7d.17 -0.989 
 

12.380 *** 0.062 *** 0.027 
 

7d.18 9.013 *** 6.647 
 

0.098 *** 0.096 *** 

16b.16 0.023 
 

7.189 
 

0.092 *** 0.073 *** 

16b.17 -3.586 
 

5.657 
 

0.187 *** 0.082 *** 

16b.18 11.344 * 17.496 ** 0.009 
 

0.045 *** 

16d.16 -11.377 * 4.863 
 

0.122 *** 0.063 *** 

16d.17 4.582 
 

7.823 * 0.178 *** 0.114 *** 

16d.18 -6.032 
 

1.536 
 

0.083 *** 0.072 *** 

14b.16 0.075 
 

5.283 
 

0.070 *** 0.055 *** 

14b.17 -4.504 
 

-3.208 
 

0.171 *** 0.063 *** 

14b.18 -0.330 
 

12.915 
 

0.080 ** 0.058 ** 

14d.16 -12.866 *** 2.248 
 

0.093 *** 0.037 *** 

14d.17 8.736 * 9.904 * 0.073 *** 0.055 *** 

14d.18 12.341 ** 14.871 * 0.059 * 0.072 * 

13b.16 -3.634 
 

-3.446 
 

0.084 *** 0.070 *** 

13b.17 -2.809 
 

7.247 * 0.125 *** 0.096 *** 

13b.18 -6.073 
 

11.252 * 0.108 *** 0.093 *** 

13d.16 -8.864 ** 2.099 
 

0.110 *** 0.062 *** 

13d.17 -0.652 
 

6.003 * 0.122 *** 1.500 *** 

13d.18 6.474 
 

13.284 ** 0.114 *** 1.259 *** 
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Table 5.9. (continued). 

 Plot Links per sp. Alatalo No. compart H2’ 

  D-value Sig D-value Sig D-value Sig D-value Sig 

3b.16 0.489 *** 0.133 *** 0.039 
 

-0.263 *** 

3b.17 0.691 *** -0.019 
 

-0.869 * -0.053 
 

3b.18 0.240 *** 0.236 *** 0.111 
 

-0.232 *** 

3d.16 0.249 *** 0.069 
 

0.542 
 

-0.041 
 

3d.17 0.331 *** 0.031 
 

0.187 
 

-0.109 * 

3d.18 0.267 *** 0.011 
 

-0.740 
 

-0.013 
 

17b.16 0.263 *** 0.196 *** 0.208 
 

-0.235 *** 

17b.17 0.480 *** 0.100 * 0.078 
 

-0.084 * 

17b.18 0.425 *** 0.020 
 

0.079 
 

-0.032 
 

17d.16 0.476 *** 0.224 *** 0.038 
 

-0.321 *** 

17d.17 0.526 *** 0.039 
 

0.089 
 

-0.042 
 

17d.18 0.305 *** 0.009 
 

0.172 
 

0.007 
 

7b.16 0.762 *** 0.212 *** -0.984 *** -0.366 *** 

7b.17 0.650 *** 0.072 
 

0.039 
 

-0.286 *** 

7b.18 0.634 *** 0.224 ** -0.969 *** -0.212 *** 

7d.16 0.572 *** 0.156 * 0.046 
 

-0.388 *** 

7d.17 0.371 *** -0.029 
 

0.276 
 

-0.014 
 

7d.18 0.487 *** 0.083 
 

-2.760 *** -0.109 * 

16b.16 0.489 *** 0.189 *** 0.013 
 

-0.442 *** 

16b.17 1.081 *** 0.008 
 

0.023 
 

-0.085 
 

16b.18 0.034  0.099 *** -0.887 ** -0.507 *** 

16d.16 0.664 *** 0.133 ** 0.000 
 

-0.166 *** 

16d.17 0.832 *** 0.045 
 

0.000 
 

-0.088 * 

16d.18 0.366 *** 0.093 
 

0.145 
 

-0.082 
 

14b.16 0.441 *** 0.112 *** 0.001 
 

-0.425 *** 

14b.17 0.796 *** -0.003 
 

0.000 
 

-0.071 
 

14b.18 0.248 ** 0.092 * -0.996 *** -0.635 *** 

14d.16 0.425 *** 0.186 *** 0.000 
 

-0.279 *** 

14d.17 0.335 *** 0.041 
 

0.025 
 

-0.141 
 

14d.18 0.182 * 0.144 ** -0.914 *** -0.240 ** 

13b.16 0.463 *** 0.029 
 

0.200 
 

-0.028 
 

13b.17 0.722 *** 0.130 *** 0.047 
 

-0.090 ** 

13b.18 0.494 *** 0.074 
 

0.096 
 

-0.164 *** 

13d.16 0.718 *** 0.151 ** 0.039 
 

-0.149 *** 

13d.17 0.653 *** 0.222 *** 0.564 
 

-0.142 *** 

13d.18 0.612 *** 0.182 
 

0.581 * -0.057 * 
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5.4.4 Network structure 

Barring a few exceptions, the connectance, weighted connectance, and links 

per species of the observed plant-pollinator networks differed from the null models 

(Table 5.9). Fewer plant-pollinator networks differed from the null models with 

regards to the other metrics. The D-values as response variables reveal the impacts 

that the N treatments and pH had upon the network structure. The NO3 treatment 

decreased weighted NODF, with fewer links per species at higher N application levels 

(Table 5.10). Organic farmyard manure treatments decreased the unweighted NODF. 

There was a greater number of unlinked compartments in networks of NO3-enriched 

plots. Bee-plant interaction networks illustrate the increased compartmentalisation 

vividly, as shown by visually comparing networks from 17b (48 kg N ha-1 yr-1, pH 6) and 

3b (nil N, pH 6) (Fig. 5.7). Higher soil pH increased the evenness of networks and led 

to less specialised networks. Although the connectance of most networks was 

significantly different from null models, there was no difference across plots caused 

by the N treatments. Although nestedness was influenced by N treatments, there was 

no statistically significant impact to the robustness of the pollinator community across 

all years. 

 

Table 5.10. The output of LMER models studying the impacts of the treatments on the D-value 
of network metrics. 
All presented values are statistically significant (t > 2) effect sizes given by the final simplified models 
(‘+’ denotes positive effects, ‘-‘ denotes negative effects).   

NO3 Organic N amount pH 

Connectance 
    

Weighted 
connectance 

    

NODF 
 

-6.367 
  

Weighted NODF -4.362 
   

Links per species 
  

-0.001 
 

Alatalo 
interaction 
evenness 

   
+0.047 

Number of 
compartments 

+0.375 
   

H2’ 
   

-0.129 

Robustness     
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Figure 5.7. Bee-plant interaction networks of a) plot 17b (48 kg N ha-1 yr-1) and b) plot 3b (nil 
N), across all years.  
Bee species, identified to species, presented on the top, plant species on the bottom. Links portray the 

weighted interactions between insects and plants. 17b network obs. = 48, 3b network obs. = 195. 
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Year was a significant factor for the links per species, the Alatalo evenness, the 

robustness of pollinator communities, and the H2 metrics, N treatment alone was not 

a significant factor. There were significant interactions between Year and N treatment 

for Alatalo evenness and the robustness of pollinator communities, and a near-

significant interaction on the weighted connectance of networks (Table 5.11). Post hoc 

Tukey tests showed that the robustness of NO3- and organic-associated pollinator 

communities was significantly lower in the hot, dry summer of 2018 (Fig. 5.8). The 

structure of plant-pollinator networks of NO3 plots were more susceptible to annual 

variation; there were significant differences between years for Alatalo interaction 

evenness (Fig. 5.9), and links per species (Fig. 5.10). Post hoc Tukey tests did not reveal 

significant differences for any network metrics between years for nil plots.  

Table 5.11. The ANOVA output showing the impact of N treatment, year, and the interactive 
term on network metrics.  
Significant factors are indicated by . p<0.1; * p<0.05; ** p<0.01; *** p<0.001.  

N treatment Year N treatment*Year 

 
df F-

value 

P-value df F-

value 

P-value df F-value P-value 

NODF 2 2.36 0.11 2 1.8 0.19 4 0.96 0.45 

weighted NODF 2 1.91 0.17 2 0.87 0.43 4 2.03 0.12 

connectance 2 1.16 0.33 2 2.75 0.082 . 4 1.09 0.38 

weighted 

connectance 

2 1.75 0.19 2 0.1 0.9 4 2.64 0.055 . 

links per sp 2 1.4 0.26 2 6.58 0.0047 ** 4 0.95 0.45 

Alatalo 

evenness 

2 0.01 0.99 2 9.62 0.0007 *** 4 3.13 0.031 * 

Cluster 

coefficient 

2 1.98 0.16 2 3.01 0.066 . 4 1.78 0.16 

H2 2 0.98 0.39 2 3.58 0.042 * 4 0.77 0.55 

Pollinator 

robustness 

2 0.59 0.56 2 15.4 0.000034 *** 4 3.6 0.018 * 

Network 

robustness 

2 1.88 0.17 2 2.54 0.09 . 4 0.93 0.46 
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Figure 5.8. The robustness of pollinator communities, shown across years within treatment 
groups; nil, NO3 treatment, organic treatment. 
Statistically significant comparative differences, from post hoc Tukey tests, are indicated by * p<0.05; 
** p<0.01; *** p<0.001. 

 

Figure 5.9. The Alatalo interaction evenness of plant-pollinator networks, shown across years 
within treatment groups; nil, NO3 treatment, organic treatment. 
Statistically significant comparative differences, from post hoc Tukey tests, are indicated by * p<0.05; 
** p<0.01; *** p<0.001. 
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Figure 5.10 The links per species of plant-pollinator networks, shown across years within 
treatment groups; nil, NO3 treatment, organic treatment. 
Statistically significant comparative differences, from post hoc Tukey tests, are indicated by * p<0.05; 
** p<0.01; *** p<0.001. 

 
 

 

5.5 Discussion 

 

5.5.1 Pollinator abundance 

The results of the mixed-effects models revealed that chronic addition of N to 

the PGE mesotrophic grassland experimental plots has created plant communities 

which are, overall, less attractive to the pollinator community. These experimental 

plots are representative of temperate grassland communities undergoing very high N 

deposition, such as some regions in Europe, Eastern US, China and India, (Galloway et 

al., 2004; Dentener et al., 2006) and so these findings indicate that N deposition and 

applications might have a role in the declines of insect pollinators and other flower-

visiting insects. Plant communities in PGE receiving NO3 applications had fewer insect 

flower-visitors overall. Increased pollinator visitation can occur with higher floral 
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production (Burkle and Irwin, 2010; Viik et al., 2012), but in PGE, N additions did not 

lead to an increase in overall floral abundance, so there is likely an alternative 

mechanism drawing in pollinators. Chronic NO3 applications did alter the functional 

diversity of the floral community in PGE, decreasing functional divergence and 

richness, while also decreasing species richness and the proportion of Fabaceae, which 

could explain the decreased pollinator visitation. The relationship between floral 

diversity and insect abundance has been recorded in other studies of grassland sites 

(Potts et al., 2003). With higher levels of functional divergence and richness, more 

floral niches are available which means a wider potential assemblage of insects could 

be attracted to foraging from the floral community. Furthermore, flowers with more 

specialised floral structures have frequently been shown to have more sucrose-rich 

nectar (Wykes, 1952; Southwick, Loper and Sadwick, 1981; Petanidou, 2005). The loss 

of these rewarding floral niches and their potential for specialist interactions likely 

played a role in decreasing the abundance of insects visiting N-enriched plots. 

Alongside the N-driven loss in floral functional diversity and abundance of insects was 

a reduction in the number of unique interactions observed. The loss of unique 

interactions is likely very closely linked with these two factors. With greater diversity 

of organisms and interactions comes enhanced community resilience (Okuyama and 

Holland, 2008), so the decline in interaction-richness associated with N applications 

could increase the sensitivity of these networks to stochastic events. Indeed, the 

robustness of NO3 plant-pollinator networks decreased greatly during the warmer, 

drier 2018 season. Unique interactions were also lower with mineral application, as 

was insect family richness. As with N additions, applications of multiple limiting 

nutrients can cause competitive plants to thrive and outcompete other plants, leading 

to loss of botanical diversity (Harpole et al., 2016). In PGE, mineral application did not 

affect the functional divergence or functional evenness of the floral communities but 

did significantly reduce the functional richness (Fig. 5.4).  Therefore, there are likely 

fewer functional niches of floral structures and pollinator syndromes for the insect 

community to visit. Clearly the impact of high additions of nutrients to mesotrophic 

grasslands that are naturally adapted to a reasonable level of nutrient-limitation can 

have negative impacts on the pollinator community. The abundance of insect foragers, 

of bees and Diptera, and the number of unique interactions both declined with soil 
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acidification, too. Given the propensity of N to acidify soil (Stevens et al., 2011; Fowler 

et al., 2013; Goulding et al., 2015), this adds another dimension to the potential impact 

of unchecked N deposition and applications to soils with poor buffering capacity. Given 

the decline in abundances of insect pollinators (Goulson, Lye and Darvill, 2008; 

Vanbergen and Iniative, 2013; Powney et al., 2019), alongside increasing N deposition 

(Galloway et al., 2004; Dentener et al., 2006), further studies into this correlation are 

perhaps important to determine the impact of N to better inform conservation efforts.   

 

5.5.2 Pollinator community composition. 

 The foraging of bees in experimental plots was closely grouped with various 

aspects of the floral community, according to the factorial analysis (Fig. 5.6). Increases 

in floral niches with higher functional divergence and richness of flowers will likely 

favour bee richness, due to their possessing more specialised feeding apparatus than 

dipterans. Previous studies have shown strong links between the diversity of floral 

resources and more species-rich and abundant bee communities (Potts et al., 2003), 

and the results from the PGE support this. Furthermore, bumblebees are typically 

more attracted to florally rich areas, and can fly preferentially towards more 

floristically diverse and abundant patches (Jha and Kremen, 2013). Therefore, if wild 

pollinators selectively forage from patches with enhanced floral diversity plant 

communities that suffer more with N deposition, such as those in poorly-buffered soils 

prone to acidification, could see reduced pollination services and impoverished local 

pollinator community. The proportion of Fabaceae, in particular, was closely linked to 

the proportion of bees and the abundance of bumblebees. Fabaceae, and other 

flowers with deep corollas, are typically sucrose-rich (Wykes, 1952; Southwick, Loper 

and Sadwick, 1981; Petanidou, 2005). Bumblebees have been shown to favour this 

nectar trait (Cnaani, Thomson and Papaj, 2006) and the protein-rich pollen (Carvell, 

2002). With declines in Fabaceae, it is unsurprising that N-enrichment decreased the 

abundances of bumblebee visitation.  

The results of the mixed-effects models revealed that with NO3-enrichment, 

although there were fewer bumblebees and honeybees, and fewer bees overall, there 

were in fact more solitary bees. This was also true for experimental plots receiving 
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organic manure; solitary bee visitation was higher. Solitary bees are wild pollinators 

that can contribute greatly towards pollination services of a wide range wild plants 

and crops (Breeze et al., 2011; Ollerton et al., 2012; Garibaldi et al., 2014). The 

increased visitation from these important pollinators with NO3 and organic manure 

enrichment may seem positive, but a closer look at the bee communities by species 

reveals that the increase in solitary bee activity is not uniform across the season and 

was in fact heavily compartmentalised (Fig. 5.7). There is a significant boost to a single 

species, the early-season Andrena haemorrhoa (orange-tailed mining bee), visiting 

Taraxacum officinale agg. (Fig. 5.11). This heavily-weighted interaction dominated the 

solitary bee assemblages in the N- and manure-enriched plots such as 17b (Fig. 5.7). 

Throughout the remainder of the season the abundance of solitary bees in the 17b 

network is no greater than that found in control plots. The weight of this interaction 

between a common early Andrena species and competitive early-flowering plant could 

be caused by vigorous growth of T. officinale in the early season, able to take 

advantage of increased soil fertility prior to the increased grass vigour that occurs from 

mid-Spring. Other studies have found that the flowers can bloom earlier with N-

enrichment (Cleland et al., 2006; Hoover et al., 2012; Xi et al., 2015). The phenological 

study of PGE also found that NO3-enrichment led to a florally improved early season 

with increased T. officinale flowering duration (Chapter 3). This is a clear potential 

benefit to early-emerging pollinators, such as A. haemorrhoa, that require nectar and 

pollen to restore energy after hibernation. However, it’s noticeable that A. 

haemorrhoa only interacted with T. officinale, leading to a compartmentalised and 

poorly connected network, which is typically less robust to species loss. Furthermore, 

T. officinale is lacking in several essential amino acids, meaning that if used alone it 

causes poor development and high mortality of bee larvae (Roulston and Cane, 2000; 

Génissel et al., 2002). If the foraging bees are not able to find alternative forage plants 

to supplement this, it could be problematic. However, if supplementary and nutritious 

forage is available, early bee species could be benefitted by this and go on to develop 

nest sites and colonies prior to the flowering of crops such as oilseed rape, and apple 

and orchard fruits.  
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Figure 5.11. Andrena haemorrhoa foraging on Taraxacum officinale, March 2016. 
Photograph taken from plot 17b of the PGE. 

 

On the other hand, the bee interaction network of control, nil, plots are more 

species-rich and far better connected with many more unique interactions (e.g. Fig. 

5.7), which can help resilience and robustness in the face of species loss or stochastic 

events. This is, in part, due to the more varied resources that bring in higher 

abundance and richness of bee species. In NO3-enriched networks, pollinator visitation 

typically focuses around the generalist Asteraceae plants, Leontodon hispidus, with a 

few visits to Ranunculaceae and other plants. On the other hand, networks in control 

plots see high levels of visits to two Fabaceae species Lotus corniculatus and Trifolium 

pratense, and Knautia arvensis, in addition to L. hispidus and a suite of other plants. 

At higher levels of N addition, the functional diversity of the floral community 

decreased as did the proportion of Fabaceae, and with this shift in floral composition 

came a movement towards more Diptera-dominated pollinator communities. Diptera 

can be efficient vectors of pollen transport, particularly the more bristly, in part due 
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to their sheer abundance (Ssymank et al., 2008; Breeze et al., 2011; Orford, Vaughan 

and Memmott, 2015). However, in most cases they are less effective and efficient 

pollinators than bees. Bees are also often more specialised pollinators than dipterans, 

providing pollination services for many flowers with deeper corollas or specially 

adapted pollination mechanisms in addition to more simplistic open flowers, including 

many crops (Klein et al., 2007; Garibaldi et al., 2014). Therefore, unchecked increasing 

levels of N deposition or local N application could lead to poor resources for foraging 

bee species and subsequent shift towards more dipteran-dominated pollinator 

assemblages.  

Regarding other flower-visiting insects, the abundances of other 

hymenopterans, sawflies and wasps, were affected by floral abundance. These insects 

frequently visit flowers to feed on nectar or to predate on and parasitise other insects, 

and in doing so can act as pollination vectors. The abundance of flowers, with the 

greater feeding opportunities they bring is likely a draw for these insects. Lepidopteran 

visitation was also negatively associated with NO3 application. In the PGE, relatively 

few lepidopteran visits were recorded overall, but they were typically to Asteraceae 

and Fabaceae (Appendix 5). It’s possible that fewer lepidopterans were observed 

visiting NO3-enriched plots because the floral community was less functionally-rich 

and with fewer Fabaceae. 

 

5.5.3 Plant-pollinator network structure. 

Most plant-pollinator networks across plots and years were significantly more 

connected, with more links per species, than the generated null models. Although the 

robustness of the pollinator community to species loss was not significantly affected 

when considering the networks across all years, better connected networks are 

theoretically more robust and resilient than randomly generated networks of 

interaction links (Dunne, Williams and Martinez, 2002; Gilbert, 2009). The sensitivity 

of the less-nested NO3 networks to potential stochastic events was shown by the sharp 

fall in the robustness of pollinator communities during a hot and dry summer. The 

effect of inter-annual variation on plant-pollinator networks is known (Burkle and 

Irwin, 2009), but this study reveals that N-enrichment can harm network stability in 
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summers with extreme weather events. In the hot and dry summer of 2018, the NO3 

plots became significant less robust, with fewer links per species, and with an uneven 

network. On the other hand, control plots were not significantly affected by this 

stochastic event and remained stable throughout the three study-years. This finding is 

evidence that drivers of global change should not be considered independently. The 

responses of plant-pollinator interactions will be determined by many factors. In this 

study, the potential for N deposition to interactively shape plant-pollinator interaction 

networks with changing climate is shown. 

All networks were highly connected, more so than null models, with relatively 

stable connectance metrics through the years under various N treatments. This 

indication that the connectance of plant-pollinator networks in mesotrophic 

grasslands remains stable when undergoing N-pollution is good news. The 

connectance metric of networks can be distorted by observations of new species, 

which drive connectance down when they make their first interaction (Jordano, 1987). 

The fact that connectance was statistically similar between control and N-enriched 

plots shows that although control pots were more species rich, there were ample 

resources for more rare species to form many interactions. 

Just as new species typically drive connectance down, they can also increase 

nestedness (Bascompte et al., 2003; Vázquez and Aizen, 2004). Plant communities 

receiving applications of NO3 and organic manure harboured plant-pollinator 

networks that were less nested, possibly due to the lower species richness and number 

of unique interactions in these networks. Both treatments resulted in plant 

communities that had a less functional diverse floral composition, which is important 

for attracting and providing resources for a wider diversity of inset pollinators (Potts 

et al., 2003; Fontaine et al., 2006; Burkle and Alarcon, 2011). Furthermore, the control 

plots contained more morphically specialised flowers, such as Fabaceae. These flowers 

tend to produce more sucrose-rich nectar (Wykes, 1952; Petanidou, 2005; Petanidou 

et al., 2006; Klumpers, Stang and Klinkhamer, 2019), which is generally the preferred 

nectar type of long-tongued bumblebees (Elisens and Freeman, 1988; Petanidou, 

2005; Cnaani, Thomson and Papaj, 2006; Petanidou et al., 2006). With these floral 

units, the control plots have a more rewarding assemblage of resources for specialist 
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pollinators. Furthermore, the control plots have enough abundance of generalist floral 

units of Asteraceae, Apiaceae, and Ranunculaceae to supply alternative foraging 

opportunities to specialist pollinators, thus leading to the more nested structure 

(Appendix 5). This network structure typically conveys resilience (Memmott, Waser 

and Price, 2004; Burgos et al., 2007; Almeida-Neto et al., 2008; Vázquez et al., 2009), 

as impacts of plant species loss can be buffered by high biodiversity and alternative 

foraging choices (Stang, Klinkhamer and Van Der Meijden, 2007).   

Many of the observed networks were less specialised than null models, often 

significantly so. Although plant-pollinator networks are traditionally thought of as 

specialist networks, recent research suggests that this may not be the case (Waser et 

al., 1996; Vázquez and Aizen, 2004; Petanidou et al., 2008). Plant-pollinator networks 

are still typically more specialist than many other webs, such as seed dispersal webs 

(Blüthgen et al., 2007; Stang, Klinkhamer and Van Der Meijden, 2007), and can feature 

strongly-connected reciprocal interactions (Vázquez and Aizen, 2003), but most 

networks are characterised by opportunistic insects with relatively plastic foraging 

behaviour visiting a wide suite of plants to obtain floral rewards (Petanidou, Van Laere 

and Smets, 1996; Waser et al., 1996; Ollerton et al., 2009). In this study of the PGE, N 

applications did not statistically affect the specialisation index H2’ of the networks. 

Although NO3-enrihcment led to the loss of key resources for bumblebees, T. pratense 

and L. corniculatus, bumblebees in enriched plots still focussed their foraging efforts 

on a single pervasive and rewarding species, in this case L. hispidus (Fig. 5.7). Many 

pollinators, including specialist bumblebee species, can show remarkable flower 

constancy when foraging (Waser, 1986; Goulson, 2000), and thus the degree of 

specialism within a network might not be so impacted by the loss of a key interactor 

species if an alternative abundant and nutritious species is available. The H2’ 

specialism metric was impacted by soil pH, however, as was the Alatalo interaction 

evenness metric. More acidified soils led to networks that were less even and more 

specialised. The specialisation metric can be obscured by strongly linked partners that 

are not necessarily specialised (Vázquez and Aizen, 2004; Petanidou et al., 2008), for 

example by pollinating insects visiting abundant plants. Soil acidification creates 

another selective pressure on the botanical community  (Stevens et al., 2010), typically 
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leading to acid-tolerant plants dominating these communities. If the acid-tolerant 

newly-dominant plant provides nutritious and plentiful nectar and pollen resources, 

insect pollinators can be drawn to it out of necessity. This leads to an uneven networks 

metric that is dominated by one or a few species (Tylianakis, Tscharntke and Lewis, 

2007). The indication of specialisation, however, is potentially misleading as it is not a 

true specialisation in the sense of co-adaptations, but purely out of necessity. In the 

PGE, this difference in structure occurred between plots of different pH, for example 

between plots 3b (nil N, pH 6.1) with an even network and 3d (nil N, pH 5.1) which was 

dominated by visits of wide range of insects, of both dipterans and hymenopterans, to 

Pimpinella saxifraga (Appendix 5).  

 

 

Figure 5.12. Plant-pollinator interaction network of plot 3b (nil N, pH 6.1), across all years. 
All insect flower visitors, identified to family, observed in plot 3b at the top. Plant species on the bottom. 
Links portray the weighted interactions between insects and plants. Total network observations = 549. 
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Figure 5.13. Plant-pollinator interaction network of plot 3d (nil N, pH 5.1), across all years. 
All insect flower visitors, identified to family, observed in plot 3b at the top. Plant species on the bottom. 
Links portray the weighted interactions between insects and plants. Total network observations = 325. 
 

 

5.5.4 Caveats of the study, limitations, and suggestions of further studies 

The PGE is a single field site, plots are not spatially independent. Therefore, the 

pollinator communities of plots are in fact subsections of a single pollinator 

community. The ambient pollinator community of the PGE is not necessarily 

representative of pollinator communities found in spatially separated sites 

experiencing N deposition. The major implications of this caveat are two-fold. On one 

hand, some interactions and specific pollinator species observed in this study might 

not be found in similar real-world plant communities that are spatially independent. 

For instance, there could be fewer long-tongued bumblebee species in a region with 

widespread high N deposition that has caused declines in legumes. In such a scenario, 

interactions involving bumblebees would be rarer. In the PGE however, the ambient 

pollinator community is not limited by floral resources in this way. The second 

implication of this caveat is that the observed interactions in the PGE were subject to 
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choice and preference. In a true plant-pollinator network, foraging insects could visit 

flowers out of necessity, whereas in the PGE the same interaction might not be 

observed due to the presence of a preferred floral resource. To account for this caveat, 

it would be useful to conduct pollinator surveys of spatially independent sites across 

an N gradient. This would help to reinforce our understanding of how soil 

eutrophication and acidification impact on plant-pollinator interaction networks and 

pollinator communities. 

 
 

5.6 Conclusion 

 

Chronic applications of NO3 in the PGE had significant effects on the pollinator 

communities associated with experimental plots, and on the plant-pollinator 

interaction networks of these plots. Nitrogen addition led to reduced overall visitation, 

a reduced diversity of species and interactions, and a shift in pollinator community 

towards more heavily Diptera-dominant assemblages. The loss of bee abundance is 

potentially of significance, considering these insects are especially effective pollinators 

of a wide range of wild plants and crops (Klein et al., 2007; Kremen et al., 2007; 

Garibaldi et al., 2014) and are noted to have declined during recent decades (Ollerton 

et al., 2014; Powney et al., 2019). The findings of this study suggest that N deposition 

could indeed have contributed to these declines. Many of these impacts to the 

pollinator community could be linked to changes in the floral community in the plots, 

but changes in the floral traits could also have played a factor. For example, earlier 

flowering phenology of T. officinale in NO3-enriched plots led to strongly 

compartmentalised interactions developing between T. officinale and an early 

Andrenidae bee species. The lack of connection between this compartment and others 

suggested that, although the early provision of resources generally benefits early 

solitary bees, the interaction is not robust; loss of these early floral resources or 

phenological mismatch could have consequences for the early bees. The structure of 

networks was also altered by N addition, typically becoming less nested and less even, 

and therefore potentially less resilient to change or extreme weather events 

(Memmott, Waser and Price, 2004; Burgos et al., 2007; Vázquez et al., 2009). 
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However, the significantly high connectance of all experimental plots suggests that 

there remains good latent stability in these mesotrophic grassland plant-pollinator 

networks, despite heavy N additions (Gilbert, 2009).  

With regards to global atmospheric N deposition, future rising levels could 

indeed impact on pollinator communities, by depriving insects of key floral resources 

and reducing the functional divergence, evenness, and richness of floral communities. 

This study only considered the impacts of NO3 addition, which findings presented in 

the previous research chapters had shown to be less detrimentally impactful to plant 

community composition and floral traits than NH4 additions (Chapter 2; Chapter 3; 

Chapter 4). Considering that the form of N that was less impactful to floral traits and 

composition still altered pollinator communities, reduced bee visitations, and altered 

network structure, effects of NH4 could potentially be more severe. Given that most 

of the world experiences N deposition that is moving more heavily towards NH4 

dominance over NO3, this is a research area than warrants further research. 

 NO3-enrichment was found to weaken the robustness of plant-pollinator 

communities in a particularly hot and dry year. With climate change widely predicted 

to lead to increased frequency of extreme weather and drier temperate summers 

(Semenov and Barrow, 1997; Rosenzweig et al., 2001), the revealed interaction 

between inter-annual variation and N-enrichment is a worrying indicator of weakened 

plant-pollinator networks under the two pervasive drivers of global change, climate 

change and N-deposition. With a more concerted research effort, we can better 

understand how N-deposition acts as a driver of global change and affects pollinator 

communities, which can help us to implement mitigation or conservation strategies. 
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6.1 Summary of research questions 

 

With global N deposition forecasted to increase in the near future (Galloway et 

al., 2004; Dentener et al., 2006; Fowler et al., 2013), improving our understanding of 

its impacts to biodiversity and ecosystem functioning should be imperative. A wide 

range of studies have shown that soil N-enrichment affects plant species richness 

(Stevens et al., 2004; Maskell et al., 2010; Field et al., 2014), but the knowledge of 

impacts to functional traits and consequences to higher trophic levels is patchy 

(Nijssen, Wallis De Vries and Siepel, 2017; Stevens, David and Storkey, 2018). In 

particular, the impacts of N on plant-pollinator interactions is a knowledge gap (David, 

Storkey and Stevens, 2019). This considerable knowledge gap has been discussed in 

the thesis, and the research chapters provide insight into how pollinator communities 

and their foraging habits and interactions with plants might be altered by soil N. 

Overall there were 3 overarching ideas behind the structure of the thesis. 

 

1. How do chronic additions of N to soil affect the community of plants in ways 

that are relevant to pollinators? 

2. How do important floral traits, phenology and nectar, respond within species 

to chronic additions of N to soil? 

3. Do chronic additions of N to soils alter pollinator visitation responses, 

pollinator communities, and interaction networks?  

 

The research chapters presented a wide array of results that showed the 

impacts of soil N on floral communities, floral traits, and pollinator communities. In 

this chapter, I will thematically discuss the findings. 
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6.2 Loss of specialist floral resources and the implication for pollinators 

 

The loss of floral resources, through changing land use or habitat degradation 

is considered one of the main drivers of pollinator declines (Goulson, Lye and Darvill, 

2008; Rader et al., 2014; Senapathi et al., 2015). Whilst these declining trends are 

widespread across pollinating taxa, declines caused by deterioration of floral 

resources are not uniform across taxa; more specialist pollinators, such as those with 

more elaborate feeding apparatus, are more at risk (Winfree, Bartomeus and 

Cariveau, 2011). The loss of specialised floral resources has been strongly connected 

in these declines. For example, in the UK and Netherlands declines in specialist floral 

resources and specialised insect pollinators are closely correlated (Biesmeijer et al., 

2006), while Rasmont et al. (2005) suggest the loss of deep corolla forage plants as a 

driving factor of long-tongue bumblebee declines.  

Chapter 2 presents a novel study that identifies shifts in floral traits, within 

forbs and legumes, that add to our understanding of effects of N on species richness 

and proportion of different functional groups. The evidence presented in Chapter 2 

shows a loss of specialist floral resources with N applications or deposition, which can 

have impacts to the pollinating assemblages foraging from the experimental plots, as 

shown in Chapter 5. This is an important finding, and suggests that heavy N deposition 

could have contributed towards habitat degradation and the loss of floral resources 

which is a key factor in specialised pollinator declines in Europe (Goulson, Lye and 

Darvill, 2008; Winfree, Bartomeus and Cariveau, 2011; Rader et al., 2014). The 

increase and subsequent plateau and decline in N deposition in some regions of the 

UK during the late 20th Century closely reflects trends in nectar provision across the 

UK (Baude et al., 2016), which declined at times of high N deposition and rebounded 

when deposition rates started to fall. This close pattern of trends across N deposition, 

nectar provision, and insect pollinators suggests that N could be a contributing driver 

to pollinator trends, alongside other drivers such as land use change, pathogens, 

parasites, and pesticides. This could have contributed to a slowing down of the 

declining trends in long-tongued bumblebees during recent decades (Carvalheiro et 

al., 2013). In contrast, with deposition rates in many regions around the world set to 
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increase in the near future, there could be widespread impacts to pollinator 

communities due to the impacts on floral assemblages. The southern hemisphere, 

where deposition levels are widely expected to surpass critical threshold levels 

(Phoenix et al., 2006; Bleeker et al., 2011), is at risk of N-driven impacts to ecosystems 

that could have severe consequences for specialist pollinators. However, it is 

important to note that the study presented in these chapters is of a mesotrophic 

grassland, with an additional analysis of acidic grasslands. While these two grassland 

types both showed a decline in specialist floral units with increasing N additions, this 

does not mean similar responses will be found throughout other ecosystems. Many 

other temperate ecosystems respond to N deposition with a loss of botanical species 

richness (Bobbink et al., 2010; Nijssen, Wallis De Vries and Siepel, 2017). There are 

currently knowledge gaps regarding the impact of N deposition to other ecoregions, 

including tropics, and more research should be conducted to address this (Bobbink et 

al., 2010). More research is required to determine if the reported impacts are 

widespread across other ecosystems. 

As shown in Chapter 4, the flowers with longer corollas, Ajuga reptans, 

Centaurea nigra, and Trifolium pratense, had more sucrose-dominant nectar. This is in 

agreement with other studies that have found this link between sucrose-richness and 

pollinator syndromes and floral morphology (Wykes, 1953; Southwick, Loper and 

Sadwick, 1981; Petanidou, 2005; Vandelook et al., 2019). Therefore, the loss of 

specialised floral resources with N deposition may also constitute a decrease in the 

quality of nectar provided by a plant community. Furthermore, N-enrichment not only 

decreased the prevalence of these floral units in a plant community, it also altered 

nectar traits such as the lower provision of sugars by NH4-enrihced A. reptans. The 

effect of high N deposition could constrain pollinator communities further if, in 

addition to a loss of foraging resources, the available floral resources are less 

nutritionally rewarding. The provision of nectar, or lack thereof, has been widely 

suggested as a factor that limits the abundance and diversity of pollinator 

communities (Potts et al., 2003; Wallisdevries, Van Swaay and Plate, 2012).  
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6.3 The varied impacts of NH4 and NO3 

 

In studying the impacts of N on floral trait composition and expression of floral 

functional traits, marked contrasts between the responses to reduced and oxidised N, 

were observed. This is an important finding as real-world N deposition typically occurs 

on an NHx:NOy ratio gradient. The difference in impacts between the two forms of N 

has been discussed by previous researchers (Stevens et al., 2011; Van Den Berg et al., 

2016). However, relatively few experimental studies have considered the two forms 

as separate entities with potentially contrasting impacts on floral communities and 

traits, or on plant-pollinator interactions. Most focus on a single form or a mix of the 

two. With the PGE, it is possible to separate the effects of NH4 and NO3, to provide a 

better insight into how responses of plant and pollinator communities might vary 

across the world depending on the dominant form of N deposition. 

 This study has shown that NH4 applications, widely speaking, were more 

detrimentally impactful than NO3 applications, with broader declines in floral units 

(Chapter 2), delayed dates of first-flowering (Chapter 3), and reduced sucrose and total 

sugar production (Chapter 4). With regards to the floral community that was available 

for pollinator visitation, NH4-enrichment led to declines in both specialist and 

generalist floral units. The loss of generalist floral units alongside specialist floral units 

could be particularly impactful, as a wide suite of pollinating insects will be affected 

and there will be fewer alternative foraging resources to buffer against losses of 

specialised resources for long-tongued insects. The loss of well-connected resources 

can be far more severe for the pollinator community (Memmott, Waser and Price, 

2004), and lead to the eroding of nested network structures which offer more 

resilience as they can buffer against species loss (Vázquez and Aizen, 2004; Vázquez et 

al., 2009). NO3 application, on the other hand, allowed species of Asteraceae and 

Apiaceae to maintain stable populations. These species produce floral units that were 

widely used by the pollinator community, connecting many species (Appendix 5). 

However, although these generalist resources prevailed under NO3 additions, the 

pollinator community may have become overly reliant on these species, such that, if 

they were lost the consequences could be wide-reaching. Chapter 3 showed how 
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flowering cessation was earlier and overall flowering duration shorter for all species 

which flowered after the first peak of grasses, e.g. Anthoxanthum odoratum and 

Alopecurus pratensis. This occurred regardless of N form, but the flowering onset of 

all species were either delayed or unaffected by NH4 addition, whilst NO3-enrichment 

had varied effects on flowering duration. NH4 additions also led to reduced nectar 

production and lower sugar and sucrose concentration in A. reptans and lower 

volumes were recorded in C. nigra, but it is not known if NH4 deposition will affect the 

nectar traits of a wider suite of plant species. 

Although NH4 additions were more impactful to floral traits and the floral 

community, and from this there are likely severe consequences for pollinator 

communities in environments experiencing high rates of NH4 deposition, there were 

still impacts to pollinator communities caused by NO3. Therefore, although NH4 has 

potentially more severe consequences, both forms of N additions were shown to have 

consequences for pollinator communities.  

Besides the contrasting impacts of NH4 and NO3 applications, mineral 

applications caused variation in floral community composition and floral traits, which 

also had an effect on pollinator visitation networks. This research project has focused 

on the impacts of N, with a view to improve our understanding of a pervasive global 

driver of environmental change. However, the impact of other soil mineral 

applications warrants further research.  

 

6.4 Addressing inter-specific response variation 

 

As well as community level responses, there was inter-specific variation in 

responses to soil N-enrichment. Other authors have also reported this issue (e.g. 

Burkle and Irwin, 2009). The life history traits of plants are potentially an important 

factor in how they respond to the enhanced nutrition in N-enriched soils, as shown by 

Burkle and Irwin (2009) who postulated that annuality and perenniality could be used 

to split response groups. It was not possible to identify effects caused by plant lifespan, 

as all studied species were perennial, but seasonality was revealed as an important 
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factor, particularly for the flowering duration of forbs. This is an important floral trait 

for pollinating insects that determines the provision of floral resources. For closely-

linked interactions, this is perhaps an even more critical factor, as asynchrony with a 

dependent food resource could cause stress through malnutrition potentially that can 

cause problems for function, reproduction, and the stability of populations (Memmott 

et al., 2007). The sharp contrast observed between the earliest flowering plant species 

in the PGE, Taraxacum officinale agg., Ranunculus ficaria, and Fritillaria meleagris, and 

those that flowered from the mid-spring onwards was clear. In fact, the effect of N 

addition on flowering duration was negatively linked with the first flowering of the 

plant species, with later species having a shorter flowering period in plots where N was 

added. This could be due to competitive exclusion of flowering opportunities due to 

strong growth of grasses – N addition was therefore having an indirect effect on 

flowering time. The implication of the findings is that, with N addition, flowering plants 

that grow with less local competition from highly competitive plants could have a 

longer flowering duration. This applies to early spring or winter flowering plants in 

temperate grasslands, but also to mid-season plants in some higher latitude 

ecosystems. Flowering plants in far north tundra ecosystems can increase in biomass 

with N deposition, due to the sparsity of natural competition (Bobbink et al., 2010). In 

such situations, the extra soil nutrition could translate to longer flowering periods 

which will benefit pollinator communities through increased provision of nectar and 

pollen resources.  

The literature is too limited to make assumptions on the relevance of 

taxonomic family for floral trait responses. Variable results have been shown within 

taxonomic families, such as three alpine species of Ranunculaceae (Liu et al., 2017) 

and three steppe species of Rosaceae (Xia and Wan, 2013). In the study of PGE, there 

were also inconsistent responses within family. All three Ranunculaceae species, (R. 

acris, R. ficaria, and R. bulbosus), had delayed dates of first-flowering with N additions, 

whilst the two species for which flowering cessation was studied, R. ficaria and R. 

bulbosus, responded similarly to the N treatments with delayed last-flowering dates. 

The three studied Fabaceae species, Trifolium pratense, Lathyrus pratensis, and Lotus 

corniculatus, also had similar responses in first-flowering to N addition, a delayed 
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onset of flowering. On the other hand, the plants within the Asteraceae family 

(Taraxacum officinale agg., Leontodon hispidus, Hypochaeris radicata, and 

Tragopogon pratensis) and Apiaceae family (Anthriscus sylvestris and Conopodium 

majus), showed no similarities in their responses. However, the sucrose:hexose ration 

of floral nectar from two Apiaceae species, A. sylvestris and H. sphondylium, had 

similar responses to N additions, decreasing with higher additions of N. While this is 

an interesting result that is suggestive of a grouped response, we cannot make 

assumptions from only two species of a taxonomic family. Further studies could be 

undertaken to determine in what ways taxonomic family can link responses to drivers 

of global change such as N deposition.  

The delayed flowering observed for Ranunculaceae species and Fabaceae 

species should be considered in the context of pollinator emergence and activity 

dates. Insect pollinators emergence is shown to accelerate in response to climate 

warming, potentially even more so than plant flowering acceleration under climate 

warming (Parmesan and Yohe, 2003; Gordo and Sanz, 2006; Parmesan, 2007). It is 

doubtful that N deposition will directly impact on the emergence date of insect 

pollinators, and therefore the shift in flowering dates could lead to phenological 

asynchrony and potentially cause problems for strongly-specialised interactions. The 

Fabaceae family, for example, includes many species that are of importance to 

effective and efficient pollinating insects, with morphologically specialised floral 

structures and rewarding floral rewards. Delays in these resources, if not matched by 

a change in the phenology of long-tongued pollinators, could lead to limited provision 

of suitable foraging resources for pollinators that are already at risk of declines 

(Rasmont, Pauly and Terzo, 2005; Goulson, Lye and Darvill, 2008; Winfree, Bartomeus 

and Cariveau, 2011).  

 

6.5 Impact of soil acidification and importance of soil buffering capacity 

 

Soil acidification is an major consequence of N-deposition, alongside soil 

eutrophication (Bobbink et al., 2010), often leading to species loss (Stevens et al., 
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2004; Stevens, Thompson, et al., 2010). In the PGE, only NH4 has led to soil acidification 

of topsoil, with unlimed NH4-enriched plots between pH 3.7–4, whereas unlimed NO3-

enriched plots range between pH 5.6–6.1. In comparison, unlimed nil plots range 

between pH 5.0–5.1. In the PGE, pH was often an important factor, high pH often 

mitigating some of the more severe consequences of N-enrichment, such as limiting 

the declines in nectar-rich or morphologically-specialised flowers (Chapter 2) or 

reducing the magnitude of impact to flowering phenology (Chapter 3). The propensity 

of topsoil to become acidified by N deposition or applications is dependent on the 

buffering capacity of the soil and is variable between ecosystem types. The PGE field 

site was founded on MG5 mesotrophic grassland; this grassland type can encompass 

a range of pH levels and is typically prone to acidification and resulting impacts to floral 

composition (Critchley et al., 2002). In general, unimproved grasslands, including 

calcareous and acidic grasslands which harbour botanical communities with high value 

to further trophic levels are more at risk of soil acidification than agriculturally 

managed grasslands (Critchley et al., 2002). Acidic grasslands can contain high 

botanical species richness and provide nutritiously rewarding floral resources for 

pollinating insects (Baude et al., 2016), but the weak buffering capacity of the topsoil 

means that acidification is one of the main consequences of N deposition that leads to 

declines in species richness in these systems (Bobbink et al., 2010; Duprè et al., 2010). 

Temperate forests that have a history of agricultural management also typically have 

higher pH and are less prone to acidification than those with an unmanaged history 

(Blondeel et al., 2018). Globally, there is potential for N deposition to cause topsoil 

acidification to a wide array of ecoregions. For example, high N additions have been 

shown to acidify tropical soils, causing a shortage in topsoil base cations calcium (Ca) 

and magnesium (Mg) (Lu et al., 2014). The study of tropical soils, however, did not find 

increased mobilisation of aluminium ions (Al3+), which is a known detrimental 

consequence of N-driven soil acidification in temperate grassland systems (Duprè et 

al., 2010; Stevens, Thompson, et al., 2010; Stevens et al., 2011). Considering the 

above, N-driven soil acidification should be regarded as a potentially strong factor 

influencing plant-pollinator interactions and wild pollinator assemblages across a 

range of ecoregions globally. 
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6.6 Limitations of the study 

 

An issue of the experimental set-up was that all experimental plots were 

contained within the same field site, the PGE, and so were subject to the same 

background pollinator community. Therefore, the observed N-driven impacts to 

pollinator communities might not necessarily reflect field-realistic impacts. The 

different networks across plots are influenced by insect preferences, not visitations 

driven by necessity. In reality, long-tongued bumblebee species may still maintain 

populations in N-enriched plant communities if there are suitable and rewarding floral 

resources throughout the season. On the other hand, without an array of specialist 

flowers providing rewarding nectar and pollen, long-tongued bumblebee species 

might not be accounted for in N-polluted ecosystems, either being lost due to the lack 

of sucrose-rich resources or because they choose to forage elsewhere in more 

rewarding habitats (Jha and Kremen, 2013). It would be useful to find spatially 

separated sites that resemble PGE plots and plant communities, to determine if the 

observed plant-pollinator networks of the PGE plots are similar to field-realistic ones. 

The lack of replication in the PGE is also a major limitation for studies 

conducted in the field site. The experiment was designed prior to modern statistical 

theory, and so researchers must work to find alternative methods of replication in the 

PGE. One can use temporal replication, by conducting long-term studies over several 

seasons, as was undertaken with the chapters presented in this thesis where sampling 

was conducted throughout the seasons over at least three years. When sampling 

plants from the individual plots, pseudo-replication is unavoidable as there is no 

replication of treatments. At best, one can obtain samples from clearly separated 

individuals from opposite sides of the plot. When comparing the treatments of plots, 

blocking factors can be used to create hidden replication, for instance studying N 

additions across plots that differ in topsoil pH or mineral applications. A limitation of 

Chapter 5 is that only NO3-enriched plots were studied. In the PGE, due to previous 

manipulative studies, there is no longer an unlimed plot that incorporates 48 kg NH4 

ha-1 yr-1 with mineral additions. Therefore, the decision was taken to focus on NO3-

enrichment, for which there was a full suite of comparable plots. Regardless, previous 
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research chapters had suggested the impacts of NO3 addition were more varied and 

less severe than those of NH4 plots, so it was useful to investigate how NO3 plots affect 

pollinator visitation and networks. 

The unique long-term status of the PGE and the value of its contribution 

towards ecological research (Silvertown et al., 2006) means that it is difficult to 

conduct manipulative studies without permanently altering or damaging the integrity 

of the experimental plots.  

 

6.7 Conclusions and future questions 

 

Understanding and halting pollinator declines is an important undertaking. The 

loss of pollinators constitutes the loss of an important ecosystem service that can 

support ecosystem stability, biodiversity, and, importantly for human society, 

agricultural yields. For the range of benefits, it is difficult to put an exact value on the 

ecosystem service of biotic pollination (Hanley et al., 2015; Melathopoulos, Cutler and 

Tyedmers, 2015), but it 2009 the value to agriculture was estimated at $153 billion 

(Gallai et al., 2009). In this study, deposition or applications of N to soils has been 

revealed to impact floral communities and important floral traits, leading to distorted 

pollinator communities. Alongside other research into the effects of N to higher 

trophic levels, this is a good start in understanding a pervasive global driver of 

environmental change. However, knowledge gaps remain that should be considered 

in order to take this subject forward (Fig. 6.1). N deposition does not act alone in our 

changing world. It is one of many potential drivers on ecosystems. Globally, N 

deposition will act alongside aspects of climate change, such as increased 

temperatures and more frequent extreme weather events (Fig. 6.1). On local scales, 

there will be interactive biotic factors, such as soil microbiota, and abiotic factors, such 

as soil buffering capacity. Deposition rates vary worldwide and, importantly, the ratio 

of NHx:NOy also varies. Improving our understanding of the impacts of distinct forms, 

across a range of ecoregions and ecosystem types will do much to enhance our 

understanding of this driver (Fig. 6.1). As deposition rates vary across the globe, 
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current studies in regions that have experienced high historic N deposition will have a 

distorted baseline and so will not necessarily encapsulate the full story of N deposition 

from lower levels (Bobbink et al., 2010). Many regions that currently experience a low 

but rising level of N deposition are understudied, such as tropical regions and 

Mediterranean ecosystem types (Bobbink et al., 2010). These ecosystems house high 

levels of biodiversity and so it is imperative to improve our understanding of the risks 

these ecosystems face from future rising N deposition to formulate mitigation and 

conservation measures (Fig. 6.1). Whilst it has been shown that N deposition impacts 

plant communities, improved understanding of the effects to pollinator communities 

could be conducted by undertaking regional studies that incorporate spatially 

separated plant and pollinator communities undergoing different levels of N-

enrichment. Alternatively, studies of plant-pollinator interaction networks through 

time, encompassing changing levels of N deposition, will also provide insight to N-

driven impacts to pollinator communities. However, the danger of this approach is 

that it takes many years of study, by which time the effects of N-pollution could be 

well-established, thus harming our conservation or mitigation efforts.  

 

 

 

 

OPEN QUESTIONS AND IDEAS FOR FUTURE RESEARCH 

• INTERACTION WITH ABIOTIC DRIVERS OF GLOBAL CHANGE, I.E. 

ASPECTS OF CLIMATE CHANGE. 

• INTERACTION WITH LOCAL ABIOTIC AND BIOTIC FACTORS. 

• CONSIDERATION OF GLOBAL N DEPOSITON AS RATIO OF NHX:NOY. 

• UNDERSTANDING BASELINES. 

• MORE RESEARCH EFFORTS IN LESSER-STUDIED ECOREGIONS, SUCH 

AS TROPICS. 

• SYNTHESIS OF N DEPOSITON RESEARCH AND POLLINATOR STUDIES 

ACROSS SPATIALLY SEPERATED POLLINATOR COMMUNITIES. 
Figure 6.1. Research considerations to better understand the impacts of N on plant-pollinator 
interactions and pollinator communities. 
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Appendix 1. The floral functional traits used in Chapter 2. The flower forms are scored individually, e.g. Ajuga reptans scores 0-simple flower, 1-bee 
form, 0-bell form, 1-lip form. PGE obs denote median values taken across PGE observations. 
The flower forms are scored individually, e.g. Ajuga reptans scores 0-simple flower, 1-bee flower, 0-bell form, 1-lip form. ‘PGE obs’ denote median values taken from 
across PGE observations.  

Trait Data type Levels/range Unit Reference 

Simple flower Binary 1; 0 1 if morphology type true, 0 if not Klotz et al. 2002 

Bee form Binary 1; 0 1 if morphology type true, 0 if not Klotz et al. 2002 

Bell form Binary 1; 0 1 if morphology type true, 0 if not Klotz et al. 2002 

Lip form Binary 1; 0 1 if morphology type true, 0 if not. E.g.  Klotz et al. 2002 

Nectar production Quantitative 0.01 - 4733.31 kg ha-1 yr-1 Baude et al. 2016 

Nectar sugars Quantitative 0.11 - 1892.83 µg fl-1 day-1 Baude et al. 2016 

Landing area Quantitative 2.5 - 70 mm Rose & O'Reilly, 2006; Klotz et al. 2002; PGE obs 

Corolla depth Quantitative 2 - 22.5 mm Rose & O'Reilly, 2006; Klotz et al. 2002; PGE obs 

Colour Qualitative Blue-purple; Yellow; White  
 

Klotz et al. 2002 

UV patternation Binary 1; 0 UV patternation present or absent Klotz et al. 2002 

Start flower Ordinal 1; 2; 3; 4; 5; 6; 7 corresponds to month  Rose & O'Reilly, 2006; Klotz et al. 2002 

End flower Ordinal 5; 6; 7; 8; 9; 10; 11; 12 corresponds to month  Rose & O'Reilly, 2006; Klotz et al. 2002 

Duration Quantitative 2 - 12 number of months Rose & O'Reilly, 2006; Klotz et al. 2002 

Season Ordinal 1; 2; 3; 4; 5; 6; 7; 8 values indicate season, from 1 "pre-spring" to 8 "midsummer" Rose & O'Reilly, 2006; Klotz et al. 2002 

Ellenberg N Ordinal 1; 2; 3; 4; 5; 6; 7 N tolerance. 1 - low soil fertility, 9 - high soil fertility Hill, 1999 

Ellenberg R Ordinal 2; 3; 4; 5; 6; 7; 8 reaction (pH) tolerance. 1 - acid tolerant, 9 - acid sensitive Hill, 1999 
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Appendix 2. Pollinator families observed across all transects bouts. Total quantities, and quantities from 
each plot. 

 
Total 3b 3d 17b 17d 7b 7d 16b 16d 14b 14d 13b 13d 

Hymenoptera 

Andrenidae 201 9 6 14 17 16 9 25 14 22 25 29 15 

Apidae 786 169 47 23 24 127 100 81 53 55 19 47 41 

Argidae 69 12 9 5 
 

13 1 9 3 7 4 1 5 

Cephidae 3 
     

2 
  

1 
   

Chrysididae 3 
      

1 
 

1 1 
  

Colletidae 1 1 
           

Crabronidae 15 2 1 1 1 1 
 

3 
 

3 2 1 
 

Cynipidae 1 
 

1 
          

Figitidae 5 
       

1 3 1 
  

Halictidae 121 16 11 10 14 9 4 7 6 13 7 6 18 

Ichneumonidae 39 4 5 1 
 

5 
 

7 2 6 5 
 

4 

Megachilidae 6 1 
 

1 
   

2 1 
   

1 

Pompilidae 5 2 
       

2 
  

1 

Tenthredinidae 310 55 24 62 6 41 9 36 7 21 10 17 22 

Tiphiidae 4 1 1 2 
         

Diptera 

Anthomyiidae 99 12 7 10 10 9 1 10 6 12 7 10 5 

Bibionidae 1380 54 50 66 54 274 48 217 63 320 90 37 107 

Bombyllidae 1 
 

1 
          

Calliphoridae 51 6 1 1 2 2 1 15 2 8 10 1 2 

Camillidae 14 5 1 1 
       

6 1 

Chaetopsis 2 
 

1 
        

1 
 

Chloropidae 47 4 6 7 4 1 
 

3 
 

16 2 1 3 

Conopidae 4 3 
 

1 
         

Dolichopodidae 6 1 
  

1 
   

1 1 
  

2 

Dryomyzidae 8 3 2 
    

1 
   

2 
 

Empididae 201 7 6 11 9 82 3 23 8 19 7 14 12 

Muscidae 38 5 4 6 
 

4 
 

7 
 

5 4 3 
 

Pallopteridae 1 
  

1 
         

Sarcophagidae 203 14 10 4 5 30 1 45 18 24 40 7 5 

Scathophagidae 3 
   

1 
   

1 1 
   

Syrphidae 574 76 60 57 56 51 13 41 29 47 48 47 49 

Tachinidae 496 59 32 35 27 60 7 66 22 69 59 36 24 

Tephritidae 8 
 

1 3 
     

2 
  

2 

Tipulidae 9 
       

1 
  

6 2 

Lepidoptera 

Crambidae 33 5 6 2 1 
 

7 3 
 

1 3 1 4 

Erebidae 1 1 
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Geometridae 2 
 

1 
         

1 

Glyphipterigidae 3 
 

1 
   

2 
      

Hesperiidae 1 
          

1 
 

Lycaenidae 5 1 1 
   

2 
     

1 

Noctuidae 4 
  

2 
 

1 
 

1 
     

Nymphalidae 15 5 1 7 2 
        

Scythrididae 1 
          

1 
 

Coleoptera 

Cantharidae 45 4 1 4 2 7 4 9 4 6 2 2 
 

Carabidae 23 1 3 2 
 

4 1 
 

3 1 3 1 4 

Cerambycidae 1 
      

1 
     

Coccinellidae 10 
 

1 1 
 

4 
 

1 1 
 

2 
  

Elateridae 43 2 
 

4 2 12 3 3 2 
 

3 7 5 

Melyridae 39 2 6 9 3 1 1 
 

1 1 6 1 8 

Oedemeridae 129 7 12 28 14 6 4 5 7 5 3 12 26 

Scarabaeidae 4 
  

2 
  

1 
     

1 

Neuroptera 

Chrysopidae 1 
          

1 
 

Hemerobiidae 2 
 

2 
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Appendix 3. Bee species observed across all transects bouts. Total quantities, and quantities from each 
plot.  

Total 3b 3d 17b 17d 7b 7d 16b 16d 14b 14d 13b 13d 

Andrena 

chrysoceles 

12 1 
 

2 3 
  

1 1 
 

1 3 
 

Andrena cineraria 8 1 
  

1 1 
 

2 1 1 1 
  

Andrena dorsata 1 
    

1 
       

Andrena fulva 1 
 

1 
          

Andrena 

haemorrhoa 

143 
  

10 11 11 5 21 11 17 22 23 12 

Andrena minutula 3 2 1 
          

Andrena nitida 15 2 1 1 1 1 
 

1 1 4 
  

3 

Andrena scotica 4 1 1 
  

2 
       

Andrena similis 1 1 
           

Andrena 

subopaca 

5 
  

1 1 
 

2 
    

1 
 

Andrena wilkella 2 1 
        

1 
  

Apis mellifera 172 38 16 10 12 21 17 16 12 13 7 5 5 

Bombus hortorum 64 7 1 
 

1 11 6 12 6 5 1 1 13 

Bombus 

hypnorum 

4 
 

1 
 

2 
 

1 
      

Bombus lapidarius 109 59 9 
 

1 12 14 5 1 3 
 

3 2 

Bombus 

pascuorum 

354 44 18 9 8 66 44 46 32 26 8 36 17 

Bombus pratorum 4 
     

1 1 
 

2 
   

Bombus 

terrestris/lucorum 

98 19 5 
 

3 18 21 7 4 8 3 4 6 

Bombus vestalis 3 2 
       

1 
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Halictus 

tumulorum 

1 
           

1 

Hoplitis 

claviventris 

1 
           

1 

Lasioglossum 

albipes 

13 2 2 1 2 1 
  

1 3 
 

1 
 

Lasioglossum 

calceatum 

12 3 
 

1 2 1 1 
 

1 
  

3 
 

Lasioglossum 

lativentre 

11 
 

1 3 4 
 

1 
 

1 
   

1 

Lasioglossum 

leucopus 

8 4 1 
  

1 1 
     

1 

Lasioglossum 

malachrum 

6 
  

1 
 

2 
   

1 2 
  

Lasioglossum 

morio 

24 3 2 2 6 1 2 1 
  

3 
 

4 

Lasioglossum 

parvulum 

2 1 1 
          

Lasioglossum 

pauxillum 

6 3 2 
  

1 
       

Lasioglossum 

villosulum 

5 
 

2 1 
      

1 
 

1 

Megachile 

versicolor 

2 1 
      

1 
    

Nomada 

goodeniana 

6 
       

2 
 

1 3 
 

Nomada ruficornis 1 
       

1 
    

Nomada striata 2 
         

1 
 

1 

Osmia leaiana 1 
  

1 
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Sphecodes 

ephippius 

6 
  

1 
    

1 4 
   

Sphecodes gibbus 3 
        

2 
  

1 

Sphecodes 

hyalinatus 

2 
        

2 
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Appendix 4. Summary of MANOVA output showing significantly linked response and explanatory variables, which informed LMER analysis of 
pollinator communities. 
Significance levels indicated by . p<0.1; * p<0.05; ** p<0.01; *** p<0.001. FDiv, FEve, FRic, Rao Q are the Functional divergence, functional evenness, functional 
richness, and Rao Quadratic Entropy of the floral community. Fl abun is floral abundance. %Fab, %Ast, %Apia, %Ran, %Lam are the proportion of Fabaceae, 
Asteraceae, Apiaceae, Ranunculaceae, and Lamiaceae.  

N form N amount pH Minerals FDiv FEve FRic Rao Q fl abun %Fab %Ast %Apia %Ran %Lam  

Overall 
abundance 

. 
 

** 
       

* 
 

   

Insect family 
richness 

  
* * 

   
. 

  
* 

 
 *  

Bee species 
richness 

. 
   

** 
   

. 
 

* 
 

   

Unique 
interactions 
(family) 

.  * .            

Unique bee 
interactions 
(sp.) 

**  .  * .          

Bee 
abundance 

* 
 

. 
 

. 
       

   

Bombus 
abundance 

** 
 

. . 
     

. 
  

   

Apis 
abundance 

* 
    

. 
      

 *  

Solitary bee 
abundance 

. 
       

. 
   

   

Diptera 
abundance 

 
* ** * 

     
* ** *    

Syrphidae 
abundance 

  
* * 

   
. 

    
   

wasp 
abundance 

 
. 

   
. 

  
* 

 
. 
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sawfly 
abundance 

* 
 

* 
     

** * 
  

   

Coleoptera 
abundance 

   
. 

 
. 

      
*   

Lepidoptera 
abundance 

* 
  

. 
     

* 
  

   

Proportion 
bees 

*** ** **  ***     ***   *   

Proportion 
Diptera 

*** ** **  ***     ***      
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Appendix 5. Plant-pollinator interaction networks from the 12 study plots. 
 

Plot 3b (nil N, pH 6) 

 

Plot 3d (nil N, unlimed) 
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Plot 17b (48 kg NO3 ha-1 yr-1, pH 6) 

 

 

 

Plot 17d (48 kg NO3 ha-1 yr-1, unlimed) 
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Plot 7/2b (nil N, minerals, pH 6) 

 

 

 

Plot 7/2d (nil N, minerals, unlimed) 
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Plot 16b (48 kg NO3 ha-1 yr-1, minerals, pH 6) 

 

 

 

Plot 16d (48 kg NO3 ha-1 yr-1, minerals, unlimed) 
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Plot 14/2b (96 kg NO3 ha-1 yr-1, minerals, pH 6) 

 

 

 

Plot 14/2d (96 kg NO3 ha-1 yr-1, minerals, unlimed) 
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Plot 13/2b (FYM, pH 6) 

 

 

 

Plot 13/2d (FYM, unlimed) 

 


