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Highlights 49 
 50 
• The fate of parent and polar PAHs in a biomonitoring species was assessed 51 
• Quantitative monitoring of PACs was carried out on Sydney rock oysters for 86 days 52 
• Parent PAHs, NPAHs and 9-FLO significantly depurated from oyster tissues 53 
• There was no clear depuration of nearly all oxyPAHs and HPAHs  54 
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Abstract 57 

Increasing our understanding of the bioavailable fractions of polycyclic aromatic compounds 58 

(PACs) in an aquatic environment is important for the assessment of the environmental and 59 

human health risks posed by PACs. More importantly, the behaviour of polar polycyclic 60 

aromatic hydrocarbons (polar PAHs), which are metabolites of legacy PAHs, are yet to be 61 

understood. We, therefore, carried out a study involving Sydney rock oysters (Saccostrea 62 

glomerata) sourced from two locations, that had been exposed to PAH contamination, within 63 

an Australian southeast estuary. Biomonitoring of these oysters following relocation from the 64 

estuary to a relatively isolated waterway was done at 24 and 72 h after deployment, and 65 

subsequently at 7, 14, 28, 52 and 86 days. Control samples from Camden Haven River were 66 

sampled for PAC analyses just before deployment, after 28 days and at the end of the study 67 

(day 86). Lipid-normalised concentrations in oyster tissues across the 86-day sampling 68 

duration, elimination rate constants (k2), biological half-lives (t1/2), and time required to reach 69 

95% of steady-state (t95), were reported for parent PAHs and the less-monitored polar PAHs 70 

including nitrated/oxygenated/heterocyclic PAHs (NPAHs, oxyPAHs and HPAHs) for the 71 

three differently sourced oyster types. Most of the depurating PAHs and NPAHs, as well as 9-72 

FLO (oxyPAH), had k2 values significantly different from zero (p < 0.05). All other oxyPAHs 73 

and HPAHs showed no clear depuration, with their concentrations remaining similar. The non-74 

depuration of polar PAHs from oyster tissues could imply greater human health risk compared 75 

to their parent analogues. 76 

 77 

Keywords: Polar PAHs, Saccostrea glomerata, Biomonitoring, Elimination rate constant, 78 

Biological half-lives, Aquatic environment  79 

  80 
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1. Introduction 81 

The fate of polycyclic aromatic compounds (PACs) in the natural environment is of critical 82 

importance from a human and environmental health risk perspectives. Exposure to PACs can 83 

result in numerous toxicological effects, including carcinogenesis, mutagenesis and 84 

teratogenesis 1-4. Polar polycyclic aromatic hydrocarbons (polar PAHs) have varying 85 

physicochemical properties both as a group and in comparison to their parent analogues 5, 6. 86 

These differing physicochemical properties result in varied behaviour and the eventual fate of 87 

PACs in the environment. To date, most emphasis has been on the environmental fate of the 88 

non-polar parent PAHs compared to polar PAHs such as oxygenated PAHs (oxyPAHs), 89 

nitrated PAHs (NPAHs) and heterocyclic PAHs (HPAHs) 7. In recent years, and with the 90 

increasing knowledge of the potentially greater toxicity and bioavailability of polar PAHs, 91 

investigation of their fate and behaviour is increasing, albeit mostly focusing on soil and 92 

particulate matter in the air, rather than in aquatic environments 8-14.  93 

Polycyclic aromatic compounds are amongst the most abundant contaminants in the aquatic 94 

environment 15, 16, which can be taken up by aquatic species. Exposure to PACs can arise from 95 

dissolved and particulate organic carbon fractions from the incomplete combustion of organic 96 

matter 17. Alternatively, sediments are global sinks for PACs, which can be remobilised into 97 

water and ultimately bio-accumulate in living organisms15, 18-20. The bioavailability of PACs 98 

and other hydrophobic contaminants in aquatic organisms is of great essence since the 99 

bioavailable concentrations are directly related to the toxic effects in organisms including 100 

humans 15, 21. The natural regenerative ability of water bodies, particularly rivers, makes water 101 

PAC concentrations, at any point in time, a poor predictor of bioavailability 17. Accordingly, 102 

the evaluation of contaminant bioavailability in aquatic environments has commonly been 103 

made using benthic invertebrates such as mussels, clams and oysters 17, 22-26. Monitoring of 104 

PAC concentrations in such organisms has provided a more definitive means of evaluating the 105 
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bioavailable fractions in an aquatic environment. Depending on their lipophilic characteristics, 106 

PACs could be bio-accumulated in the lipid-rich tissues of oysters or remain in the water phase 107 

15, 17, 23. The high rate of bioaccumulation compared to elimination through metabolism, is 108 

mostly the reason for PACs’ bioaccumulation in oyster and other sentinel organisms used as 109 

aquatic biomonitors 17. 110 

Apart from providing information about the health of an environment, bivalves are a popular 111 

food source in many areas around the world, and global seafood consumption rates are rising 112 

27. Early commercialisation of the Sydney Rock Oyster (Saccostrea glomerata) in New South 113 

Wales (NSW) and Southern Queensland began in the late 1700s but the expansion and  114 

development of the oyster industry that formed the basis of the current aquaculture industry 115 

dates back to the early 1900s 28, 29. Sydney rock oysters have historically been exposed directly 116 

to petrogenic PACs through the use of coal tar and its derivatives in preserving the timber 117 

infrastructure from marine borers 28. Even though they have generally been phased out from 118 

use, PACs are still present in the sediment beneath many farming areas.  119 

Recycled plastic products are now being used in place of tarred hardwood infrastructure in 120 

shellfish aquaculture of most NSW estuaries, due to their ease of use and durability 28. 121 

However, this replacement could also have potential negative impacts on the surrounding 122 

environment and oyster consumers as plastics could be a direct source of PACs 30, 31. Other 123 

important sources of PACs such as motor vehicle exhaust, forest and rangeland burning, oil 124 

spills, industrial processes and run-off could have contributed to the estuary’s sediment PAC 125 

load 32, 33. Oysters that have bio-accumulated environmental contaminants in their tissues may 126 

cause chronic health anomalies in humans, especially if consumed over a long period of time 127 

32. It, therefore, means that despite the ecological importance of bivalves, they could act as a 128 

vector for PACs to humans. 129 
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Toxicokinetic parameters such as uptake rates (k1), elimination rates (k2) and biological half-130 

lives (t1/2), have been used to describe parent PAH bioaccumulation/elimination patterns in 131 

oysters 17, 23, 34. Such studies provide information about the fate of PAHs in an organism 132 

including its bio-accumulative potential, contaminant transformation possibilities, elimination 133 

duration and toxicity. In this way, food regulatory authorities have been able to predict the 134 

safety of consuming naturally sourced delicacies. 135 

Unlike parent PAHs, the fate of the bioavailable fraction of polar PAHs in oysters and other 136 

biomonitoring organisms that also serve as food has not been well researched. Further, most of 137 

the studies for parent PAHs in the literature are laboratory-based, with very few field studies 138 

on PAC bioaccumulation/elimination dynamics. In furtherance of our earlier study on the 139 

bioaccumulation of parent and polar PAHs in the tissues of S. glomerata 35, the present study 140 

set out to carry out on-field quantitative biomonitoring of the bioavailable fractions of parent 141 

PAHs, oxyPAHs, NPAHs and HPAHs in the tissues of Sydney rock oysters sourced from a 142 

south-east Australian estuary. To the best of our knowledge, this is the first study to 143 

simultaneously investigate the elimination patterns of parent and polar PAHs in oysters from 144 

an Australian aquatic environment. 145 

 146 
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2. Materials and Methods 147 

2.1 Oyster sampling 148 

Oyster samples were collected from two locations (A and B) close to the mouth of a south-east 149 

Australian estuary (Fig. 1).  The choice of the estuary was based on recent testings by the NSW 150 

Food Authority (NSWFA) and our previously published article on the estuary sediment, oyster 151 

and water concentrations 35, which showed that it was experiencing higher than expected levels 152 

of PAC contamination. The oysters were collected around potential sources of PACs such as 153 

boat ramp, historical residual tar deposits and roadside drains (Fig. 1). A location non-154 

disclosure agreement was entered into with NSW fisheries authorities during the sampling 155 

period, preventing us from showing the global positions on the map. 156 

For the depuration study, approximately 200 sampled adult oysters of approximately equal 157 

sizes were relocated to a relatively isolated waterway, surrounded by a National Park, with low 158 

PAC background levels not exceeding those reported in the source estuary (NSWFA 159 

unpublished data). The relocated oysters were here held in three replicate batches in plastic 160 

cages on existing oyster culture infrastructure. Oysters translocated to the isolated waterway 161 

were tested 24 and 72 h after deployment and subsequently at Day 7, 14, 28, 52 and 86. On 162 

each sampling occasion, 15 randomly selected oysters were tested from each of the 3 replicate 163 

batches. Control oysters sourced from Camden Haven River, which has a history of low PAH 164 

concentrations (NSWFA unpublished data) were also monitored for concentration changes at 165 

the time of translocation (time 0), and again at 28 and 86 days later.   166 

 2.2. Extraction procedures and PAC analysis 167 

The extraction of parent and polar PAHs from freeze-dried oysters was performed using the 168 

QuEChERS approach. A 2 g dried homogenised oyster tissue sample was transferred to a 169 

QuEChERS extraction tube, and 20 µl of 100 µg/ml acenaphthene-d10 and fluoranthene-d10 170 

recovery standards and QuEChERS extraction salt (containing NaCl (1 g), MgSO4 (4 g), 171 
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Na3C6H5O7 (1 g) and C6H6Na2O7·1.5H2O) were added. A mixture of (4:1 v/v) of 172 

hexane/acetone (20 ml) was added as extraction solvent followed by shaking with the aid of a 173 

vortex for 1 min and centrifugation (2000 xg at 4°C for 10 min). The supernatant was 174 

subsequently transferred to a QuEChERS cleanup tube and vortexed (1 min), centrifuged at 175 

2000 xg and 4 °C (10 min) and concentrated using a nitrogen concentrator at 35 °C and 12.5 176 

psi to about 500 µl. 177 

The concentrated extracts were applied to 2 g preconditioned 10% activated silica solid-phase 178 

extraction cartridges connected to a manifold and operated under vacuum at 5 mmHg. The 179 

fractionating procedure into parent and polar PAH fractions was done using 15 ml Hexane: 180 

DCM (5:1) for parent PAHs and 8 ml DCM followed by 5 ml acetone, for polar PAHs. The 181 

volume of eluent was concentrated to near dryness, solvent exchanged to hexane by adding 1 182 

ml hexane and transferred to 1.5 ml GC vial for GC-MS analysis. Four deuterated internal 183 

standard mix (naphthalene-d8, phenanthrene-d10, pyrene-d10 and perylene-d12) was added 184 

prior to GC-MS analysis. The concentrations of the individual PACs were normalized against 185 

the lipid fraction of the organism. Oyster percent lipid content (12.3) was determined by the 186 

modification of a previously used method 36. Extracted samples were centrifuged at 500 rpm 187 

and concentrated to dryness using a nitrogen concentrator. The lipid content was the relative 188 

weight of the dried residual. Further details on the analytical methods and quality control 189 

procedures can be found in the Supplementary Information and previously published papers 33, 190 

37. 191 

2.3. Computation of kinetic parameters 192 

Contaminant elimination from oyster is generally considered to follow first-order kinetics on a 193 

natural log scale17, 23: 194 

d𝐶𝐶o
dt

=  −𝑘𝑘2 ∗  𝐶𝐶o 195 

 196 
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Where d𝐶𝐶o
dt

 is the change in PAC concentration in oyster tissues over the change in time. 197 

Integrating, the equation becomes: 198 

lnCo,t = - k2*t + lnCo,0 199 

Where lnCo,t is the lipid normalized PAC concentration in oyster tissues at time t and initial 200 

time (t = 0); k2 is elimination rate constant which is absolute value of the slope of a plot of lnCo 201 

and t. 202 

The k2 values are useful in calculating biological half-lives (t1/2) and time required to reach 95% 203 

of steady state (t95). These are computed as: 204 

t1/2 = ln2/ k2 205 

t95 = - ln 0.05/ k2 206 

Elimination rate constants were evaluated through the determination of the slope of the ln-207 

transformed PACs’ lipid-normalized concentrations and time. The kinetic parameters were 208 

computed for PACs that showed visibly reduced concentrations in computed linear regression 209 

equations. 210 

  211 
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3. Results and Discussion 212 

3.1.      Concentration changes in polar and parent PAHs over the depuration period 213 

As a build-up on our earlier published article where the concentrations of PACs in water, 214 

sediments and oyster tissue samples were reported for the contaminated site (locations A and 215 

B) 35, the depuration of parent and polar PAHs from the tissues of adult Sydney rock oysters 216 

were investigated in the current study. 217 

The HPAH mean concentrations in oysters sourced from locations A and B of the estuary were 218 

relatively similar over the 86 days of study (Fig. 2A). For location A-sourced oysters, mean 219 

concentrations of 2-MBF, for example, at the beginning and end of the investigation, were 220 

0.047 and 0.040 µg/g (Table S1, supplementary information). Mean concentrations of 2-MBF 221 

for locations A and B-sourced and control oysters were not significantly different from one 222 

another (p > 0.05) over the 86-day depuration study (Fig. 2A). The same trend of similar ‘day 223 

1’ and ‘day 86’, not significantly different locations A and B- sourced and control oyster 224 

concentrations were observed for DBF, XAN, THIA, QUI, IND, 8-MQL and ACRI for the 225 

depuration period (Fig. 2A). Mean concentrations of HPAHs were generally less than 0.5 µg/g 226 

except for a few concentration spikes observed in few instances (Table S1). 227 

Following the same trend as HPAH, the oxyPAH locations A and B-sourced and control oyster 228 

tissue mean concentrations were not significantly different (p > 0.05), and concentrations were 229 

relatively similar across the 86-day depuration period (Fig. 2B). Lipid-normalized 230 

concentrations of oxyPAHs were about 100 order of magnitudes lower than HPAHs 231 

concentrations (Table S2; Fig 2B.) with concentrations mostly below 0.1µg/g (Table S2). Out 232 

of the seven monitored oxyPAHs in this study, only 9-FLO concentrations showed slight 233 

decrease in oyster tissues. 9-FLO concentration in locations A and B-sourced oysters reduced 234 

to 0.0022 and 0.0024 µg/g from 0.0064 and 0.0058 respectively (Table S2). 235 
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The location A-sourced mean lipid-normalized concentrations of 1N-NAP in oyster were 236 

significantly different from location B-sourced and control oyster concentrations (p < 0.05), 237 

which in turn were not significantly different from each another (Fig. 2C). 1N-NAP 238 

concentrations increased in location A-sourced and control oysters from 24.6 and 1.28 to 599 239 

and 292 µg/g, respectively, within the 86 days of investigation (Table S3). Concentrations of 240 

1N-NAP in location B-sourced oysters, within the same duration, were relatively dissimilar 241 

(Fig. 2C). The increasing concentrations of 1N-NAP in oysters for locations A and B, may be 242 

due to recurring fluxes of naphthalene from ready sources and the subsequent secondary 243 

formation of 1N-NAP (Table S3), which is a metabolite of naphthalene. Declining 244 

concentrations were however noticed in location A and B-sourced, and control oyster 245 

concentrations for 2N-FLU and 9N-ANT (Table S3) with no significant difference (p > 0.05) 246 

in mean concentrations (Fig. 2C). Mean concentrations of 2N-FLU in location A-sourced (0.91 247 

µg/g), location B-sourced (0.98 µg/g) and control oyster (0.73 µg/g) were down to 0.20, 0.18 248 

and 0.17 µg/g by the 86th day, respectively (Table S3). For 9N-ANT, initial concentrations in 249 

locations A and B-sourced and control oysters were 0.75, 0.72 and 0.64 µg/g while the 250 

concentrations by the last day of the study, declined to 0.15, 0.14 and 0.31 respectively (Table 251 

S3). 252 

Parent PAH lipid-normalized locations A and B-sourced, and control oyster tissue mean 253 

concentrations, were not significantly different (p > 0.05) in this study (Fig 2D). PAH 254 

concentrations showed marked decline within the depuration period (Fig 2D). Location A-255 

sourced oyster FLUA concentration (24,307 µg/g) was the highest PAH concentration at the 256 

start of the depuration study, but it reduced considerably to 4.3 µg/g by the 86th day. Location 257 

A-sourced oyster PYR and PHEN concentrations also declined from 14,802 and 6,542 µg/g to 258 

2.7 and 1.9 µg/g, respectively (Table S4). The use of tar in infrastructure for shellfish 259 

aquaculture may have been a contributing factor to the elevated concentrations at the start of 260 
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the study. Concentrations of low molecular weight (LMW) and high molecular weight (HMW) 261 

PAHs in oyster were generally very low, at the start of the study, compared to the 262 

concentrations of mid-range molecular size PAHs such as FLUA and PYR. High 263 

concentrations of PAHs of mid-range molecular size and hydrophobicity in the tissues of oyster 264 

could be as a result of the loss of smaller, volatile analytes and the insufficient partitioning of 265 

strongly hydrophobic chemicals in water for uptake by the bivalve 23. 266 

Overall, the concentrations of PACs in oyster tissues across the 86-day study was relatively 267 

similar for polar PAHs while marked reduction in concentrations were recorded for parent 268 

PAHs. The sustained low concentrations might imply a possible equilibrium between oyster 269 

tissues and water polar PAH concentrations with potential environmental and human health 270 

risks, especially because of the proven greater toxicity of polar PAHs compared to their parent 271 

analogues 6, 38, 39. 272 

3.2.    Toxicokinetics of parent and polar PAHs in the Sydney rock oyster 273 

The concentrations of the monitored parent PAHs in location A-sourced, location B-sourced 274 

and control oyster samples of the estuary declined throughout the depuration period except for 275 

FLU with seemingly rising concentrations (Fig. S2). For NPAHs, concentrations of 1N-NAP 276 

in the tissues of oyster did not show a declining trend (locations B and control) (Fig. S2) like 277 

2N-FLU and 9N-ANT concentrations (Fig. S1I and S1J). 9-FLO was the only oxyPAH with a 278 

declining trend over the 86-day depuration study (Fig. S1K). Similarly, all HPAHs investigated 279 

in this study did not exhibit visible elimination by the 86th day (Fig. S2). The non-declining 280 

trend in HPAHs, oxyPAHs (all but one), 1N-NAP and FLU may be indicative of their possible 281 

non-bioaccumulation in oyster tissues.  282 

The elimination rate constants k2, for bio-accumulated PAHs, 2N-FLU, 9N-ANT (NPAHs) and 283 

9-FLO (oxyPAH), were evaluated by determining the slope of the linear regression between 284 

their ln-transformed concentrations in oyster tissues and time 23. For parent PAHs, only PHEN, 285 
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ANTH, FLUA, PYR, I[cd])P and D[a,h]A had k2, values which were significantly different 286 

from zero (p < 0.05) (Fig. S1).  287 

Elimination rate constant values, for parent PAHs, ranged from 0.02 – 0.11 day -1 in location 288 

A-sourced oysters and 0.001 – 0.09 day -1 in location B-sourced oysters (Table 2). 2N-FLU 289 

and 9N-ANT k2 values of 0.03 and 0.02 day -1, respectively, in location A-sourced oysters and 290 

0.03 day -1 in location B-sourced oysters (Table 2) were significantly different from zero (p < 291 

0.05). Similarly, for 9-FLO, the k2 value for both location A and location B-sourced oysters 292 

(0.01 day -1) was significantly different from zero (p < 0.05). There was no significant value of 293 

k2 recorded for any control oyster. Similarly, the k2 values of ACENY, ACEN, B[a]A, CHRY, 294 

B[b+k]F and B[a]P were not significantly different from zero (p > 0.05) for all oyster types 295 

(Table 2). Elimination rate constant were in the order location A-sourced > location B-sourced 296 

> control oysters implying that elimination of PACs may be concentration dependent since 297 

PAC oyster concentrations followed the same order. 298 

The t1/2 for location A-sourced, location B-sourced and control oysters were not significantly 299 

different (p > 0.05) and ranged from 6.4 (PHEN and FLUA) to 53.9 days (9-FLO) for location 300 

A-sourced, 8.1 (PHEN) to 647.8 days (B[a]P) for location B-sourced and 9.7 (PYR) to 98.5 301 

days (B[b+k]F) for control oysters (Table 2). Similarly, t95 values were not significantly 302 

different (p > 0.05) for location A and B-sourced oysters, and control. It ranged from 27.6 303 

(PHEN and FLUA) to 232.8 days (9-FLO) for location A-sourced, 35.0 (PHEN) to 2800 days 304 

(B[a]P) for location B-sourced and 41.8 (PYR) to 425.5 days (PYR) for control oysters (Table 305 

2).  306 

The kinetic parameters for locations A and B-sourced, and control oysters, in this study, did 307 

not have the same values. This difference may be due to different environmental dynamics 308 

including varying PAC concentrations in water and sediment for the estuary (locations A and 309 

B), Camden Haven River and the isolated waterway. Varying values were particularly noticed 310 
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in PAHs (e.g. B[b+k] and B[a]P) whose slope were not significantly different from zero (p > 311 

0.05) (Table 2).  312 

Studies on the elimination of PACs from aquatic organisms are very scarce in the literature. As 313 

far as we know, there are no past investigations on the elimination of polar PAHs from an 314 

aquatic organism. Few studies have however investigated the elimination dynamics of PAHs 315 

from bivalves. A comparison of the parent PAH kinetic parameters obtained in this study and 316 

two previous studies revealed that location A-sourced computations were closest to the 317 

literature values (Table 3). For example, location A-sourced oyster B[a]A k2 value in this study 318 

(0.095 day -1) compares very well with the value of 0.092 day-1 for mussels (Elliptio 319 

complanata) 17 (Table 3). Close comparison also existed in I[cd]P and D[a,h]h k2 values of 320 

0.039 and 0.046 day -1 in this study, and 0.047 and 0.069 day -1 respectively, for the study on 321 

mussels 17 (Table 3). ACENY k2 value was 0.034 in this study compared to 0.046 day -1 in a 322 

much ealier study also on E. complanata 23. Arising from the similar k2 values of this study and 323 

the two previous studies, the half-life values were also similar (Table 3). Half-life values for 324 

D[a,h]A in this study and one of the studies were both 15.1 days 17. For I[cd]P, it was 14.7 days 325 

in E. complanata 17 and 17.8 days in this study. PHEN, ANTH, FLUA, PYR and B[a]A values 326 

in this study were just a little higher than values in E. complanata 23 (Table 3). Without 327 

considering CHRY, which is the only parent PAH with a marked difference in k2 and t1/2 values, 328 

the t95 values (for parent PAHs) ranged from 27.6 (PHEN and FLUA) to 95.5 days (ACEN) in 329 

this study as well as 16.9 (PHEN) to 64.7 days (ACENY)  and 12.6 (ACEN) to 63.7 days 330 

(I[cd]P) respectively, in the two previous studies 17, 23 (Table 3). The reason for the difference 331 

with CHRY is unclear.  332 

The k2, t1/2 and t95 values for 1N-NAP, FLU, all oxyPAHs (except 9-FLO) and all HPAHs were 333 

not computed because of thier variable behaviour as seen in their rising ln concentration with 334 

time for all three differently sourced oysters (Fig. S2). The rising concentrations might have 335 
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resulted from higher bioavailability of these contaminants from water due to their less 336 

hydrophobic nature. The kinetic parameters for the polar PAHs have common attributes of 337 

lower k2 values and longer t1/2 and t95 compared to the parent PAHs. These imply their slower 338 

rate of elimination compared to parent PAHs. The PAC with the longest computed t1/2 value 339 

(53.9 days) and t95 value (232.8 days), in this study, is 9-FLO: a polar PAH (Table 3). 340 

3.3.      Relationship between elimination rate constants (k2) and log Kow for parent and  341 

polar PAHs 342 
 343 
The varying rates of elimination of bio-accumulated parent and polar PAHs from oysters may 344 

be related to their physicochemical properties and particularly log Kow. The linear regression 345 

model of k2 and log Kow for parent PAHs and polar PAHs (Fig. S3) could provide a description 346 

of the possible relationship existing between these two parameters for the particular PAC type. 347 

Simple linear regression analysis of k2 versus log Kow for (A) parent PAHs and (B) polar PAHs 348 

(Fig. S3), for locations A and B-sourced and control oysters, yielded varying results. For parent 349 

PAHs, equations k2 = -0.016 log Kow + 0.26,  -0.018 log Kow + 0.12 and -0.014 log Kow + 0.12 350 

were obtained with r2 values of 0.25, 0.34 and 0.47 for locations A and B-sourced and control 351 

oysters, respectively (Fig. S3). Though not significant (p > 0.05), the inverse relationship 352 

between k2 and Kow showed that the parent PAHs were being passively eliminated from the 353 

oyster tissues. Based on the r2 values,  the variability in k2 that could be explained by log Kow 354 

was as much as 25, 34 and 47% for location A-sourced, location B-sourced and control oysters 355 

respectively. These are high percentages considering the fact that the depuration study was 356 

conducted in the field and other competing factors could have influenced the rate of depuration. 357 

Similar r2 values of k2 and Kow for parent PAHs have been reported in the literature 17, 23, 40, 41.   358 

Non-significant (p > 0.05) positive relationships were however observed in polar PAHs when 359 

a simple linear regression analysis was performed for k2 and log Kow, for locations A and B, 360 

indicating that the polar PAHs might not have been eliminated from oyster tissues possibly 361 
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because of their bioavailability from surrounding water. Very low r2 values computed for 362 

locations A and B oysters (0.04 and 0.05), indicated that the proportion of variability in k2 that 363 

could be explained by log Kow was very low (Fig. S3). For the control oysters, a non-significant 364 

(p > 0.05) negative relationship existed between k2 and Kow (Fig. S3) implying possible passive 365 

depuration of polar PAHs from oyster tissues. This could probably be due to the prevalence of 366 

polar PAHs in control oysters particularly from parent PAH transformation, compared to 367 

oysters from the two other locations. 368 

  369 



18 
 

4.0 Conclusions 370 

The toxicokinetics of parent PAHs and the less monitored polar PAHs (NPAHs, oxyPAHs and 371 

HPAHs) in S. glomerata were investigated with a first-order, one-compartment, linear model. 372 

Oysters relocated from a southeast Australian estuary to a comparably clean isolated waterway 373 

in NSW Australia, demonstrated varied elimination rates of parent and polar PAHs. Parent 374 

PAHs (except FLU) substantially bio-accumulated in oyster tissues and demonstrated 375 

impressive elimination rates in the isolated waterway. Similarly, two of the three investigated 376 

NPAHs had significant k2 values implying strong depuration from oyster tissues. All oxyPAHs 377 

(except 9-FLO) and HPAHs exhibited low depuration with their concentrations remaining 378 

fairly constant. FLU, 1N-NAP and 9-FLO demonstrated varied behaviour compared to other 379 

members of their individual groups with rising concentrations of FLU and 1N-NAP, and 380 

reducing concentration of 9-FLO from oyster tissues. Unlike parent PAHs, polar PAH did not 381 

exhibit considerable depuration from oyster tissues as their k2 values largely exhibited direct 382 

relationship with chemical hydrophobicity.   383 



19 
 

Acknowledgements 384 

The authors acknowledge the support rendered by the Commonwealth of Australia and the 385 

University of Newcastle Australia through the Australian Government Research Training 386 

Program (RTP) Scholarship. The support of the NSW Food Authority and NSW Department 387 

of Primary Industries staff, during the fieldwork, is profoundly appreciated. The authors extend 388 

their appreciation to Mr Brand Archer and Mr Kyle Johnston (NSW DPI Fisheries) for their 389 

support and advice regarding the experimental setup and deployment of shellfish. The authors 390 

would also like to acknowledge the support of NSW shellfish industry members. O. Idowu 391 

appreciates the assistance rendered by Anthony Umeh during the laboratory work. 392 

393 



20 
 

References 394 

1. Knecht, A. L.; Goodale, B. C.; Truong, L.; Simonich, M. T.; Swanson, A. J.; Matzke, M. M.; 395 
Anderson, K. A.; Waters, K. M.; Tanguay, R. L., Comparative developmental toxicity of 396 
environmentally relevant oxygenated PAHs. Toxicol Appl Pharmacol 2013, 271, (2), 266-75. 397 

2. Lemieux, C. L.; Lambert, I. B.; Lundstedt, S.; Tysklind, M.; White, P. A., Mutagenic hazards of 398 
complex polycyclic aromatic hydrocarbon mixtures in contaminated soil. Environmental 399 
Toxicology and Chemistry 2008, 27, (4), 978-990. 400 

3. Lemieux, C. L.; Long, A. S.; Lambert, I. B.; Lundstedt, S.; Tysklind, M.; White, P. A., Cancer risk 401 
assessment of polycyclic aromatic hydrocarbon contaminated soils determined using bioassay-402 
derived levels of benzo[a]pyrene equivalents. Environ. Sci. Technol. 2015, 49, (3), 1797-1805. 403 

4. McCarrick, S.; Cunha, V.; Zapletal, O.; Vondráček, J.; Dreij, K., In vitro and in vivo genotoxicity 404 
of oxygenated polycyclic aromatic hydrocarbons. Environ. Pollut. 2019, 678-687. 405 

5. Bandowe, B. A. M.; Meusel, H., Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the 406 
environment – A review. Sci. Total Environ. 2017, 581-582, 237-257. 407 

6. Idowu, O.; Semple, K. T.; Ramadass, K.; O'Connor, W.; Hansbro, P.; Thavamani, P., Beyond the 408 
obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ. 409 
Int. 2019, 543-557. 410 

7. Andersson, J. T.; Achten, C., Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date 411 
Use of PACs for Environmental Purposes. Polycycl Aromat Compd 2015, 35, (2-4), 330-354. 412 

8. Bandowe, B. A. M., Sobocka, J. and Wilcke, W., Oxygen-containing polycyclic aromatic 413 
hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and 414 
vertical distribution. Environ. Pollut. 2011, 159, (2), 539-549. 415 

9. Bandowe, B. A. M.; Bigalke, M.; Boamah, L.; Nyarko, E.; Saalia, F. K.; Wilcke, W., Polycyclic 416 
aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana 417 
(West Africa): Bioaccumulation and health risk assessment. Environ. Int. 2014, 65, 135-146. 418 

10. Bandowe, B. A. M.; Lueso, M. G.; Wilcke, W., Oxygenated polycyclic aromatic hydrocarbons and 419 
azaarenes in urban soils: A comparison of a tropical city (Bangkok) with two temperate cities 420 
(Bratislava and Gothenburg). Chemosphere 2014, 107, 407-414. 421 

11. Biache, C.; Ouali, S.; Cébron, A.; Lorgeoux, C.; Colombano, S.; Faure, P., Bioremediation of 422 
PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic 423 
compounds and microbial community abundance. J. Hazard. Mater. 2017, 329, 1-10. 424 

12. Cai, C.; Li, J.; Wu, D.; Wang, X.; Tsang, D. C. W.; Li, X.; Sun, J.; Zhu, L.; Shen, H.; Tao, S.; Liu, 425 
W., Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface 426 
soils from the Yangtze River Delta, eastern China. Chemosphere 2017, 178, 301-308. 427 

13. Agudelo-Castañeda, D.; Teixeira, E.; Schneider, I.; Lara, S. R.; Silva, L. F. O., Exposure to 428 
polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and 429 
mutagenic respiratory health risk by age groups. Environ. Pollut. 2017, 224, 158-170. 430 

14. Alves, C. A.; Vicente, A. M.; Custódio, D.; Cerqueira, M.; Nunes, T.; Pio, C.; Lucarelli, F.; 431 
Calzolai, G.; Nava, S.; Diapouli, E.; Eleftheriadis, K.; Querol, X.; Musa Bandowe, B. A., 432 
Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and 433 
azaarenes) in PM2.5 from Southern European cities. Sci. Total Environ. 2017, 595, 494-504. 434 

15. Snežana P. Maletić, J. M. B., Srđan D. Rončević, Marko G. Grgić, Božo D. Dalmacija, State of 435 
the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, 436 
bioavailability and remediation techniques. J. Hazard. Mater. 2019, 365, 467–482. 437 

16. Jafarabadia Ali Ranjbar, A. R. B., ⁎, Laetitia Hedouinb, Amirhossein Shadmehri Toosic, Tiziana 438 
Cappellod, Spatio-temporal variability, distribution and sources of n-alkanes and polycyclic 439 
aromatic hydrocarbons in reef surface sediments of Kharg and Lark coral reefs, Persian Gulf, Iran. 440 
Ecotoxicol. Environ. Saf. 2018, 163, 307–322. 441 

17. Thorsen , F. D., Sandifer T. ,Lazaro P. R. ,  Cope W. G., Shea D. , Elimination Rate Constants of 442 
46 Polycyclic Aromatic Hydrocarbons in the Unionid Mussel, Elliptio complanata. Arch. Environ. 443 
Contam. Toxicol. 2004, 47, 332–340. 444 

18. Tolosa Immaculada, J. M. B. a. J. A., Aliphatic and Polycyclic Aromatic Hydrocarbons and 445 
Sulfur/Oxygen Derivatives in Northwestern Mediterranean Sediments:Spatial and Temporal 446 
Variability, Fluxes, and Budgets. Environ. Sci. Technol. 1996, 30, 2495-2503. 447 



21 
 

19. Nan Sun, Y. C., Shuqin Xu, Ying Zhang, Qiang Fu, Lixin Ma, Qi Wang,Yuqing Chang, Zhe Man, 448 
Remobilization and bioavailability of polycyclic aromatic hydrocarbons from estuarine sediments 449 
under the effects of Nereis diversicolor bioturbation. Environ. Pollut. 2018, 242, 931-937. 450 

20. Sun, Z.; Zhu, Y.; Zhuo, S.; Liu, W.; Zeng, E. Y.; Wang, X.; Xing, B.; Tao, S., Occurrence of nitro- 451 
and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human 452 
exposure through soil ingestion. Environ. Int. 2017, 108, 261-270. 453 

21. Ortega-Calvo, J. J.; Harmsen, J.; Parsons, J. R.; Semple, K. T.; Aitken, M. D.; Ajao, C.; Eadsforth, 454 
C.; Galay-Burgos, M.; Naidu, R.; Oliver, R.; Peijnenburg, W. J.; Rombke, J.; Streck, G.; 455 
Versonnen, B., From Bioavailability Science to Regulation of Organic Chemicals. Environ Sci 456 
Technol 2015, 49, (17), 10255-64. 457 

22. Badreddine Barhoumi, Y. E. e., Christelle Clérandeau,Walid Ben Ameur, Sabrine Mekni, Sondes 458 
Bouabdallah, Abdelkader Derouiche, Soufiane Touil, Jérôme Cachot, Mohamed Ridha Driss, 459 
Occurrence of polycyclic aromatic hydrocarbons(PAHs) in mussel (Mytilus galloprovincialis) and 460 
eel (Anguilla anguilla) from Bizertelagoon,Tunisia,and associated human health risk assessment. 461 
Continental Shelf Research 2016, (124), 104–116. 462 

23. Gewurtz S. B. , K. G. D., R. Lazar, G. D. Haffner, Quantitative Biomonitoring of PAHs Using the 463 
Barnes Mussel (Elliptio complanata). Arch. Environ. Contam. Toxicol. 2002, 43, 497–504. 464 

24. Hoang Thi Thanh Thuy, T. T. C. L., Trinh Hong Phuong, The potential accumulation of polycyclic 465 
aromatic hydrocarbons in phytoplankton and bivalves in Can Gio coastal wetland, Vietnam. 466 
Environ. Sci. Pollut. Res. 2018, 25, 17240–17249. 467 

25. Dong Liu, L., Zhen Li, Yuefeng Cai, Jingjing Miao, Metabolites analysis,metabolic enzyme 468 
activities and bioaccumulation in the clam Ruditapes philippinarum exposed to benzo[a]pyrene. 469 
Ecotoxicol. Environ. Saf. 2014, 107, 251–259. 470 

26. Gadelha Juliana R., A. C. R., Carolina Camacho, Ethel Eljarrat, Andrea Peris, Yann Aminot, James 471 
W. Readman, Vasiliki Boti, Christina Nannou, Margarita Kapsi, Triantafyllos Albanis, Filipa 472 
Rocha, Ana Machado, Adriano Bordalo, Luísa M.P. Valente, Maria Leonor Nunes, António 473 
Marques, C. Marisa R. Almeida, Persistent and emerging pollutants assessment on aquaculture 474 
oysters (Crassostrea gigas) from NW Portuguese coast (Ria De Aveiro). Sci. Total Environ. 2019, 475 
666, 731–742. 476 

27. FAO, Food and agriculture organization of the United Nations. 2016. 477 
28. O'connor, W. A., and Dove, M. C., The changing face of oyster culture in New South Wales, 478 

Australia. Journal of Shellfish Research 2009, 28, (4), 803-811. 479 
29. Schrobback, P., Pascoe, S., and Coglan, L., History, status and future of Australia’s native Sydney 480 

rock oyster industry. Aquatic living resources 2014, 3-4, (27), 153-165. 481 
30. Omowunmi H. Fred-Ahmadu, G. B., Idowu Oluyoye, Nsikak U. Benson, Olusegun O. Ayejuyo, 482 

Thavamani Palanisami, Interaction of chemical contaminants with microplastics: Principles and 483 
perspectives. Sci. Total Environ. 2020, 706, (135978). 484 

31. Subash Raju, M. C., Aswin Kuttykattil, Kala Senthirajah, Anna Lundmark, Zoe Rogers, Suresh 485 
SCB, Geoffrey Evans, Thava Palanisami, Improved methodology to determine the fate and 486 
transport of microplastics in a secondary wastewater treatment plant. Water Research 2020, 173, 487 
(115549). 488 

32. Haihua Wanga, W. H., Ying Gong, Chienmin Chen, Tengyun Zhang, Xiaoping Diaoa,, Occurrence 489 
and potential health risks assessment of polycyclic aromatic hydrocarbons (PAHs) in different 490 
tissues of bivalves from Hainan Island,China. Food Chem. Toxicol. 2020, 136, (111108). 491 

33. Idowu Oluyoye, M. C., Wayne O’Connor, Palanisami Thavamani, Speciation and source 492 
apportionment of polycyclic aromatic compounds (PACs) in sediments of the largest salt water 493 
lake of Australia. Chemosphere 2020, 246, (125779). 494 

34. Sericano Jose L., T. L. W., James M. Brooks, Accumulation and depuration of organic 495 
contaminants by the American oyster (Crassostrea virginica). The Sciene of the Total Environment 496 
1996, 179, 149-160. 497 

35. Idowu Oluyoye⁠, T. K. A. T., Phil Baker, Hazel Farrel, Anthony Zammit, Kirk T. Semple, Wayne 498 
O'Connor, Palanisami Thavamani⁠ Bioavailability of polycyclic aromatic compounds (PACs) to the 499 
Sydney rock oyster (Saccostrea glomerata) from sediment matrices of an economically important 500 
Australian estuary Sci. Total Environ. 2020, in-press. 501 



22 
 

36. J., B. E. G. D. W., A rapid method of total lipid extraction and purification. Can. J. Biochem. 502 
Physiol. 1959, 37, 911-917. 503 

37. Idowu, O.; Semple, K. T.; Ramadass, K.; O'Connor, W.; Hansbro, P.; Thavaman, P., Analysis of 504 
polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives in soils of an industrial 505 
heritage city of Australia. Sci. Total Environ. 2019, 134303. 506 

38. Brinkmann, M.; Maletz, S.; Krauss, M.; Bluhm, K.; Schiwy, S.; Kuckelkorn, J.; Tiehm, A.; Brack, 507 
W.; Hollert, H., Heterocyclic aromatic hydrocarbons show estrogenic activity upon metabolization 508 
in a recombinant transactivation assay. Environ Sci Technol 2014, 48, (10), 5892-901. 509 

39. Debajyoti Ghosal, S. G., Tapan K. Dutta and Youngho Ahn, Current State of Knowledge in 510 
Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Frontiers in 511 
Microbiology 2016, 7, (1369), 1-27. 512 

40. Sericano, J. L., Wade, Terry L., Brooks, James M. , Accumulation and depuration of organic 513 
contaminants by the American oyster (Crassostrea virginica). The Sciene of the Total Environment 514 
1996, 179, 149-160. 515 

41. Bender, M. E., Hargis, Jr W. J. , Huggett, R. J.  &  Roberts  Jr, M. H. , Effects of Polynuclear 516 
Aromatic Hydrocarbons on Fishes and Shellfish: An Overview of Research in Virginia. Mar. 517 
Environ. Res. 1988, 24, 237-241. 518 

 519 

 520 

 521 



Quantitative biomonitoring of polycyclic aromatic compounds (PACs) using Sydney 1 
rock oyster (Saccostrea glomerata) 2 

 3 
Supplementary Information 4 

Oluyoye Idowu a, Thi Kim Anh Tran b,c, Grant Webster d, Ian Chapman d, Phil Baker d, Hazel 5 
Farrel d, Anthony Zammit d, Kirk T. Semple e,  Phil Hansbro f , Wayne O'Connor g, Palanisami 6 
Thavamani b, * 7 

a  Global Centre for Environmental Remediation (GCER), University of Newcastle, 8 
Callaghan, NSW 2308, Australia 9 

b  Global Innovative Centre for Advanced Nanomaterials (GICAN), University of 10 
Newcastle, Callaghan, NSW 2308, Australia 11 

c  School of Agriculture and Resources, Vinh University, Vietnam 12 
d  NSW Department of Primary Industries, Biosecurity and Food Safety, Taree, NSW 13 

2430, Australia 14 
e  Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United 15 

Kingdom 16 
f  Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia 17 
g   Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port 18 

Stephens, NSW 2316, Australia 19 
 20 
 21 
 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 
 36 
* Corresponding Author: Global Innovative Centre for Advanced Nanomaterials (GICAN), 37 
University of Newcastle, Callaghan, NSW 2308, Australia 38 
   E-mail address: thava.palanisami@newcastle.edu.au (T. Palanisami) 39 

mailto:thava.palanisami@newcastle.edu.au


SI-Text 1: Chemicals and reagents 40 

The following chemicals were purchased from Sigma Aldrich, Australia: 41 

PAH mix containing: acenaphthylene (ACENY), acenaphthene (ACEN), fluorene (FLU), 42 

phenanthrene (PHEN), anthracene (ANTH), fluoranthene (FLUA), pyrene (PYR),  benz[a] 43 

anthracene (B[a]A), chrysene (CHRY),  benzo[b+k]fluoranthene, benzo[a]pyrene (B[a]P), 44 

indeno[1,2,3-cd]pyrene (I[cd]P) and dibenz[a,h]anthracene (D[ah]A); 7 carbonyl-OxyPAHs: 45 

1,4-naphthoquinone (1,4-NQ),  9-fluorenone (9-FLO), 2-methyl anthraquinone (2-MAQ), 2-46 

ethylanthraquinone (2-EAQ), 9,10-anthraquinone (9,10-ANQ), 2,3-dimethylanthraquinone 47 

(2,3-DMAQ), 7H-benz[d,e]anthracene-7-one (7H-BANT); 5 N-heterocycles: quinoline (QUI), 48 

8-methylquinoline (8-MQL), indole (IND), acridine (ACR), carbazole (CBZ); 3 O-49 

heterocycles: dibenzofuran (DBF), 2-methylbenzofuran (2-MBF), xanthene (XAN); 1 S-50 

heterocycle: thianaphthene (THIA); 3 NPAHs: 1-nitronaphthalene (1N-NAP),  2-nitrofluorene 51 

(2N-FLU), 9-nitroanthracene (9N-ANT) and internal standards comprising of naphthalene-d8, 52 

phenanthrene-d10, chrysene-d12 and perylene-d12, as well as acenaphthene-d10 and 53 

flouranthene-d10 surrogate standards. Anhydrous sodium sulphate (99% purity), n-hexane, 54 

dichloromethane and acetone (99.8% purity) were also sourced from Sigma Aldrich, Australia. 55 

QuEChERS extraction tubes (50mL-Cat# 982-5650) and QuEChERS clean up, dispersive SPE 56 

tubes (15 mL-Cat# 5982-5156) were purchased from Agilent Technologies, Australia.   57 

 58 

SI-Text 2: GC-MS analysis 59 

The concentrations of PAHs, oxy-PAHs, NPAHs and HPAHs in extracts were measured by an 60 

Agilent 7890 B gas chromatograph (GC) coupled to a mass spectrometer (MS) with a HP-5MS 61 

(30 m x 0.25 mm x 0.25 µm) column. The GC oven parameters were according to (Idowu et 62 

al., 2019b; 2020).  Sample volumes of 1 µl were injected into the system in splitless mode. The 63 



mass spectrometer was operated in an electron impact ionisation mode, at 70 eV, for all the 64 

measured analytes, as well as under selected ion monitoring mode. 65 

 66 

SI-Text 3: Quality assurance and quality control 67 

Throughout the extraction and analysis processes, strict quality assurance and quality control 68 

procedures were followed. Amber coloured glass vials were used throughout to minimise PAH 69 

loss from photolysis. Cross-contamination was checked by analysing laboratory blanks after 70 

every batch of 10 samples during GC-MS analysis. Target polar and non-polar PAHs were 71 

either not detected or below detection limits in the solvent blanks. Triplicates samples were 72 

analysed and considering the variation in physicochemical properties of different polar PAHs, 73 

we conducted an exclusive recovery rate experiment under optimised extraction conditions. 74 

Oyster tissue samples were replicated five times for the experiment. Tissues (1g) were spiked 75 

with 20µl of 100µg/ml acenaphthene-d10/fluoranthene-d10 (parent PAHs) and individual 76 

polar PAHs, extracted according to the QuEChERS method, fractionated and analysed. 77 

Unspiked tissue samples were also extracted and analysed for polar PAHs and concentrations 78 

of both spiked and unspiked samples used to compute their recovery rates. The recovery results 79 

for parent and polar PAHs are presented in Table S5 (supplementary information).  80 

 81 

 82 



 Table S1  83 

                   Concentration changes (µg/g d.w.) of HPAHs during the 86-day depuration study  84 

Day 2-MBF DBF XAN 
 
 

THIA 
 
 

QUI 
 
 

Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control 

0 0.048±
0.004 

0.063±
0.021 

0.044±
0.003 

0.233±
0.173 

0.258±
0.189 

0.045±
0.014 

0.144±
0.015 

0.146±
0.016 

0.148±
0.038 

0.142±
0.010 

0.305±
0.328 

0.116±
0.011 

0.048±
0.001 

0.048±
0.002 

0.047±
0.001 

1 0.044±
0.002 

0.044±
0.001 

  0.416±
0.139 

0.204±
0.234 

  0.159±
0.004 

0.154±
0.023 

  2.135±
0.327 

0.111±
0.003 

  0.048±
0.002 

0.048±
0.001 

  

3 0.045±
0.001 

0.044±
0.001 

  0.181±
0.164 

0.416±
0.244 

  0.163±
0.005 

0.149±
0.004 

  0.125±
0.003 

0.123±
0.016 

  0.048±
0.001 

0.047±
0.001 

  

7 0.045±
0.002 

0.047±
0.002 

  0.111±
0.120 

0.040±
0.003 

  0.153±
0.015 

0.203±
0.061 

  1.290±
1.100 

0.594±
0.743 

  0.048±
0.001 

0.048±
0.002 

  

14 0.048±
0.004 

0.052±
0.009 

  0.184±
0.125 

0.205±
0.235 

  0.334±
0.195 

0.323±
0.129 

  0.183±
0.056 

0.146±
0.021 

  0.049±
0.001 

0.073±
0.023 

  

28 0.043±
0.001 

0.044±
0.001 

0.043±
0.000 

0.328±
0.087 

0.629±
0.001 

0.289±
0.015 

0.163±
0.008 

0.188±
0.000 

0.201±
0.019 

0.635±
0.121 

0.388±
0.002 

0.459±
0.089 

0.049±
0.001 

0.049±
0.002 

0.048±
0.000 

52 0.041±
0.033 

0.032±
0.037 

  0.020±
0.030 

0.150±
0.147 

  0.190±
0.308 

0.246±
0.127 

  0.689±
0.573 

0.510±
0.571 

  0.013±
0.014 

0.817±
1.045 

  

86 0.037±
0.059 

0.046±
0.059 

0.069±
0.003 

0.028±
0.038 

0.81±0.
095 

0.019±
0.017 

0.542±
0.251 

0.739±
1.035 

0.249±
0.138 

0.620±
0.581 

0.489±
0.566 

0.489±
0.278 

0.109±
0.056 

0.238±
0.361 

0.035±
0.011 

  IND 
 
 

8-MQL 
 
 

ACRI 
  
  

CBZ 
 
 

      
  Locatio

n A-
sourced 

Locatio
n B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control      

0 0.066±
0.011 

0.042±
0.003 

0.040±
0.001 

0.089±
0.005 

0.088±
0.002 

0.087±
0.000 

0.239±
0.054 

0.434±
0.228 

0.185±
0.008 

0.298±
0.022 

0.260±
0.073 

0.157±
0.006 

      

1 0.021±
0.030 

0.041±
0.001 

  0.091±
0.006 

0.088±
0.000 

  0.368±
0.011 

0.220±
0.006 

  0.241±
0.023 

0.218±
0.025 

        

3 0.044±
0.005 

0.043±
0.003 

  0.087±
0.003 

0.089±
0.001 

  0.256±
0.047 

0.304±
0.103 

  0.337±
0.199 

0.221±
0.009 

        

7 0.042±
0.002 

0.045±
0.001 

 
0.087±
0.001 

0.091±
0.002 

  0.263±
0.065 

0.253±
0.016 

  0.202±
0.014 

0.241±
0.021 

        

14 0.065±
0.014 

0.064±
0.019 

  0.089±
0.004 

0.093±
0.007 

  0.362±
0.079 

0.395±
0.157 

  0.658±
0.465 

0.426±
0.168 

        



28 0.043±
0.001 

0.044±
0.002 

0.045±
0.003 

0.088±
0.005 

0.086± 
0.002 

0.087±
0.003 

0.375±
0.096 

0.315±
0.002 

0.292±
0.015 

0.212±
0.032 

0.189±
0.003 

0.225±
0.103 

      

52 0.002±
0.000 

0.006±
0.001 

  0.008±
0.001 

0.008±
0.000 

  0.015±
0.003 

0.014±
0.001 

  0.012±
0.000 

0.013±
0.003 

        

86 0.108±
0.001 

0.787±
0.811 

0.029±
0.004 

1.683±
1.126 

0.879±
0.470 

1.074±
0.375 

2.018±
1.142 

0.838±
0.520 

0.841±
0.354 

2.506±
1.281 

0.581±
0.407 

0.432±
0.268 

      

 85 
2-MBF (2-methylbenzofuran), DBF (dibenzofuran), XAN (xanthene), THIA (thianaphthene), QUI (quinolone), IND (indole), 8-MQL (8-methylquinoline), 86 
ACR (acridine) and CBZ (carbazole); values are mean±SD.  87 



 88 
Table S2  89 

Concentration changes (µg/g d.w.) of oxyPAHs during the 86-day depuration study 90 

 Day
 

1,4-NAQ 

 

 

9-FLO 

 

 

9,10-NQ 

 

 

2-EAQ 

 

 

  Location 
A-
sourced 

Location 
B-sourced 

Control Location 
A-sourced 

Location 
B-sourced 

Control Location 
A-
sourced 

Location 
B-sourced 

Control Location 
A-
sourced 

Location 
B-sourced 

Control 

0 0.0061±0.
0106 

0.0038±0.
0060 

0.0144±0.
0076 

0.0064±0.
0010 

0.0058±0.
0011 

0.0047±0.
0002 

0.0126±0.
0026 

0.0133±0.
0092 

0.0091±0.
0060 

0.4453±0.
7468 

0.0049±0.
0006 

0.0115±0.
0056 

1 0.0037±0.
0060 

0.0046±0.
0063 

  0.0042±0.
0028 

0.0052±0.
0004 

  0.0082±0.
0050 

0.0082±0.
0013 

  0.2525±0.
4281 

0.0070±0.
0033 

  

3 0.0044±0.
0076 

0.0052±0.
0055 

  0.0068±0.
0026 

0.0062±0.
0010 

  0.0146±0.
0109 

0.0121±0.
0036 

  0.0106±0.
0115 

0.0094±0.
0088 

  

7 0.0024±0.
0042 

0.0006±0.
0005 

  0.0054±0.
0007 

0.0065±0.
0003 

  0.0075±0.
0005 

0.0091±0.
0014 

  0.0102±0.
0013 

0.0124±0.
0074 

  

14 0.0001±0.
0001 

0.0009±0.
0001 

  0.0101±0.
00027 

0.013±0.0
02 

  0.0248±0.
0245 

0.0164±0.
0057 

  0.1953±0.
2035 

1.0156±0.
6871 

  

28 0.0001±0.
0001 

0.0005±0.
0001 

0.0001±0.
0002 

0.0050±0.
0002 

0.0053±0.
001 

0.0061±0.
0017 

0.0083±0.
0061 

0.0061±0.
0010 

0.0098±0.
0090 

0.0123±0.
0072 

0.0107±0.
0001 

0.0110±0.
0065 

52 0.0288±0.
0394 

0.0092±0.
0021 

  0.0028±0.
0011 

0.0024±0.
0004 

  0.0619±0.
0891 

0.0127±0.
0072 

  0.0749±0.
0854 

0.0541±0.
0492 

  

86 0.0169±0.
0016 

0.0448±0.
0604 

0.0124±0.
0010 

0.0022±0.
0001 

0.0024±0.
0004 

0.0023±0.
0004 

0.0430±0.
0296 

0.0438±0.
0428 

0.0136±0.
0041 

0.0882±0.
0425 

0.1037±0.
0291 

0.0878±0.
0239 

  2-MAQ 

 

 

2,3-DMAQ 

 

 

7H-BANT 

 

 

  

    Location 
A-
sourced 

Location 
B-sourced 

Control Location 
A-sourced 

Location 
B-sourced 

Control Location 
A-
sourced 

Location 
B-sourced 

Control       

0 0.0072±0.
002 

0.0057±0.
0003 

0.0051±0.
0001 

0.0123±0.
0063 

0.0059±0.
0016 

0.0039±0.
0002 

0.0339±0.
0006 

0.0567±0.
0519 

0.0036±0.
0005 

      



1 0.0045±0.
0022 

0.0053±0.
0001 

  0.0060±0.
0003 

0.0047±0.
0012 

  0.0135±0.
0135 

0.0241±0.
0042 

        

3 0.0056±0.
0002 

0.0054±0.
0001 

  0.0061±0.
0008 

0.0047±0.
0009 

  0.0223±0.
0100 

0.0167±0.
0069 

        

7 0.0055±0.
003 

0.0057±0.
0000 

  0.0050±0.
0010 

0.0059±0.
0007 

  0.0136±0.
0049 

0.0163±0.
0032 

        

14 0.0058±0.
0001 

0.0060±0.
0006 

  0.0066±0.
0010 

0.0067±0.
0021 

  0.1699±0.
0334 

0.3873±0.
3639 

        

28 0.0058±0.
0003 

0.0056±0.
00010 

0.0055±0.
0001 

0.0046±0.
0006 

0.0046±0.
0010 

0.0048±0.
0010 

0.0112±0.
0051 

0.1337±0.
0001 

0.0906±0.
0327 

      

52 0.2535±0.
3323 

0.1546±0.
1749 

  0.4485±0.
6128 

0.1248±0.
0919 

  0.0308±0.
0274 

0.0967±0.
0104 

        

86 0.4809±0.
0657 

0.0091±0.
0022 

0.0049±0.
0011 

0.1458±0.
0257 

0.0149±0.
0068 

0.0176±0.
0031 

0.0254±0.
0236 

0.6197±0.
3653 

0.4235±0.
1846 

      

 91 
 1,4-NQ (1,4-naphthoquinone), 9-FLO (9-fluorenone), 9,10-ANQ (9,10-anthraquinone), 2-EAQ (2-ethylanthraquinone),  2-MAQ (2-methyl anthraquinone) 2,3-92 
DMAQ (2,3-dimethylanthraquinone) and 7H-BANT (7H-benz[d,e]anthracene-7-one); values are mean±SD. 93 



Table S3  94 

Concentration changes (µg/g d.w.) of NPAHs during the 86-day depuration study 95 

Da
y 

1N-NAP 
 
 

2N-FLU 
  
  

9N-ANT 
 
 

Locatio
n A-
sourced 

Location 
B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control Locatio
n A-
sourced 

Locatio
n B-
sourced 

Control 

0 24.6±35
.9 

0.02±0.0
14 

1.275±0
.606 

0.914±0
.065 

0.983±0
.163 

0.728±0
.033 

0.750±0
.047 

0.720±0
.087 

0.640±0
.073 

1 204±74.
2 

0.550±0.
009 

  1.861±1
.310 

0.769±0
.044 

  0.886±0
.150 

0.638±0
.052 

  

3 172.4±2
03.8 

0.003±0.
003 

  0.811±0
.107 

7.236±8
.299 

  0.811±0
.170 

1.346±0
.684 

  

7 153±13
5.6 

0.003±0.
007 

  2.688±2
.034 

3.054±1
.898 

  0.920±0
.360 

1.026±0
.164 

  

14 764.8±4
57.1 

0.001±0.
001 

  1.220±0
.065 

1.217±0
.363 

  4.095±1
.455 

6.178±3
.532 

  

28 108.8±3
1.8 

0.007±0.
001 

72.6±21
.4 

0.875±0
.052 

1.023±0
.001 

1.068±0
.304 

0.726±0
.016 

1.047±0
.001 

0.744±0
.067 

52 507.2±9
6.6 

0.002±0.
0006 

  0.161±0
.098 

0.129±0
.071 

  0.224±0
.215 

0.094±0
.064 

  

86 598.9±5
9.4 

0.002±0.
009 

292.4±2
9.2 

0.197±0
.012 

0.181±0
.022 

0.170±0
.033 

0.147±0
.017 

0.135±0
.032 

0.314±0
.227 

 96 
1N-NAP (1-nitronaphthalene), 2N-FLU (2-nitrofluorene), 9N-ANT (9-nitroanthracene); values are 97 
mean±SD. 98 
 99 
 100 

 101 



Table S4 102 

Concentration changes (µg/g d.w.) of parent PAHs during the 86-day depuration study 103 

  ACENY 
  
  

ACEN 
  
  

FLU 
  
  

PHEN 
  
  

  
  
  

 D
ay 

Locatio
n A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

      

0 1.29±1.
27 

1.195±
0.388 

1.433±
0.061 

5.318±7.5
37 

0.031±
0.013 

0.464±
0.037 

5.457±7.5
97 

0.017±
0.006 

0.023±
0.003 

6542.0±
7580.2 

247.5±
150.6 

164.5±
203.4 

      

1 0.226±0
.195 

1.579±
0.126 

  1.557±2.3
35 

0.061±
0.023 

  1.210±2.0
51 

0.020±
0.004 

  8624.7±
13858.9 

42.3±4
2.4 

        

3 1.549±1
.171 

2.590±
0.417 

  0.567±0.7
18 

0.553±
0.419 

  0.565±0.5
87 

0.059±
0.002 

  527.0±4
58.1 

10.2±1
4.4 

        

7 1.183±0
..989 

1.324±
1.037 

  0.039±0.0
28 

0.148±
0.164 

  0.020±0.0
06 

0.121±
0.178 

  116.7±1
25.9 

164.9±
236.2 

        

14 10.725±
14.385 

2.865±
0.494 

  1.494±2.2
80 

0.865±
0.167 

  6.854±1.6
38 

0.044±
0.017 

  66.4±25.
3 

26.6±2
1.6 

        

28 0.416±0
.175 

0.233±
0.021 

0.203±
0.010 

0.128±0.0
29 

0.074±
0.006 

0.132±
0.109 

2.441±1.6
89 

1.295±
0.208 

1.799±
0.390 

1.421±0.
715 

0.503±
0.043 

0.574±
0.051 

      

52 0.062±0
.012 

0.061±
0.007 

  0.103±0.0
89 

0.179±
0.129 

  0.776±1.1
58 

0.650±
0.994 

  0.047±0.
031 

0.286±
0.449 

        

86 0.111±0
.055 

0.036±
0.020 

0.028±
0.014 

0.095±0.0
11 

0.259±
0.110 

0.116±
0.064 

1.086±0.8
33 

0.749±
1.057 

0.109±
0.060 

1.913±0.
887 

0.102±
0.080 

0.235±
0.072 

      

  ANTH 
  
  

FLUA 
  
  

PYR 
  
  

B[a]A 
  
  

CHRY 
  
  

  Locatio
n A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

Upstre
am-
source
d 

Downst
ream-
sourced 

Contro
l 

0 1112.8±
1434.4 

52.5±3
4.5 

17.5±7
.7 

24307.3±
27698.4 

366.4±
332.9 

531.2±
574.9 

14802.4±
17013.5 

237.6±
227.1 

367.4±
418.8 

31.6±27.
0 

0.104±
0.180 

0.0±0.
0 

29.0±2
4.9 

0.073±
0.126 

0.0±0.
0 

1 1861.1±
3127.2 

16.4±2
0.3 

  17026.7±
23758.9 

123±1
31.3 

  10707.6±
15224.7 

55.9±4
2.6 

  2.2±1.6 0.0±0.
0 

  1.973±
1.481 

0.0±0.0   

3 48.1±42
.1 

2.091±
2.713 

  3198.7±2
846.5 

31.3±4
3.9 

  1928.3±1
707.7 

19.3±2
7.0 

  4.7±1.4 0.017±
0.030 

  4.22±1
.32 

0.0±0.0   



7 24.5±13
.6 

176.1±
272.7 

  867.7±13
97.4 

571.1±
911.4 

  562.7±89
9.3 

336.3±
530.9 

  0.679±0.
951 

1.049±
1.781 

  0.576±
0.873 

0.931±
1.613 

  

14 74.4±28
.5 

29.9±2
4.2 

  226.1±17
2.6 

135.8±
108.9 

  128.3±10
9.9 

50.0±3
4.0 

  1.92±1.5
56 

0.170±
0.173 

  1.686±
1.447 

0.100±
0.147 

  

28 0.513±0
.119 

0.257±
0.010 

0.239±
0.004 

5.997±2.7
37 

0.837±
0.280 

0.575±
0.125 

4.64±2.38 0.538±
0.244 

0.396±
0.104 

3.70±2.8
8 

0.0±0.
0 

0.0±0.
0 

6.32±5
.09 

0.0±0.0 0.0±0.
0 

52 0.113±0
.052 

0.107±
0.046 

  0.683±0.2
89 

1.994±
2.260 

  1.25±1.20
5 

0.355±
0.100 

  0.44±0.2
8 

0.171±
0.162 

  0.383±
0.302 

0.152±
0.109 

  

86 0.242±0
.051 

0.076±
0.005 

0.224±
0.142 

4.255±2.8
54 

0.647±
0.036 

0.449±
0.154 

2.67±1.71 0.386±
0.027 

0.281±
0.094 

0.42±0.2
0 

0.152±
0.148 

0.118±
0.043 

0.847±
0.568 

0.412±
0.293 

0.250±
0.121 

  B[b/k]F 
 
 

B[a]P 
 
 

D[a,h]A 
 
 

I[c,d]P 
 
 

 
 
 

  Locatio
n A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

Location 
A-
sourced 

Locati
on B-
source
d 

Contro
l 

      

0 74.3±94
.0 

0.027±
0.035 

0.044±
0.025 

71.8±52.3 0.075±
0.072 

0.150±
0.012 

8.13±5.14 0.468±
0.338 

1.02±0
.459 

35.1±23.
0 

2.11±0
.980 

3.77±0
.818 

      

1 8.14±7.
22 

0.057±
0.036 

  6.64±5.72 0.062±
0.023 

  0.481±0.0
37 

0.501±
0.116 

  1.76±0.2
73 

2.46±0
.089 

        

3 4.80±1.
18 

0.773±
0.092 

  4.45±1.49 0.076±
0.013 

  0.683±0.1
89 

0.920±
0.403 

  2.20±0.4
81 

2.49±0
.392 

        

7 0.935±1
.590 

1.09±1
.73 

  0.783±1.2
3 

0.078±
0.004 

  0.263±0.2
03 

0.447±
0.134 

  1.03±0.8
97 

1.79±0
.534 

        

14 1.78±1.
70 

0.374±
0.175 

  1.60±1.39 0.024±
0.042 

  0.343±0.2
71 

0.682±
0.215 

  1.03±0.9
08 

1.88±0
.573 

        

28 6.74±5.
01 

0.018±
0.032 

0.0±0.
0 

4.32±3.93 0.033±
0.057 

0.0±0.
0 

0.327±0.1
53 

0.136±
0.017 

0.118±
0.004 

4.38±4.2
5 

0.13±0
.222 

0.00±0
.00 

      

52 0.247±0
.188 

0.204±
0.184 

  0.225±0.0
84 

0.037±
0.034 

  0.034±0.0
15 

0.068±
0.007 

  0.069±0.
116 

0.0±0.
0 

        

86 0.819±0
.040 

0.123±
0.150 

0.147±
0.120 

0.403±0.3
47 

0.077±
0.015 

0.051±
0.044 

0.072±0.0
03 

0.073±
0.025 

0.053±
0.033 

0.148±0.
136 

0.0±0.
0 

0.00±0
.00 

      

 104 
ACENY (acenaphthylene), ACEN (acenaphthene), FLU (fluorine), PHEN (phenanthrene), ANTH (anthracene), FLUA (fluoranthene), PYR (pyrene)  B[a]A 105 
(benz[a] anthracene), CHRY (chrysene), B[b+k]F (benzo[b+k]fluoranthene), B[a]P (benzo[a] pyrene), I[cd])P (indeno[1,2,3-cd]pyrene) and D[a,h]A 106 
(dibenz[a,h]anthracene); values are mean±SD.107 



Table S5 108 
Recoveries (%) of Acenaphthene-d10, Fluoranthene (d10) and individual NPAHs, oxy-PAHs and heterocyclic PAHs 109 
 110 

 111 

 112 
ACE-D10 (Acenaphthene-d10), FLU-D10 (Fluoranthene-d10), 1,4-NQ (1,4-naphthoquinone), 9-FLO (9-fluorenone), 9,10-ANQ (9,10-anthraquinone), 2-113 
MAQ (2-methyl anthraquinone), 2-EAQ (2-ethylanthraquinone),  2,3-DMAQ (2,3-dimethylanthraquinone), 7H-BANT (7H-benz[d,e]anthracene-7-one), 1N-114 
NAP (1-nitronaphthalene), 2N-ANT (2-nitroanthracene), 9N-FLU (9-nitrofluorene), 2-MBF (2-methylbenzofuran), XAN  (xanthene), THIA (thianaphthene), 115 
QUI (quinolone), IND (indole), 8-MQL (8-methylquinoline), ACRI (acridene) and CBZ (carbazole). 116 

Parent PAHs ACE-D10 FLU-D10       
 69.2 82.5       
Oxy-PAHs 1,4-NQ 9-FLO 9,10-ANQ 2-MAQ 2-EAQ 2,3-DMAQ 7H-BANT  
 44.6 92.8 90.9 79.1 82.1 81.7 81.8  
NPAHs 1N-NAP 2N-FLU 9N-ANT      
 66.6 79.8 92.1      
HPAHs 2-MBF XAN THIA QUI IND 8-MQL ACR CBZ 
 106.9 63.5 77.6 101.9 101.1 102.3 66.9 76.8 
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 140 

Fig. S1. Elimination kinetics of parent PAHs (bio-concentrated) (A – H), NPAHs (I – J) and 141 
oxyPAH (9-FLO) (K) for location A/B-sourced and control oysters. ACENY (acenaphthylene) 142 
PHEN (phenanthrene), ANTH (anthracene), FLUA (fluoranthene), PYR (pyrene), B[a]P (benzo[a] 143 
pyrene), I[cd])P (indeno[1,2,3-cd]pyrene), D[a,h]A (dibenz[a,h]anthracene), 2N-ANT (2-144 
nitroanthracene), 9N-FLU (9-nitrofluorene), 9-FLO (9-filuorenone). The lines represent the linear 145 
regression equations. 146 
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 171 

 172 

Fig. S2. Polar and non-polar PAHs showing variable relationship of ln concentration (µg/g) lipid with 173 
time. 174 
ACEN (acenaphthene), FLU (fluorine), CHRY (chrysene), B[b+k]F (benzo[b+k]fluoranthene), 2-MBF 175 
(2-methylbenzofuran), DBF (dibenzofuran), 8-MQL (8-methylquinoline), IND (indole),  ACR (acridine), 176 
CBZ (carbazole), 1,4-NQ (1,4-naphthoquinone), 9,10-ANQ (9,10-anthraquinone), 2-MAQ (2-methyl 177 
anthraquinone),  2,3-DMAQ (2,3-dimethylanthraquinone), 2-EAQ (2-ethylanthraquinone) 7H-BANT 178 
(7H-benz[d,e]anthracene-7-one) and 1N-NAP (1-nitronaphthalene). 179 
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 182 

 183 
 184 

 185 
Fig. S3. Summary of k2 versus Log Kow following regression analysis for (A.) parent PAHs alone (B.) polar 186 

PAHs alone. Parent and polar PAHs subjected to regression analyses had k2 values significantly different 187 

(p < 0.05) from zero. LA is location A-sourced; LB is location B-sourced; C is control. 188 

 189 



 1 

Fig. 1. Map of the oyster-source estuary showing the sampling locations. 2 
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16 
Fig. 2. Mean concentrations (µg/g lipid) in logarithmic scale of (A) heterocyclic (B) 17 
oxygenated (C) nitrated and (D) parent PAHs in oysters sampled from an isolated 18 
waterway during the 86-day depuration study. Oysters were initially collected from 19 
locations A and B of a southeast Australian estuary and transferred to the isolated 20 
waterway in NSW.  The sampled oysters from locations A and B, and oysters from 21 
Camden Haven River (control) were used for an 86-day depuration study in the isolated 22 
waterway. Mean PAC concentrations were not significantly different (p > 0.05) (except 23 
for 1N-NAP), for the differently sourced oysters.  HPAHs are: 2-MBF (2-24 
methylbenzofuran), DBF (dibenzofuran), XAN (xanthene), THIA (thianaphthene), 25 
QUI (quinolone), IND (indole), 8-MQL (8-methylquinoline), ACR (acridine) and CBZ 26 
(carbazole). OxyPAHs are: 1,4-NQ (1,4-naphthoquinone), 9-FLO (9-fluorenone), 9,10-27 
ANQ (9,10-anthraquinone), 2-EAQ (2-ethylanthraquinone), 2-MAQ (2-methyl 28 
anthraquinone), 2,3-DMAQ (2,3-dimethylanthraquinone) and 7H-BANT (7H-29 
benz[d,e]anthracene-7-one). NPAHS are: 1N-NAP (1-nitronaphthalene), 2N-FLU (2-30 
nitroanthracene) and 9N-ANT (9-nitrofluorene). Parent PAHs are: ACENY 31 
(acenaphthylene), ACEN (acenaphthene), FLU (fluorine), PHEN (phenanthrene), 32 
ANTH (anthracene), FLUA (fluoranthene), PYR (pyrene),  B[a]A (benz[a] 33 
anthracene), CHRY (chrysene), B[b+k]F (benzo[b+k]fluoranthene), B[a]P (benzo[a] 34 
pyrene), D[a,h]A (dibenz[a,h]anthracene) and I[cd])P (indeno[1,2,3-cd]pyrene). 35 



Table 1  

Monitored PACs and their abbreviations 

Parent PAHs abbr. OxyPAHs abbr. HPAHs abbr. 

acenaphthylene ACENY 1,4-naphthoquinone 1,4-NQ quinoline QUI 

acenaphthene ACEN 9-fluorenone 9-FLO 8-methylquinoline 8-MQL 

fluorene FLU 2-methyl anthraquinone 2-MAQ indole IND 

phenanthrene PHEN 2-ethylanthraquinone 2-EAQ acridine ACR 

anthracene ANTH 9,10-anthraquinone 9,10-ANQ carbazole CBZ 

fluoranthene FLUA 2,3-dimethylanthraquinone 2,3-DMAQ dibenzofuran DBF 

pyrene PYR 7H-benz[d,e]anthracene-7-one 7H-BANT 2-methylbenzofuran 2-MBF 

benz[a]anthracene B[a]A NPAHs  xanthene XAN 

chrysene CHRY 1-nitronaphthalene 1N-NAP thianaphthene THIA 

benzo[b+k]fluoranthene B[b+k]F 2-nitrofluorene 2N-FLU INTERNAL STANDARDS  

benzo[a]pyrene B[a]P 9-nitroanthracene 9N-ANT naphthalene-d8  

indeno[1,2,3-cd]pyrene I[cd]P RECOVERY STANDARDS  phenanthrene-d10  

dibenz[a,h]anthracene D[ah]A Acenaphthene-d10 ACE-d10 chrysene-d12  

  flouranthene-d10 FLU-d10 perylene-d12  

  



 

Table 2    

Kinetic parameters of PACs in oyster tissues during the depuration study  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  PACs:  ACENY (acenaphthylene), ACEN (acenaphthene), FLU (fluorene), PHEN (phenanthrene), ANTH (anthracene), FLUA  
(fluoranthene), PYR (pyrene),  B[a]A (benz[a] anthracene), CHRY (chrysene), B[b+k]F (benzo[b+k]fluoranthene), B[a]P (benzo[a] pyrene),                                  
I[cd])P (indeno[1,2,3-  cd]pyrene), D[a,h]A (dibenz[a,h]anthracene), 2N-FLU (2-nitrofluorene), 9N-ANT (9-nitroanthracene).  
k2 (elimination rate constant), t1/2  (half-life), t95 (time required to reach 95% steady-state).  

b  Log Kow values from Idowu et al., (2019) except I[cd])P and  D[a,h]A which were reported in  Gewurtz et al.,  2002.

  PACs a  Log Kow b Elimination 
rate constant 
k2 (day-1) 

    Half-life  
(t1/2) 

    t95     

  
Location A Location B Control Location A Location B Control Location A Location B Control 

ACENY 3.94 0.034 0.020 0.044 20.2 34.0 15.739 87.365 146.778 68.023 
PHEN 4.46 0.109 0.086 0.067 6.4 8.1 10.4 27.6 35.0 44.7 
ANTH 4.45 0.102 0.080 0.043 6.8 8.7 16.1 29.5 37.7 69.4 
FLUA 5.16 0.108 0.074 0.071 6.4 9.4 9.8 27.6 40.5 42.5 
PYR 4.88 0.103 0.078 0.072 6.7 8.9 9.7 29.0 38.5 41.8 
B[a]A 5.76 0.095 0.051 0.051 7.3 13.5 13.5 31.4 58.2 58.5 
CHRY 5.81 0.023 0.008 0.017 30.1 92.1 40.1 130.1 397.8 173.2 
B[b+k]F 5.78 0.035 0.004 0.007 19.7 171.6 98.5 85.0 741.5 425.5 
B[a]P 6.13 0.041 0.001 0.019 16.9 647.8 37.4 73.2 2799.8 161.8 
I[cd])P 6.75 0.039 0.029 0.031 17.9 23.6 22.1 77.1 102.2 95.7 
D[a,h]A 7 0.046 0.012 0.013 15.1 55.6 52.9 65.1 240.2 228.5 
2N-FLU 3.37 0.027 0.033 0.019 25.5 20.8 36.3 110.1 89.8 156.7 
9N-ANT 4.78 0.024 0.030 0.009 28.3 23.1 74.7 122.4 99.9 322.8 
9-FLO 3.58 0.013 0.013 0.009 53.9 51.5 74.0 232.8 222.6 319.7 
           



Table 3  

Comparison of PACs kinetic parameters in this study and two previous studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

a PACs: ACENY (acenaphthylene), ACEN (acenaphthene), FLU (fluorine), PHEN (phenanthrene), ANTH (anthracene), FLUA 
(fluoranthene), PYR (pyrene),  B[a]A (benz[a] anthracene), CHRY (chrysene), B[b+k]F (benzo[b+k]fluoranthene), B[a]P (benzo[a] 
pyrene), I[cd])P (indeno[1,2,3-cd]pyrene), D[a,h]A (dibenz[a,h]anthracene); 2N-FLU (2-nitrofluorene) and 9N-ANT (9-nitroanthracene). 
k2 (elimination rate constant), t1/2  (half-life), t95 (time required to reach 95% steady-state). Location A-sourced values used for 
comparison. B[b]F and B[k]F values were reported separately in the previous studies. b Comparative values not found in the literature.

  PACs a This study     Gewurtz et al., 2002   Thorsen et al., 2004   
  k2 (day-1) t1/2 t95  k2 (day-1) t1/2 t95 k2 (day-1) t1/2 t95 

ACENY 0.034 20.2 87.4 0.046 15.1 64.7 0.185 3.8 
ACEN 0.031 22.1 95.5 0.095 7.3 31.6 0.237 2.9 16.2 
PHEN 0.109 6.4 27.6 0.177 3.9 16.9 0.171 4.1 12.6 
ANTH 0.102 6.8 29.5 0.163 4.3 18.4 0.179 3.9 17.6 
FLUA 0.108 6.4 27.6 0.130 5.3 23.0 0.126 5.5 16.7 
PYR 0.103 6.7 29.0 0.144 4.8 20.8 0.164 4.2 23.9 
B[a]A 0.095 7.3 31.4 0.148 4.7 20.2 0.092 7.5 18.3 
CHRY 0.023 30.1 130.1 0.105 6.6 28.6 0.084 8.3 32.5 
B[b+k]F 0.035 19.7 85.0 0.103/0.037 6.7/18.7 29.1/81.8 0.083/0.059 8.4/11.8 35.9 
B[a]P 0.041 16.9 73.2  -  -  - 0.076  - 36.3/50.9 
I[cd])P 0.039 17.8 77.1 0.162 4.3 18.5 0.047 14.7  - 
D[a,h]A 0.046 15.1 65.1 0.048 14.4 63.0 0.069 15.1 63.7 
2N-FLUb 0.027 25.5 110.1  -  -  -  -  - 43.7 
9N-
ANTb 

0.024 28.3 122.4  -  -  -  -  -  - 

9-FLOb 0.013 53.9 232.8  -  -  -  -  -  - 
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