
Multi-fidelity Modelling

Approach for Airline Disruption

Management using Simulation

Luke Rhodes-Leader, M.Sci.(Hons.), M.Res

Submitted for the degree of Doctor of Philosophy at

Lancaster University.

June 2020

Abstract

Disruption to airline schedules is a key issue for the industry. There are various

causes for disruption, ranging from weather events through to technical problems

grounding aircraft. Delays can quickly propagate through a schedule, leading to high

financial and reputational costs. Mitigating the impact of a disruption by adjusting

the schedule is a high priority for the airlines. The problem involves rearranging

aircraft, crew and passengers, often with large fleets and many uncertain elements.

The multiple objectives, cost, delay and minimising schedule alterations, create a

trade-off. In addition, the new schedule should be achievable without over-promising.

This thesis considers the rescheduling of aircraft, the Aircraft Recovery Problem.

The Aircraft Recovery Problem is well studied, though the literature mostly fo-

cusses on deterministic approaches, capable of modelling the complexity of the in-

dustry but with limited ability to capture the inherent uncertainty. Simulation offers

a natural modelling framework, handling both the complexity and variability. How-

ever, the combinatorial aircraft allocation constraints are difficult for many simulation

optimisation approaches, suggesting that a more tailored approach is required. This

thesis proposes a two-stage multi-fidelity modelling approach, combining a low-fidelity

I

II

Integer Program and a simulation. The deterministic Integer Program allocates air-

craft to flights and gives an initial estimate of the delay of each flight. By solving

in a multi-objective manner, it can quickly produce a set of promising solutions rep-

resenting different trade-offs between disruption costs, total delay and the number

of schedule alterations. The simulation is used to evaluate the candidate solutions

and look for further local improvement. The aircraft allocation is fixed whilst a local

search is performed over the flight delays, a continuous valued problem, aiming re-

duce costs. This is done by developing an adapted version of STRONG, a stochastic

trust-region approach. The extension incorporates experimental design principles and

projected gradient steps into STRONG to enable it to handle bound constraints. This

method is demonstrated and evaluated with computational experiments on a set of

disruptions with different fleet sizes and different numbers of disrupted aircraft. The

results suggest that this multi-fidelity combination can produce good solutions to the

Aircraft Recovery Problem.

A more theoretical treatment of the extended trust-region simulation optimisation

is also presented. The conditions under which a guarantee of the algorithm’s asymp-

totic performance may be possible and a framework for proving these guarantees is

presented. Some of the work towards this is discussed and we highlight where further

work is required.

This multi-fidelity approach could be used to implement a simulation-based de-

cision support system for real-time disruption handling. The use of simulation for

operational decisions raises the issue of how to evaluate a simulation-based tool and

its predictions. It is argued that this is not a straightforward question of the real-world

III

result being good or bad, as natural system variability can mask the results. This

problem is formalised and a method is proposed for detecting systematic errors that

could lead to poor decision making. The method is based on the Probability Integral

Transformation using the simulation Empirical Cumulative Distribution Function and

goodness of fit hypothesis tests for uniformity. This method is tested by applying it

to the airline disruption problem previously discussed. Another simulation acts as

a proxy real world, which deviates from the simulation in the runway service times.

The results suggest that the method has high power when the deviations have a high

impact on the performance measure of interest (more than 20%), but low power when

the impact is less than 5%.

Acknowledgements

I would like to thank each of my academic supervisors, Dave Worthington, Stephan

Onggo and Barry Nelson, for offering support, advice and reassurance throughout this

project. I normally left our meetings feeling better than I went in, and have learnt a

lot about research from each of you. I hope you didn’t mind me eating so much of

your time. Thanks to Stephan for your continued support and technical advice despite

moving away from Lancaster. To Barry, thank you for your involvement, especially

as it ended up being more than initially planned, and for sharing your knowledge

and experience. To Dave, thank you for being my go to person for advice, for the

discussions about general academic life, and for being happy to talk through any topic

I wasn’t sure about.

Much of our practical knowledge of the problem came via Richard Standing at

Rolls-Royce. I am grateful for the time you put into this project, and for organising

meetings with your various colleagues to help us understand the important realities

of the problem.

The EPSRC funded STOR-i CDT has played an enormous role in writing this.

Thank you to Professors Jonathan Tawn, Idris Eckley and Kevin Glazebrook for suc-

IV

V

cessfully creating a friendly, supportive and helpful environment to work in. The work

has benefited from many conversations within STOR-i, but particular thanks goes to

Lucy Morgan, Sam Tickle, Alex Fisch, Jamie Fairbrother, David Torres Sanchez,

Aaron Lowther and Harjit Hullait.

This work would not have been possible without the financial support of the EP-

SRC funded EP/L015692/1 STOR-i Centre for Doctoral Training and Rolls-Royce

Holdings plc. This research was partially supported by the National Science Founda-

tion of the United States Grant Number DMS-1854562.

Finally, my family and friends for all their support throughout my time at univer-

sity, especially my wife Rachel. Thank you for your love and support, for putting up

with some long working hours and, most importantly, for reminding me of life outside

the PhD. It would have been easy to forget that without you.

Declaration

I declare that the work in this thesis has been done by myself and has not been

submitted elsewhere for the award of any other degree.

Early versions of the work presented in Chapters 3, 4 and 5 are presented in the

following conference papers:

Rhodes-Leader, L., Onggo, B. S., Worthington, D. J., and Nelson, B. L. (2018).

Airline Disruption Recovery using Symbiotic Simulation and Multi-fidelity Modelling.

In A. Anagnostou et al., editor, Proceedings of the Operational Research Society Sim-

ulation Workshop 2018 (SW18), pages 146–155, Birmingham, UK. The Operational

Research Society.

Rhodes-Leader, L., Onggo, B. S., Worthington, D. J., and Nelson, B. L. (2018).

Multi-fidelity Simulation Optimisation for Airline Disruption Management. In M.

Rabe et al., editor, Proceedings of the 2018 Winter Simulation Conference, pages

2179–2190, Piscataway, New Jersey. IEEE.

The word count for this thesis is 50,890 words.

Luke Austin Rhodes-Leader

June 2020

VI

Contents

Abstract I

Acknowledgements IV

Declaration VI

Contents VII

List of Figures XIV

List of Tables XIX

List of Abbreviations XXI

List of Symbols XXII

1 Introduction 1

1.1 Application Setting . 3

1.2 Simulation for Real-time Decision Making 6

1.3 Thesis Purpose and Overview . 7

2 Literature Review 10

VII

CONTENTS VIII

2.1 Airline Disruption Management . 11

2.1.1 Deterministic Airline Recovery Problem 12

2.1.2 Simulation of Airline Operations 19

2.2 Simulation Optimisation . 22

2.2.1 Categorical Discrete Problems 23

2.2.2 Discrete Problems . 24

2.2.3 Continuous Simulation Optimisation 28

2.3 Multi-fidelity Modelling . 36

2.3.1 Iterative Methods and Simheuristics 39

2.3.2 Using the Simulation in the Search 41

2.4 Using Simulation for Real-Time Control 44

2.4.1 Symbiotic Simulation . 44

2.4.2 Validation of Real-time Simulation Systems 47

2.5 Conclusions . 49

3 Deterministic Disruption Problem 52

3.1 Introduction . 52

3.2 Aircraft Recovery Problem . 54

3.3 Low Fidelity Integer Program . 55

3.3.1 Time-Space Network . 55

3.3.2 Model Constraints . 58

3.3.3 Model Objectives and Variables 60

3.3.4 Notation Glossary . 61

CONTENTS IX

3.3.5 Model Formulation . 62

3.4 Solving the Integer Programming Model 64

3.5 Improvements for the Low-Fidelity Model 70

3.5.1 Size and Properties of the Integer Program 70

3.5.2 Solution Methods and Problem Reduction 72

3.5.3 Extending the IP Model . 73

3.6 Conclusions . 74

4 Simulation Optimisation for the Aircraft Recovery Problem 75

4.1 Introduction . 75

4.2 High Fidelity Simulation Model . 77

4.3 Simulation Optimisation Process . 80

4.3.1 The Sub-problem . 82

4.3.2 Acceptance of the Proposed Step 90

4.3.3 The Inner Loop . 93

4.3.4 Criticality Measure . 94

4.3.5 Comparison with No Delay . 95

4.3.6 Algorithm Details . 96

4.4 Considerations for Practical Use . 96

4.4.1 Simulation Model . 96

4.4.2 Complexity of the Simulation Optimisation 101

4.5 Conclusions and Further Work . 103

5 Computational Results for the Multi-Fidelity ARP Approach 105

CONTENTS X

5.1 Introduction . 105

5.2 Problem Descriptions . 106

5.2.1 Problem 1: Small Fleet with a Single Aircraft Grounded . . . 106

5.2.2 Problem 2: Large Fleet with a Single Aircraft Grounded . . . 108

5.2.3 Problem 3: Large Fleet with Multiple Aircraft Grounded . . . 108

5.3 Demonstration . 108

5.4 Repeated Experiment Results . 115

5.4.1 Problem 1 . 117

5.4.2 Problem 2 . 118

5.4.3 Problem 3 . 129

5.5 Simulation Optimisation Parameter Settings 132

5.6 Other Examples . 139

5.7 Discussion and Conclusions . 146

6 Extension of STRONG to Bound Constraints 149

6.1 Introduction . 149

6.2 Criticality Measure . 152

6.3 Coordinate-Exchange Algorithm . 154

6.3.1 Initial Design Matrix . 156

6.3.2 Overall Algorithm . 157

6.4 Calculation of the Generalised Cauchy Point 160

6.5 Assumptions . 163

6.5.1 Objective Function Assumptions 163

CONTENTS XI

6.5.2 Estimator Assumptions . 165

6.5.3 Use of the `∞ Norm . 167

6.5.4 Meta-model . 167

6.5.5 Significance Level for the Sufficient Reduction Test 168

6.6 Proof of Convergence . 168

6.6.1 The Criticality Measure Estimate is Consistent 168

6.6.2 Meta-model Reduction . 170

6.6.3 The Inner Loop Can Always Find an Improvement 175

6.6.4 Convergence of the Algorithm 181

6.7 Conclusions and Further Work . 186

7 Empirical Evaluation of Simulation-Based Operational Decisions 189

7.1 Introduction . 189

7.2 Problem Definition and Notation . 192

7.3 Initial Transformation Approach . 194

7.4 Evaluation . 196

7.4.1 Proxy Real Worlds . 198

7.4.2 Hypothesis Tests for Uniformity 201

7.4.3 Experimental Setup . 202

7.4.4 Initial Results . 205

7.5 Wider Discussion . 217

7.5.1 Aims of Detection . 218

7.5.2 Types of Deviations . 219

CONTENTS XII

7.5.3 Considerations for the Transformation and Test 221

7.6 Conclusions . 223

8 Conclusions and Further Work 225

8.1 Contributions . 226

8.2 Further Work . 229

8.3 Final Comment . 233

A Simulation Model 234

A.1 Aircraft Entity . 234

A.2 Main . 237

A.2.1 Flights . 239

A.2.2 Runways . 240

A.2.3 Refuelling Event . 240

A.2.4 Output . 241

A.2.5 Initialisation . 241

A.3 Airport Operations . 242

A.3.1 Runway Resources . 242

A.3.2 Path through Airport for our Aircraft 244

A.3.3 Arrivals to the Queues . 244

A.3.4 ARTA Service Times . 246

A.3.5 Weather Change . 248

A.3.6 Time at an Airport . 250

CONTENTS XIII

B Hybrid Multi-objective Optimisation 253

C Trust-Region Theorems 257

C.1 Assumptions on the Feasible Region 257

C.2 Theorems on Constrained Trust-Region Optimisation 259

D Further Results from Chapter 7 263

Bibliography 269

List of Figures

2.4.1 A diagram of a symbiotic simulation system. Adapted from Fujimoto

et al. (2002). 45

3.3.1 The top panel gives the original flight network, with flights labelled by

original allocation. The bottom panel shows the time-space network

used by the IP under a disruption. 56

3.4.1 An example of the ε-constraint approach proposed by Laumanns et al.

(2006). 66

5.3.1 Aircraft exchanges against cost estimates under different models for

each solution. Interval is from mean to the 0.95 quantile. 111

5.3.2 ECDFs for Problem 1, based on 1000 CRN replications. Left plot

shows solutions from the IP, the right shows solutions from the sim-

ulation optimisation. Both are compared to taking no action at all.

Colours match those in Figure 5.3.1. 113

5.3.3 ECDFs of the improvement over the IP solution for Problem 1, based

on 1000 CRN replications. Colours match those in Figure 5.3.1. . . 114

XIV

LIST OF FIGURES XV

5.4.1 Problem 1 histograms of the mean of each solution from the simu-

lation optimisation, using Np
max = 50. Each plot corresponds to one

of the IP solutions. The red line is the mean of the starting solution

from the IP. 119

5.4.2 Problem 1 histograms of the 0.95 quantile of each solution from the

simulation optimisation, using Np
max = 50. Each plot corresponds

to one of the IP solutions. The red line is the mean of the starting

solution from the IP. 120

5.4.3 Mean against 0.95 quantile of solutions found, using Np
max = 50, for

each plan from the IP in Problem 1. Red lines indicate the perfor-

mance of the starting solution from the IP. 121

5.4.4 Problem 2 histograms of the mean of each solution from the simula-

tion optimisation. Each plot corresponds to one of the IP solutions.

The red line is the mean of the starting solution from the IP. . . . 124

5.4.5 Problem 2 histograms of the 0.95 quantile of each solution from the

simulation optimisation. Each plot corresponds to one of the IP so-

lutions. The red line is the mean of the starting solution from the

IP. 125

5.4.6 Mean against 0.95 quantile of solutions found for each plan from the

IP in Problem 2. Red lines indicate the performance of the starting

solution from the IP. 126

5.4.7 ECDFs of the cost difference between the solution (x,d∗) and (x,d0),

for each solution found. Each line corresponds to an individual solution.128

LIST OF FIGURES XVI

5.4.8 Problem 3 histograms of the mean of each solution from the simula-

tion optimisation. Each plot corresponds to one of the IP solutions.

The red line is the mean of the starting solution from the IP. 133

5.4.9 Problem 3 histograms of the 0.95 quantile of each solution from the

simulation optimisation. Each plot corresponds to one of the IP so-

lutions. The red line is the mean of the starting solution from the

IP. 134

5.4.10 Mean against 0.95 quantile of solutions found for each plan from the

IP in Problem 3. Red lines indicate the performance of the starting

solution from the IP. The blue lines show the performance when no

action is taken. 135

5.5.1 Empirical optimality gap for the algorithm with Np
max = 25 and

Np
max = 50 and All Flights, from all five IP starting solutions. 137

5.5.2 Empirical optimality gap for Plan 2 for all algorithm settings. . . . 138

5.6.1 Histograms of the mean cost for the simulation optimisation solution

in the different problems. The red line is the mean of the starting

solution from the IP. 143

5.6.2 Histograms of the cost 0.95 quantile for the simulation optimisation

solution in the different problems. The red line is the 0.95 quantile

of the starting solution from the IP. 144

5.6.3 Mean against 0.95 quantile for each problem. Red lines indicate the

performance of the starting solution from the IP. The blue lines show

the performance when no action is taken. 145

LIST OF FIGURES XVII

7.4.1 Day 1 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are

k=1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9. 206

7.4.2 Number of rejections for each hypothesis test in each system (k, ρ)

in the Day 1 disruption. Rows are k = 1000, 100, 10, 2, columns are

ρ = 0, 0.5, 0.9. 208

7.4.3 Day 2 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are

k=1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9. 210

7.4.4 Number of rejections for each hypothesis test in each system (k, ρ)

in the Day 2 disruption. Rows are k = 1000, 100, 10, 2, columns are

ρ = 0, 0.5, 0.9. 211

7.4.5 Day 6 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are

k=1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9. 212

7.4.6 Number of rejections for each hypothesis test in each system (k, ρ)

in the Day 6 disruption. Rows are k = 1000, 100, 10, 2, columns are

ρ = 0, 0.5, 0.9. 213

7.4.7 Relationship between sensitivity and power. 214

7.4.8 Relationship between absolute sensitivity and power, plotted on the

log scale. 215

7.4.9 Trace data of the Day 2 delay of a disrupted aircraft’s flights in the

(1000, 0) (left) and (2, 0.9) (right) systems from 100 replications. De-

parture time against delay. Also shows the mean and median across

100 replications. 216

LIST OF FIGURES XVIII

A.1 Flow diagram of the path taken by an Aircraft through the Airport

environment in the simulation. 245

D.1 Day 4 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are

k=1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9. 265

D.2 Number of rejections for each hypothesis test in each system (k, ρ)

in the Day 4 disruption. Rows are k = 1000, 100, 10, 2, columns are

ρ = 0, 0.5, 0.9. 266

D.3 Day 5 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are

k=1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9. 267

D.4 Number of rejections for each hypothesis test in each system (k, ρ)

in the Day 5 disruption. Rows are k = 1000, 100, 10, 2, columns are

ρ = 0, 0.5, 0.9. 268

List of Tables

5.1.1 Parameter values across all experiments. 107

5.3.1 IP solutions for Problem 1. Maximum allowable runtime was 600 seconds.110

5.3.2 The estimated means, ĝ(x,d), with 95% confidence interval halfwidths,

standard deviations, σ̂, 0.9 and 0.95 quantiles, q̂0.9 and q̂0.95, and the

probability of improved cost P̂I(d
∗), for the cost (AC1000) performance

for the solutions. 112

5.4.1 Solutions from the IP for Problem 2 using the heuristic for problem

size reduction. Maximum allowable runtime was 900 seconds. 123

5.4.2 Solutions from the IP for Problem 3 using the heuristic for problem

size reduction. Maximum allowable runtime was 7200 seconds. 130

5.6.1 Description of each problem and simulated cost performance (AC1000)

of No Action and IP solutions, with 95% confidence interval halfwidths

in parentheses. 140

7.4.1 Summary of each problem. 202

A.1.1Parameters and variables for the Aircraft entity. 235

A.2.1Main Parameters and Variables . 238

A.3.1Airport Parameters and Variables . 243

XIX

LIST OF TABLES XX

B.1 Solutions from the IP for Problem 2 using hybrid multi-objective ap-

proach. 255

B.2 Solutions from the IP for Problem 3 using hybrid multi-objective ap-

proach. 256

D.1 Sensitivity of each system in each disruption scenario. 264

List of Abbreviations

ARP Aircraft Recovery Problem

CDF Cumulative Distribution Function

CEA Coordinate-Exchange Algorithm

CRN Common Random Numbers

ECDF Empirical Cumulative Distribution Function

ICAO International Civil Aviation Organization

IATA International Air Transport Association

i.i.d Independent and Identically Distributed

IP Integer Program

OCC Operations Control Centre

OLS Ordinary Least Squares

RC Ratio Comparison

SR Sufficient Reduction

STRONG Stochastic Trust-Region Response Surface Method

w.p. With Probability

XXI

List of Symbols

E [·] Expectation.

Pr(·) Probability.

I(·) Indicator function.

χ(d, θ) A first-order criticality measure at solution d. See Definition 6.2.3.

χ(d) Defined as χ(d, 1).

π(d) A first-order criticality measure at solution d. See Definition 6.2.4.

g(·) Objective function.

∇ Gradient operator.

PX [d] The orthogonal projection of vector d ∈ Rn onto the set X ⊂ Rn.

p(·,d) Projected-gradient path from solution d. See Equation (4.3.9).

ρj Ratio Comparison test value. See Equation (4.3.12).

XXII

Chapter 1

Introduction

Disruption to schedules is one of the major issues faced by the airline industry. Ac-

cording to the Civil Aviation Authority (2019) punctuality statistics for 2018, of

the flights that operated through Heathrow Airport, only 72.6% arrived or departed

within fifteen minutes of their scheduled time, while this figure was only 69.1% for

Gatwick Airport. The statistic for other major U.K. airports was less than 85%. This

does not include all the flights that were cancelled. Despite the advances in schedule

planning, allowing ever more efficient use of the resources available to airlines, it is

rare that a flight programme is operated as intended. This is due to the complex and

uncertain nature of the industry. Disruptive events have various causes, from weather

conditions to aircraft technical failures requiring unplanned maintenance. The im-

pacts of such events can propagate through the system causing further delays and

cancellations, particularly when the airline has high aircraft utilisation, and airport

resources are operating at or near full capacity. In an investigation into the costs of

disruption, Cook and Tanner (2015) found that every minute of delay generates an

1

CHAPTER 1. INTRODUCTION 2

additional 0.8 minutes of delay for other flights reacting to the initial disruption.

When a disruption occurs, the Operations Control Centre (OCC) of the airline

must alter its schedule to reduce the repercussions for its finances, reputation and

passengers. Kohl et al. (2007) describe the practice of the OCC under these disrupted

operations. The OCC wants to identify good actions and evaluate them from the

perspective of the airline and the passengers. The disrupted flight is not an isolated

system, so the consequences of an action could have wider implications on the sched-

ule. These effects must be examined when considering an action. Large (and highly

utilised) fleets operating over networks involving many airports and high levels of

uncertainty make this a difficult problem.

The complexity of the industry can make it difficult to determine what the con-

sequences of any schedule alterations may be. This is where operational research

techniques can be of use, helping to search for good solutions (Kohl et al., 2007).

Some of the complexity can be represented using deterministic models, a number of

which have been proposed. However, these models have a limited capability of ac-

counting for the various uncertain elements of the environment. Not accounting for

uncertainty can affect the viability of a solution. An alternative is stochastic simula-

tion modelling. In a simulation model, one can easily deal with both complexity and

uncertainty. However, this does not provide a natural strategy for searching through

the possible revised schedules. This thesis aims to explore the use of simulation for

finding and evaluating solutions for airline disruption management.

CHAPTER 1. INTRODUCTION 3

1.1 Application Setting

There is a long history of using operational research methods within the aviation in-

dustry, with applications across many aspects of the business. These include customer

modelling, revenue management, crew rostering and Air Traffic Control (ATC), all of

which are mentioned by Barnhart and Smith (2012). Another prominent area is the

production of the schedule. Clausen et al. (2010) discuss the planning process. Be-

tween a year and 6 months in advance, the preliminary flight schedules are produced,

based on passenger demand and availability of aircraft movement slots at airports.

Following this, a type of aircraft is allocated to individual flights and sequences of

flights. This is known as fleet routing, and includes maintenance planning. Around

4 to 6 months ahead, crew are assigned based on the fleet type. The final stage is

the assignment of specific aircraft to flights, which is known as the tail-assignment

problem. This stage happens between five days (for long-haul flights) and one day

(for short-haul flights) before the flight itself. This process typically involves several

optimisation models. The aim is often to maximise revenue and resource utilisation.

However, there are many sources of uncertainty in the industry such as weather

conditions, technical problems with aircraft and crew illness. Bratu and Barnhart

(2006) classify the disruptions into two classes: shortages in airline resources (such

as aircraft requiring unscheduled maintenance, crew absences and lack of ground re-

sources); and shortages in airport resources (such as reductions in aircraft movements

on runways due to poor weather conditions). The high utilisation of aircraft and

airports can result in schedules that are sensitive to perturbations and disruption.

CHAPTER 1. INTRODUCTION 4

There are some ways of building slack into the schedule, such as leaving longer turn

times and scheduling a higher block time (time between leaving the departure gate

and arriving at the arrival gate) than is required for each flight. Some work has

been done to improve the robustness of schedules (Lee et al., 2007). However, this

buffer is expensive. The trade-off between cost and robustness makes it unattractive

for airlines to create expensive schedules that minimise the chance of the slack being

exceeded. When disruptions occur, operational decisions must be taken by the OCC

to rearrange the schedule. The response can be critical in minimising the impact to

passengers and the airline itself.

Rescheduling is a complex problem. There are many factors that must be con-

sidered. The state of the system involves: the position, disruption status and future

maintenance requirements of all aircraft; the position, disruption status, duties and

remaining legal flying time of all crew; and the position, disruption status, itinerary

and planned arrival time of all passengers (Bratu and Barnhart, 2006). There are a

range of key performance measures, such as resuming normal operations, disruption

costs, total delay and schedule alterations. With a large fleet, this can be a lot of

information for which to account. To reduce the problem size, the rescheduling is of-

ten split into three parts: schedule and aircraft recovery; crew recovery and passenger

recovery (Kohl et al., 2007). The flight and aircraft recovery problem is often solved

first, before considering this schedule from the crew and passenger perspectives. If

the crew or passenger controllers’ feedback indicates that this is infeasible, the flight

and aircraft recovery is modified further. The infeasibility could arise from legal re-

strictions on crew, such as limitations on aircraft that can be flown and restricted

CHAPTER 1. INTRODUCTION 5

duty hours. The iteration continues until the solution is feasible (Wang et al., 2019).

As this is the current framework for disruption management, this thesis will focus

on the flight and aircraft recovery, also known as the Aircraft Recovery Problem

(ARP). There are a variety of alterations that could be made including delaying or

cancelling flights, exchanging aircraft, or ferrying aircraft (flying an empty aircraft to

where it is needed). The latter is often prohibitively expensive and is not considered

here.

Wang et al. (2019) found that in practice, these decisions are made based on

controller experience and a set of rules from the airline. Where it is possible to get

the flight operational, either by replacing the aircraft or by quickly carrying out the

necessary repairs, this is normally the preferred option for airlines as it helps to prevent

immediate delays. This can lead to short-term decisions, prioritising the immediate

without necessarily accounting for the longer-term consequences of the change. Kohl

et al. (2007) state that controllers are often seeking something viable rather than

optimal, as they do not have time to consider lots of options.

This is where operational research could be highly valuable for disruption man-

agement. In a recent white paper discussing the use of data science within the airline

industry, the International Air Transport Association (IATA) highlighted the poten-

tial of technology to aid decisions in recovery from irregular and disrupted operations

(Section 2.4 of Goudarzi et al. (2019)). Kohl et al. (2007) suggest that automation

could play a large part in the identification and evaluation of potential recovery ac-

tions. The ARP is a well-studied problem, with many publications proposing solution

methods. Most of these take the form of Integer Programs (IPs), deterministic models

CHAPTER 1. INTRODUCTION 6

extended from the models built for the original scheduling problem (Teodorović and

Guberinić, 1984; Thengvall et al., 2000).

However, these models only have a very limited capability of accounting for the

various uncertain elements of the environment. Turn times, airport queueing times,

maintenance times and flight durations are all uncertain and excluding these could

lead to solutions performing much worse than predicted. Thus simulation seems to

be a natural way to model the airline’s operations.

1.2 Simulation for Real-time Decision Making

The use of simulation for operational decision making has become more popular over

the last twenty years. This has become possible through advances in computational

power and data connectivity. The paradigm that exploits these advances more than

others is symbiotic simulation (Fujimoto et al., 2002). Symbiotic simulation allows the

simulation model to be adapted to new scenarios through a close interaction with the

physical system. In the most basic form, this means matching the initial conditions

of the physical system, but model parameters can also be adapted (Aydt et al., 2009;

Onggo et al., 2018).

One of the difficulties of online simulation for decision making is that high-fidelity

simulation models have a non-negligible computation time. This is problematic when

searching through a large solution space. To make the most of the simulation, it must

be used selectively on solutions believed to be worth evaluating. Perhaps a more im-

portant challenge is that allocating aircraft to flights has combinatorial constraints.

CHAPTER 1. INTRODUCTION 7

This is a difficult problem for many simulation optimisation methods. This thesis pro-

poses a methodology aiming to overcome these challenges. It is a two-stage approach,

using a deterministic model to handle the combinatorial constraints and point the

simulation optimisation to areas that seem promising. This is called a multi-fidelity

modelling approach.

The ARP is a problem that must be faced in real-time. Thus, the system we

propose would be a simulation-based operational Decision Support System (DSS). As

with any tool, a question that arises when considering a simulation-based DSS is how

to evaluate the tool. The real world will only happen once, so finding out if that one

realisation comes from the predicted distribution from the simulation is not possible.

This means that checking to see if the simulation is giving a good enough prediction

is difficult. If there is a systematic flaw, this could be very costly as the simulation is

used repeatedly on a sequence of disruptions. The final contribution of this thesis is to

discuss this problem and propose a simple method for combining a series of decisions

to give a statistically meaningful detection of systematic errors.

1.3 Thesis Purpose and Overview

The primary purpose of this thesis is to consider how stochastic simulation could

be used, in conjunction with other methodologies, to aid an airline in their response

to a disruptive incident, particularly in rearranging the aircraft flight allocation and

retiming or cancelling flights. It investigates how to generate, search through and

select from a set of possible rescheduling options using information from a simulation

CHAPTER 1. INTRODUCTION 8

model that accounts for the various sources of uncertainty within the operations.

Furthermore, how such a decision support tool could be evaluated is considered.

The remainder of this section provides an overview of the thesis structure.

In Chapter 2, we first review the literature on airline disruption management,

looking at both the deterministic models and the limited use of simulation to handle

uncertainty in the ARP. This is followed by a review of the simulation optimisation

literature, an area we wish to make use of to help improve solutions. As the method

proposed in this thesis is a multi-fidelity method, combining both the deterministic

approaches with simulation optimisation, we also review the relevant multi-fidelity

modelling literature, looking at how simpler models have been used to guide the

optimisation of a more complex model. A brief overview of the real-time simulation

literature is then provided. Finally, the primary research question is stated and we

provide an overview of the multi-fidelity modelling approach proposed in this thesis.

In Chapter 3, the deterministic low-fidelity model used in this thesis is described.

A problem statement for the ARP is given, and the time-space network model, for-

mulation and solution procedure are presented. Further theoretical considerations are

also discussed.

The simulation optimisation method is developed in Chapter 4. An overview of

the simulation model built for this research is also given (a more thorough description

is given in Appendix A). This is followed by the main details of the simulation

optimisation algorithm developed in this research. It is based on STRONG (Chang

et al., 2013), a trust-region based simulation optimisation method. Extensions of

this algorithm, developed to handle the bound constraints on the feasible region, are

CHAPTER 1. INTRODUCTION 9

explained. Some considerations that would improve the practical performance of the

algorithm are also discussed.

To evaluate the method, some empirical experiments based on a set of example

problems reflecting different real-world disruptions are performed. The results of these

are presented in Chapter 5. This chapter also demonstrates how the method could

be used in practice.

Further details of the extensions to STRONG are given in Chapter 6. The results

in Chapter 5 are dependent on the simulation model used. There are other factors

not considered in Chapter 5 that one may wish to account for in the model, e.g.,

missed passenger connections, that would change the objective function. To show that

the simulation optimisation has potential when other models are used, and for more

general bound constrained problems, this chapter considers the theoretical properties

of the algorithm. In particular, we present a pathway for proving its asymptotic

convergence.

Chapter 7 argues that evaluating a simulation-based DSS for operational decisions

is a difficult problem due to natural variability and each problem being unique. We

propose a method to tackle a part of this problem, trying to detect whether the

simulation predictions are systematically erroneous. We demonstrate the approach

on test scenarios for the ARP in this thesis.

Chapter 8 summarises the contributions of this thesis and identifies possible re-

search directions to develop further the research presented here.

Chapter 2

Literature Review

This chapter reviews the academic literature relevant to this thesis. Section 2.1 con-

siders the literature concerning airline disruption management. The primary focus is

on the Aircraft Recovery Problem (ARP), but we also draw upon works integrating

the aircraft, crew and passenger recovery problems. Many of these models are deter-

ministic, ignoring the uncertainties that are present in airline operations. There are

also applications of simulation in this area.

We argue that simulation is a more relevant modelling approach for the ARP than

the deterministic models previously proposed, thus making simulation optimisation a

critical area for this research to review. Section 2.2 gives a summary of some of the

main methodologies. We suggest that these methods are not sufficient for the combi-

natorial aspects of the ARP, and instead consider a multi-fidelity modelling approach,

combining both the deterministic models and simulation optimisation. Multi-fidelity

modelling applications and methods of combining them are reviewed in Section 2.3.

As the ARP is an operational-level decision, as opposed to the strategic and tactical-

10

CHAPTER 2. LITERATURE REVIEW 11

level decisions for which simulation is typically applied, we discuss some of the ways in

which simulation has recently been proposed for real-time decision making in Section

2.4. In particular, we discuss symbiotic simulation and validation considerations for

real-time simulation. This is predominantly driven by applications. In Section 2.5,

we conclude and present the principle behind the ARP solution method proposed in

this thesis.

2.1 Airline Disruption Management

The airline disruption problem has received much attention in the academic literature

over the last 35 years, starting with Teodorović and Guberinić (1984). The practical

issues are reviewed by Kohl et al. (2007), who argue that the use of automation

to identify and evaluate possible recovery options could enhance the experience and

rule-based approach of current practice.

Much of the recent literature has researched the integration of different aspects of

the recovery problem. This is an important area of research, particularly as constraints

on one resource can make an optimal solution for another infeasible in the full picture.

For example, the work of Jimenez Serrano and Kazda (2017) presses the importance

of including passengers within the disruption problem. Despite the solution quality

benefits of integrating the solutions, this also makes the problem much larger so it

takes a lot longer to solve.

By working on projects directly with airlines, Kohl et al. (2007) and Wang et al.

(2019) were able to describe the current practice in industry, which is primarily to

CHAPTER 2. LITERATURE REVIEW 12

separate the problem into aircraft, crew and passengers. The Operations Control

Centre (OCC) often propose a new aircraft allocation and flight plan first, before

checking if this meets the legal obligations for crew and passengers. If there are

violations, a new aircraft allocation is found. Thus, this thesis focusses on the aircraft

problem.

This section reviews the academic work in this area. Whilst the focus is on the

ARP, research on integrated methods is included as this gives the wider context of

the problem.

2.1.1 Deterministic Airline Recovery Problem

There have been many and varied deterministic models and solution methods pro-

posed in the literature for the ARP. There are also numerous examples within the

literature of integrating multiple aspects of the disruption problem, which are in-

cluded as they are instructive to the state of the area. Most of these take the form of

an Integer Program (IP). Some of the methods involve a single fleet (Thengvall et al.,

2000), whilst others allow multiple fleets (Zhang et al., 2015). The operational con-

straints vary, with most papers including some combination of turn time constraints,

airport capacity constraints (Rosenberger et al., 2003), aircraft balance (Bratu and

Barnhart, 2006) and maintenance constraints (Liang et al., 2018). Clausen et al.

(2010) provide a thorough review of the primary formulation types. These are time-

space network models (also known as time-line networks), time-band network models

and connection network models. There are a wide range of solution approaches, some

exact and some heuristic. This section briefly describes each of the models and gives

CHAPTER 2. LITERATURE REVIEW 13

some examples of their use.

Time-space networks model a schedule as a network with nodes representing air-

ports at a particular time and arcs representing flights between airports (flight arcs)

and time spent on the ground (ground arcs). Each aircraft also has an input node,

representing its current position and return nodes are possible positions at the end

of the time horizon. To handle disruption and delayed flights, copies of each flight

arc are added to the network. To obtain a new schedule, each aircraft in the fleet

requires a continuous path through the network from the disruption time to the end

of the time horizon considered. The arcs forming the path define to which flights

the aircraft is allocated. An example can be found in Thengvall et al. (2000), who

consider the ARP, using a time-space network with additional, lower cost flight arcs

to encourage flights to be covered by the original aircraft. The model included delays,

aircraft exchanges and cancellations. As IPs can be difficult to solve, the authors

relax the integer constraints and solve a Linear Program (LP) followed by a heuristic

policy to handle fractional variables.

The time-space network can also be used when integrating the aircraft, crew and

passenger problems. Bratu and Barnhart (2006) propose a passenger-centric time-

space network. This combines operational and passenger costs when deciding how

to accommodate disrupted passengers, allowing flights to be delayed or cancelled

and includes reserve crew decisions. The IP is solved exactly. Sinclair et al. (2014)

use a time-space network during the repair phase of a Large Neighbourhood Search

algorithm for an aircraft-passenger integrated problem. It allocates aircraft to flights

to minimise passenger and operational costs. Time-space networks are used by Zhang

CHAPTER 2. LITERATURE REVIEW 14

et al. (2015) for integrating the aircraft and crew problems. The algorithm iterates

between two models, one for each resource, until a satisfactory solution is found. The

aircraft model is a time-space network multi-commodity flow formulation, based on

fleet assignment, with a constraint enforcing a minimum connection time between

flights with the same crew. Once the fleet is assigned, individual tail numbers are

allocated using a greedy randomised search heuristic. The crew model (also based on

a time-space network) has a similar constraint ensuring aircraft minimum turn times

are respected. For a more detailed description of time-space networks, see Section

3.3.1.

Unlike the time-space network, the time-band network was developed specifically

for disruption management. The recovery period is split into bands of equal time, e.g.,

30 minutes. A node at an airport within a time band contains all of the activities

(i.e., arrivals and departures) aggregated over the time band. The time label of the

node is the earliest an aircraft becomes available within that time band. There are

two types of arcs, one representing flights (from one airport to another) and the other

connecting a node at an airport to the corresponding sink node at the end of the

recovery window. The time-band structure allows these networks to be constructed

dynamically, one band at a time. This approach means that only departure times

at which an aircraft is actually available to be assigned to a flight are represented

as nodes, unlike the time-space networks. This reduces the problem size, but at the

expense of accuracy.

One of the early examples of a time-band network for the ARP was by Bard et al.

(2001). An IP formulation is solved exactly to show aircraft flows through the network

CHAPTER 2. LITERATURE REVIEW 15

before aircraft are assigned. If this is not feasible, the time band is reduced and the

IP is solved again. Quansheng et al. (2013) use a time-band network to generate

potential aircraft routes that are used within a column generation solution method.

Hu et al. (2015) develop a time-band network for modelling the integration of aircraft

and passengers who are only transferred if their flight is cancelled. The nodes are

placed at the beginning of the time band, and so the model tends to underestimate

delays.

An alternative view is to place the activities (i.e., flights) on the nodes themselves.

The arcs connecting two nodes indicate that these two flights can be flown in sequence

by the same aircraft, removing the need for explicit turn time constraints. This type

of model is called a connection network. A path through the network is a sequence of

flights for an aircraft, known as a rotation. These networks grow exponentially in size

with the number of flights and so it is impractical to assign aircraft to arcs, especially

when delays become involved. Thus, rather than assigning aircraft to individual

flights, methods generally aim to assign aircraft to rotations. As the number of

feasible rotations, defined by the paths through the connection network, is very large,

a challenge faced by these formulations is in generating all of the variables before

the optimisation begins. The costs and delays of a route can be calculated during

construction, as one can determine the necessary delay on each route.

This approach is used by Rosenberger et al. (2003) with a set-packing formulation,

minimising costs and including runway slot constraints and airport capacity limits.

To generate the rotations, the algorithm creates new rotations from the original by

removing subsequences of flights, and performing a single swap with rotations of the

CHAPTER 2. LITERATURE REVIEW 16

other aircraft in the fleet. This is combined with a problem reduction heuristic to

remove aircraft from the problem if they are undisrupted or cannot be involved in

recovery. Whilst this approach does not cover all feasible rotations, it does produce

many good ones. Thus, the problems can be solved fairly quickly using an IP solver.

Wu et al. (2017) use a similar approach in trying to generate the rotations a priori.

The authors propose two models, one to minimise cost and the other to maximise

profit.

Generating the rotations can be very difficult, thus, rather than generating the

rotations a priori, one could do it during the optimisation. Column generation is an

optimisation technique that starts with a subset of the decision variables and itera-

tively adds new variables, in this case rotations, until the solution is optimal. The

new variables are selected based on a sub-problem. In their rotation-based ARP for-

mulation, Liang et al. (2018) include maintenance periods as nodes in the connection

network. Variables are added based on finding rotations with a negative reduced cost

in the master problem. In the sub-problem, the delay of each flight is a variable to

be optimised, whilst incorporating airport capacity constraints. To improve speed,

only the LP relaxation of the master problem is solved until all required rotations

have been added. The authors also note that, as maintenance schedules include some

slack, it is possible to swap maintenance periods as long as one adheres to the legal

limits. Thus, the original maintenance plan is not treated as a hard constraint. Sarac

et al. (2006) face a slightly different problem where one has to re-allocate flights to

aircraft to return particular aircraft to maintenance stations after a disruption has

changed their schedule. New rotations are selected by solving a constrained shortest

CHAPTER 2. LITERATURE REVIEW 17

path problem.

The aircraft and crew are integrated into one rotation-based model by Maher

(2016). The author solved this using a column and row generation procedure. Simi-

larly, Petersen et al. (2012) consider the whole integrated problem using a rotation-

based model, but here the ‘schedule’ is recovered first by assigning fleets to rotations

before individual aircraft, crew and passenger itineraries in a Bender’s decomposition

solution method. New rotations are added based on reduced cost. To reduce the

problem size, the algorithm excludes ‘non-disruptable’ flights from the problem, and

only includes delay possibilities where the problem structure changes.

Løve et al. (2005) proposed a different network model. Aircraft and flights are

represented as nodes. Arcs connecting aircraft nodes to flight nodes indicate the

aircraft allocation. A Steepest Ascent Local Search heuristic is applied with a profit

objective accounting for revenue, delay and cancellation costs. The neighbourhood is

defined by exchanging aircraft allocations. This was part of the DESCARTES project

(Kohl et al., 2007), where separate solvers for each resource were developed.

Whilst the ARP is generally focussed on larger disruptions, smaller delays can

cause as much of a problem as passengers can miss connections. This results in the

decision of whether to wait for connecting passengers or not. Santos et al. (2017)

develop an IP operating on a rolling time horizon to make these decisions, account-

ing for detailed airport capacity constraints (runways, taxiways and stands) and the

impact on other passengers. Flights are only retimed, with no aircraft exchanges.

As with many real problems, the ARP has a number of performance measures

of interest including costs, passenger delays and resuming normal operations quickly

CHAPTER 2. LITERATURE REVIEW 18

(Clausen et al., 2010). The multi-objective nature of the ARP was noted by Theng-

vall et al. (2000), particularly in the trade-off between maximum revenue and minimal

schedule alterations. However, it is treated as a single objective problem with incen-

tives for selecting ‘protection arcs’ representing a sequence of flights originally put

together before the disruption. Liang et al. (2018) also note that minimising delay,

cancellations, aircraft exchanges and maintenance exchanges improve the solution,

but assume that an exact cost can be determined for each and include it within the

cost objective. Hu et al. (2017) propose a full multi-objective formulation, trying

to identify Pareto optimal solutions, with objectives considering the disruption cost,

number of aircraft rerouted and the maximum delay. Their solution method used

a local neighbourhood search heuristic combined with an ε-constraint method. A

multi-objective approach is taken by both Liu et al. (2010) and Jeng (2012), applying

a multi-objective genetic algorithm to find the Pareto frontier. Jeng (2012) includes

the objectives of cost, number of delays and schedule alterations, whilst Liu et al.

(2010) also adds variability of delays and number of long delays. Solution compar-

isons are based on whether one solution dominates the other across the objectives.

Operational constraints are included in the fitness function.

The inherent uncertainty in the airline industry could mean that the optimal

solution may change as conditions become clear later on, as concluded by Rosen-

berger et al. (2003), who mention unpredictable changes in weather conditions. Zhu

et al. (2015) begin to incorporate this uncertainty by considering that the duration

of unplanned maintenance is unknown. They propose a two-stage recourse stochas-

tic program, the first stage decision is allocating aircraft to rotations, the second is

CHAPTER 2. LITERATURE REVIEW 19

flight retiming. The scenarios are times at which the aircraft requiring unplanned

maintenance becomes available. This is solved using a greedy simulated annealing

algorithm, with local search operations to generate new solutions. The weakness of

such an approach is that if it were to be extended to include scenarios with other un-

certain elements, the size of the problem would explode and become computationally

intractable within the time constraints.

2.1.2 Simulation of Airline Operations

Whilst simulation has a long history of use within the airline industry (Gunn, 1964),

considerations of disruption have been relatively recent. The initial use was for eval-

uating the robustness of a long term schedule to disruptions at the strategic planning

stage. Rosenberger et al. (2000) developed a stochastic discrete event simulation

model of airline operations, including aircraft and crew, known as SimAir. This

simulates the schedule for a long period (weeks or months). Simple heuristics were

included to create recovery options after a disruptive event. Both the model and the

recovery options were extended by Rosenberger et al. (2002). Lee et al. (2003) made

the software modular to enable other recovery modules to be used. The purpose of

SimAir was twofold, to provide a method to evaluate recovery policies on a long term

schedule and to monitor the robustness of that schedule. Similar simulations were

proposed by Yan et al. (2005) and Lapp et al. (2008), the latter specifically for minor

delays. Lee et al. (2007) went further, using SimAir to improve the robustness by

retiming flights with a multi-objective genetic algorithm.

However, there is scope to use simulation at the operational level, rather than the

CHAPTER 2. LITERATURE REVIEW 20

tactical level. Kohl et al. (2007) say that a simulation to perform ‘what if’ analysis

could be valuable to the OCC.

In the U.S.A., high levels of congestion in the airspace around an airport due

to reduced capacity is dealt with by imposing departure delays on aircraft due to

arrive at that airport. This is called a Ground Delay Program, and is imposed by

the relevant Air Traffic Control (ATC) authority. To decide how much to delay

each flight, Hutchison and Hill (2001) use a Simultaneous Perturbation Stochastic

Approximation in a simulation optimisation process to reduce air delays across a

network. The research takes a network perspective rather than that of an individual

airline. The ground delay imposed by ATC could be considered part of a disruption

to an airline, from which it must recover.

There are also applications of simulation within the airline disruption problem

itself. Abdelghany et al. (2008) propose a deterministic network simulation to predict

which flights will be disrupted by considering the consequences for both aircraft and

crew. Only the identified flights are included in an IP model for integrating crew and

aircraft, reducing the problem size. This is solved on a rolling horizon during the

recovery window.

Stochastic turn times and flight durations within the ARP were considered by

Arias et al. (2013) who used a constraint programming approach combined with a

Monte Carlo simulation to minimise delay. The constraint programming approach

considers a deterministic problem, where mean values are used in the place of uncer-

tain quantities, and performs a local search. The simulation is used to evaluate the

constraint program solution under a variety of scenarios by adding normal noise to the

CHAPTER 2. LITERATURE REVIEW 21

turn times and flight durations. If the solution is not considered robust across these

replications, it is rejected and the process begins again. ‘Robustness’ could mean

that the gap between the deterministic and simulated delay is sufficiently low, or that

the variance of the output is proportional to the variance of the noise distributions

added to the turn times and flight durations. Guimarans et al. (2015) expanded this

approach in two ways. The first was combining the constraint program with a Large

Neighbourhood Search heuristic to propose new solutions. The second was in using

the simulation at each proposed solution to evaluate the acceptance criteria (known as

SimLNS). However, the simulation remains rudimentary, and using a higher fidelity

model would harm the performance of the algorithm if the simulation is used at every

iteration.

Most recently, Wang et al. (2019) developed a discrete event dynamic system

simulation model for the ARP. They argue that the mathematical programming ap-

proach makes it difficult to formulate airline specific constraints, whereas simulation

can accommodate this fairly naturally. Historic and real-time data is fed into the

simulation. Rather than using an optimisation technique, the authors use a set of

rule-based methods to decide which flights to delay or cancel in two disruptive sce-

narios. Reallocation of aircraft is not allowed. The simulation is used to see which of

the proposed solutions appear better.

In summary, there have been many methods proposed for tackling airline disrup-

tion, mostly based on deterministic models. Relatively little has been done to account

for the uncertainty in the operational problem, though simulation has been proposed

to help evaluate potential rescheduling options. This research aims to extend the use

CHAPTER 2. LITERATURE REVIEW 22

of simulation in the ARP further.

2.2 Simulation Optimisation

Simulation optimisation is the process of altering the (physically) controllable inputs

for a simulation model to minimise (or maximise) a performance measure of the

system represented by the simulation. Jian and Henderson (2015) formulate the

general problem as

min
x∈X

g(x) (2.2.1)

where x is a decision, X is the set of possible decisions, g : X → R is an objective

function and at least one of g(x) and checking the feasibility of x ∈ X involves some

element of uncertainty and can only be estimated via the simulation. One example

is to minimise the expectation of a random variable, i.e., g(x) = E [Y (x)], whilst

requiring that another random variable obeys a probabilistic constraint Pr(Z(x) ≤

β) ≥ α. There are a number of tutorials and reviews of this area, such as Hong and

Nelson (2009), Nelson (2014), Chau et al. (2014), Jian and Henderson (2015) and

Amaran et al. (2016) as well as the handbook by Fu (2014).

What makes simulation optimisation so difficult is the randomness associated with

the estimation of g(x) which prevents (2.2.1) from being solved with certainty. Even

in the simplest case, in which an exhaustive search is possible (a trivial problem

in deterministic optimisation), one must produce many replications to reduce the

uncertainty significantly until one solution appears to be the best. This cannot be

done with complete certainty without infinite effort.

CHAPTER 2. LITERATURE REVIEW 23

Another problem faced by simulation optimisation is that the simulation can be

computationally expensive to run. Therefore, many methods aim to use information

efficiently. This is particularly important when facing real-time problems.

There are many methods for dealing with these problems, each assuming a more

specific structure of X or g. This section gives a brief overview of various approaches

for simulation optimisation problems. It is worth noting that if feasibility is probabilis-

tic (such as a chance constraint), the problem becomes very difficult. Our formulation

for the ARP only contains deterministic constraints, so we can focus on methods for

problems with this structure.

2.2.1 Categorical Discrete Problems

If the number of alternatives, |X |, is small enough to allow an exhaustive evaluation,

statistical Ranking & Selection (R&S) methods are highly appropriate. The solution

space, X , does not need to have a special structure or neighbourhood relationship as

these methods perform an exhaustive search, simulating all solutions initially before

allocating additional computational budget to make statistically meaningful compar-

isons. There are many versions of this, both frequentist (such as Kim and Nelson

(2001)) and Bayesian (such as Frazier (2014)). The aim is to achieve a high proba-

bility of correct selection, a high probability of a good selection or to minimise some

posterior loss between the selected solution and the best solution. Traditionally, R&S

was for small solution sets, though modern methods can now handle large numbers of

alternatives, more than 10,000, utilising parallel computing (Pei et al., 2018). How-

ever, they require one to list all possible solutions, which is not straightforward within

CHAPTER 2. LITERATURE REVIEW 24

the ARP.

2.2.2 Discrete Problems

There are many discrete problems for which an exhaustive search is not possible. In

this case, some element of searching the space becomes vital. These methods consider

the problem where

X ⊆ Zn

and often make use of X being an ordered set. The many issues of deterministic

optimisation now become important to the problem, such as not finding the optimum.

Methods can largely be grouped into local and global optimality seekers.

One important class of algorithms, covering both local and global optimisation,

are the Adaptive Random Search (ARS) algorithms, for which Hong et al. (2014), An-

dradóttir (2014) and Amaran et al. (2016) provide reviews. At iteration j these meth-

ods sample a set of solutions, Xj, from X according to some distribution Fj(· |Mj),

whereMj is the past information kept, such as the estimated objective value of some

recently simulated solutions. The solutions in Xj are allocated replication budgets to

estimate their performance or another value function, v(x). The solution with the

best value is stored as the current solution, x∗j . The differences between algorithms

come in the sampling rule (both the distribution and size of Xj), the information

retained, Mj, and the value function v(x).

Global ARS keeps Fj(· |Mj) positive over much of X throughout the process, as

it must balance the exploitation of a good region with the possibility that another

CHAPTER 2. LITERATURE REVIEW 25

region may be better. Examples of this are the stochastic ruler (for example, see

Nelson (2014)) and simulated annealing (for example, see Andradóttir (2014)), both

of which take a single sample from Fj(· |Mj).

By reducing the target to local optimality, local ARS methods need not keep

exploring the whole of X . Instead, methods like COMPASS (Hong and Nelson, 2006)

and AHA (Xu et al., 2013) focus on a ‘most promising area’, X ∗j , outside which

Fj(· |Mj) is zero. These areas are designed to include points near the best current

solution, x∗j , but excluding other points that have already been visited. COMPASS

takes X ∗j to be all the points closer to x∗j than other visited points (by Euclidean

distance). AHA uses the largest hyper-box containing x∗j with no other visited points

in the interior of X ∗j . Both of these examples have proven convergence properties in

the sense that

Pr{x∗j is not locally optimal infinitely often} = 0.

Furthermore, these have useful stopping criteria where one can statistically test whether

x∗j is locally optimal or not using a standard hypothesis test to help confidence in the

finite-time results.

An approach that has grown in popularity over recent years is the use of Gaussian

Random Fields. The SKOPE method proposed by Xu (2012) uses a stochastic kriging

meta-model within AHA to select solutions ‘more likely’ to add improvement. At each

iteration, a Latin Hypercube Design is combined with all previous observations to fit

the meta-model over X ∗j . Solutions are sampled uniformly from X ∗j , but rather than

simulating all of these, full simulation observations are only made at the solutions

CHAPTER 2. LITERATURE REVIEW 26

with a high probability of being the best, assessed by Monte Carlo sampling from the

conditional distribution defined by the meta-model. Results suggest this approach

improves the performance of AHA. Salemi et al. (2019) goes further, proposing the

direct use of a Gaussian Markov Random Field (GMRF) which simplifies the depen-

dence structure by only allowing adjacent solutions to have non-zero relations in the

model’s precision matrix. The GMRF parameters are fitted using a starting design,

after which the Expected Improvement (accounting for all sources of uncertainty) is

used to select the new point. This is proven to converge under mild conditions.

An alternative approach to a discrete problem is to use linear interpolation to make

it a ‘continuous’ problem. One example of this is R-SPLINE (Wang et al., 2013). The

interpolation allows gradient information to be used to produce a new point via a line

search. This is followed by an evaluation of the solution’s neighbourhood in X .

Whilst the ARP can be formulated as an optimisation problem over X ⊂ Zn, as

it is for all IP formulations, there are difficulties in applying either ARS, GMRFs or

interpolation methods. These primarily arise from the essentially categoric, rather

than integer ordered, variables and combinatorial constraints associated with aircraft

allocation, which mean that a single variable may not be independently varied whilst

retaining a feasible solution.

In addition to these specialist simulation optimisation techniques, there are a range

of heuristic methods. Many are inspired by metaheuristic methods in deterministic op-

timisation, some of which are known to be appropriate for deterministic combinatorial

optimisation problems. These include simulated annealing, evolutionary computing,

ant colony optimisation and tabu search. The extension of these metaheuristics to

CHAPTER 2. LITERATURE REVIEW 27

stochastic combinatorial optimisation problems is reviewed by Bianchi et al. (2009),

including when the objective function must be estimated by simulation.

Many applications of simulation optimisation to discrete or combinatorial prob-

lems use metaheuristics as the base algorithm. In a recent review of simulation op-

timisation in semiconductor manufacturing, Ghasemi et al. (2018) list many papers

applying genetic algorithms, particle swarm algorithms and tabu search. As part

of their study of using symbiotic simulation for semiconductor manufacturing, Aydt

et al. (2011) use an evolutionary algorithm to optimise tool operations. Can et al.

(2008) investigate the use of genetic algorithms for the Buffer Allocation Problem

using various selection and combination methods. The authors find that whilst the

algorithms generally perform well, they are sensitive to population size and the num-

ber of ‘elite’ solutions. Lee et al. (2007) use a multi-objective genetic algorithm for

retiming flights in an airline schedule to improve its robustness.

The primary problem with using metaheuristics is that they do not naturally

account for uncertainty in the estimation of the objective function. Some imple-

mentations just fix a replication number for evaluation throughout. This could be a

considerable problem in scenarios where there are many sources of variability, such

as semiconductor manufacturing (Ghasemi et al., 2018). Bianchi et al. (2009) discuss

this issue and mention that the method used for comparing two solutions has a big

impact on performance. If the uncertainty is not sufficiently controlled then the al-

gorithms can produce very bad solutions. Methods for error control include adding

statistical hypothesis tests before accepting a solution, growing the sample size with

each iteration and adapting the sample size according to the results of hypothesis

CHAPTER 2. LITERATURE REVIEW 28

tests. In the case of simulated annealing, Ball et al. (2018) propose a method to

sequentially choose the number of replications at each solution whilst maintaining the

core properties of the deterministic version of the algorithm. Other approaches include

simheuristics (Juan et al., 2015), which aim to extend the metaheuristics to simulation

optimisation in a different manner. These are discussed further in Section 2.3.1. The

uncertainty issue is often not handled well in implementations of some metaheuristics,

such as those commercially available. To aid this, Section 2.8 of Hong et al. (2014)

considers three ways to improve the performance. Firstly, use a preliminary experi-

ment to estimate the number of replications required to distinguish between a good

and a bad solution. Secondly, restart the optimisation multiple times. Thirdly, use

a R&S procedure to give some statistical confidence that the chosen solution is the

best of those the algorithm found (Boesel et al., 2003).

2.2.3 Continuous Simulation Optimisation

A very different set of algorithms have been developed for the case when X ⊂ Rn.

The algorithms can be grouped into three main categories: Sample Average Approx-

imation, Stochastic Approximation and meta-modelling based approaches.

The Sample Average Approximation (SAA) turns the stochastic optimisation

problem (2.2.1) into a deterministic one. For a full discussion of this method, see

Kim et al. (2014). Suppose we could write

g(x) = E [Y (x, ξ)]

where Y is now a deterministic function and ξ contains all the random elements of

CHAPTER 2. LITERATURE REVIEW 29

the problem. Suppose the distribution of ξ is independent of x. The SAA method is

to sample ξ1, ..., ξN (i.i.d. samples of ξ) before the optimisation begins and then solve

the problem

min
x∈X

ĝN(x) = min
x∈X

1

N

N∑
i=1

Y (x, ξi). (2.2.2)

If the sample functions Y (· , ξi) (and thus ĝN) have a special structure, then (2.2.2)

can be solved using a specialised deterministic optimisation algorithm. The key to the

applicability of SAA is in showing that the sample functions have some exploitable

properties on most of X , such as convexity, that is preserved in the limiting function

of ĝN(x) as N → ∞. Once this is achieved one must select the number of samples

N and the deterministic algorithm used. Kim et al. (2014) discuss the convergence

properties and results, particularly as N →∞.

Stochastic Approximation (SA), see for example Chau and Fu (2014), is the ana-

logue of deterministic gradient descent optimisation (Chapter 3 of Nocedal and Wright

(2006)). It makes use of gradient estimations to create a new solution by

xj+1 = PX
[
xj − aj∇̂g(xj)

]
(2.2.3)

where {aj}∞j=1 is a sequence of positive real numbers, PX [x] is the projection of x ∈ Rn

onto X , and ∇̂g(x) is an estimate of the gradient∇g(x). The primary choices are in aj

and the gradient estimator, both of which strongly affect performance. Many variants

of SA attempt to reduce the sensitivity to aj in particular. The gradient estimators

are often based on finite differencing, such as the Simultaneous Perturbation Stochas-

tic Approximation method (Spall, 1992). In this case, a vector sj = (s1
j , ..., s

n
j)T

is sampled from a zero-mean, symmetric distribution (with finite inverse moments)

CHAPTER 2. LITERATURE REVIEW 30

and used to perturb each component of xj simultaneously, with the estimate defined

component-wise

∇̂g(xj)
k =

Y (xj + cjsj, ξ
+
j)− Y (xj − cjsj, ξ−j)

2cjskj
.

This means only two function evaluations are required, as opposed to 2n for the tra-

ditional ‘one at a time’ finite differencing. These can be noisy, though the use of

multiple replications and Common Random Numbers (CRN), ξ+
j = ξ−j , can reduce

estimator variance. An alternative is the use of direct, or white box, gradient esti-

mators. These are not always available as they rely on knowledge of the simulation

model structure itself. An example is Infinitesimal Perturbation Analysis (IPA), as

discussed by Johnson and Jackman (1989). Here one considers the effect of a small

change of a decision variable on a sample path from the simulation, assuming this

small perturbation retains the order of the simulation events. The subsequent effect

on the objective observation can be considered an observation of a partial derivative

at the current solution. Combining over perturbations in each decision variable and

averaging over multiple sample paths gives a gradient estimate.

Another variation is the choice of the final solution. Some algorithms average over

the iterated solutions xj (or the last m of them), aiming to surround the optimum.

This reduces the sensitivity to the initial step size.

SA algorithms are focussed on gradient information, so cannot easily use the cur-

vature information to improve the proposed new step.

The final class of algorithms is related to the use of meta-models to approximate

the objective function. As simulations can be expensive to run, meta-modelling is an

CHAPTER 2. LITERATURE REVIEW 31

important tool for simulation analysis, with the meta-model being built based on a

few simulation observations and giving an indication of the performance of solutions

not yet evaluated (Barton, 2015). In simulation optimisation, the meta-models are

used as a surrogate objective function and are optimised to produce a new solution.

There are many forms of meta-model. Polynomial regression models (see for example

Kleijnen (2005)) perform well at a local level, but rarely produce good global models.

For global meta-modelling, stochastic kriging models (see for example Staum (2009))

are popular, though quadratic interpolation (Deng and Ferris, 2006), artificial neural

networks and symbolic regression have also been used (Can and Heavey, 2012).

The use of global meta-models for optimisation has seen increasing attention in re-

cent years, generally through Bayesian Optimisation (see for example Frazier (2018)).

This was developed for optimisation of computationally expensive functions and has

its roots in Bayesian Decision Theory (Frazier, 2010). The objective is treated as a

random function, about which one learns through evaluating feasible solutions. There

is ‘extrinsic’ uncertainty in the function at any x not yet evaluated, but g(x) can be

predicted through its relationship to previously evaluated solutions. A Gaussian Pro-

cess prior probability distribution is placed on the objective function. Thus, given a

set of previously evaluated solutions, the extrinsic uncertainty of g(x) at any solution

x not yet evaluated is characterised by the posterior distribution (which is often Nor-

mal). At each iteration, an acquisition function measuring the ‘benefit’ of evaluating

g at x is maximised to select which solution to simulate next. Once the new solution is

evaluated, the Gaussian Process is updated to include the new information, updating

the extrinsic uncertainty at each unevaluated solution. Much of the early work was

CHAPTER 2. LITERATURE REVIEW 32

focussed on deterministic functions.

For stochastic simulation, additional (intrinsic) noise must be considered, and

so the meta-model also includes a white-noise element and the acquisition function

must account for this. Huang et al. (2006b) augment the deterministic Expected

Improvement acquisition function (Jones et al., 1998) to approximately account for

intrinsic variability and allow the best solution to be re-evaluated (reducing the uncer-

tainty in the prediction at the current best). Salemi et al. (2019) suggest a criterion

which exactly averages over both the ‘extrinsic’ and ‘intrinsic’ uncertainty, known as

the Complete Expected Improvement. An alternative approach uses the Knowledge

Gradient acquisition function, proposed by Frazier et al. (2009). Unlike Expected In-

formation, Knowledge Gradient allows for the fact that sampling a new solution may

change the current best by changing the shape of the meta-model, even if the new

solution is worse than the current best. Scott et al. (2011) extended the Knowledge

Gradient method to continuous simulation optimisation, showing that asymptotically,

the uncertainty in the meta-model tends to zero. Knowledge Gradient is often more

complex to calculate than the augmented Expected Information acquisition function.

Frazier et al. (2009) resort to discretising the space whilst Scott et al. (2011) propose

an approximation. Both Expected Improvement and Knowledge Gradient algorithms

were extended to account for Input Uncertainty by Pearce and Branke (2017). Other

acquisition functions are reviewed by Frazier (2018) and Jalali et al. (2017), the latter

investigating the relative performance of algorithms in the setting of heterogeneous

noise.

The downside of Bayesian Optimisation is that it has high computational over-

CHAPTER 2. LITERATURE REVIEW 33

heads. Fitting and updating the Gaussian Process meta-model is expensive in high

dimensional problems, and becomes more so as new observations are added. There-

fore, Huang et al. (2006b) recommend this simulation optimisation approach when

the simulation is more expensive than fitting the meta-model.

For local meta-models, Response Surface Methodology (RSM) is a common ap-

proach, originally proposed by Box and Wilson (1951) for physical experiments. It

assumes that the observation noise is independent, homoscedastic and Normally dis-

tributed, assumptions that are not usually valid within simulation (Kleijnen, 2014).

At each iteration the algorithm fits a local first-order polynomial using a Resolution

III experimental design (Montgomery, 2009) and Ordinary Least Squares (OLS) re-

gression. This model is used to define a search direction (the negative gradient). The

search takes steps in this direction, evaluating solutions with the simulation, until

there is no further decrease. Then a new meta-model is built around the best solution

found so far. This continues until curvature is detected in the meta-model, such as

the R2 statistic being too low. At this point a Central Composite Design (CCD) is

used to fit a second-order model, which is differentiated to find an estimated optimal.

There are several important issues that must be resolved before or during imple-

menting RSM. How large is the region over which a design is laid? How large are

the steps to find the next solution? How many replications at each design point are

required? One way to address some or all of these issues is through combining RSM

with deterministic trust-region optimisation (Conn et al., 2000).

Deterministic trust-region optimisation sequentially approximates the objective

function g around the current solution xj with a meta-model rj, usually a quadratic

CHAPTER 2. LITERATURE REVIEW 34

obtained from the gradient and Hessian of g. A sub-problem of minimising rj over a

local region, known as the trust region, is (approximately) solved to propose a new

solution x∗j . This is accepted based on a ratio comparison test,

ρj :=
g(xj)− g(x∗j)

rj(xj)− rj(x∗j)
, (2.2.4)

comparing the true decrease with the predicted decrease. If ρj ≥ η0 > 0, xj+1 = x∗j ,

otherwise x∗j is rejected and xj+1 = xj. The trust-region size is adapted based on ρj.

If ρj < η0, the trust region shrinks. If ρj ≥ η0 the trust region could be expanded

or stay the same. Incorporating a trust region into RSM then determines the size of

the experimental region and the step size. There are two approaches combining both

trust-region optimisation and RSM.

Deng and Ferris (2006) propose the noisy Unconstrained Optimisation By Quadratic

Approximation (UOBYQA) method, mixing RSM with trust-region ideas. Rather

than regression, the meta-model r̂j is a quadratic interpolation between a set of design

points. To handle the noise in the meta-model estimation, noisy UOBYQA sequen-

tially allocates additional replications to each design point using a Bayesian approach.

The uncertainty in the position of x∗j is approximated by sampling meta-models from

the posterior distribution of r̂j, and considering the variance of the corresponding

proposed solutions. Once this variance is small enough (relative to the size of the

trust region) the meta-model is used to propose a new solution. The uncertainty in

whether to accept the new solution is dealt with using a simplified Optimal Comput-

ing Budget Allocation (OCBA) R&S (see for example Chau et al. (2014)), until the

probability of correct selection is above a certain threshold.

CHAPTER 2. LITERATURE REVIEW 35

The Stochastic Trust-Region Response Surface Method (STRONG) proposed by

Chang et al. (2013) uses a more traditional RSM approach. It uses first-order models

when the trust region is large, switching to a quadratic below a threshold, both fitted

using OLS on either fractional factorial designs or CCD. The uncertainty in the meta-

model is reduced in the ‘inner-loop’ mechanism which augments the CCD with new

design points and more replications as the trust region shrinks. To be accepted, a

new point must pass both ρj ≥ η0 and a Welch’s t-test (Welch, 1938). Unlike in

noisy UOBYQA, the Type I error rate decreases as the algorithm progresses. A more

detailed description of STRONG is given in Chapter 4.

There are further variants of STRONG. STRONG-X (Chang, 2015) is designed

to improve its efficiency. Firstly it allows the use of CRN within the experimental

design. Secondly it scales the experimental design to reduce the meta-model bias,

whilst retaining the same trust region. The design is also built sequentially, starting

with a Resolution III design, and building up to a Resolution V if required. This was

shown to outperform STRONG in numerical experiments. Chang (2015) also extended

STRONG-X to handle non-normal distributions, by removing the Welch’s t-test and

ensuring that the number of replications used to estimate ρj grows as j increases. A

downside of building fractional factorial designs is that they become computationally

expensive when the dimension of the solution space is large. Chang et al. (2014)

integrated a screening step into STRONG to create STRONG-S, using experimental

designs to pick out the important factors influencing g in the neighbourhood of xj be-

fore fitting meta-models including only important dimensions. This extension allowed

STRONG-S to handle hundreds of decision variables. Wang et al. (2016) propose an

CHAPTER 2. LITERATURE REVIEW 36

alternative, RCB-STRONG, which partitions the dimensions into blocks. At each

iteration, a block of coordinates is selected at random and the standard STRONG

mechanism is applied exclusively to this group of coordinates.

It is possible to make use of direct gradient observations in RSM as well. STRONG

allows these to be used for the gradient estimation instead of regression. Li and Fu

(2018) propose an algorithm to augment RSM by fitting the linear model to both

simulation and direct gradient observations, with the user providing a weighting.

Initial experimental results suggest this additional information can be very valuable

when the simulation observations are noisy.

2.3 Multi-fidelity Modelling

Due to complexity and many sources of uncertainty within the airline industry, sim-

ulation is a very natural modelling paradigm for airline operations. Thus, simulation

optimisation should be a natural means of approaching the ARP. There are many

and varied methods for simulation optimisation, some of which are reviewed in Sec-

tion 2.2. However, there are few methods that can directly handle the combinatorial

constraints of aircraft allocation. Combinatorial problems have received a lot of at-

tention in the deterministic optimisation literature, as demonstrated in Section 2.1.

The deterministic ARP approaches cannot account for the uncertainty of the real

problem but can offer valid information about the qualities of a good solution to the

full problem. Therefore, the method proposed in this thesis makes use of optimisa-

tion techniques for both deterministic and simulation models. This cross-disciplinary

CHAPTER 2. LITERATURE REVIEW 37

approach to a problem is known as multi-fidelity modelling. This section reviews the

methods for combining models (particularly when one is a simulation model) within

the literature.

Multi-fidelity modelling aims to make use of a combination of models varying in

complexity and fidelity. Here, ‘fidelity’ refers to the ability of the model to reproduce

the input-output relationships of the real-world system. It is often the case that mak-

ing simplifying assumptions to a problem can reduce the computational complexity

of evaluating the model at a specific solution. Due to the assumptions and approxi-

mations within the simplified model, it is likely that there will be a significant error

in the performance estimation of a solution. However, if the model contains sufficient

detail, it may hold useful information about how a solution performs relative to other

feasible solutions. In multi-fidelity modelling, this is exploited by using a model with

many simplifications (known as the low-fidelity model or LFM) to quickly identify

promising candidate solutions. These solutions can then be evaluated in a more de-

tailed, high-fidelity model (HFM), capable of producing a much more accurate picture

of the solution’s performance. If the HFM is computationally expensive, multi-fidelity

modelling allows the HFM to be used selectively, guided by the LFM.

The use of different levels of fidelity can enhance the understanding of the problem

domain. Whilst considering the problem of positioning bicycles at stations for a

bike sharing problem, Jian and Henderson (2015) use three models of quite different

characteristics: a fluid model, a continuous time Markov chain model and a discrete

event simulation. Whilst each has varying fidelity and simplifications, each of the first

two expose a characteristic of a good solution and so can be used to provide a good

CHAPTER 2. LITERATURE REVIEW 38

starting point for the simulation optimisation.

A simple approach used in some cases is to optimise the LFM and evaluate the

solution using a HFM. Glankwamdee et al. (2008) solve either a stochastic program

or a minimax formulation for the production distribution of gas products, before

simulating the resulting solution for a more detailed evaluation, with distributions

over demand and failures.

However, Xu et al. (2016) point out that a low-fidelity model may be a poor per-

formance predictor due to the error caused by the simplifications. More importantly,

the error may not be uniform across the solution space: the LFM may underestimate

the performance in some areas whilst overestimating in others. This unknown and

unpredictable bias implies that the optimum within the LFM-based problem may not

be optimal for the HFM problem. Thus, solving the simplified problem and simulating

the results is näıve as it could miss out on much better solutions. Applying the HFM

selectively at multiple solutions during the search phase encourages the algorithm to

consider the discrepancies between the models rather than assuming a priori that the

errors do not change the ranking of solutions.

Linz et al. (2017) propose a two stage Random Search approach. In the first stage,

a Random Search is applied to optimise the LFM. From this, a set containing suffi-

ciently promising solutions is approximated using hyper-boxes. The random search

is repeated on this set using the HFM. If the performance of the models are similar,

focussing on this promising region increases the performance of the Random Search

algorithm compared to using the Random Search over the entirety of X . This is

applied to deterministic problems.

CHAPTER 2. LITERATURE REVIEW 39

2.3.1 Iterative Methods and Simheuristics

One common approach is to iterate between the models until a satisfactory solution

(as defined by the simulation output) is found. The satisfactory solution is normally

based around robustness or resilience. These methods include simheuristics, a class

of algorithms designed to combine simulation and deterministic models to handle

stochastic combinatorial optimisation problems (Juan et al., 2015). A metaheuristic

search is applied to the deterministic version of the problem and if a promising solution

is found, a small number of simulation replications are used to evaluate the solution

quality and feasibility (should there be probabilistic constraints). The solution is then

ranked amongst previous solutions. If more time is available, the search continues.

Once the search budget is used up, elite solutions are simulated more intensely for

a refined quality assessment. There are many applications of simheuristics to real

problems involving combinatorial constraints and random elements. The most recent

review of simheuristics for problems in transportation and logistics is given by Juan

et al. (2018). This section also gives examples of iterative methods that share some,

but not all, features with simheuristics.

Hatami et al. (2018) use a simheuristic for job scheduling in a parallel flowshop

with stochastic processing times. An iterated local search is used to find promising

solutions to the deterministic problem (processing times set to their mean), looking

to minimise the makespan. A Monte Carlo simulation is then applied to estimate

either the expected makespan or a percentile. Which is better depends on the user

preference. A similar approach using a local search heuristic is applied by Onggo et al.

CHAPTER 2. LITERATURE REVIEW 40

(2019) to agri-food supply chains with stochastic demand and perishable products,

involving both inventory control and vehicle routing. In addition, a construction

heuristic is used to ensure a good initial solution is found. The approaches of Arias

et al. (2013) and Guimarans et al. (2015) to the ARP discussed in Section 2.1.2 are

also simheuristics.

Some iterative methods use the simulation output to modify the low-fidelity prob-

lem slightly. Gonzalez-Martin et al. (2018) use a simheuristic when considering the

capacitated arc routing problem with stochastic demands. A metaheuristic is applied

to the deterministic version with expected demand, though the vehicle capacities are

reduced by a factor of k. The unused capacity acts as safety stock when the solution

found by the metaheuristic is simulated with Monte Carlo simulation. The value of

k is then adjusted, making the deterministic problem more conservative. The best

solution from each round is returned. In an A&E staffing problem, Izady and Wor-

thington (2012) use an M(t)/G/∞ queueing model to estimate the required staffing

levels at each station to achieve a desired quality of service β. The solution is then

simulated to see if the percentage of patients discharged within 4 hours achieved the

target. If not, β is altered to provide a new staffing schedule. This is repeated until the

target is met. The physics of the low-fidelity model is used to guide the optimisation.

Scala et al. (2017) use a combination of a deterministic model and simulation when

scheduling aircraft movements at an airport on a rolling time window. As this is a

combinatorial problem, simulated annealing is used to solve the deterministic model,

producing an optimal solution that is evaluated by the simulation. If the number of

aircraft conflicts is high when stochasticity is included, the window size is shortened

CHAPTER 2. LITERATURE REVIEW 41

before the deterministic model is solved again. The work of Scala et al. (2018) im-

proves this by updating the parameters of the metaheuristic in each iteration. In an

application to production planning in semiconductor manufacturing, Bang and Kim

(2010) change the aggregation structure and flow-time parameters in a low-fidelity

(by aggregation) LP if the LP and HFM simulation predictions of the throughput

and flow-time differ by more than 10%. This appears to benefit in both computation

time and quality more than simply changing the LP aggregation structure.

2.3.2 Using the Simulation in the Search

The methods discussed in the previous subsection iterate between the LFM and the

HFM. This does not necessarily account for the unpredictable bias associated with

the LFM described by Xu et al. (2016). Other approaches aim to directly utilise the

simulation model as part of the search.

Xu et al. (2014) propose a method known as MO2TOS. This begins by ranking all

solutions in X according to the LFM evaluation. This has two benefits: it highlights

promising solutions and transforms the solution space to a one-dimensional problem.

In the second stage the method applies the HFM to randomly sampled solutions. To

counteract the unknown bias, the probability of selecting a solution is proportional

to its low-fidelity ranking, thus potentially exploring the whole space. Unfortunately,

this work assumes that all options are exhaustively searched and evaluated with the

low-fidelity model and the output has no noise. Neither of these assumptions are valid

for the ARP problem.

CHAPTER 2. LITERATURE REVIEW 42

Osorio and Bierlaire (2013) and Osorio and Chong (2015) use multi-fidelity models

together in constructing a meta-model for a traffic signalling problem. Microscopic

traffic simulators can be extremely expensive and so hinder optimisation problems.

The LFM is an analytical finite capacity queueing model. The meta-model is con-

structed from the analytical objective, T (x), and a quadratic error term:

r̂j(x) = α̂T (x) + β̂0 +
n∑
k=1

β̂kx
k +

n∑
k=1

β̂k+n

(
xk
)2
. (2.3.1)

The parameters α̂ and β̂k are estimated using weighted least squares regression from

all observations at each solution simulated so far, with weights inversely proportional

to the distance from the current solution. The overall algorithm uses a trust-region

framework, where each new solution is simulated once and the meta-model parameters

updated after each iteration. Results suggest that this combination outperforms the

algorithm based solely on a quadratic meta-model.

This work was extended to include two levels of simulation (one modelling the

local area and the other a wider region) by Osorio and Selvam (2017). The boundary

conditions cause the local model to be less accurate than the regional model, but is

much more computationally efficient. The algorithm must now choose which simu-

lation to run at each iteration. The analytical queueing model is used to estimate

the error caused by the changes in boundary condition, along with a quadratic error

term, similar to Equation (2.3.1). If the predicted error between the two models is

small enough, the local model is used, otherwise the regional simulation is used. The

meta-model for the objective function is a quadratic.

The MFSKO algorithm (Huang et al., 2006a) models the relative errors between

CHAPTER 2. LITERATURE REVIEW 43

a set of m models of varying fidelity with a kriging meta-model. Modelling the errors

produces a Gaussian Process meta-model for the highest fidelity model that uses

information from all systems. An initial Latin Hypercube design is used to fit initial

models and the kriging hyper-parameters. The next solution is proposed using an

augmented Expected Improvement that balances the cost advantages of using the

LFM with the reduced quality information. Inanlouganji et al. (2018) proposed a

similar approach, modelling the low-fidelity output and the bias between the models

as Gaussian Processes, though in this case the Expected Improvement only accounts

for the HFM, and a hypothesis test is used to see if the bias relationship holds in a

statistical sense at the new position. If not, the HFM is evaluated to update the bias

Gaussian Process.

Multi-fidelity modelling can also be used the other way round. In an application

to multi-skill call centre staffing, Avramidis et al. (2010) use a simulation model

to improve an IP model. The cost objective is deterministic, based on the number

of agents used. However, the service level constraints are probabilistic. An SAA

approach is used to estimate a sub-gradient of these constraints, which can then be

added to the IP as a cut, reducing the feasible region. It is possible that this may

cut out the optimal solution, but the probability of this reduces as the number of

observations increases.

CHAPTER 2. LITERATURE REVIEW 44

2.4 Using Simulation for Real-Time Control

Over the last 20 years, researchers have begun to apply simulation to operational

problems in real-time, rather than system design problems. For example, Cheng

(2007) considers the relocation of Fire Service vehicles when areas are left uncovered

due to vehicles attending a major incident nearby. The vehicles need to be moved

to reduce the expected fatality rates across the region. This is a combinatorially

hard problem with legal restrictions that a solution must be found within one minute.

Some examples were discussed in Section 2.1.2 for airline disruption management. In

the aviation industry, Scala et al. (2018) propose the use of simulation for scheduling

aircraft movements at airport runways based on a rolling time window. One prevalent

methodology for real-time decision making with simulation is symbiotic simulation.

This section introduces symbiotic simulation, briefly describes some applications and

then discusses the issue of validating these systems.

2.4.1 Symbiotic Simulation

Symbiotic simulation is a paradigm involving a close interaction between a simulation

model and the physical system it is modelling (Fujimoto et al., 2002; Aydt et al.,

2008a). The simulation receives measurements and observations from the physical

system to improve its representation. In turn, the physical system can use the infor-

mation gained from the simulation analysis to improve its performance. A diagram of

the interaction between the physical and simulation systems is shown in Figure 2.4.1.

When the simulation is triggered, it can evaluate a number of possible options through

CHAPTER 2. LITERATURE REVIEW 45

Physical
System ObservationsImplementation

ControlOutput
Analysis

Simulation

Simulation

Simulation What-If
Experiments

Figure 2.4.1: A diagram of a symbiotic simulation system. Adapted from Fujimoto

et al. (2002).

a simulation optimisation process to aid decision makers. In a fully automated system,

the findings could be implemented automatically. The simulation could be used reac-

tively, periodically (pro-actively) or to prevent a forecasted issue (Aydt et al., 2008b).

Aydt et al. (2009) review the important aspects of symbiotic simulation. Onggo et al.

(2018) describe a symbiotic simulation system as a hybrid system, linking simulation

with many other fields such as Machine Learning, Optimisation, Statistics and areas

of computer science such as data acquisition.

The work in this thesis is based on reactive triggering to disruptive events, though

it may also have value in periodic use. Furthermore, the aim is to aid decision makers,

and thus have a direct impact on the physical system, known as a ‘closed-loop’ system

(Aydt et al., 2009). There are other forms of symbiotic simulation, as discussed by

Aydt et al. (2009), but these are not discussed here.

There have been many and varied applications of symbiotic simulation within the

CHAPTER 2. LITERATURE REVIEW 46

literature. The remainder of this section describes some of these, focussing on those

acting as a decision support system.

Several papers consider the manufacturing sector. Aydt et al. (2011) apply sym-

biotic simulation to a semiconductor manufacturing plant consisting of a series of

stations, each with a set of machines. Periodically, the simulation is used to help

schedule configuration changes at each station for the next period, depending on the

demand forecast. Fanchao et al. (2009) apply a symbiotic simulation to a lubricant

supply chain. Two problems are faced. The customer order problem is triggered

when certain critical states are entered. The inventory control management is trig-

gered periodically, aiming to find the minimal number of reorder points whilst meeting

the demand in a dynamic way. Chiroma et al. (2018) describe the development and

implementation of a symbiotic simulation system at an automotive manufacturing

plant.

There are many applications of symbiotic simulation to the transport and logistics

sector (Fujimoto et al., 2016). Vu et al. (2013) propose a symbiotic traffic simulation

to aid traffic management in the event of a road incident. If an incident occurs, a set

of potential paths for a car is simulated using traffic forecast information. However, if

every car in the city used such a device and received the same advice, the congestion

may simply be moved to a different part of the city. Aydt et al. (2012) propose the

use of a similar system in which data from a group of cars could be used to globally

optimise the traffic system by symbiotic simulation. Sunderrajan et al. (2016) describe

a symbiotic simulation that uses GPS data from traffic to control a ramp-metering

mechanism for managing the flow of traffic onto a junction. The simulation is a

CHAPTER 2. LITERATURE REVIEW 47

macroscopic traffic model. Huang and Verbraeck (2009) consider how best to use new

data from the physical system to perform an online calibration of a data-driven rail

transport simulation system.

In a theoretical study one cannot test a symbiotic simulation system on a real

physical system to evaluate its performance. Thus, the symbiotic simulations are

generally run alongside another simulation designed to emulate the real world, acting

as a proxy. In some cases, the proxy real world is more detailed and complex than

the simulation used to make the decisions. For example, both Sunderrajan et al.

(2016) and Vu et al. (2013) use a microscopic traffic simulator as the proxy real world

to their simulation, which are macroscopic and mesoscopic, respectively. Using a

different simulation model mimics the practical implementation, where a simulation

tool will not account for all aspects of the physical system. This concept is used

in Chapter 7 when considering the evaluation of simulation-based decision support

systems.

2.4.2 Validation of Real-time Simulation Systems

The validation of reusable simulation models is difficult, as the initial conditions

usually play a very important role in how the simulation may behave. Oakley et al.

(2020) develop a symbiotic simulation to model bed occupancies across a hospital.

This is run periodically to predict occupancies over the next week. To validate the

model, the authors propose a method that looks at the changes in bed occupancy over

time, rather than the absolute values. Looking at the changes in the system means

that one does not need to validate each possible initial condition against the limited

CHAPTER 2. LITERATURE REVIEW 48

data that starts in the same state. The distribution of the change in occupancy seemed

to be relatively stable across various initial conditions, making this an appropriate

method for validation. The emphasis is focussed on reinforcing trust in the model

rather than hypothesis testing.

If a reusable model is used over a long period of time, the model may need re-

validation or re-calibration to reflect possible changes in the physical system (Aydt

et al., 2011). Part of the power of symbiotic simulation is the ability to adapt the

model based on new data from the real world (Onggo et al., 2018). A number of studies

have looked into how to calibrate simulations to help accommodate this evolution.

Huang and Verbraeck (2009) and Huang et al. (2010) consider model validation and

calibration of rail transit simulation models. The primary mechanism is to periodically

compare the simulation and real world outputs and, if they deviate sufficiently, update

the directly observable parameters (such as train location) with the real values, and

use these to infer updates for the latent values (such as velocity and acceleration).

The authors suggest some mechanisms for this, but acknowledge that for stochastic

output, this is much more difficult. This assumes that the model goes through a phase

of validation before it is used to make predictions and decisions. A new validation

phase commences if the state of the simulation deviates too much from the real world.

Papathanasopoulou et al. (2016) consider the online calibration of microscopic traf-

fic simulators. The method proposed optimises the parameters of a (deterministic)

‘car-following’ model to minimise the difference between the observed and predicted

speed. Unlike the static calibration method which would fit the parameters across

large amounts of historical data, the online version re-fits the parameters at each time

CHAPTER 2. LITERATURE REVIEW 49

step. The results show that this method allows greater prediction power for vehicle

speed than the static approach. Hashemi et al. (2017) consider a similar system,

but split the problem of updating parameters between multiple ‘agents’, who control

a subset of the parameters. Rather than updating all parameters each time, a rein-

forcement learning algorithm is used to let the agents decide whether or not to update

the parameters, based on the current extent of the discrepancy and past rewards for

the correction. This helps to prevent unnecessary model adjustments, reducing the

number of false positives. In both cases, the experiments were on historical data

rather than a real-world emulator.

2.5 Conclusions

This chapter has reviewed the current methods for the aircraft recovery problem.

There are many sources of uncertainty in the airline industry which these methods

cannot handle. This motivates the main research question in this thesis:

Can stochastic simulation be used to help airlines react to and manage

disruption to their schedules by finding and evaluating good potential

rescheduling options?

To generate solutions, some form of search algorithm which incorporates uncertainty is

needed. The simulation optimisation literature includes both discrete and continuous

methods, but few of these are able to handle the combinatorial constraints and the

stochasticity present in this problem well. An alternative approach is multi-fidelity

modelling, and a variety of approaches and applications are discussed in Section 2.3.

CHAPTER 2. LITERATURE REVIEW 50

In this thesis, we propose a multi-fidelity modelling approach to the ARP with

two stages. Stage one uses a deterministic time-space network IP with discrete time

as a LFM. The IP aims to allocate aircraft to flights and give an initial value for

the planned delay of each flight with three objectives: to minimise disruption costs;

minimise schedule alterations; and minimise total delay. By solving the IP in a multi-

objective manner, it produces a set of rescheduling options with different priorities

for these three objectives. This allows the method to solve the combinatorial aircraft

allocation aspect of the problem in a deterministic manner, separating it from the

simulation optimisation. This work is described in Chapter 3.

The second stage uses each solution from the LFM as a starting point for a local

search for improvement in cost using simulation optimisation. This search enables

the more detailed information from the simulation to direct the optimisation process.

We fix the aircraft allocation for each solution and vary planned delays only. Fixing

the aircraft allocation removes the combinatorial constraints from the problem. The

delays are treated as continuous variables, allowing the use of continuous simulation

optimisation methods and gradient information. We wish the optimisation method to

be applicable beyond the specific simulation model used in this thesis, so we assume

the simulation is a black box system. This discounts SAA, and concerns over high

noise suggest that the more robust gradient estimators of RSM may be more appro-

priate than SA methods. Therefore, we apply an adapted version of STRONG with

the aim to reduce the expected costs of the rescheduling option. The main description

of the simulation optimisation approach is in Chapter 4, with additional details given

in Chapter 6.

CHAPTER 2. LITERATURE REVIEW 51

In addition, this chapter has considered the use of simulation for operational-

level decisions. Symbiotic simulation and some of its applications were introduced in

Section 2.4. Validation and re-calibration of these systems have been briefly discussed.

Whilst the re-calibration methods allow the simulation to change with time, they

assume that any deviation between the simulation and the real world comes from

incorrect parameter settings and the detection of the discrepancy does not allow for

much natural variability. Furthermore, they do not consider how to evaluate a decision

support tool, which to the best of our knowledge is not discussed in the literature.

Chapter 7 investigates some aspects of this question.

Chapter 3

Deterministic Disruption Problem

3.1 Introduction

As has been discussed in Chapter 2, much of the work on airline disruption manage-

ment has involved the use of deterministic methods, such as integer programming.

These models are well suited to representing large problems with combinatorial con-

straints, which are a struggle for current simulation optimisation methods. Whilst

deterministic models have a limited capacity to account for the various uncertain ele-

ments of the environment, they have the potential to quickly find promising starting

points within a multi-fidelity modelling approach, as proposed in this thesis. This

allows the complexities of the combinatorial constraints of aircraft allocation to be

dealt with in a deterministic manner.

Kohl et al. (2007) describe the practice of the Operations Control Centre (OCC)

under disrupted operations. There are a variety of alterations that could be made

including delaying or cancelling flights, exchanging aircraft, or ferrying aircraft (fly-

52

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 53

ing an empty aircraft to another airport). The latter is often prohibitively expensive

so will not be considered here. The OCC first want to identify good actions, usually

done by considering the three parts of the problem, aircraft, crew and passengers,

sequentially. The solutions are evaluated from the perspectives of each problem com-

ponent. The integration may require changes to be made due to legal constraints on

each resource. Here, the focus will be on the Aircraft Recovery Problem (ARP).

Managing disruption to an airline has multiple objectives. Whilst the airline will

want to minimise cost, it must also consider the impact on its passengers and potential

effects that major schedule changes could have on the aircraft maintenance plans. For

this reason, solving the low-fidelity model will follow a multi-objective optimisation

approach, aiming to produce revised schedules on the Pareto frontier of the Integer

Program problem. An additional benefit of this approach to the ARP is that several

alternative schedules are produced, meaning that when the airline begins to integrate

the ARP solution with the crew and passenger components it has multiple options and

can implement the solution that most easily integrates across the various elements.

This chapter describes the multi-objective Integer Program (IP) developed for this

research and is organised as follows. In Section 3.2, a formal problem statement for

the Aircraft Recovery Problem is given. The IP model used is introduced in Section

3.3. The multi-objective optimisation approach for the IP is presented in Section 3.4.

Following this is a discussion of further improvements that could benefit this method

in Section 3.5. Conclusions are in Section 3.6.

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 54

3.2 Aircraft Recovery Problem

Suppose that a disruptive incident has occurred that means an airline’s schedule

cannot operate as intended. The airline wishes to take action to minimise the impact

of this disruption, returning to normal operations within a certain time period known

as the recovery window. For a short-haul or medium-haul carrier, the natural recovery

window is to the end of the operating day. For an airline with long-haul flights, the

choice may be more arbitrary, indicating a desired time by which normal operations

will be resumed. Let A be the fleet of aircraft involved and F be the set of flights

originally covered by A, with n = |F | being the number of flights. Each flight, f ∈ F ,

will require an aircraft, a ∈ A, and a planned delay time, df , or a cancellation which

must be submitted to Air Traffic Control (ATC) in advance of the departure time. Let

x be the aircraft allocation (to be defined more precisely later) and d = (df : f ∈ F) be

the vector of planned delays. The OCC has the multi-objective aim of rescheduling to

minimise its costs, delays and the number of alterations to the original schedule. The

costs arise directly from delays, passenger compensation and cancellation charges.

Furthermore, this plan should be achievable, avoiding over-promising which could

create discrepancy, leading to flight f being delayed by more than df , damaging the

airline’s reputation and resulting in operational costs as a new plan with further

schedule adjustments must be submitted to ATC. These costs are accounted for by a

penalty if the actual delay exceeds df .

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 55

3.3 Low Fidelity Integer Program

The low-fidelity model used here is an IP adapted from the aircraft recovery model of

Zhang et al. (2015). The primary simplification in the model compared with reality

is the removal of all stochastic elements. The model allocates aircraft to flights,

allowing delays, aircraft re-assignments and cancellations, whilst aiming to minimise

costs, schedule changes and the total schedule delay.

3.3.1 Time-Space Network

A flight schedule can be represented as a sequence of flight arcs from airport to airport,

and a ground arc connecting a landing to a subsequent take-off. The departure and

arrival of each flight is a node representing an airport at a particular time. To optimise

over possible recovery schedules, the network is augmented with additional flight arcs

that start at times later than the scheduled departure (called “flight delay arcs”), the

corresponding nodes, and additional ground arcs connecting consecutive nodes. The

resulting directed network is known as a “time-space” network and is the basis of

the IP described here. An individual aircraft’s schedule is a path of flight delay arcs

and ground arcs through the network. An example network of two aircraft operating

between three airports is shown in Figure 3.3.1; the top panel is the original schedule,

the bottom includes the delay options after a disruption with the recovery window

ending at 18:00. This example is discussed in more detail later in this section.

Let V be the set of nodes, ν, each representing an airport at a potential arrival or

departure time. Each potential delay of flight f is represented by a flight delay arc

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 56

Time

Airport

6 7 8 9 10 11 12 13 14 15 16 17 18

MXP

BHX

BER
A1 A1 A1 A1

A2 A2 A2 A2

i(A1)

i(A2)

�

�
r(A1)

�

Time

Airport

6 7 8 9 10 11 12 13 14 15 16 17 18

MXP

BHX

BER

i(A1)

i(A2)

�

�
r(A1)

�

Normal node

Input node

� Return node

Original flight delay arc f0 (delay by 0 minutes)

Additional flight delay arc f30 (δ = 30)

Additional flight delay arc f60 (δ = 60)

Ground arc

Figure 3.3.1: The top panel gives the original flight network, with flights labelled by

original allocation. The bottom panel shows the time-space network used by the IP

under a disruption.

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 57

fδ, where δ is the intended delay of f . These potential delays are spaced at intervals

of size m up to a maximum allowable delay M , that is δ ∈ {0,m, 2m, ...,M}. A

smaller step size leads to better solutions as the problem is less constrained, but it

also increases the problem size substantially. Let L denote the set of flight delay arcs,

while the set of flight delay arcs associated with flight f is Lf . Between flight delay

arcs, aircraft take ground arcs, γ ∈ G, which connect consecutive nodes at the same

airport. For each flight delay arc, its arrival and departure points are added to V ,

unless it coincides with an existing node.

Each aircraft a has an input node, i(a) ∈ VI ⊂ V , representing its location at the

beginning of the recovery window. For an aircraft in flight, this will be its destination

airport, as any future flights it could be assigned to must be from its destination. No

flight delay arcs exit this node and the ground arcs only connect to the first node at

which a is available. Furthermore, all aircraft will end the recovery window at a return

node, r ∈ VR ⊂ V . Some aircraft may have a specified return node, denoted r(a). For

example, an aircraft may be required at an airport for its scheduled maintenance. In

this case, a constraint is imposed to ensure the new schedule respects the maintenance

plan. Let AR denote the set of aircraft required to be at specific return nodes. All

nodes not in VI or VR are known as “normal nodes” and are contained in the set VT .

Note that V = VT ∪ VI ∪ VR.

Time-Space Network Example A small example of the network structure is

shown in Figure 3.3.1. The top panel shows the original network of flights. Here there

are two aircraft, A = {A1,A2}, both starting at Birmingham Airport (BHX). This

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 58

is represented by the two clear circular nodes labelled i(A1) and i(A2). The filled

circular nodes are the departure and arrival points of the schedule, and the square

nodes are the return nodes. A1 is required back at BHX at the end of the day, hence

the return node of BHX is labelled r(A1), so AR = {A1}. The day holds two flights

from BHX to BER and back for A1 and two flights from BHX to MXP and back for

A2, ending at 18:00.

Suppose that a slight disruption occurred preventing A2 taking off until 7:00, and

let 18:00 be the end of the recovery window. The bottom panel shows the network

used for the IP with M = 60 minutes and m = 30 minutes. The two additional

flight delay arcs for each flight are represented by the dashed lines. This adds more

potential arrival and departure nodes ν ∈ V . Note that delaying the final BER to

BHX and MXP to BHX flights of the day by 60 minutes and 30 minutes respectively

would take the arrival time beyond the end of the recovery window. Thus, these flight

delay arcs are not considered. The horizontal arcs represent each of the ground arcs

in the model. Whilst i(A1) is connected to the node (BHX,6), i(A2) is connected to

(BHX,7), as 7:00 is the earliest possible take-off time.

3.3.2 Model Constraints

The aircraft must flow continuously through the network, so we define the following

sets. Let Lνin and Gν
in be the sets of flight delay arcs and ground arcs incident on node

ν ∈ V , and Lνout and Gν
out be the sets of flight delay arcs and ground arcs exiting

ν ∈ V . These sets will be used to ensure that an aircraft takes a continuous path

through the network by forcing each aircraft to take the same number of arcs in and

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 59

out of a node.

The aircraft have a minimum turn time between flights, tmin, which is assumed

here to be uniform across all airports. To deal with these turn time constraints, for

each node ν, let V ν
tmin

be the set of all nodes at the same airport that are less than

tmin later than ν. The choice of tmin for this model affects the solution qualities. If the

absolute minimum physical turn time is chosen (i.e., the lower bound of the turn time

distribution), the solution will take advantage of all the available scheduled buffer,

but will not be robust to uncertain turn times in the simulation. A larger choice for

tmin would correspond to a higher quantile of the turn time distribution, leading to

more robust solutions. However, if tmin is too large, it may introduce delays to flights

that are not disrupted (as some schedules may not leave much buffer between flights).

An important part of a recovery plan is to ensure that the schedule beyond the

end of the recovery window is feasible with little or no disruption. For example, a

short-haul airline may have a recovery window to the end of the day, so each airport

will require sufficient aircraft to fly tomorrow’s schedule. This is known as aircraft

balance, with rA being the number of aircraft required to end their path through the

network at return node r ∈ VR.

An airline may only be allowed to use an airport runway during particular time

slots due to the airport’s runway capacity constraints. We will refer to a time period

at an airport with a restriction on the number of aircraft movements as a “slot” and

list these slots in the set S. Let Ks be the maximum number of aircraft movements

allowed by the airline in slot s and Ls be all flight delay arcs impacting slot s. This

mechanism can also be used to deal with curfew times at airports, for example, to

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 60

prevent an aircraft taking off during the night.

3.3.3 Model Objectives and Variables

Our model takes into account operational delay charges from the airport and also

explicit passenger compensation costs. Let the cost of delaying flight f by δ minutes

be

cfδ = cdδ + P f (δ). (3.3.1)

The operational (non-passenger) costs are assumed to be linear in the delay time, with

a cost of cd per minute. As the model is deterministic, the planned delay is never

exceeded and so the model does not consider the penalty charge. The compensation

costs, P f (δ), are step functions. For example, the Civil Aviation Authority (2015)

state that short-haul passengers receive compensation for a 2 hour departure delay

and further compensation for a 3 hour arrival delay. As the IP assumes that a flight

takes the entire scheduled block time, there is no distinction between departure and

arrival delays. Flight f also has a cancellation charge, Cf , comprising various costs,

including passenger compensation (EUROCONTROL, 2018).

To measure the deviations from the schedule, we consider the number of flights

not flown by their original aircraft. Let ofa ∈ {0, 1} indicate whether aircraft a was

assigned to flight f before the disruption occurred.

The final objective is to minimise total schedule delay, which is measured simply

by noting which set of flight delay arcs is used in the solution.

The decision variables for the IP are all binary variables. Let xfδa = 1 if and only

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 61

if aircraft a is assigned to flight delay arc fδ, y
f = 1 if and only if flight f is cancelled,

and zγa = 1 if and only if aircraft a uses ground arc γ.

3.3.4 Notation Glossary

Here is a list of the notation used in the IP.

Sets:

A : set of all aircraft, index a

V : set of all nodes, index ν; V = VT ∪ VI ∪ VR

VI : set of all input nodes, i(a) is the input node of aircraft a

VR : set of all return nodes, r(a) is the return node of aircraft a

VT : set of all non-input and non-return nodes, i.e., VT = V \(VI ∪ VR)

AR : set of aircraft with nodes they need to return to

F : set of all flights in the flight schedule, index f

L : set of all flight delay arcs, e.g. fδ ∈ L delays flight f by δ

Lf : set of flight delay arcs of flight f

G : set of all ground arcs, index γ

Lνin : set of all flight delay arcs arriving at node ν

Lνout : set of all flight delay arcs departing node ν

Gν
in : set of all ground arcs arriving at node ν

Gν
out : set of all ground arcs leaving node ν

V ν
tmin

: set of all nodes ν ′ at the same airport as ν and less than tmin later

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 62

S : set of all slots, index s

Ls : set of all flight delay arcs affecting slot s

Parameters:

n : number of flights in the schedule

cd : cost of delaying a flight by 1 minute

P f (δ) : passenger compensation for delaying flight f by δ

cfδ : total cost of delaying flight f by δ

Cf : cost of cancelling flight f

ofa : indicates whether aircraft a was originally allocated to flight f

Ks : maximum number of aircraft movements in slot s

rA : required number of aircraft at return node r ∈ VR

Binary decision variables:

xfδa : indicates if aircraft a is assigned to flight delay arc fδ

zγa : indicates if aircraft a is assigned to ground arc γ

yf : indicates if flight f is cancelled

3.3.5 Model Formulation

The model formulation is adapted from the aircraft recovery model in Zhang et al.

(2015), but also draws on the models of Thengvall et al. (2000) and Jeng (2012).

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 63

Unlike these models, which deal with fleet assignment first and then aircraft allocation,

the IP aims to allocate specific aircraft to flights. Therefore an additional explicit turn

time constraint is required. The complete formulation is as follows.

min
∑
a∈A

∑
fδ∈L

cfδxfδa +
∑
f∈F

Cfyf (3.3.2)

min
∑
a∈A

∑
fδ∈L

(1− ofa)xfδa (3.3.3)

min
∑
a∈A

∑
fδ∈L

δxfδa (3.3.4)

subject to

∑
a∈A

∑
fδ∈Lf

xfδa + yf = 1 ∀f ∈F (3.3.5)

∑
a∈A

∑
fδ∈Ls

xfδa ≤ Ks ∀s ∈S (3.3.6)

∑
fδ∈Lνin

xfδa +
∑

fδ∈Lνout

xfδa +
∑

ν′∈V νtmin

∑
fδ∈Lν

′
out

xfδa ≤ 1 ∀a ∈A,∀ν ∈ VT (3.3.7)

∑
γ∈Giout

zγa = 1{i=i(a)} ∀a ∈A,∀i ∈ VI (3.3.8)

∑
fδ∈Lνin

xfδa +
∑
γ∈Gνin

zγa −
∑

fδ∈Lνout

xfδa −
∑
γ∈Gνout

zγa = 0 ∀a ∈A,∀ν ∈ VT (3.3.9)

∑
fδ∈L

r(a)
in

xfδa +
∑

γ∈Gr(a)in

zγa = 1 ∀a ∈AR (3.3.10)

∑
a∈A

∑
fδ∈Lrin

xfδa +
∑
a∈A

∑
γ∈Grin

zγa ≥ rA ∀r ∈VR (3.3.11)

xfδa , z
γ
a , y

f ∈ {0, 1} ∀a ∈ A, f ∈ F, fδ ∈ L, γ ∈ G (3.3.12)

Objective (3.3.2) relates to the cost of the recovery action, objective (3.3.3) to the

number of changes made to the aircraft allocation and objective (3.3.4) to the total

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 64

planned delay. Constraint (3.3.5) ensures that each flight is either flown once or

cancelled. Constraint (3.3.6) is the slot constraint. Constraint (3.3.7) prevents a turn

time of less than the minimum allowable turn time; if aircraft a uses a flight delay arc

incident on node ν, it cannot then use a flight delay arc exiting ν or any other node ν ′

within tmin of ν. Constraint (3.3.8) is a flow constraint for the input nodes, ensuring

that only one ground arc is chosen from the input node. Constraint (3.3.9) is a flow

constraint for normal nodes; it ensures that the number of arcs used by aircraft a to

arrive at node ν equals the number of arcs used by a to leave ν. As (3.3.8) dictates

that each aircraft leaves its input once, and thus enters a specific node exactly once,

(3.3.9) develops a recursion to ensure that an aircraft can enter a node either once

or not at all. Constraint (3.3.10) ensures flow at return nodes when this is specified

for an aircraft. Constraint (3.3.11) ensures aircraft balance at the end of the recovery

window.

3.4 Solving the Integer Programming Model

The aim of the IP is to generate a set of promising solutions to be used as starting

points in the simulation optimisation process. This will result in a set of aircraft allo-

cations and initial values for the planned delays. As the overall problem has multiple

conflicting objectives (for example, fewer aircraft exchanges gives less flexibility for

reducing cost), we take the view that the importance of each objective is not known

a priori, so presenting a range of solutions allows the decision maker to decide on the

preferences. The ε-constraint method (Haimes et al., 1971) is used to produce several

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 65

solutions by treating all but one objective as problem constraints. In this case, the

objectives of minimising the number of aircraft reassignments (3.3.3) and minimising

total delay (3.3.4) are added to the IP as constraints:

∑
a∈A

∑
fδ∈L

(1− ofa)xafδ ∈ [lE, uE] (3.4.1)

∑
a∈A

∑
fδ∈L

δxafδ ∈ [lD, uD]. (3.4.2)

The limits of these constraints determine the priority levels of each objective by forcing

the IP solver to search particular areas of the feasible region. Thus, by changing these

limits systematically and solving the IP problem for each set of limits (with cost as the

objective), one can find multiple Pareto optimal solutions corresponding to different

priority levels for the objectives.

In theory, if all possible combinations of lE, uE, lD, and uD are used, the entire

Pareto frontier will be discovered. However, this can be a very time consuming pro-

cess, sometimes leading to the same solution being found multiple times, so several

algorithms have been designed to systematically vary the limits lE, uE, lD and uD to

find the Pareto frontier quickly. Here we use an efficient method proposed by Lau-

manns et al. (2006). An example of this process is shown in Figure 3.4.1, each plot

showing the result of one iteration of the algorithm.

In iteration 1, the IP is solved without (3.4.1) and (3.4.2) constraining the problem,

or with a maximum value considered a limit by the airline (which may be particu-

larly relevant for aircraft exchanges). Due to the nature of the quantities, having no

constraints is equivalent to defining lD = lE = 0 (that is, no delays and no exchanges)

and uD = nM (all flights delayed by the maximum amount) and uE = n (no flights

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 66

Delay

Exchanges

(x1,d1)
D1

E1

Delay

Exchanges

(x1,d1)

(x2,d2)
D2

E2

Delay

Exchanges

(x1,d1)

(x2,d2)

(x3,d3)
D3

E3

Iteration 1 Solve IP Iteration 2 Solve IP Iteration 3

Solve IP

Delay

Exchanges

(x1,d1)

(x2,d2)

(x3,d3)

(x4,d4)
D4

E4

Delay

Exchanges

(x1,d1)

(x2,d2)

(x3,d3)

(x4,d4) (x5,d5)
D5

E5

Delay

Exchanges

(x1,d1)

(x2,d2)

(x3,d3)

(x4,d4) (x5,d5)

Iteration 4 Solve IP Iteration 5 Infeasible IP Iteration 6

Figure 3.4.1: An example of the ε-constraint approach proposed by Laumanns et al.

(2006).

operated using their original aircraft). This results in an optimal cost solution (x1,d1)

(the first plot in Figure 3.4.1). Say that this solution has E1 aircraft exchanges and

a total delay of D1. These values are then used to partition the objective space into

four sectors:

[0, E1)× [0, D1), [E1, n]× [0, D1), [0, E1)× [D1, nM], [E1, n]× [D1, nM].

The solution (x1,d1) is the best solution in [E1, n]×[D1, nM] (top right in the first plot

of Figure 3.4.1) as no other solution in this region could have lower costs, exchanges

or delay. Therefore, this region is considered searched, indicated by the gray shading.

The algorithm does not choose limits within this region again.

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 67

In each iteration, the algorithm must select one of the unsearched sectors to define

a new set of limits for constraints (3.4.1) and (3.4.2). To do this, it considers the

individual sectors of the grid resulting from the partitions defined by the solutions

found so far (the dashed lines in Figure 3.4.1). The selection procedure begins in

the sector with the highest delay and exchanges (top right in each plot of Figure

3.4.1). It then iteratively moves right to left (reducing the number of exchanges

whilst retaining the delay limits) through the sectors of a row, a row at a time, until

it reaches an unsearched sector. Note that it will return an individual sector, not a

combination of sectors. In the first iteration of Figure 3.4.1, moving left (and thus

reducing exchanges) from [E1, n] × [D1, nM] leads to [0, E1) × [D1, nM], which is

unsearched and so selected as the next region (shaded in yellow). In Iteration 2,

starting in the top right and moving left along the top row takes us through one

searched area and into [0, E2)× [D2, nM], which is unsearched and so selected for the

next iteration. In the third iteration of Figure 3.4.1, the top row is entirely searched

(as the solution at E3 = 0), and so the selection procedure moves left along the

second row of sectors; the first two are searched and so [0, E2)× [D2, D3) is selected.

Choosing to reduce the exchanges before the delays means that finding solutions with

fewer exchanges is prioritised. Note that the ends of the interval may be open to

prevent the optimisation reaching a previous solution again.

Once the region has been selected, the IP is solved with the corresponding con-

straint limits. If the solver finds a new solution, with E ′ exchanges and a total delay

D′, this is added to the list of solutions producing the grid partitioning the space and

the searched region is extended by the sector [E ′, uE) × [D′, uD) (no better solution

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 68

could exist in this sector). The partitions of the space become finer with each iter-

ation, though the minimum granularity is restricted by the discrete nature of both

exchanges and delay in the IP. For our example, in Iteration 2 of Figure 3.4.1, the

new solution (x2,d2) has E2 exchanges and a total delay of D2. Therefore, the region

[E2, uE)× [D2, uD) is labelled searched and more partitions are added (see the second

plot in Figure 3.4.1, which now has nine regions). On the other hand, if the solver

identifies the region as infeasible, and so contains no solution, its entirety will be la-

belled searched. Otherwise the grid does not change from the previous iteration. In

our example, the transition from Iteration 5 to Iteration 6 in Figure 3.4.1, the solver

could not find any solutions in [E2, E5)× [D5, D4), and so this entire region is shaded

gray in Iteration 6.

Once a solution has been found (or the sector labelled infeasible) and the partitions

have been updated, the algorithm selects a new unsearched region (an area shaded

in yellow). This process of selecting a sector, solving to find a new solution, splitting

the sectors further and blocking off searched regions is repeated, corresponding to

iterations 3, 4, 5 etc. In practise, this procedure produces solutions where the number

of exchanges is decreased at the expense of cost and delay, until the zero-exchange

option is found (if feasible), see Iterations 1 to 3 in Figure 3.4.1. This takes at most

E1 iterations. This first ‘round’ is followed by a sequence of iterations with a stricter

limit on the total delay objective, each working its way toward a zero exchange option

before making uD smaller again and repeating.

Given sufficient time, i.e., polynomial in the number of Pareto optimal solutions,

the algorithm will eventually search the whole space and find all of the solutions on

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 69

the Pareto frontier (Laumanns et al., 2006). In our application, however, the process

stops after a time limit. For each sector, we use the Gurobi Optimizer 7.0.2 (Gurobi

Optimization, LLC., 2017) to find the optimal solution for the IP, or the best solution

so far if the time limit is reached. Due to the time limit, the algorithm is likely to leave

some sectors unsearched or with a sub-optimal solution so that we do not have the

complete Pareto optimal set. Furthermore, it may take time to find the first Pareto

optimal result. The solver may find a sequence of cost optimal solutions that are only

weakly Pareto optimal, as fewer aircraft exchanges can be made whilst achieving the

same cost (this is often due to reallocating flights that are not part of the disruption).

This is demonstrated in the computational experiments in Chapter 5. Thus, within

the time limit, Pareto optimal solutions cannot be guaranteed.

The result is a set of solutions, X , each with an aircraft allocation, a set of cancelled

flights, and a delay value for all flights in the programme. Due to the time limitations,

it is not possible to guarantee the properties of the solutions within X . However, if

more than one solution is produced, we will have a cost optimal solution and multiple

aircraft allocations to offer options to the airline. On the other hand, if a cost optimal

Pareto solution is found quickly this method can find a number of Pareto optimal

solutions that represent the trade-off between the objectives. Whilst the solutions

in X may be incomplete and possibly sub-optimal, they are nevertheless the result

of a purposeful search over the solution space of the low-fidelity problem. As such,

the solutions will be used as a set of sensible starting points within the simulation

optimisation procedure, described in Chapter 4.

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 70

3.5 Improvements for the Low-Fidelity Model

The focus of this thesis is on the development and evaluation of a simulation opti-

misation approach to solving the ARP. The multi-fidelity approach can in theory be

improved by enhancing the modelling and optimisation methods used in both the low-

fidelity and the high-fidelity problems. As the remainder of the thesis will primarily

consider the high-fidelity aspects, this section simply recognises and briefly describes

ways in which ideas in the literature could be developed to improve the solutions to

the low-fidelity problem.

3.5.1 Size and Properties of the Integer Program

Both Thengvall et al. (2000) and Hu et al. (2015) have proven their formulations of

the ARP, both based on time-space networks, to be NP-hard. This is achieved by

showing the relationship to another well known network IP problem which is itself

NP-hard, such as the integer single-commodity network with side constraints. This

complexity is widely conjectured to be a general property of the ARP. For our model,

the problem size is dependent on the number of flights, n, the number of aircraft, |A|,

and the number of possible delay options, M/m+ 1.

The number of flight delay arcs is bounded by:

|L| ≤ n

(
M

m
+ 1

)
⇒ Number of x variables ≤ n|A|

(
M

m
+ 1

)
.

The inequality here is because flight delay arcs that extend beyond the recovery

window are not included in the model.

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 71

The worst case scenario for the number of nodes is that every flight delay arc

produces a unique pair of nodes. Each input and normal node will have an associated

ground arc leaving them. In this case, the number of ground arcs is given by:

|G| = |A|+ 2|L| ≤ |A|+ 2n

(
M

m
+ 1

)
⇒ Number of z variables ≤ |A|2 + 2n|A|

(
M

m
+ 1

)
.

Empirical observation when producing the results in Chapter 5 suggests that, in

practice, the factor of 2 in front of the second term can often be replaced by a smaller

constant, frequently less than 1. With discretised time and a large number of flights,

the flight delay arcs that are added to the network may have departures or arrivals

that coincide with those of flights that already exist (as is the case in Figure 3.3.1).

This is particularly true at hub airports. This means that multiple flight delay arcs

may share nodes, reducing the average number of nodes per flight delay arc to less

than 2. This in turn reduces the number of ground arcs. The number of y variables

is simply the number of flights, as any flight can be cancelled. It is also important

to note that, unless there is a significant number of spare aircraft in the problem, n

grows approximately linearly with |A|, particularly when all flights are of short-haul

distances.

The value of m plays a significant part in the problem size. The experimental

results in Thengvall et al. (2000) suggest that in their time-space network a smaller

m value would not just increase the problem size, but also increase the proportion of

non-integer solutions to the Linear Programming (LP) relaxation. The LP relaxation

is the first stage of solving any IP by relaxing the integer constraints (3.3.12) to

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 72

bound constraints on the interval [0, 1]. This in turn increases the solution time as a

branch-and-cut algorithm (or similar) must then be used. The benefit of a smaller m

is that extra opportunities for aircraft exchanges may be found to reduce the delay.

An alternative approach that may reduce the complexity would be a more intelligent

selection of flight delay arcs, rather than uniformly distributed. One example of this is

considered in Petersen et al. (2012), who consider an event-driven method to creating

flight strings (sequences of flights to be flown by one aircraft). The aim is to select

arcs that arrive or depart at times where the conditions or options change. This is

applied in a flight-string-based model (where decision variables indicate an aircraft

is assigned to a sequence of flights) so additional research would be required before

it was immediately applicable to this model where aircraft are assigned to individual

flights.

3.5.2 Solution Methods and Problem Reduction

As shown in the previous section, the size of the fleet, |A|, plays a substantial role

in the problem size. This suggests that there are advantages to cutting out aircraft

that are unlikely to offer any potential schedule changes. For the larger problems

tackled in this thesis, we have used a simple heuristic to reduce the number of aircraft

considered. After identifying the set of directly disrupted aircraft, A∗, we collect the

set of airports they are set to visit during the recovery window. Other aircraft are

added to the problem based on whether they visit any of these airports during the

recovery window.

For much larger problems, more sophisticated heuristics to reduce the problem size

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 73

might be needed. An example of such an algorithm is suggested by Rosenberger et al.

(2003), where a network representing the schedule is searched for cycles involving dis-

rupted aircraft to reduce the set of aircraft included in the problem. This approach is

likely to lead to a greater reduction in the size of the problem, giving it computational

advantages.

A greater study of the problem structure may also allow specialised cuts to be

added to the problem during a branch-and-cut procedure to improve the time to solve

over a generic algorithm. Alternatively, looking at heuristic solution methods, such as

Large Neighbourhood Search algorithms (Sinclair et al., 2014), may help to produce

good, if not Pareto optimal, solutions more quickly than exact solution methods.

3.5.3 Extending the IP Model

Whilst the IP model covers many of the aspects of the real-world problem, there are

additional features that could be included. For example, one may want to consider

the total amount of passenger delay, weighted by class, as an objective, allowing one

to prioritise busier or more profitable flights. Whilst we have assumed a linear delay

cost model (except for compensation), other models could be used. In particular,

Cook and Tanner (2015) studied the cost per minute of delay in much detail, splitting

it into constituent parts and finding a non-linear relationship. This could easily be

accounted for in the objective of the IP, Equation (3.3.2), by changing the definition

of cfδ in Equation (3.3.1). This would not require a change in solution methodology.

Other recovery actions such as changing the cruise speed of the aircraft on certain

flights could be added by the inclusion of additional flight delay arcs arriving earlier

CHAPTER 3. DETERMINISTIC DISRUPTION PROBLEM 74

with a higher cost assigned. This action could be desirable as it can reduce delays

but may increase costs due to additional fuel consumption.

It has been assumed that all aircraft are homogeneous. Additional costs and

constraints could be added to account for a heterogeneous fleet, as is the case in, for

example, Petersen et al. (2012). However, this can add significant complexity to a

problem, and may not always be feasible due to crewing considerations.

3.6 Conclusions

This chapter describes a deterministic integer programming model and a multi-objective

solution approach for the ARP. The IP model is based on a time-space network model

and an ε-constraint based method is used to search the solution space. This approach

is used to find a set of starting solutions for the simulation optimisation process to

be described in Chapter 4. We believe that these solutions provide promising re-

scheduling options, exploring different possible aircraft allocations.

Extensions and improvements to the IP model and solution methodology are pos-

sible and have been discussed. As the main focus of this thesis is on treating the

stochastic elements of airline disruption, these were not pursued.

Chapter 4

Simulation Optimisation for the

Aircraft Recovery Problem

4.1 Introduction

Whilst an Integer Program (IP) can encode some of the complexities of the airline

industry, it has a limited capacity for handling uncertain elements of the environment.

Aircraft turn times, airport queueing times, maintenance times and flight durations

all involve uncertainty, which may alter the performance of a solution. This suggests

that a model of higher fidelity should be used in conjunction with the deterministic

models. Probabilistic models that achieve the levels of detail required are unlikely to

be analytically tractable. Thus simulation seems to be a natural way to model the

airline’s operations.

In some applications of multi-fidelity modelling, the simulation is primarily used

for checking the robustness of promising solutions to stochasticity. However, Xu et al.

75

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 76

(2016) point out that the low-fidelity model predictions could have significant bias or

variability. To account for this, they propose that some form of simulation optimi-

sation takes place after the low-fidelity model has been used. Whilst their proposed

method based on Ordinal Transformation is not appropriate here, the principle that

there is value in utilising the simulation for further improvement motivates a search

around the candidate solutions from the IP.

The purpose of this chapter is to describe a simulation optimisation approach to

search for local improvements around the rescheduling options found by the IP. As the

aircraft allocation involves combinatorial constraints, a difficult problem for simula-

tion optimisation, this aspect of the solution remains fixed, whilst the disruption cost

is optimised over the planned delays. A trust-region based simulation optimisation al-

gorithm called STRONG (Chang et al., 2013) is used to perform this optimisation. As

STRONG is designed for unconstrained problems, it has been tailored and extended

to search within a space with bound constraints, arising from the non-negativity of

delays, drawing on ideas from the deterministic constrained trust-region and experi-

mental design literatures.

This chapter is organised as follows. The simulation model used is introduced

in Section 4.2. The simulation optimisation algorithm and how it relates to the IP

solutions is presented in Section 4.3. Following this, Section 4.4 discusses what is

required for this method to be applicable in practice. Conclusions are in Section 4.5.

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 77

4.2 High Fidelity Simulation Model

The input schedule for the simulation is given by an aircraft allocation x and a set

of planned delays, d. The elements of x and d are linked to the IP variables via the

following relationships:

xfa =
∑
fδ∈Lf

xfδa , (4.2.1)

df =
∑
a∈A

∑
fδ∈Lf

δxfδa , (4.2.2)

whilst a cancellation of flight f can be inferred when
∑

a∈A x
f
a = 0.

Let Df be the actual delay of flight f . This is a random variable with a distribution

dependent on (x,d). The objective function is the expected cost of the disruption:

g(x,d) = E

[∑
f∈F

(
cdD

f + cp(D
f − df)+ + P f (Df)

)]
+ C(x). (4.2.3)

Here, cd is the cost per minute of delay, cp is the penalty per minute for the actual delay

Df exceeding the planned delay df , P f (Df) represents the compensation associated

with passenger delays of flight f and C(x) is the cost of the cancellations in the

allocation x. Unlike in the IP, in the simulation P f (Df) does distinguish between

arrival and departure delays, as the flight may not take its entire scheduled block time,

that is the time between the scheduled departure and arrival time often contains a

buffer period. This means that a flight may depart more than 3 hours after its

scheduled time, but not incur the 3 hour arrival delay compensation. This is one of

the few examples of the IP overestimating the cost.

The simulation model is built within AnyLogic 8.2.3 (The AnyLogic Company,

2017). It simulates a sub-fleet of homogeneous aircraft operating the recovery action

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 78

(x,d) over a set of airports. Each aircraft follows its assignment of the schedule,

subject to stochastic flight durations, turn times, queueing times and maintenance.

Its general framework is largely based on the SimAir simulation as discussed in Lee

et al. (2003). However, it does not consider crew members or passengers (except in

calculating passenger compensation).

The duration of a flight from airport A to airport B is modelled using a log-logistic

distribution with parameters fitted using the Maximum Likelihood Estimator (MLE)

from the observations of the flight from A to B within the available data (Flightradar24

AB, 2017), obtained using the python package (Allamraju, 2017). This is done for

each route that appears in the schedule. The turn times are assumed to follow a left-

truncated Normal distribution. Unlike in the IP, the mean, variance and minimum

can vary between airports as well as whether the aircraft requires refuelling. These

could be chosen using information on typical turn times for an aircraft from technical

documents, such as Airbus (2019). For the short-haul flights considered here, it is

assumed that refuelling occurs after two flights. The distribution and parameter

assumptions are made as our current data source does not track this information.

The gate departure time of the aircraft is the maximum of the ready time (after the

turn time) and the planned departure time (including the planned delay) according

to the input schedule (x,d). When this time occurs, the aircraft joins the take-off

queue.

It is assumed that each airport has two runways with independent segregated

operations, i.e., one runway for landings and one runway for departures with the dis-

tance between runways sufficiently large to assume that minimum aircraft separation

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 79

is guaranteed between the two queues (ICAO, 2016). The landing and take-off queues

for use of the runways are modelled as G(t)/D(t)/1 queues. The arrival process of

aircraft outside the airline’s fleet to these queues is a deviation-from-schedule model

based on the published arrivals and departures schedule. The departure deviation

is modelled using a shifted log-logistic distribution, whilst the arrival deviation is

assumed to be Normally distributed, both use MLE parameters estimated from the

observed data for the airport (Flightradar24 AB, 2017). The service time represents

the spacing required between aircraft and is assumed deterministic given the weather

conditions and time of day, taking the form

Q(t) =
s(t)

w(t)
,

where s(t) is the required separation time in normal operating conditions at time t

and w(t) ∈ (0, 1] is a scaling factor to account for weather conditions at time t. The

aircraft separation s(t) is a step function, increasing overnight (11pm to 6am) due to

noise pollution constraints. The weather conditions follow a step-function forecast at

each airport, with poor weather conditions leading to increased aircraft spacing.

At the beginning of the simulation, each aircraft is given a time-to-failure based

on the time since its last scheduled maintenance. Only faults that would lead to

an aircraft being grounded are considered. The time-to-failure is sampled from a

Weibull distribution conditioning on the flying hours accumulated since its previous

maintenance checks. Once an aircraft’s flying time has exceeded this time-to-failure,

it enters the maintenance hangar at the next airport where it lands. The time to

complete unplanned maintenance is assumed to come from a Gamma distribution

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 80

and must be completed before the next flight. The parameters can vary from airport

to airport depending on the facilities available. For example, the expected time for

unplanned maintenance at a hub airport should be shorter than that of an outstation

airport where the airline will have fewer resources. Planned maintenance is also part

of the schedule and is assumed to take a fixed amount of time.

Initial conditions for each aircraft in the fleet is based on whether that aircraft is

at an airport or in flight. In either case, time before arrival or departure is sampled

from the distributions, conditioned on the time already taken in the activity.

For a more in depth reporting of the simulation model, see Appendix A. Whilst

the simulation does not model all the details of an airline’s operations, it does contain

the key features necessary to evaluate our multi-fidelity approach.

4.3 Simulation Optimisation Process

Once the IP has produced a set of revised schedules, (x,d0) ∈ X , each one is used

as the starting point for a simulation optimisation procedure, searching for an im-

provement around that solution. As simulation optimisation often struggles with

combinatorial constraints, we reduce the complexity of the solution space by keeping

the aircraft allocation, x, fixed throughout the process. This leaves a continuous,

ordered solution space of planned delays, d ∈ D ⊂ Rn. As delays cannot be negative

and may have an upper limit due to other schedule considerations, D is a hyper-box

with bound constraints on each variable. For further problem size reduction, only

the n+ flights that the IP has allocated a non-zero delay in d0, F+ = {f : df0 > 0},

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 81

are varied in the optimisation. The solution space is now greatly simplified from the

original, with the following continuous simulation optimisation problem:

min
d

g(x,d) (4.3.1)

subject to df ∈ [0, uf], ∀f ∈ F+ (4.3.2)

df = 0, ∀f /∈ F+ (4.3.3)

where g is defined in (4.2.3), searching for a local optimum conditional on x. As g(x,d)

cannot be evaluated exactly, it is estimated by performing multiple replications from

the simulation at (x,d) and taking the mean of the output, ĝ(x,d).

To approach the simulation optimisation problem, we extend the STRONG algo-

rithm (Chang et al., 2013). STRONG combines classical Response Surface Methodol-

ogy with ideas from trust-region optimisation for continuous unconstrained problems.

The extensions are designed to enable STRONG to handle bound constraints, as we

believe it is likely that the optimal solution will lie on the boundary of D. The primary

changes to STRONG are fourfold. The first is the choice of trust region. The second is

the direct application of experimental design principles to build a good design matrix

in a non-standard region-of-interest to estimate the meta-model. This occurs within

the algorithm itself rather than offline. The third is the use of a projected-gradient to

define the step, allowing movement along a boundary. The final change is the use of

a different criticality condition, generalising to optimality in the constrained setting.

Trust-region algorithms are iterative optimisation techniques based on a local

search (see, for example, Conn et al. (2000) or Chapter 4 of Nocedal and Wright

(2006)). The jth iteration uses a meta-model rj, usually a low-dimensional polyno-

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 82

mial, to approximate the objective g over a local region Bj, known as the trust region,

around the current solution, dj. Unlike line search optimisation techniques, rj is not

solely used to define a search direction (after which the effort is to calculate a step

length); instead, rj is only trusted to be valid within the trust region. Instead, the

search takes place within Bj, seeking a minimiser for the meta-model rj over the trust

region. This is called the sub-problem. The size of the trust region varies depend-

ing on the accuracy of the meta-model in predicting the performance of a proposed

solution.

For bound constraints, Conn et al. (1988) suggests the use of a hyper-box trust

region using the `∞ norm with half-width ∆j, rather than the hypersphere used within

STRONG. This choice is particularly convenient as it aligns the trust-region bound-

aries with the constraints. This alters the sub-problem as any possible step, s, must

also satisfy the additional feasibility constraints:

min
s

rj(dj + s)

subject to ||s||∞ ≤ ∆j (4.3.4)

dj + s ∈ D.

4.3.1 The Sub-problem

As is the case in many continuous decision-variable optimisation algorithms, the most

common choice of meta-model within trust-region optimisation is a quadratic (see

Chapter 4 of Nocedal and Wright (2006)). In deterministic optimisation, the gradient

is often directly available, and there are a number of methods to approximate the Hes-

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 83

sian, such as the BFGS Hessian estimator independently proposed by Broyden (1970),

Fletcher (1970), Goldfarb (1970) and Shanno (1970). Convergence of trust-region al-

gorithms to a stationary point does not require second-order derivative information,

but a good Hessian estimate does aid convergence rates.

In the simulation optimisation setting, it is rare that either the gradient or the

Hessian are known, and so the meta-model must be estimated. Therefore, STRONG

does not always use a quadratic model to approximate the objective, instead following

the classical Response Surface Methodology simulation optimisation approach (Klei-

jnen, 1998), which generally uses a linear model until curvature is detected, at which

point a quadratic model is used. This reduces the computational load when a lin-

ear model is sufficient to achieve improvement, as fewer parameters, and thus fewer

design points, are required. There is a threshold for the size of the trust region, ∆̃,

above which a linear response surface is used. The value of ∆̃ could be chosen based

on practical knowledge of the problem or based on parameter tuning. We define the

estimated response surfaces as

r̂j(dj + s) =


ĝj(x,dj) + ∇̂dgj(x,dj)

T s if ∆j > ∆̃;

ĝj(x,dj) + ∇̂dgj(x,dj)
T s + 1

2
sT Ĥj(x,dj)s if ∆j ≤ ∆̃.

(4.3.5)

Here, ĝj(x,dj) is the sample mean estimate of g(x,dj) in the jth iteration, and

∇̂dgj(x,dj) and Ĥj(x,dj) are estimates of the derivative and Hessian with respect to

d of g at the point dj. STRONG itself does not specify which estimators should be

used for ∇̂dgj(x,dj) and Ĥj(x,dj), one suggestion being the BFGS Hessian estimator

(Chang et al., 2013). The estimator used depends on the problem structure and the

amount of information available. In this work, the simulation is treated as a black

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 84

box. For this case, Chang et al. (2013) suggest the use of experimental design and

regression analysis, where we simulate different points within the trust region and

build a response surface meta-model. An iteration using the linear model is called a

Stage I iteration, whereas the quadratic model is used in a Stage II iteration.

The next three subsections describe how the meta-model is built using methods

from experimental design, the estimators themselves, and how the model is used to

propose a step for testing.

(i) Experimental Design

Let Dj denote the design matrix used for fitting the meta-model over the trust region

centred at dj. Each row of Dj corresponds to a design point, with each column

representing the value of a term (e.g., intercept, main effect or interaction) in the

meta-model at the corresponding design point (relative to dj). Suppose that there

are two dimensions in the problem, i.e., n+ = 2. A design matrix for a linear model

with K design points dj1, ...,djK would take the form of a (2 + 1)×K matrix

Dj =



1 (dj1 − dj)
T

1 (dj2 − dj)
T

...
...

1 (djK − dj)
T


=



1 (d1
j1 − d1

j) (d2
j1 − d2

j)

1 (d1
j2 − d1

j) (d2
j2 − d2

j)

...
...

...

1 (d1
jK − d1

j) (d2
jK − d2

j)


where dfjk is the planned delay for flight f at design point k.

For a quadratic model, the design matrix also includes columns for the interaction

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 85

and squared terms:

Dj =



1 (d1
j1 − d1

j) (d2
j1 − d2

j) (d1
j1 − d1

j)(d
2
j1 − d2

j) (d1
j1 − d1

j)
2 (d2

j1 − d2
j)

2

1 (d1
j2 − d1

j) (d2
j2 − d2

j) (d1
j2 − d1

j)(d
2
j2 − d2

j) (d1
j2 − d1

j)
2 (d2

j2 − d2
j)

2

...
...

...
...

...
...

1 (d1
jK − d1

j) (d2
jK − d2

j) (d1
jK − d1

j)(d
2
jK − d2

j) (d1
jK − d1

j)
2 (d2

jK − d2
j)

2


.

Due to the constraints on D, when the current solution is near the boundary,

the whole trust region cannot be guaranteed to be feasible. In such cases, it can

be difficult to achieve the desirable properties of balance and orthogonality obtained

in many experimental designs, such as 2k fractional factorial designs and Central

Composite Designs. A design with good properties is required to produce a good

gradient estimator. Firstly, this means that there must be more design points than

parameters in the model. For the linear model, the design must consist of at least K ≥

n+ +1 points, whereas a design to fit a quadratic model in Stage II must have at least

K ≥ 1 + 2n+ + n+(n+− 1)/2 points. There is a large literature on producing designs

for non-standard regions, with an array of optimality measures. One such measure

is D-optimality (Montgomery, 2009), which measures the generalised variance of the

model parameters:

D(Dj) = det((DT
j Dj)

−1). (4.3.6)

Minimising this quantity, or equivalently maximising det(DT
j Dj), minimises the gen-

eralised variance, and thus the confidence region volume of the model parameters. As

the aim of the design is to produce a good gradient estimator, this is an appropriate

objective for the design. Maximising det(DT
j Dj) is a large, highly non-linear and

non-convex optimisation problem which is difficult to solve using exact methods. As

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 86

an alternative, heuristics known as Exchange Algorithms were developed, in which

one design point at a time is swapped or moved until det(DT
j Dj) begins to converge

(Mitchell, 1974). That is, each design point is moved to maximise det(DT
j Dj) given

the position of all the other design points in Dj.

For a region of interest that can be considered as the Cartesian product of several

sets, Meyer and Nachtsheim (1995) introduced a further simplification, known as the

Coordinate-Exchange Algorithm (CEA). In the case of bound constraints, the use of

the `∞ norm to define the trust region produces an n+ dimensional hyper-box, which

is the Cartesian product of n+ intervals. Then, for each coordinate within the point

being exchanged, the optimisation of det(DT
j Dj) occurs separately. This reduces the

task of building a good design to a series of one dimensional optimisation problems.

The process is repeated until passing through all of the design points of Dj produces

less than εD% increase in det(DT
j Dj). Whilst this heuristic can get caught at poor

local optima, the speed of this procedure is important as it must be performed at each

iteration of the STRONG algorithm. For more details of the algorithm, see Section

6.3.

As well as the design itself, the number of replications at each design point, Np
j ,

must be chosen. For simplicity, this value is uniform across all design points djk in

the design Dj. Here there is a trade-off between taking Np
j to be large enough to

achieve a good parameter estimation and the computational effort. As this trade-off

may be different across the feasible region, we choose the value of Np
j by considering

the signal-to-noise ratio across the trust region. Let S2
j (d) be the sample variance of

the cost observations of solution d up until iteration j. To approximate the signal-

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 87

to-noise ratio we compare the difference in mean between the current solution dj and

the previous solution dj−1 with its estimated standard deviation:∣∣∣∣∣∣ ĝj−1(x,dj−1)− ĝj−1(x,dj)√
S2
j−1(dj−1)/Np

j + S2
j−1(dj)/N

p
j

∣∣∣∣∣∣ ≥ 2.

This is similar to the suggestion made in Equation (16) of Chang et al. (2013) for

STRONG. Thus, we select

Np
j =

⌈
4

S2
j−1(dj−1) + S2

j−1(dj)

(ĝj−1(x,dj−1)− ĝj−1(x,dj))
2

⌉
(4.3.7)

as long as Np
j ∈ {N

p
min, ..., N

p
max}. The upper limit Np

max is used due to the simulation

budget. If the previous iteration failed to produce a new solution, that is the proposed

solution from iteration j − 1, d∗j−1, is rejected, then dj = dj−1 and (4.3.7) would be

unbounded. To avoid this, we replace dj−1 in (4.3.7) with d∗j−1:

Np
j =

⌈
4

S2
j−1(d∗j−1) + S2

j−1(dj)(
ĝj−1(x,d∗j−1)− ĝj−1(x,dj)

)2

⌉
.

(ii) Model Estimators

Once the design has been created, Np
j replications are made at each design point

djk, k = 1, ..., K, and all observations are taken to produce the response vector Yj.

STRONG advocates the Ordinary Least Squares (OLS) estimator to estimate the

meta-model. In the linear model case, the OLS estimator of the gradient is

∇̂dgj(x,dj) = (DT
j Dj)

−1DT
j Yj. (4.3.8)

For the quadratic model, the design matrix, Dj, also includes columns for the inter-

action and quadratic terms. In this case the components of both ∇̂dgj(x,dj) and

Ĥj(x,dj) are estimated simultaneously using the OLS estimator.

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 88

(iii) Generalised Cauchy Step

The meta-model r̂j is used as the objective function for the sub-problem (4.3.4).

Rather than solving the sub-problem exactly, STRONG uses the Cauchy Point as

an approximate solution. This minimises r̂j along the maximum negative gradient

direction subject to the trust-region constraints. With the problem constraints (4.3.2),

this step is not guaranteed to be feasible, and truncating it will not guarantee a

sufficient decrease in r̂j (convergence of trust-region methods rely on achieving at least

a minimum reduction in r̂j). For the bound constrained problem, Conn et al. (1988)

propose an alternative, known as the Generalised Cauchy Point. This minimises the

meta-model along the projected-gradient path.

The projected-gradient path from the current solution dj is simply the projection

of the path created by travelling in the direction −∇̂dgj(x,dj) onto the feasible trust

region:

p(τ,dj) = PD∩Bj [dj − τ∇̂dgj(x,dj)] τ ≥ 0

= arg min
d∈D∩Bj

||d− (dj − τ∇̂dgj(x,dj))||2 τ ≥ 0. (4.3.9)

The path p(τ,dj) may have an end, denoted p(τm,dj). Then p(τ,dj) = p(τm,dj)

for all τ ≥ τm. Note that, as D ∩ Bj is always a hyper-box, p(τ,dj) is a sequence

of straight lines, with breaks defined by the points at which each variable leaves the

feasible trust region. A step along the projected-gradient path is:

sj(τ) = p(τ,dj)− dj. (4.3.10)

The Generalised Cauchy Step is the step sj(τ
∗) along the projected-gradient path

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 89

that minimises the meta-model r̂j along p(τ,dj), for some τ ∗ ∈ [0, τm]. This is a one-

dimensional optimisation problem. For ease of notation, we denote the Generalised

Cauchy Point as:

d∗j = dj + sj(τ
∗) = p(τ ∗,dj).

In the linear model, where travelling further gives you a greater reduction, τ ∗ = τm

and sj(τ
∗) is simply defined component-wise by

sj(τ
∗)f =


max{−∆j,−dfj } if ∇̂dgj(x,dj)

f > 0;

min{∆j, u
f − dfj } if ∇̂dgj(x,dj)

f < 0;

0 if ∇̂dgj(x,dj)
f = 0.

(4.3.11)

This is the exact solution to the sub-problem (4.3.4). Note that the final case of

∇̂dgj(x,dj)
f = 0 is a probability 0 event in the stochastic problem.

In the quadratic meta-model case, the value of the model along the projected-

gradient path, r̂j(dj +sj(τ)), is a piecewise quadratic function in one variable, τ . The

minimum within the feasible trust region is therefore well defined. The method for

finding τ ∗ is based on Algorithm 17.3.1 of Conn et al. (2000) (page 791), although we

do not stop at the first local minima, which may not be the smallest local minimum

of the function. Therefore, we search along each straight line in sequence for local

minima, by checking the curvature and gradient in each segment, and choose the

smallest of these (the reason for this will be clear in Section 6.6). For further details

of this algorithm, see Section 6.4.

The Generalised Cauchy Step guarantees a level of decrease in r̂j which we will

denote as ζj and will be defined precisely in Lemmas 6.6.2 and 6.6.3. This decrease

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 90

changes form for the linear and quadratic meta-models and depends on the size of the

trust region and the distance from first-order optimality. Guaranteeing this decrease

is what guarantees that trust-region methods converge (see, for example, Section 4.2

of Nocedal and Wright (2006)).

4.3.2 Acceptance of the Proposed Step

In STRONG, once a new solution has been proposed, the current solution, dj, and

proposed step to the Generalised Cauchy Point, d∗j , are simulated N c
j times. The

proposal is only accepted if it passes two tests based on the N c
j observations. If the

signal-to-noise ratio is small, a larger sample size should be used to improve the perfor-

mance estimates. Furthermore, Chang et al. (2013) suggest that N c
j should be larger

than Np
j and have a minimum size. Thus, we choose to take N c

j = min{2Np
j , N

c
min}.

Ratio Comparison Test

In any trust-region optimisation procedure, a proposed solution, d∗j , is only accepted if

the actual improvement obtained is at least a pre-defined positive fraction, η0 > 0, of

the reduction predicted by the meta-model. The value of η0 determines the willingness

to accept a marginal improvement; a larger η0 indicates that the user requires more

certainty that d∗j provides a reduction. It can be chosen based on the values used

by Chang et al. (2013), η0=0.01, or the deterministic approach (Nocedal and Wright

(2006) take η0 ∈ [0, 1/4)). This is a measure of how much trust can be put in the

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 91

model. In STRONG, the following ratio is considered:

ρj :=
ĝj(x,dj)− ĝj(x,d∗j)
r̂j(dj)− r̂j(d∗j)

. (4.3.12)

We must have ρj > η0 before we consider accepting the proposed point. This is called

the Ratio Comparison (RC) test. In deterministic trust-region approaches, the closer

ρj is to 1, the better the prediction of g(x,d∗j) is, giving a firm indication that the

meta-model provides a good fit. In STRONG, due to sampling error ρj is only an

estimated quantity. So whilst it does give an indication of model fit, this is subject

to uncertainty.

Sufficient Reduction Test

To account for the estimation of the objective function via the sample average of sim-

ulation replications, in addition to the Ratio Comparison test, STRONG performs a

Sufficient Reduction (SR) hypothesis test. This test is only used if the Ratio Compar-

ison test is passed and looks at whether there is statistical evidence that the solution

d∗j does give a significant drop in the mean:

H0 : g(x,dj)− g(x,d∗j) ≤ η2
0ζj versus H1 : g(x,dj)− g(x,d∗j) > η2

0ζj.

The quantity ζj is linked to the reduction guaranteed by the Generalised Cauchy

Point. (The reason why η0 is squared is in the proof of Lemma 6.6.6 in Section 6.6.3).

To test the hypothesis, STRONG uses the Welch statistic (Welch, 1938)

T ∗ =
ĝj(x,dj)− ĝj(x,d∗j)− η2

0ζj

Sj
, (4.3.13)

an approximate solution to the Behrens-Fisher problem of testing for different means

of two Normal distributions with unknown and heterogeneous variances. S2
j is a

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 92

pooled variance

S2
j =

S2
j (dj)

Nj

+
S2
j (d

∗
j)

N c
j

.

where Nj ≥ N c
j is the total number of observations of dj. Assuming that the sim-

ulation output is Normally distributed, T ∗ approximately follows a t−distribution

with

φ̂ =

⌈
S4
j

[
(S2

j (dj)/Nj)
2

Nj − 1
+

(S2
j (d

∗
j)/N

c
j)

2

N c
j − 1

]−1
⌉

degrees of freedom. The significance level of the hypothesis test, αj, decreases with

every iteration. To ensure convergence of STRONG, it must decrease quickly enough

to satisfy
∞∑
j=1

αj <∞.

In the computational experiments of Chang et al. (2013) αj = α0 × 0.98j. The

null hypothesis is rejected if T ∗ exceeds the critical value. In this case dj+1 = d∗j .

Otherwise dj+1 = dj.

Updating the Trust-Region Size

The acceptance of the proposed solution suggests the meta-model is providing a rea-

sonable local fit to the objective function and can be trusted over the trust region.

Alternatively, rejecting d∗j is an indication that r̂j is a poor approximation over the

current trust-region size. Trust-region algorithms, including STRONG, react to this

information by changing the size of the trust region, ∆j. If either the RC test or SR

test is failed, the trust region shrinks, ∆j+1 = γ0∆j with γ0 ∈ (0, 1), to improve the

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 93

linear or quadratic approximation to g. If d∗j is accepted and the meta-model is a good

fit, indicated by ρj > η1 > η0, the trust region is expanded, ∆j+1 = min{γ1∆j,∆max},

γ1 > 1. This allows larger steps to be taken if possible. On the other hand, if

ρj ∈ (η0, η1), the model is providing an adequate fit, so the trust-region size is un-

changed.

If a point proposed by the quadratic model is rejected, STRONG uses a mechanism

called the inner loop to ensure that a new solution is found (if not currently at a local

optimal) without ∆j → 0. Details of this are given in the next section.

4.3.3 The Inner Loop

The inner loop is the primary mechanism for STRONG’s convergence. If there is an

unsuccessful iteration using a quadratic meta-model (either the RC test or the SR

test is failed) STRONG begins its inner loop.

At each iteration i of the inner loop the trust-region size, ∆ji , is updated and new

design points are added to the design. All previous points are kept, and the design

matrix is augmented. The sample size for both the new design points and for the

acceptance tests grow with each iteration:

Nd
ji+1

=

⌈
γ−4

0

i∑
k=1

Nd
jk

⌉
(4.3.14)

and

N c
ji+1

=
⌈
(γ−4

0 + 1)N c
ji

⌉
. (4.3.15)

This reduces the sampling error in the SR test, the variance in the OLS gradient

estimator and also reduces the bias coming from the quadratic assumption, by effec-

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 94

tively giving more weight to design points that are closer to dj where the error in

the quadratic meta-model is smaller. As ∆ji decreases towards 0 and the number of

observations increase, the OLS estimator will improve, increasing the ability of the

algorithm to find a better solution.

The Generalised Cauchy Point for the new model, r̂ji , is found and N c
ji

replications

are made of the proposed solution d∗ji = dj + sji(τ
∗
i) and dj. The trust-region size,

∆ji+1
, is updated just using the value of ρji from Ratio Comparison test.

This process repeats until the proposed solution passes the Ratio Comparison test

and the Sufficient Reduction test. At this point, d∗ji is accepted as the new solution,

the inner loop ends and the trust region returns to its size before the inner loop was

initiated, ∆j+1 = ∆j.

4.3.4 Criticality Measure

STRONG is an algorithm for unconstrained optimisation. Thus, it searches for a

local stationary point, where ∇dg(x,d) = 0. Here ||∇dg(x,d)||2 acts as a first-order

criticality measure. In constrained optimisation, the notion of optimality must be

extended beyond that of a stationary point, as an optimal solution may lie on the

boundary of D without being a stationary point of g. The following quantity was

introduced by Conn et al. (1993) as an alternative criticality measure:

χ(d) :=
∣∣∣min

s

{
∇dg(x,d)T s : d + s ∈ D, ||s||2 ≤ 1

}∣∣∣ d ∈ D.

This can be interpreted as the best possible improvement in a linear model of g at d

on a unit ball whilst remaining feasible. χ(d) will equal 0 when d is either a stationary

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 95

point, ||∇dg(x,d)||2 = 0, or on the boundary of D and the best possible step is s = 0

(the negative gradient is pointing directly out ofD). In the unconstrained case χ(d) re-

duces to ||∇dg(x,d)||2 as the minimum is achieved by s = −∇dg(x,d)/||∇dg(x,d)||2.

In the simulation optimisation setting, the concept of χ(d) remains of value, al-

though can only be estimated. At iteration j we therefore propose:

χ̂j(dj) :=
∣∣∣min

s

{
∇̂dgj(x,dj)

T s : dj + s ∈ D, ||s||2 ≤ 1
}∣∣∣ .

For mathematical convenience within the theoretical treatment of the algorithm in

Chapter 6, we will work with

π̂j(dj) := min{χ̂j(dj), 1}. (4.3.16)

For more details on these measures, see Section 6.2.

4.3.5 Comparison with No Delay

The algorithm described in Sections 4.3.1 to 4.3.3 continues until either π̂j(dj) is

below a tolerance ε or the number of simulation calls has exceeded some maximum

(an iteration that begins before this limit is allowed to complete) and produces a final

solution (x,d∗). Due to the discretisation of time in the IP, some delays may have

been added that were not necessary. Thus (x,d∗) is compared with (x,0) (using N c
0

observations), that is the choice to not make any planned delays under the aircraft

allocation x. As in the SR test, we use a one-sided Welch’s t-test to compare:

H0 : g(x,0) ≥ g(x,d∗), H1 : g(x,0) < g(x,d∗).

If (x,0) is found to be an improvement, it is set as the final solution. Potentially a

better approach would be to test individual delays separately. However, this would

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 96

require a Ranking & Selection procedure to ensure sufficient confidence in selecting

the best.

4.3.6 Algorithm Details

The main framework of the proposed algorithm is in Algorithm 4.1. Details of Stage

I and Stage II iterations are found in Algorithms 4.2 and 4.3 respectively. The inner

loop mechanism is described in Algorithm 4.4.

Once this optimisation has been completed, we are left with a set of improved

solutions, each one originating from a solution generated by the IP. The OCC decision

makers can then consider each of these options in combination with crew and passenger

recovery to produce a recovery plan that can be submitted to the relevant authorities.

4.4 Considerations for Practical Use

This section discusses potential improvements that could be made to the simulation

and the simulation optimisation algorithm. The focus is on improved estimation in

the simulation as well as computational factors that could increase the speed of the

optimisation.

4.4.1 Simulation Model

There are a number of aspects of the simulation model that are not representative of

the real processes. Whilst we believe this should not affect the performance of the

simulation optimisation algorithm proposed and that many of the key system features

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 97

Algorithm 4.1 Main Framework Algorithm

1: Set j = 0. Select constants 0 ≤ η0 < 1/4 ≤ η1 < 1, 0 < γ0 < 1 < γ1, α0 ∈ (0, 1),

∆̃, and N c
0 . Select stopping criterion, ε, for criticality measure. Select initial

solution, (x,d0) from IP solution, and ∆0 > ∆̃.

2: repeat

3: if ∆j > ∆̃ then

4: Go to Algorithm 4.2 for Stage I linear model

5: else

6: Go to Algorithm 4.3 for Stage II quadratic model

7: end if

8: αj+1 ← αj × 0.98

9: j ← j + 1

10: until reached maximum number of simulation replications or π̂j(dj) < ε

11: Compare (x,dj) with (x,0) using Welch’s t-test.

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 98

Algorithm 4.2 Stage I - Linear Model

1: Build design matrix Dj using CEA

2: Perform Np
j observations at each design point

3: Use equation (4.3.8) to estimate ∇̂dgj(x,dj)

4: Find the Generalised Cauchy Step, sj(τ
∗), from (4.3.11)

5: Take N c
j replications of dj and d∗j

6: Evaluate the RC ρj using (4.3.12)

7: Conduct the SR Test with Type I error αj using equation (4.3.13).

8: if ρj < η0 or SR Test is failed then

9: dj+1 ← dj and ∆j+1 ← γ0∆j

10: else if η0 ≤ ρj < η1 and SR Test is passed then

11: dj+1 ← d∗j and ∆j+1 ← ∆j

12: else if ρj ≥ η1 and SR Test is passed then

13: dj+1 ← d∗j and ∆j+1 ← γ1∆j

14: end if

15: Return to Algorithm 4.1

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 99

Algorithm 4.3 Stage II - Quadratic Model

1: Build design matrix Dj using CEA

2: Perform Np
j observations at each design point

3: Use equation (4.3.8) to estimate ∇̂dgj(x,dj) and Ĥj(x,dj)

4: Find the Generalised Cauchy Step, sj(τ
∗), of the sub-problem using Algorithm

6.3

5: Take N c
j replications of dj and d∗j

6: Evaluate the RC ρj using (4.3.12).

7: Conduct the SR Test with Type I error αj using equation (4.3.13).

8: if ρj < η0 or SR Test is failed then

9: Go to Algorithm 4.4 for the Inner Loop

10: else if η0 ≤ ρj < η1 and SR Test is passed then

11: dj+1 ← d∗j and ∆j+1 ← ∆j

12: else if ρj ≥ η1 and SR Test is passed then

13: dj+1 ← d∗j and ∆j+1 ← γ1∆j

14: end if

15: Return to Algorithm 4.1

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 100

Algorithm 4.4 Inner Loop

1: Set ĝj1(x,dj) = ĝj(x,dj), ∆j1 = γ0∆j, d∗ = dj, Dj1 = Dj and i = 1.

2: repeat

3: Augment the design matrix Dji using an additional, smaller design with Np
ji

observations, as in Section 4.3.3

4: Use equation (4.3.8) to estimate ∇̂dgji(x,dj) and Ĥji(x,dj)

5: Find the Generalised Cauchy Step, sji(τ
∗
i), of the sub-problem

6: Take N c
ji

replications of dj and d∗ji

7: Evaluate the RC ρji using (4.3.12)

8: if ρji < η0 then

9: ∆ji+1
← γ0∆ji

10: else

11: Conduct the SR Test with Type I error αj using equation (4.3.13).

12: if SR is passed then

13: d∗ ← d∗ji

14: else if ρji ≥ η1 then

15: ∆ji+1
← γ1∆ji

16: else

17: ∆ji+1
← ∆ji

18: end if

19: end if

20: i← i+ 1

21: until d∗ 6= dj or maximum simulation replications reached

22: dj+1 ← d∗, ∆j+1 ← ∆j and return to Algorithm 4.3

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 101

are captured in the simulation, better performance estimation could be obtained by

improving the model. The assumption of two runways at each airport, their indepen-

dence and fixed service times for all aircraft does not accurately reflect the congestion

levels at all airports. We have also assumed a static deviation-from-schedule distri-

bution, whereas this is likely to depend on the time of day. Using real-time data

sources such as Flightradar24 AB (2017) to monitor other aircraft may give a better

estimate of arrival times to airports. Ideally, an airline would want to model the

airport operations in more detail, considering many of the regulations described in

ICAO (2016).

Access to specific data would allow a big improvement in the simulation. An

airline would have data to improve upon the turn time, repair time and time to failure

distributions in the model. Airlines also have access to detailed weather forecasts and

models of how these may effect airport congestion and flight durations. An airline

wishing to put the method proposed here into practice would have access to this data,

allowing a more tailored model and enabling a better estimation of delays and costs

associated with a rescheduling option.

4.4.2 Complexity of the Simulation Optimisation

Running the simulation itself is the most time consuming aspect of the simulation

optimisation. In particular, the main computational burden arises in performing the

replications of design points to fit the meta-models. The size of the linear models

is linear in n+. But the quadratic meta-models contain 2n+ + n+(n+ − 1)/2 + 1

parameters, and so needs at least this many design points to build the meta-model.

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 102

The inner-loop of the algorithm is also very expensive, as the number of replications

needed at each design point grows exponentially with each inner-loop. This means

that the choice of threshold trust-region size for switching between Stages I and II,

∆̃, has a large impact on the convergence. If ∆̃ is too large, the inner loop could

be entered often, increasing the time to run an iteration, as well as increasing the

bias in the quadratic meta-model. On the other hand, a small ∆̃ can mean several

inadequate linear meta-models are built, using much of the simulation budget, before

the necessary quadratic is used. In our experimental results, it was rare for the inner-

loop to be used, which could be due to the choice of algorithm parameters, particularly

the simulation budget. We therefore have limited experience of the efficacy of the inner

loop, which we suggest be investigated in future.

In reality, much of the algorithm could be run in parallel. This is particularly true

for the experimental design. Once the design has been specified, each design point

could be simulated multiple times on different processors. If this was the case, the

primary bottleneck in the algorithm would be in the Coordinate-Exchange Algorithm.

In certain situations this could be removed and replaced with a standard design de-

veloped offline. Examples of this situation could be when the trust region is entirely

feasible or when some constraints are binding and others do not impact the trust re-

gion. Using many random starts or the perturbation approach of Palhazi Cuervo et al.

(2016) could lead to better designs by reducing the tendency of Coordinate-Exchange

Algorithms to converge to local optima.

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 103

4.5 Conclusions and Further Work

This chapter presents the simulation optimisation component of the proposed multi-

fidelity modelling approach to the Aircraft Recovery Problem. In conjunction with

the IP model from Chapter 3, the algorithm allows for high-fidelity simulations to

be used to evaluate solutions in a highly complex environment whilst balancing this

with the combinatorial constraints and computational issues associated with simula-

tion optimisation. Chapter 5 presents some experimental results from the proposed

method.

Any extensions made to the deterministic model, such as the non-linear delay costs

and changes in cruise speed described in Section 3.5.3, could easily be incorporated

into the simulation model.

The simulation optimisation algorithm presented involves an extension of the trust-

region based method, STRONG, to enable it to handle bound constrained problems.

This extension uses the projected-gradient step to allow the proposed solution to al-

ways remain feasible. This has necessitated using a different optimality measure. We

have also incorporated methods for building experimental designs into the simulation

optimisation algorithm. This is a step towards addressing more general constrained

simulation optimisation problems. Both projected-gradient steps and Coordinate-

Exchange Algorithms have potential to improve the way algorithms deal with deter-

ministic convex constraints within simulation optimisation.

Part of the nature of the ARP is that it is a reoccurring problem for airlines. The

use of symbiotic simulation as discussed by Aydt et al. (2009), in which the model

CHAPTER 4. SIMULATION OPTIMISATION FOR THE ARP 104

is allowed to adapt to new information from the system it is modelling, could have

great value in the area of airlines operation. However, this is likely to mostly include

changes in the initial conditions and system state, rather than adaptations of the

processes and distributions themselves. Future work could include considering how

the repeated nature of the problem could be exploited to improve both the models and

the optimisation process in a symbiotic manner. Symbiotic simulation could also be

used to give new information on the same problem, allowing the disruption to evolve

in time. For example, if there were changes to the maintenance status of aircraft, this

could potentially be used to improve the decisions based on the latest information.

This has not been considered within this thesis.

Chapter 5

Computational Results for the

Multi-Fidelity ARP Approach

5.1 Introduction

This chapter investigates the performance of the multi-fidelity solution method pro-

posed in Chapters 3 and 4. Three example problems of varying size are described in

Section 5.2. Section 5.3 demonstrates how the system could work in practice, using

Problem 1. As the simulation optimisation results depend on the initial seed of the

algorithm, the algorithm’s behaviour cannot be evaluated based on a single sample

path. Therefore, Section 5.4 discusses more rigorous empirical evaluation on all three

problems by performing macro-replications of the optimisation and evaluating the

solutions found. A small study of the effect of some parameters is presented in Sec-

tion 5.5. Section 5.6 briefly presents results from other problems tackled, followed by

conclusions in Section 5.7.

105

CHAPTER 5. COMPUTATIONAL RESULTS 106

Some parameters remain fixed across all experiments, unless otherwise stated.

These values are either influenced by the airline system or the values used in the

evaluation of STRONG in Chang et al. (2013) and are given in Table 5.1.1.

5.2 Problem Descriptions

The following examples are based on flight schedules extracted from the open source

dataset Flightradar24 AB (2017) obtained using the Python package pyflightdata

(Allamraju, 2017). These three problems were chosen to test the algorithm on different

but common types of disruption and different sized fleets. The original schedules and

other input data for these three problems (and those described in Section 5.6) can be

found in Rhodes-Leader (2020) and are also available on request from the author.

5.2.1 Problem 1: Small Fleet with a Single Aircraft Grounded

The first problem consists of a homogeneous fleet of 8 aircraft with no spare aircraft

operating over a hub-and-spoke network of 15 airports in Western Europe. The hubs

of the airline are Manchester Airport (MAN) and Birmingham Airport (BHX) in the

U.K., where all aircraft are meant to spend the night. At the beginning of the day,

it is discovered that one aircraft at BHX, A1, will not be fit to fly its first flight. The

expected ready time is 3 hours after that, at 8:50. The OCC must now reschedule

the day of operations, involving 54 short-haul flights using the available aircraft. Its

options include delaying flights, cancelling flights and exchanging aircraft.

CHAPTER 5. COMPUTATIONAL RESULTS 107

Table 5.1.1: Parameter values across all experiments.

Parameter Symbol Value

Delay cost per minute cd AC50

Cost per minute of exceeding planned delay cp AC20

Non-passenger cancellation cost AC910

Compensation per passenger: 2 hour departure delay AC10

Compensation per passenger: 3 hour arrival delay AC250

Compensation per passenger: cancellation AC250

Maximum number of allowable tail number exchanges 50

Maximum observations in simulation optimisation Nmax 2000

Minimum replications at each design point Np
min 5

Minimum replications for acceptance tests N c
min 20

Replications for comparison with zero delay option N c
0 50

Initial trust-region radius (minutes) ∆0 15

Threshold trust-region radius (minutes) ∆̃ 10

Trust region shrinkage factor γ0 0.9

Trust region expansion factor γ1 1.11

Acceptance fraction for RC test η0 0.01

Acceptance fraction for expanding trust region η1 0.3

Significance level of first SR test α0 0.25

Percentage increase stopping criterion for CEA εD 1%

CHAPTER 5. COMPUTATIONAL RESULTS 108

5.2.2 Problem 2: Large Fleet with a Single Aircraft Grounded

The second problem considers a fleet of 125 A319 aircraft over 82 western European

airports. There are several hub airports. A typical day consists of over 700 flights.

An aircraft, A2, lands at 10am at Amsterdam Airport Schiphol (AMS) from its hub

Luton Airport (LTN), and a fault is discovered which will take several hours to fix. As

AMS is another hub of the airline, there are options to exchange the aircraft assigned

to future flights, but A2 is due back at LTN for overnight maintenance. There are

503 flights left in the operating day, which the OCC must now reschedule.

5.2.3 Problem 3: Large Fleet with Multiple Aircraft Grounded

The third problem consists of the same fleet as the second problem. This time, bad

weather at London Gatwick Airport (LGW) forces the airport to reduce its runway

capacities by 80% between 9am and 11am, leading to high congestion levels. This is a

hub airport for the fleet, and the reduced capacity will affect 11 aircraft whose flights

arrive at or depart from LGW during this period, which could have consequences for

subsequent flights. Whilst there is little that can be done about the flights directly

delayed by the weather, other flights could be rearranged to reduce the impact of the

disruption. There are now 564 flights left in the day.

5.3 Demonstration

To demonstrate the algorithm, it is applied to Problem 1 and the results are compared

with the ‘No Action’ option. ‘No Action’ does not make any changes to the aircraft

CHAPTER 5. COMPUTATIONAL RESULTS 109

allocation, the airline simply waits for A1 to be repaired and become available to fly.

Whilst this is a very unlikely option to take, it provides a benchmark for comparison as

a baseline option. The minimum time between flights allowed in the original schedule

is 30 minutes, though this includes some slack. After some experimentation, a more

optimistic turn time of tmin = 25 minutes was selected for the IP, attempting to

exploit the slack built into the system. A time discretisation of m = 5 minutes and a

maximum delay of M = 180 minutes are used. This set of parameters implies 1975

flight delay arcs and 1435 ground arcs. The IP is set up and solved using the algorithm

described in Section 3.4, with a maximum of 600 seconds used by the Gurobi Solver,

with 8 processors available. This process finds five solutions, with different aircraft

allocations and varying amounts of delay. Between four and six flights are delayed

(so the simulation optimisation will have n+= 4, 5 or 6 variables) and no flights are

cancelled. The IP performance measures for each of the solutions are shown in Table

5.3.1. The first five solutions are found quickly, each within 30 seconds. The next set

of constraints chosen leads to an infeasible problem, and the next is not solved within

the time limit. In solution 5, one flight is delayed beyond 2 hours and so includes

some passenger compensation. No other flights require compensation meaning that

the cost and delay objectives are closely correlated for all of these solutions.

Figure 5.3.1 shows the results of each stage of the process, using two of the ob-

jectives, cost and tail number exchanges. Each solution has a corresponding colour.

The triangles represent the solutions found by the IP and evaluated within the IP.

This does not account for any stochastic elements of the system. The Pareto frontier

between cost and reducing the number of schedule alterations is clear, as expected.

CHAPTER 5. COMPUTATIONAL RESULTS 110

Table 5.3.1: IP solutions for Problem 1. Maximum allowable runtime was 600 seconds.

Solution Cost Tail Number Delay Cancellations Solution Time

(AC1000) Exchanges (minutes) (seconds)

1 15.00 30 300 0 4.23

2 15.00 15 300 0 15.67

3 15.75 12 315 0 12.61

4 16.50 8 330 0 25.66

5 25.25 4 495 0 18.71

These solutions are evaluated using the simulation to account for the uncertainty.

Each solution was simulated 1000 times using Common Random Numbers (CRN).

The mean is represented by the squares, with the interval going up to the empirical

0.95 quantile. The IP clearly underestimates the cost, which is not surprising as it

removes stochasticity from the system. However, the ordering is very similar, helping

to justify a multi-fidelity modelling approach.

Each of the solutions found by the IP is used as a starting point for the simulation

optimisation process. Each starting point is simulated N c
min times to provide an

initial estimate of its mean and variance, before the algorithm begins. The linear

models are built using n+ + bn+/2c + 1 design points and the quadratic models use

2n+ + bn+/2c+ n+(n+ − 1)/2 + 1 design points. The circles in Figure 5.3.1 show the

means of the resulting solutions, with the interval again going up to the empirical

0.95 quantile. They are shifted horizontally for visual clarity, the aircraft allocations

CHAPTER 5. COMPUTATIONAL RESULTS 111

Figure 5.3.1: Aircraft exchanges against cost estimates under different models for each

solution. Interval is from mean to the 0.95 quantile.

remain the same. We see a substantial decrease in the mean as hoped for, though an

increase in standard deviation also emerges.

Table 5.3.2 provides more detail on the performance of the solutions before and

after the simulation optimisation. This confirms the decrease in mean, but increase

in standard deviation. Furthermore, there is an improvement in the 0.9 quantile

suggesting that the solutions are robust, though the tails appear to be longer, and the

0.95 quantiles are not consistently improved. The final column shows an estimate of

the probability that the solution (x,d∗) will lead to a lower cost than (x,d0), PI(d
∗).

As we have used CRN, the replications can be paired, as the same scenario is faced by

both solutions. Let Gi(x,d0) and Gi(x,d
∗) be the cost observation of the solutions

(x,d0) and (x,d∗) using the ith set of CRN, respectively. Then we can estimate PI(d
∗)

CHAPTER 5. COMPUTATIONAL RESULTS 112

Table 5.3.2: The estimated means, ĝ(x,d), with 95% confidence interval halfwidths,

standard deviations, σ̂, 0.9 and 0.95 quantiles, q̂0.9 and q̂0.95, and the probability of

improved cost P̂I(d
∗), for the cost (AC1000) performance for the solutions.

Solution Initial Solution Improved Solution

ĝ(x,d0) σ̂ q̂0.9 q̂0.95 ĝ(x,d∗) σ̂ q̂0.9 q̂0.95 P̂I(d
∗)

No Action 37.3 (0.97) 15.7 58.9 66.0

1 18.4 (0.18) 2.89 21.0 23.7 13.5 (0.29) 4.60 19.0 22.6 0.949

2 18.5 (0.26) 4.16 21.0 23.5 13.7 (0.33) 5.40 19.2 22.9 0.940

3 19.3 (0.19) 3.12 22.1 24.6 13.4 (0.38) 6.07 21.9 25.6 0.874

4 19.6 (0.19) 3.05 22.1 24.4 13.7 (0.36) 5.87 21.8 25.5 0.887

5 28.7 (0.18) 2.96 31.1 33.6 19.8 (0.43) 6.86 29.2 33.6 0.919

by

P̂I(d
∗) =

1

1000

1000∑
i=1

I (Gi(x,d
∗) < Gi(x,d0)) , (5.3.1)

where I(·) is the indicator function. The results suggest that there is improvement in

over 85% of the replications, which adds evidence that the solutions keep some level

of robustness but with a longer tail than the initial solutions (this will be discussed

further in Section 5.4.1).

The Empirical Cumulative Distribution Functions (ECDFs) of the initial and re-

sulting solutions based on the 1000 CRN replications are shown in Figure 5.3.2. The

IP solutions appear quite robust across the 1000 replications, as shown by the ini-

tial steep gradients. This suggests that the planned delays leave enough slack in the

CHAPTER 5. COMPUTATIONAL RESULTS 113

Figure 5.3.2: ECDFs for Problem 1, based on 1000 CRN replications. Left plot shows

solutions from the IP, the right shows solutions from the simulation optimisation.

Both are compared to taking no action at all. Colours match those in Figure 5.3.1.

new schedule to absorb most of the variability in turn times and repair time without

much extra cost. This slack also prevents earlier take-off when possible, which the

simulation optimisation appears to exploit. An ideal set of results for the simulation

optimisation would see each ECDF moving to the left (reducing the mean) and having

a steeper gradient (reducing the standard deviation) when compared to the ECDF of

the corresponding IP solution. The results suggest that the simulation optimisation

process improves the mean performance. However, increases in standard deviation

are also seen. All solutions show an improvement in mean and standard deviation

over the ‘No Action’ response, showing that improvements can be made using this

solution method.

As the solutions faced the same 1000 scenarios (via CRN), the distributions of

(Gi(x,d
∗)−Gi(x,d0)) can be estimated and are shown in Figure 5.3.3 for each plan.

CHAPTER 5. COMPUTATIONAL RESULTS 114

Figure 5.3.3: ECDFs of the improvement over the IP solution for Problem 1, based

on 1000 CRN replications. Colours match those in Figure 5.3.1.

This gives a more comprehensive view than the value of P̂I(d
∗) (which is the value of

the ECDF at 0). This emphasises the improvement in Plan 5 particularly. However,

there is still a probability that the solution could perform worse than the original IP

solution, though the tail of the distribution is not too long.

Tables 5.3.1 and 5.3.2 show that different solutions offer different characteristics.

Solution 3 has the lowest mean but is quite variable. However, solution 1 has the lowest

standard deviation and the lowest 0.95 quantile but requires the largest number of

changes to the schedule. Solution 5 offers far fewer schedule changes but is the most

variable. Different airlines may have differing priorities on this trade-off, and will

also take other considerations into account, such as the impact on crew. The use of

a symbiotic simulation in this setting would allow this trade-off to be adapted for

different decisions to reflect individual circumstances.

CHAPTER 5. COMPUTATIONAL RESULTS 115

5.4 Repeated Experiment Results

Whilst the solution method for the IP is deterministic, the simulation optimisation is

based on the random output of the simulation. Therefore, the final solution obtained

and implemented by the airline is determined by the random number generator seed

used at the beginning of the algorithm. To account for this in the evaluation of the

proposed methodology, macro-replications of the whole process have been performed.

One method used to evaluate STRONG, and other simulation optimisation algo-

rithms, is to test them on analytical functions with added noise, then look at the

average optimality gap across macro-replications, i.e., a relative distance from the

true optimal value of a problem (Chang et al., 2013). This requires both being able

to evaluate the objective function exactly and knowing what the optimal solution is,

which is not possible in many real simulation optimisation problems. Firstly, there is

no way to guarantee finding the exact optimal solution due to the many challenges of

simulation optimisation. For this reason, rather than focussing on the distance from

optimality, most of the comparisons reported in this chapter are with either taking

no action or the starting solution given by the IP. Thus, the focus is on the possible

improvement made using the simulation optimisation approach. Secondly, we can

only estimate the performance of any solution via simulation. Each solution resulting

from the simulation optimisation is simulated 1000 times using CRN so that, as much

as possible, each solution has faced the same conditions when we do the comparison.

With each aircraft given its own random number stream, each aircraft’s individual

circumstances should be well aligned. This achieved correlations across solutions of

CHAPTER 5. COMPUTATIONAL RESULTS 116

over 0.8, and normally over 0.95 and removes a substantial part of the uncertainty

involved.

In addition we go beyond just reporting the ‘expected’ value of cost (as in the

optimality gap) as the ‘expected’ cost will almost certainly not occur in reality. The

real circumstances under which the schedule is operating may be better or worse than

predicted. As this is a one-time-only decision, it is important to see the full range of

possible outcomes and demonstrate that our solutions are robust to operating under

different revelations of the future, rather than focussing on the mean. For a traffic

signalling problem, Osorio and Bierlaire (2013) present results using ECDFs of the

key performance measure, comparing them to the ECDF of the starting point (as we

have done in Figure 5.3.2). When dealing with 10 distinct solutions from 10 macro-

replications, the authors combine all solutions into one ECDF. For larger numbers

of macro-replications, this can hide individual results, whilst plotting each solution’s

ECDF as separate lines on the same plot may be unclear. Instead, we summarise

the cost distribution for each solution by reporting histograms of the mean and 0.95

quantile from each solution, based on the CRN replications.

Each of the next three subsections (5.4.1 to 5.4.3) refers to one of the problems

introduced in Section 5.2. For each, the IP has been solved in the manner described

in Section 3.4 to obtain a set of solutions with different priorities over the objectives.

For each solution in each set, either 50 or 100 macro-replications of the simulation

optimisation described in Section 4.3 starting at that IP solution have been run, each

with a different starting seed for the random number generator to produce a (possibly

unique) solution. So for each IP solution, we obtain a set of possible ‘improved

CHAPTER 5. COMPUTATIONAL RESULTS 117

solutions’ that could have resulted from a single run. Each of these has been simulated

1000 times to obtain an empirical distribution of how that solution could perform.

We present the histograms of the mean and 0.95 quantile across each of the solutions,

and compare this to the ‘No Action’ solution and the starting solution from the IP.

5.4.1 Problem 1

The results from the IP are discussed in Section 5.3, and are shown in Table 5.3.1. One

hundred macro-replications of the simulation optimisation process were performed for

each of the starting solutions in Table 5.3.1. Each of the resulting solutions were

simulated 1000 times using CRN.

For each of the five starting solutions, Figures 5.4.1 and 5.4.2 show histograms of

the means and 0.95 quantiles of the empirical distributions of cost across the set of

solutions obtained when using Np
max = 50. The plots show that all of the solutions

obtained have a substantially smaller mean cost than the corresponding IP solution,

suggesting that the algorithm is achieving its aim. However, the same is not true for

the 0.95 quantile of cost, as observed in Figure 5.4.2. Here the simulation optimisation

solutions only show improvements for 77% of the cases at best (Plan 1), and in 0%

of the cases at worst (Plan 4). Our tentative explanation behind this is that the

simulation optimisation tends to try to decrease the planned delay, df , as this leads

to a chance of an earlier departure time if the aircraft is ready. However, in doing

so, two increases in variability occur. The first is that the actual observed delay, Df ,

becomes more likely to exceed df . This on its own adds to the variance of the cost.

This is compounded by a second factor, which is the penalty term cp(D
f − df)+ in

CHAPTER 5. COMPUTATIONAL RESULTS 118

Equation (4.2.3). This part of the delay is therefore scaled by an increased value,

cd + cp, which also increases the variance of the cost.

The negative relationship between the mean and the 0.95 quantile is demonstrated

in Figure 5.4.3, which plots each solution’s mean against its 0.95 quantile.

5.4.2 Problem 2

The IP assumes that aircraft A2 will be ready by 16:10. The whole problem, with a

maximum allowable delay ofM = 600 minutes, and an interval size ofm = 30 minutes,

has 7003 flight delay arcs, 5605 ground arcs, 1,402,411 constraints and 1,576,503

variables. This took 782.25 seconds to solve for the initial solution, when 20 processors

were available to the Gurobi Solver. This had a cost of AC10,500, a delay of 210 minutes

and 30 tail number exchanges. As is described later, a finer resolution leads to better

solutions, but this would increase the problem size considerably. For this reason, we

considered the problem reduction heuristic mentioned in Section 3.5.2. This reduces

the fleet size to 48 aircraft and the flight programme to 198 flights, allowing the integer

programming problem to be solved relatively quickly.

Using a maximum allowable delay of M = 600 minutes and an interval size m = 15

minutes the reduced problem has 5448 flight delay arcs and 3913 ground arcs. The

minimum turn time used in the IP is tmin = 20 minutes. This is the smallest turn time

that appears in the schedule and so does not account for refuelling at hub airports.

The solutions from a 900 second run with 20 processors available are shown in Table

5.4.1. It is clear from the table that it takes a number of iterations before the first

Pareto optimal solution is found, given by solution 8. Before this, the delay and cost

CHAPTER 5. COMPUTATIONAL RESULTS 119

Figure 5.4.1: Problem 1 histograms of the mean of each solution from the simulation

optimisation, using Np
max = 50. Each plot corresponds to one of the IP solutions. The

red line is the mean of the starting solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 120

Figure 5.4.2: Problem 1 histograms of the 0.95 quantile of each solution from the

simulation optimisation, using Np
max = 50. Each plot corresponds to one of the IP

solutions. The red line is the mean of the starting solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 121

Figure 5.4.3: Mean against 0.95 quantile of solutions found, using Np
max = 50, for each

plan from the IP in Problem 1. Red lines indicate the performance of the starting

solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 122

objectives remain unchanged from the initial solution whilst the algorithm tries to

reduce the number of tail number exchanges by returning more undisrupted aircraft

to their original flights. This is a common theme in larger problems, so further work

is required to find the Pareto frontier sooner.

The simulation takes into account that refuelling an aircraft leads to higher turn

times between some flights. The grounded aircraft’s repair time comes from a Γ(111, 3)

distribution, so that the probability of finishing this by 15:50 is approximately 0.7,

giving 20 minutes to be ready for the IP assumed ready time. Turn time distributions

are built around the typical times quoted in Airbus (2019).

The simulation optimisation process, starting with solutions 8 to 13, was repeated

50 times, each with Np
max = 50. Each macro-replication of the algorithm could produce

a different final solution (due to the dependence of the algorithm on the starting seed).

As in 5.4.1, these are then simulated 1000 times using CRN. Histograms of the means

and 0.95 quantiles for each solution are shown in Figures 5.4.4 and 5.4.5 respectively.

The results show that a significant decrease in the mean is achieved in all macro-

replications. However, Figure 5.4.5 gives a different picture regarding the robustness,

which is arguably more important. As the simulation optimisation tends to decrease

some delays, increasing the probability of exceeding the planned delay, the results

become more variable due to the penalty. The results from Plans 9 and 10 are the

worst, with only 78% improving on the 0.95 quantile of the IP based solution, whilst

the results for plan 12 are all positive. This is due to one flight initially being delayed 2

hours by the IP, leading to some passenger compensation (AC1310). The optimisation

quickly identifies this as a way to achieve large gains with small effort.

CHAPTER 5. COMPUTATIONAL RESULTS 123

Table 5.4.1: Solutions from the IP for Problem 2 using the heuristic for problem size

reduction. Maximum allowable runtime was 900 seconds.

Solution Cost Tail Number Delay Cancellations Solution Time

(AC1000) Exchanges (minutes) (seconds)

1 6.00 32 120 0 56.56

2 6.00 28 120 0 50.24

3 6.00 27 120 0 47.56

4 6.00 24 120 0 60.37

5 6.00 22 120 0 51.77

6 6.00 21 120 0 55.68

7 6.00 20 120 0 57.46

8 6.00 19 120 0 61.87

9 6.25 17 135 0 65.06

10 9.75 15 195 0 90.28

11 9.75 14 195 0 62.00

12 11.06 13 195 0 76.96

13 12.75 12 255 0 104.75

CHAPTER 5. COMPUTATIONAL RESULTS 124

Figure 5.4.4: Problem 2 histograms of the mean of each solution from the simulation

optimisation. Each plot corresponds to one of the IP solutions. The red line is the

mean of the starting solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 125

Figure 5.4.5: Problem 2 histograms of the 0.95 quantile of each solution from the

simulation optimisation. Each plot corresponds to one of the IP solutions. The red

line is the mean of the starting solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 126

Figure 5.4.6: Mean against 0.95 quantile of solutions found for each plan from the IP

in Problem 2. Red lines indicate the performance of the starting solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 127

Interestingly, Figure 5.4.6, which plots the mean against the 0.95 quantile, does

not suggest the same behaviour as in Problem 1.

The variances of all solutions are higher than in Problem 1. Under closer scrutiny

of the simulated solutions, it appears that flights not associated with the disruption

(flights that the IP leaves unchanged) add to the variability, not with large delays

but with many small delays. This variation reflects the original schedule’s robustness

rather than the proposed solution’s handling of the disruption. The increased noise

makes the situation harder for the optimisation algorithm. Removing unaffected

flights from the simulation could both reduce the simulation computation time and

improve the results. This was not fully investigated, but may lead to better solutions.

In Section 5.3 (Figure 5.3.3), we showed the ECDF of the difference in cost for

replications sharing the same CRN between the IP solutions (x,d0) and the final

solution (x,d∗) for Problem 1. Figure 5.4.7 shows this for each of the 50 solutions

found for each plan for Problem 2. On the whole, the performance is very similar to

Problem 1, though the large improvements in cost are not seen, which is reflective of

the improvement as a whole being smaller. The estimated probability of improvement,

P̂I(d
∗), (the value on the ECDF at 0) tend to cluster between 0.8 and 0.9, with the

exception of Plan 12, which are between 0.9 and 1. This behaviour is shared across

the ECDFs, even though the body of the distribution can look quite different. Whilst

the probability of being worse is again non-negligible, the upper tails are not too long.

In particular, if we consider the conditional expectation given that (x,d∗) performs

worse:

E [Gi(x,d
∗)−Gi(x,d0)|Gi(x,d

∗)−Gi(x,d0) > 0] , (5.4.1)

CHAPTER 5. COMPUTATIONAL RESULTS 128

Figure 5.4.7: ECDFs of the cost difference between the solution (x,d∗) and (x,d0),

for each solution found. Each line corresponds to an individual solution.

CHAPTER 5. COMPUTATIONAL RESULTS 129

the maximum values for each plan are only AC980, AC1080, AC1474, AC1029, AC614 and

AC1627, indicating that the losses made are not that large in comparison to the po-

tential improvements.

5.4.3 Problem 3

As the airline is unlikely to be able to control any delay times during the poor weather

conditions, there is little the airline can do to affect the departure times of disrupted

flights originating at LGW. These flights are therefore left out of the IP problem.

However, the airline may wish to make changes to subsequent flights to reduce the

impact of delays propagating through the schedule. The simulation was used to

estimate the ready times of the disrupted aircraft for these subsequent flights.

The heuristic approach for problem size reduction was used. As is intuitive, this

had a smaller impact than in Problem 2 as the number of disrupted aircraft is consid-

erably larger. This means that the set of airports not visited by the set of disrupted

aircraft, A∗, is quite small. Only the small number of aircraft in the fleet that op-

erate exclusively between the excluded airports are removed from the problem. The

fleet was reduced to 101 aircraft, with 440 flights. The maximum allowable delay was

M = 60 minutes with a step size of m = 20 minutes, producing 1760 flight delay arcs

and 2586 ground arcs. This restriction was required to get solutions within a reason-

able time, as the problem with M = 180 minutes and m = 20 minutes took over 2

hours to solve. The results from the IP, with 20 processors available, are shown in

Table 5.4.2. Again, the approach takes a while to produce a Pareto optimal solution

(the first of which is solution 12), adding further evidence that work is needed to im-

CHAPTER 5. COMPUTATIONAL RESULTS 130

Table 5.4.2: Solutions from the IP for Problem 3 using the heuristic for problem size

reduction. Maximum allowable runtime was 7200 seconds.

Solution Cost Tail Number Delay Cancellations Solution Time

(AC1000) Exchanges (minutes) (seconds)

1 27.00 48 540 0 260.22

2 27.00 47 540 0 152.42

3 27.00 46 540 0 155.20

4 27.00 44 540 0 180.76

5 27.00 41 540 0 127.20

6 27.00 35 540 0 549.09

7 27.00 34 540 0 142.94

8 27.00 31 540 0 149.41

9 27.00 23 540 0 162.92

10 27.00 20 540 0 93.69

11 27.00 19 540 0 52.38

12 27.00 17 540 0 105.67

13 29.00 13 580 0 67.41

14 31.00 9 620 0 72.30

15 33.00 8 660 0 61.63

16 35.00 4 700 0 447.72

CHAPTER 5. COMPUTATIONAL RESULTS 131

prove the first stage of the search procedure. Despite the IP having a similar number

of variables to the Problem 2 IP (around 440,000), there are approximately 150,000

more constraints. This change in structure seems to make the problem much harder

to solve. The solution times are quite long in a number of cases, even in the highly

restrictive choices of M and m, highlighting the need for better problem reduction

methods and more specialised solution approaches.

It is interesting to note that if m is taken to be 10 minutes instead of 20 minutes,

much better solutions are found, with the first Pareto optimal solution having a cost of

AC15,000 using 28 tail number exchanges. The solution with 17 tail number exchanges

(equivalent to the first Pareto optimal solution in Table 5.4.2) had a cost of AC17,000.

The results highlight the benefit to the solutions of using a smaller time step m. The

process did however take much longer to solve, with the initial solution taking 864.7

seconds, though subsequent solution times were similar to those in Table 5.4.2.

In the simulation, the weather scaling variable at LGW is set to 0.2 between 9am

and 11am, at which time it returns to 1. The rest of the simulation settings were

identical to those in Problem 2.

The simulation optimisation was performed on solutions 12 to 16. The solu-

tions had between 16 and 19 variables, which reduced the number of iterations that

STRONG could go through with the budget of Nmax = 2000 replications, as more

design points were required to estimate the models. However, this highlights a bene-

fit of using CEA to build the designs over factorial designs, which would require 219

design points, instantly using up the simulation budget.

There were 50 macro-replications of the simulation optimisation process, each with

CHAPTER 5. COMPUTATIONAL RESULTS 132

Np
max = 50. The solutions were simulated using 1000 CRN replications. The means

and 0.95 quantiles are shown in Figures 5.4.8 and 5.4.9, respectively. These plots show

substantial improvements in both the mean and the 0.95 quantile for all the macro-

replications. The performance also seems to be quite similar amongst the solutions

found. The plan, defined predominantly by the aircraft allocation, does not appear

to impact the overall solution performance, as all the histograms are very similar.

Figure 5.4.10 shows quite a different relationship between the mean and 0.95 quan-

tiles when compared to the previous problems. The relationship appears to be positive

and almost linear, with no trade-off between these objectives.

The plots also highlight a difference in the problems structure. Whilst in the

previous problems the IP produced large benefits over the ‘No Action’ policy, here

the benefit is marginal in expectation. The real gain then comes from the simulation

optimisation. The simulation optimisation largely reduces the planned delays, perhaps

exploiting slack in the schedule, both in terms of turn times and block times. However,

the change in aircraft allocation from the IP is what allows this to happen.

5.5 Simulation Optimisation Parameter Settings

This section performs a small investigation of parameter settings in the simulation

optimisation algorithm. This is undertaken for Problem 1 in Section 5.4.1, as this

is the least computationally intensive. Comparisons are through the ECDF of the

estimated optimality gap of the mean cost (relative to the best solution found across

all settings), using a principle similar to the performance profile proposed by Dolan

CHAPTER 5. COMPUTATIONAL RESULTS 133

Figure 5.4.8: Problem 3 histograms of the mean of each solution from the simulation

optimisation. Each plot corresponds to one of the IP solutions. The red line is the

mean of the starting solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 134

Figure 5.4.9: Problem 3 histograms of the 0.95 quantile of each solution from the

simulation optimisation. Each plot corresponds to one of the IP solutions. The red

line is the mean of the starting solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 135

Figure 5.4.10: Mean against 0.95 quantile of solutions found for each plan from the

IP in Problem 3. Red lines indicate the performance of the starting solution from the

IP. The blue lines show the performance when no action is taken.

CHAPTER 5. COMPUTATIONAL RESULTS 136

and Moré (2002) for comparing deterministic algorithms across multiple problems.

The limit in the design point replications creates a trade-off between using the

budget to create better models and making more steps. To consider this trade-off,

the optimisation on each plan was repeated using the algorithm with Np
max = 25

instead of 50. The overall performance was quite similar. To quantify the behaviour,

we considered the ‘optimality gap’ of each macro-replication, defined as the proportion

above the best mean found for the corresponding plan by any of the algorithm settings.

The best found is used as an estimate of the optimal solution, which is unknown. This

‘optimality gap’ of the solution of the kth macro-replication of Plan p for setting s,

(xp,dkps), is

O(xp,dkps) =
ĝ(xp,dkps)−mins,k{ĝ(xp,dkps)}

mins,k{ĝ(xp,dkps)}
.

The ECDF of the optimality gaps for each algorithm setting is shown in Figure 5.5.1,

combining all five plans into on plot. A point (x, y) on a line shows that in 100y%

of the macro-replications, the algorithm was within a factor of x of the best expected

cost found. The higher the line, the better the algorithm has performed. The plot

shows that across the 500 macro-replications of the simulation optimisation (100 for

each plan) there is little to choose between the two settings, suggesting there is no

significant difference between them. This is not to say that Np
max is unimportant, as

the effects may be more clear as the computational budget, Nmax, increases or for

greater values of Np
max.

The third line in Figure 5.5.1 is the ECDF of the optimality gap when including

all flight delays as decision variables. Chapter 4 mentions that the problem size for

CHAPTER 5. COMPUTATIONAL RESULTS 137

Figure 5.5.1: Empirical optimality gap for the algorithm with Np
max = 25 and Np

max =

50 and All Flights, from all five IP starting solutions.

the simulation optimisation is reduced by only including the flights that the IP gives

a non-zero delay as variables. To test whether this led to better solutions being

missed, 100 macro-replications for each of the five starting solutions were carried out

using all 54 flights as variables. This algorithm took only two or three steps per

macro-replication as the designs required more points. The time to run the CEA

algorithm also became significant, even for the linear models. The initial performance

is comparable with the other algorithms, but this happens less than 10% of the time,

after which it is considerably worse. This comparison was consistent across each plan,

except Plan 2, see Figure 5.5.2. Here the initial performance is better, up to the 30%

point, after which the performance is worse or comparable. It is important to note

that the ‘All Flights’ case overran the budget significantly more, and could take twice

as long to run.

We are also interested in the effect the computational budget, Nmax, has on the

CHAPTER 5. COMPUTATIONAL RESULTS 138

Figure 5.5.2: Empirical optimality gap for Plan 2 for all algorithm settings.

optimisation performance. We ran 100 macro-replications of the algorithm with

Nmax = 10,000 (using both the reduced and full problems) and 50 macro-replications

of the algorithm with Nmax = 20,000 and Np
max = 100, all for Plan 2. The resulting

optimality gaps are shown in Figure 5.5.2. The plot shows that the additional budget

allowed the reduced problems to find better solutions, an improvement of between 1%

and 2%. The setting with the largest budget dominates the other algorithm settings

and is the least variable, obtaining within 5.2% of the best in all 50 cases. The per-

formance of the Nmax = 10,000 is also comparable with this. However, the limited

budget cases do perform significantly worse, though they are within 10% most of the

time and have a much lower run time. This shows the benefits of more computing

time for this problem, and should be noted for implementation.

It is clear from each of the plots that the relative gap can be quite large, and that

the algorithm lacks some consistency in achieving near optimality. A 1% optimality

CHAPTER 5. COMPUTATIONAL RESULTS 139

gap is not the norm, though this improves for larger budgets.

Another interesting observation, which is also true for Problems 2 and 3, is that

the trust-region radius, ∆j, rarely went below threshold to switch to the quadratic

model, ∆̃, and so the majority of the movement was through the linear model, rather

than the quadratic model. This is due to the choice of γ0, ∆0, ∆̃ and Nmax, which

have not been tuned in our case. A smaller value of γ0 would lead to the quadratic

model being used more often. This could lead to fewer unsuccessful iterations, and

so more progress. On the other hand, with a fixed budget, it could lead to fewer

iterations as the designs would require more of the budget for each iteration.

5.6 Other Examples

In the work described in Chapter 7, several other disruption problems were solved.

This section briefly reports the simulation optimisation results of these examples.

These problems are based on a fleet of 116 aircraft. In each case, the recovery

window is until the end of the day, and so the problem size decreases as the start time

gets later. The IP was set up with strict constraints on the position of aircraft at the

end of the day, applying the return node constraint (3.3.10) to the entire fleet.

A summary of the disruptions is shown in Table 5.6.1. The disruptions are caused

by either an aircraft being grounded for several hours due to a technical issue (Days 1,

3 and 4) or weather events causing high airport congestion (Days 2 and 6) or closure

(Day 5). Days 1, 3 and 4 all involve hub airports of varying size, LGW, Geneva

Airport (GVA) and MAN, allowing flexibility in the solution as multiple aircraft come

CHAPTER 5. COMPUTATIONAL RESULTS 140

Table 5.6.1: Description of each problem and simulated cost performance (AC1000) of

No Action and IP solutions, with 95% confidence interval halfwidths in parentheses.

Problem Disrupted Time No Action IP Solution

Aircraft ĝ(x,d) q̂0.95 ĝ(x,d0) q̂0.95

Day 1 1 16:00 61.76 (1.01) 75.61 13.96 (0.12) 17.47

Day 2 2 9:40 41.09 (0.66) 53.77 32.84 (0.48) 38.27

Day 3 1 8:45 154.64 (1.67) 176.21 6.75 (0.83) 16.00

Day 4 1 13:20 165.3 (2.65) 210.75 26.3 (0.39) 30.45

Day 5 2 10:40 28.77 (0.58) 34.97 22.56 (0.49) 27.87

Day 6 5 10:10 22.61 (0.78) 29.81 23.51 (0.76) 28.55

through the hub airports. The repair time distribution for each is a Γ(100, 3), and a

delay of 370 minutes is applied in the IP. For the weather affected days, busy airports

or periods where weather was more likely to cause congestion were chosen. Day 2

occurs at AMS, one of Europe’s busiest airports. Day 5 occurs at a small hub airport,

Nantes Atlantique Airport (NTE). Even though this is not a busy airport, the period

of closure leads to a backlog when the airport reopens. The Day 6 disruption occurs

at Paris Orly Airport (ORY). It is expected to affect five aircraft directly, some of

which have not yet arrived at ORY. As in Problem 3, the flights directly disrupted

by the weather are not changed and only subsequent flights are included in the IP. In

all problems, the turn time distributions were identical to those in Problems 2 and 3.

Table 5.6.1 also shows the simulation-based cost comparison between not taking

CHAPTER 5. COMPUTATIONAL RESULTS 141

any action and the IP solution. From these we can see that altering the aircraft

allocation through the IP has the largest effect in the cases where an aircraft is

grounded. This is not surprising as not making any changes to the schedule means

that every subsequent flight of the disrupted aircraft will be delayed by several hours,

each incurring high compensation costs. In reality, this would not happen and so

the ‘No Action’ benchmark is less relevant. As the Day 1 disruption occurs in the

afternoon, there are fewer future flights to be impacted, resulting in a smaller overall

cost. In the weather related cases (Days 2, 5 and 6), where more flights are delayed

but by a smaller amount, there seems more scope for recovery by using the buffer built

into the schedule without schedule change. Whilst the IP can make positive aircraft

exchanges, the impact is smaller. In the case of Day 6, this even leads to a negative

impact. This could be due to the estimated ready times for disrupted aircraft being

too conservative, leading to unnecessary delays.

Due to limited computational resources, we have only selected one IP solution from

each problem to perform the simulation optimisation on, with 50 macro-replications

for Day 1 and 25 for the others. As in Section 5.4, the results were simulated 1000

times using CRN to produce estimates of their mean and 0.95 quantile performance

in cost. The less extensive results from these problems are shown in Figures 5.6.1,

5.6.2 and 5.6.3. The overall picture is consistent with the results of Section 5.4: the

simulation optimisation almost always reduces the mean costs from the IP based

solutions but is not always successful in reducing the 0.95 quantile. In all but Day 5,

the STRONG algorithm was able to reduce both the mean and 0.95 quantile of the

solution for all starting seeds.

CHAPTER 5. COMPUTATIONAL RESULTS 142

However, on Day 5 there are three macro-replications that fail to find a noticeable

improvement. Figure 5.6.3 shows that these solutions do not get worse (as perhaps

suggested by the histogram format in Figure 5.6.1). On two occasions the algorithm

finds a solution with only a slight improvement in mean and a larger 0.95 quantile.

Perhaps more concerning is that in one case of Day 5 the algorithm repeatedly rejects

proposed solutions and so ends up where it began (seen as a dot at the intersection

of the red lines in Figure 5.6.3). It may be that the objective function in this case is

dominated by the variance of the costs or that the trust-region size does not shrink

quickly enough to make use of a quadratic model, i.e., γ0 is too large and ∆̃ too small,

though this has not been fully investigated.

Note that on Day 3, the IP rearranged the aircraft allocation in such a way that

no delays were required. Therefore, the simulation optimisation was not needed. We

believe that there will be disruptions of this kind, particularly at hub airports where

there are often many options for rearranging aircraft allocations.

Figure 5.6.3 also shows the relationship between the mean and 0.95 quantile. None

of these problems appear to have the conflicting relationship between quantile and

expected value that was observed in Problem 1 (Section 5.4.1). The relationship looks

stronger for the weather related problems, Days 2, 5 and 6. The reason behind this

has not been explored.

CHAPTER 5. COMPUTATIONAL RESULTS 143

Figure 5.6.1: Histograms of the mean cost for the simulation optimisation solution in

the different problems. The red line is the mean of the starting solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 144

Figure 5.6.2: Histograms of the cost 0.95 quantile for the simulation optimisation

solution in the different problems. The red line is the 0.95 quantile of the starting

solution from the IP.

CHAPTER 5. COMPUTATIONAL RESULTS 145

Figure 5.6.3: Mean against 0.95 quantile for each problem. Red lines indicate the

performance of the starting solution from the IP. The blue lines show the performance

when no action is taken.

CHAPTER 5. COMPUTATIONAL RESULTS 146

5.7 Discussion and Conclusions

This chapter has presented and discussed the empirical performance of the multi-

fidelity modelling approach to the ARP described in Chapters 3 and 4. Three problems

of differing size and complexity have been described in detail, and the results from

both the Integer Program and simulation optimisation have been examined. Six

other problems have also been discussed. These suggest that combining deterministic

models with simulation optimisation can provide good solutions to the ARP.

Overall, the results point to promising performance, showing that the IP solutions

often offer an improvement over the ‘No Action’ response, largely by altering the

aircraft allocation. However, the results also demonstrate that, in ignoring stochastic

system elements, the deterministic model underestimates the costs involved. The

similar rankings between the cost estimates of the IP and the simulation justifies the

use of multi-fidelity modelling.

The simulation optimisation process, using an extension of STRONG to handle

bound constraints, also appears to succeed in improving the initial solutions from the

IP. The simulation optimisation aims to reduce the expected costs of the solution,

which it achieves in almost all of the cases considered. This demonstrates the benefits

of using a high-fidelity model for further improvement, rather than just checking

robustness. However, whilst the improvement is fairly consistent, the optimality gap

can be quite large, especially for small computational budgets.

There are, in addition, a number of areas for improvement and further work that

have been identified. The solution times involved in solving the deterministic ARP

CHAPTER 5. COMPUTATIONAL RESULTS 147

for the larger problems are too long for practical use. This highlights the need for

better problem reduction methods and more specialised solution methods. As was

mentioned in Section 5.4.3, the time discretisation used in the IP, m, can have a

large effect on the solution quality. The trade-off between the solution quality and

solution time is clear, with regards to m. This must be considered by the user during

implementation. The results from the IP also suggest that using a pure version of

the ε-constraint approach to multi-objective optimisation produces a number of cost

optimal solutions before a Pareto optimal solution is found. To avoid this, either a

more restrictive constraint on the number of exchanges could be added to the problem,

or a hybrid solution method (for example, see Section 4.2.2 of Ansari et al. (2018))

that includes weighted versions of the exchange and delay objectives in the objective

function. For example, the objective (3.3.2) could be replaced with

min
∑
a∈A

∑
fδ∈L

cfδxfδa +
∑
f∈F

Cfyf + ε
∑
a∈A

∑
fδ∈L

(1− ofa)xfδa , (5.7.1)

where ε � cd. If ε is chosen to be sufficiently small, this addition would not hinder

the optimal solution for disrupted flights, but would encourage movement towards

the Pareto frontier by penalising aircraft exchanges that are not part of the disrup-

tion. Initial results applied to the three problems were promising, and are detailed

in Appendix B. Passing a partial initial solution to the Gurobi Optimizer 7.0.2 with

all undisrupted aircraft assigned to their original flights was also attempted, but this

did not seem to improve the results. There are many other deterministic models and

solution approaches available in the literature (see Chapter 2). There is no reason to

believe that these could not replace the IP model here if they provided better starting

CHAPTER 5. COMPUTATIONAL RESULTS 148

solutions for the simulation optimisation or could be solved more quickly.

The simulation optimisation process currently takes a long time. This is due to a

sequential approach of running the simulations. However, as described in Section 4.4,

the algorithm could be parallelised in a natural way. This would reduce computation

time considerably.

The STRONG algorithm performance is influenced by its parameters. Whilst we

have briefly explored the effect of the computational budgets allocated to both the

whole algorithm and individual designs, most of the parameters have not had any

tuning. Some have been selected to reflect practical aspects, whereas others match

the choices made in Chang et al. (2013). It would be advisable to perform formal

parameter tuning across a range of offline disruptions.

In summary, this chapter has presented an empirical evaluation of the method

proposed in Chapters 3 and 4. The performance suggests that the combination of de-

terministic and simulation optimisation can offer good solutions when measured using

the simulation evaluation. We have also identified potential areas for improvement in

the algorithm and further work.

Chapter 6

Extension of STRONG to Bound

Constraints

6.1 Introduction

The evaluation of the multi-fidelity modelling approach in Chapter 5 is based on one

particular simulation model and a particular choice of objective function. However,

there are other aspects of the Aircraft Recovery Problem an airline might wish to

include in the model, such as costs for passengers missing a connection. To show

the potential of the proposed approach to find improved solutions when a different

simulation model is used, this chapter presents a deeper consideration of the simula-

tion optimisation algorithm presented in Chapter 4. A limitation that remains is that

the feasible region must be a hyper-box, constrained only by bounds on the decision

variables.

A number of extensions have been made to the base algorithm, STRONG (Chang

149

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 150

et al., 2013), to enable it to handle bound constraints. More details on some of these

aspects are given: Section 6.2 discusses the change of criticality measure; Section 6.3

presents the details of the Coordinate-Exchange Algorithm (CEA) to produce a good

design for estimating the meta-model; and Section 6.4 describes the algorithm for

producing the proposed step.

Throughout this chapter, we consider a general simulation optimisation problem

with continuous decision variables and bound constraints. For this reason, we drop

the explicit dependence on the aircraft allocation x and the delays d in the differential

operator from the notation.

Let g : Rn → R be a twice continuously differentiable real-valued function on

D ⊂ Rn. We seek a minimum for this function within the hyper-box D:

min
d

g(d)

subject to d ∈ D = {d ∈ Rn : lk ≤ dk ≤ uk, ∀k = 1, ..., n} (6.1.1)

where

d = (d1, ..., dn)T .

The approach for problem (6.1.1) is the algorithm described in Chapter 4, although

excluding the final step of testing against d = 0, step 11 of Algorithm 4.1.

The most basic convergence statement to be made for (unconstrained) trust-region

optimisation algorithms is that

lim inf
j→∞

||∇g(dj)||2 = 0, (6.1.2)

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 151

such as Theorem 4.5 of Nocedal and Wright (2006) and Theorem 6.4.5 of Conn et al.

(2000). This statement says that the algorithm will find a stationary point and will

always return to a stationary point in the future, or that there is at least one subse-

quence of solutions {dji}∞i=0 such that the gradient converges to 0. If the threshold

for the RC test, η0, is greater than 0, the stronger result of limj→∞ ||∇g(dj)||2 = 0

can also be achieved (see for example Theorem 6.4.6 of Conn et al. (2000)) but re-

quires Equation (6.1.2) to be established as a first step. For second-order convergence,

stronger assumptions about the Hessian of the meta-model are required (see Section

6.5 of Conn et al. (2000)).

In the constrained setting, the criticality measure is generalised to some function,

π : D → R+, and so condition (6.1.2) becomes

lim inf
j→∞

π(dj) = 0. (6.1.3)

If one is to prove convergence of the extended version of STRONG presented in

Chapter 4 for stochastic problems, Equation (6.1.3) with a probability statement,

that is,

lim inf
j→∞

π(dj) = 0 w.p. 1, (6.1.4)

would be the initial target. Following the description of the algorithm details in

Sections 6.2, 6.3 and 6.4, this chapter sets out a pathway to achieve this result. Section

6.5 discusses some of the assumptions needed and additional choices for algorithm

quantities and procedures that we believe are necessary for this proof. Section 6.6

discusses the major steps of a proof of convergence, presenting some proofs of lemmas

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 152

and highlighting where further work is required to complete the proof. Conclusions,

further work and ideas for algorithm improvement are given in Section 6.7.

6.2 Criticality Measure

In constrained optimisation, the notion of optimality must be extended beyond that

of a stationary point, as an optimal solution may lie on the boundary of D without

being a stationary point of g. One generalisation are the Karush-Kuhn-Tucker (KKT)

conditions, which exploit Lagrangian multipliers. An alternative formulation is to

consider the normal cone (see Section 3.2.3 of Conn et al. (2000)).

Definition 6.2.1. Let D be a closed, convex subset of Rn. The normal cone of D at

d ∈ D is defined to be the set

N (d) :=
{
y ∈ Rn : yT (u− d) ≤ 0 ∀u ∈ D

}
.

The following is Theorem 3.2.9 of Conn et al. (2000), which discusses the link

between a first-order critical point and the normal cone.

Theorem 6.2.2. Suppose that D is non-empty, closed and convex, that g is continu-

ously differentiable in D, and that d∗ is a first-order critical point for the minimisation

of g over D. Then, provided that a first-order constraint qualification holds at d∗,

−∇g(d∗) ∈ N (d∗). (6.2.1)

Constraint qualifications are defined in Appendix C.1.

To measure the distance from the normal cone at d, Conn et al. (1993) introduced

the following quantity.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 153

Definition 6.2.3. Let d ∈ D and g : D → R be differentiable at d. Then χ : D×R+ →

R, defined as

χ(d, θ) :=
∣∣∣min

s

{
∇g(d)T s : d + s ∈ D , ||s||2 ≤ θ

}∣∣∣ , (6.2.2)

is the best possible and feasible decrease in a linear model at d on a ball of radius θ.

This quantity is thoroughly explored in Chapter 12 of Conn et al. (2000), where it

is proven that this is a valid critically measure (Theorem 12.1.4). It has other useful

properties, such as monotonicity in θ. In the unconstrained case, D = Rn, χ(d, 1)

reduces to the unconstrained criticality measure, ||∇g(d)||2.

In a stochastic setting, χ(d, θ) cannot be evaluated exactly, as the gradient can

only be estimated by ∇̂g(d). We therefore define χ̂(d, θ) as the estimate of χ(d, θ)

using the gradient estimator:

χ̂(d, θ) :=
∣∣∣min

s

{
∇̂g(d)T s : d + s ∈ D , ||s||2 ≤ θ

}∣∣∣ (6.2.3)

For convenience, we work with the following adaptation of χ.

Definition 6.2.4. Let d ∈ D and g : D → R be differentiable at d. Then π : D → R,

defined as

π(d) := min{χ(d, 1), 1}. (6.2.4)

As with χ, we cannot calculate this exactly, and therefore estimate it with

π̂(d) := min{χ̂(d, 1), 1}. (6.2.5)

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 154

6.3 Coordinate-Exchange Algorithm

Section 4.3.1(i) discussed the issue of building an experimental design, defined by

a design matrix Dj, to estimate the meta-model r̂j when the current solution dj is

near the boundary. To tackle this problem, we use a Coordinate-Exchange Algorithm

(CEA), proposed by Meyer and Nachtsheim (1995). The purpose of this algorithm is

to reduce the problem of finding a D-optimal design (maximising det(DT
j Dj)) with

a fixed budget of P design points into a sequence of smaller problems of moving the

individual coordinates of the design point djp within the region of interest to maximise

det(DT
j Dj). This can be done as our region of interest D∩Bj is the Cartesian product

of n intervals

D ∩ Bj =
n∏
k=1

[
max{lk, dkj −∆j},min{uk, dkj + ∆j}

]
,

so the values that each component can take do not depend on the other coordinates.

For simplicity, let Lkj = max{lk, dkj −∆j} and Uk
j = min{uk, dkj +∆j}. The design will

be embedded in the feasible trust region
∏n

k=1

[
Lkj , U

k
j

]
. This section gives a more

detailed description of the procedure.

Note that the pth row of Dj refers to the design point djp but is represented by

some row function:

Dp·
j = φ(djp)

T .

As the design is centred at the current solution, dj, the row function accounts for the

position of the design point relative to dj. In the linear case

φ(djp)
T =

[
1 (d1

jp − d1
j) · · · (dnjp − dnj)

]
,

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 155

whilst in the quadratic case, interaction and squared terms are also included:

φ(djp)
T =[

1 (d1
jp − d1

j) · · · (dnjp − dnj) (d1
jp − d1

j)(d
2
jp − d2

j) · · · (d1
jp − d1

j)
2 · · · (dnjp − dnj)2

]
.

The use of φ as a generic row function enables us to treat the linear and quadratic cases

in a similar way. The covariance matrix of the model parameters is Cj = (DT
j Dj)

−1.

The covariance of the predicted responses at points d and d′ is given by

v(d,d′) = φ(d)TCjφ(d′). (6.3.1)

The analysis of Lemma 3.2.1 and Theorem 3.2.1 of Fedorov (1972) (pages 161-163)

shows that replacing a design point djp by a point d′ changes det(DT
j Dj) by a factor

of

δ(d′,djp) = 1 + [v(d′,d′)− v(djp,djp)] +
[
v(d′,djp)

2 − v(d′,d′)v(djp,djp)
]
. (6.3.2)

This becomes our objective function when moving djp to a new position d∗p:

d∗p = arg max
d′∈D∩Bj

δ(d′,djp) (6.3.3)

One can then repeatedly cycle through each design point djp, moving each to im-

prove the design and updating the design before moving onto the next. This is

known as the modified Fedorov algorithm (Cook and Nachtsheim, 1980). Alterna-

tively, Equation (6.3.2) suggests that prioritising points with a low predictive variance

v(djp,djp) gives the largest scope for improvement. Therefore, one can produce the

order Π = (p1, ..., pP) such that v(djp1 ,djp1) ≤ v(djp2 ,djp2) ≤ . . . ≤ v(djpP ,djpP).

The reordering is done for the quadratic case, but not the linear. To maximise the

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 156

improvement we move the point contributing least to the design (as it has the smallest

predictive variance) and move it to a place of high predictive variance.

Problem (6.3.3) is still an n-dimensional polynomial of degree at least 4. Instead

of solving this directly, the CEA simplifies it to a sequence of 1-dimensional problems

when we move one coordinate at a time; i.e., move dkjp to

dkp = arg max
{
δkp(d′) : d′ ∈

[
Lkj , U

k
j

]}
(6.3.4)

where

δkp(d′) = δ((d1
jp, ..., d

k−1
jp , d′, dk+1

jp , ..., dnjp)
T ,djp). (6.3.5)

This can be solved using an optimisation process or by a grid search (as suggested by

Meyer and Nachtsheim (1995)). In our case the Brent optimiser (Brent (1973), page

79) is used in the linear case, starting at whichever interval end gives a higher δkp . For

the quadratic case, we use a 1-dimensional grid search with 100 points spanning the

interval.

6.3.1 Initial Design Matrix

Creating the initial design matrix can be done randomly or using principles of it-

eratively reducing predictive variance. The key is to ensure that the design is non-

singular. Galil and Kiefer (1980) propose selecting the first design point dj1 by max-

imising φ(dj1)Tφ(dj1). Following that, if Djp is the design matrix including the first

p points, Galil and Kiefer (1980) propose selecting djp to maximise det(DT
jpDjp). The

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 157

objective for the augmentation can be written as

ap(djp) = φ(djp)
TWpφ(djp) (6.3.6)

where Wp changes depending on whether the design is yet saturated (i.e., has more

design points than model parameters b)

Wp =


Ib if p = 1;

Ib −DT
j(p−1)(Dj(p−1)D

T
j(p−1))

−1Dj(p−1) if 1 < p ≤ b;

(Dj(p−1)D
T
j(p−1))

−1 if b < p ≤ P,

(6.3.7)

where Ib is the b × b identity matrix. Meyer and Nachtsheim (1995) again suggest

that this optimisation occurs on a component-wise basis. We use the Brent optimiser

for this. The algorithm for finding the initial matrix is given in Algorithm 6.1.

6.3.2 Overall Algorithm

Once the initial matrix has been created, the algorithm iteratively orders the design

points by predictive variance, for each optimising coordinate-wise, and updating the

design and covariance matrix Cj between each. Once three successive cycles through

all points have produced an increase of less than εD (nominally 1%), the algorithm

terminates. The full algorithm is shown in Algorithm 6.2.

Updating Cj (step 13 of Algorithm 6.2) can either be done by a direct recalculation

or using the update formula in Equation (6) of Meyer and Nachtsheim (1995), which

follows from Lemma 3.3.1 of Fedorov (1972) (page 167). Suppose we replace design

point djp by d′. Let F1 = [φ(d′),−φ(djp)] and F2 = [φ(d′), φ(djp)]. Then the update

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 158

Algorithm 6.1 Creating a Non-singular Design Matrix

1: Set number of design points P , dimension of space n, number of model parameters

b and hyper-box bounds Lkj and Uk
j

2: Find dj1 ← arg maxd′∈D∩Bj φ(d′)Tφ(d′) using component-wise Brent optimiser

3: Dj1 ← φ(dj1)T

4: for p = 2, ..., P do

5: Set djp ← dj and Wp by Equation (6.3.7)

6: for k = 1, ..., n do

7: Optimise ap(djp) over component dkjp using Brent optimiser

8: end for

9: Augment design

Djp =

 Dj(p−1)

φ(djp)
T


10: end for

11: return DjP

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 159

Algorithm 6.2 Coordinate-Exchange Algorithm

1: Set number of design points P , dimension of space n, number of model parameters

b, tolerance εD, trust-region size ∆j and little progress counter N ← 0

2: Calculate limits of D ∩ Bj: Lkj ← max{lk, dkj −∆j} and Uk
j ← min{uk, dkj + ∆j}

3: Generate initial Dj using Algorithm 6.1

4: repeat

5: ξ ← det(DT
j Dj), Π← (1, 2, ..., P)

6: if Quadratic then

7: Π← (p1, ..., pP): points increasing in v(djp,djp)

8: end if

9: for p ∈ Π do

10: for k = 1, ..., n do

11: dkjp ← arg maxd′∈[Lkj ,U
k
j] δ

k
p(d′) (using Brent optimiser or grid search)

12: Dp·
j ← φ(djp)

T

13: Update Cj using Equation (6.3.8)

14: end for

15: end for

16: if det(DT
j Dj) < (1 + εD)ξ then

17: N ← N + 1

18: else

19: N ← 0

20: end if

21: until N = 3

22: return Dj

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 160

of Cj is

Cj ← Cj −CjF1[I2 + F T
2 CjF1]−1F T

2 Cj, (6.3.8)

which only involves inverting a 2 × 2 matrix and some matrix multiplication. The

savings become significant when n gets large.

6.4 Calculation of the Generalised Cauchy Point

STRONG produces an approximate solution to the trust-region sub-problem using

the Cauchy point of the meta-model. With constraints, this is not guaranteed to be

feasible. For bound constrained problems, Conn et al. (1988) propose an alternative

step, known as the Generalised Cauchy Step. This minimises the meta-model along

the projected-gradient path. Section 4.3.1 discussed the linear case, where there is an

analytical expression defined component-wise by

sj(τ
∗)k =


max{−∆j, l

k − dkj} if ∇̂gj(dj)k > 0;

min{∆j, u
k − dkj} if ∇̂gj(dj)k < 0;

0 if ∇̂gj(dj)k = 0.

(6.4.1)

A brief description of the process for the quadratic case was also given. Both cases

are about finding the step size along the projected-gradient path, τ ∗, that minimises

r̂j. This section gives a more detailed description of the algorithm for the quadratic

case, and is based on Algorithm 17.3.1 of Conn et al. (2000, page 791).

The projected-gradient path consists of a sequence of straight lines, broken by

points where a variable hits its boundary of the feasible trust region. Let τ kB be the

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 161

‘break point’ of variable k:

τ kB =


min{uk − dkj ,∆j}/(−∇̂gj(dj)k) if ∇̂gj(dj)k < 0;

max{lk − dkj ,−∆j}/(−∇̂gj(dj)k) if ∇̂gj(dj)k > 0;

0 if ∇̂gj(dj)k = 0.

(6.4.2)

This is the value of τ ≥ 0 such that the vector −τ∇̂gj(dj) brings you to either the

boundary in variable k of the trust region or the boundary in variable k of the feasible

region, whichever is nearest.

The ith straight line segment is defined by p(τ,dj) for τ in an interval between

two break points, τ k1B and τ k2B . For convenience of notation, we will label the smaller

of these break points as τi and the larger as τi+1. Thus, τ0 = 0 < τ1 < τ2 < ... < τm

(where m ≤ n) is the sequence of ordered break points. If two break points coincide,

they are labelled as the same in the sequence. Let Ki = {k : τ kB ≤ τi} be the set

of all variable indices that are constrained on the ith line segment. This is used to

calculate the negative projected-gradient (and therefore the direction of travel), zi, in

this segment. This is −∇̂gj(dj) with constrained variable components set to 0:

zi = −∇̂gj(dj) +
∑
k∈Ki

∇̂gj(dj)kek, (6.4.3)

where ek is the unit vector in variable k. At the start of the algorithm, there may be

no constrained variables, and so we define z0 as

z0 =


−∇̂gj(dj) if K0 = ∅;

−∇̂gj(dj) +
∑

k∈K0
∇̂gj(dj)kek if K0 6= ∅.

(6.4.4)

Also let si = p(τi,dj)− dj be the step to the start of the ith line segment and sGC be

the best solution found so far.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 162

The projected-gradient path creates a one-dimensional piecewise quadratic func-

tion q(τ). Note that as p(τ,dj) is a continuous path inD and r̂j is a quadratic function,

q(τ) is continuous and well-defined at the break points, with limτ↑τi q(τ) = limτ↓τi q(τ)

for each i. It is not however, differentiable at these points. Let qi(τ) be the quadratic

function in τ along the ith line segment:

qi(τ) := r̂j(dj + si + (τ − τi)zi)

= ĝj(dj) + ∇̂gj(dj)T (si + (τ − τi)zi)

+
1

2
(si + (τ − τi)zi)T Ĥj(dj) (si + (τ − τi)zi)

= ĝj(dj) + ∇̂gj(dj)T si +
1

2
sTi Ĥj(dj)si

+
[
∇̂gj(dj)Tzi + sTi Ĥj(dj)zi

]
(τ − τi) +

1

2
zTi Ĥj(dj)zi(τ − τi)2,

for τ ∈ [τi, τi+1]. This has first and second derivatives with respect to τ :

q′i(τ) = ∇̂gj(dj)Tzi + sTi Ĥj(dj)zi + zTi Ĥj(dj)zi(τ − τi)

⇒ q′i(τ
+
i) := lim

τ↓τi
q′i(τ) = ∇̂gj(dj)Tzi + sTi Ĥj(dj)zi; (6.4.5)

q′′i (τ) = zTi Ĥj(dj)zi

⇒ q′′i (τ+
i) := lim

τ↓τi
q′′i (τ) = zTi Ĥj(dj)zi. (6.4.6)

These properties allow us to quickly identify whether there is a local minimum on the

ith line segment. Let τ ∗i denote the local minimum of qi(τ) (if it exists). This will be

a local minimum of q(τ) when q′i(τ
+
i) < 0, q′′i (τ+

i) > 0 and τ ∗i < τi+1. That is, the

gradient at the start of the interval is negative, there is positive curvature, and the

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 163

minimum occurs before the ith line segment ends. Then

0 = q′i(τ
∗
i)

= ∇̂gj(dj)Tzi + sTi Ĥj(dj)zi + zTi Ĥj(dj)zi(τ
∗
i − τi)

⇒ τ ∗i = τi −
∇̂gj(dj)Tzi + sTi Ĥj(dj)zi

zTi Ĥj(dj)zi

= τi −
q′i(τ

+
i)

q′′i (τ+
i)
.

The full algorithm for finding the Generalised Cauchy Point checks each straight

line segment in turn for a local minimum, storing the best, and is shown in Algorithm

6.3. In line 6, q′i(τ
+
i) ≥ 0 indicates a positive gradient, meaning there will be no

local minimum on the interval. Therefore, we check the start of the interval against

the current best. In line 10, the negative gradient, positive curvature and τ ∗i < τi+1

indicates that a local minimum does lie in the interval. We check this against the

current best.

6.5 Assumptions

This section provides a list of the assumptions about the problems for which this

method is most suitable, particularly for asymptotic performance. Some algorithm

choices are described and notation is introduced.

6.5.1 Objective Function Assumptions

To make progress in studying the asymptotic properties, we must make some assump-

tions limiting the behaviour of the objective function over the feasible region.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 164

Algorithm 6.3 Algorithm for Finding the Generalised Cauchy Point

1: Compute the break points τ kB for 1 ≤ k ≤ n using (6.4.2) and set τ0 ← 0.

2: Set K0 ← {k : τ kB = 0}, s0 ← 0, sGC ← 0, i← 0 and z0 using (6.4.4).

3: repeat

4: Compute the first and second derivative of q with respect to τ at τi, q
′
i(τ

+
i)

and q′′i (τ+
i) from (6.4.5) and (6.4.6).

5: Find the next break point, τi+1, the first break beyond τi.

6: if q′i(τ
+
i) ≥ 0 then

7: if r̂j(dj + si) < r̂j(dj + sGC) then

8: sGC ← si

9: end if

10: else if q′′i (τ+
i) > 0 and τ ∗i = τi − q′i(τ+

i)/q′′i (τ+
i) < τi+1 then

11: if r̂j(dj + si + (τ ∗i − τi)zi) < r̂j(dj + sGC) then

12: sGC ← si + (τ ∗i − τi)zi.

13: end if

14: end if

15: Update Ki+1 ← {k : τ kB ≤ τi+1}, si+1 ← si + (τi+1 − τi)zi and zi+1 by (6.4.3).

16: i← i+ 1

17: until τi = maxk τ
k
B

18: if r̂j(dj + si) < r̂j(dj + sGC) then

19: sGC ← si

20: end if

21: Return sGC as the step.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 165

Assumption AF.1: The objective function g(d) is twice differentiable on D.

Assumption AF.2: The objective function g(d) is bounded below on D.

Assumption AF.3: There exists a constant 0 < βH < ∞ such that the Hessian of

the objective function H(d) satisfies

||H(d)|| := sup
d′ 6=0

||H(d)d′||
||d′||2

≤ βH , ∀d ∈ D.

That is, the operator norm of the Hessian is bounded on D.

As D is compact, Assumption AF.3 also implies that H(d) is Lipschitz continuous,

that is, there exists L > 0 such that

||H(d)−H(d′)|| ≤ L||d− d′||2, ∀d,d′ ∈ D.

It is also clear that L ≤ 2βH . This assumption is required to ensure that the bias in

the gradient estimator will become negligible with sufficiently many observations and

decreasing trust-region size.

STRONG makes a further assumption on the objective function.

Assumption AF.4: The objective function is the expectation of some random vari-

able

g(d) = E [G(d)]

where G(d) ∼ N(g(d), σ2(d)), and supd∈D σ
2(d) <∞.

6.5.2 Estimator Assumptions

As in STRONG, the following assumptions are made about the objective function

and gradient estimators.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 166

Assumption AE.1: Let ĝ(d) be the estimator of g(d) and let N be the number of

replications used for this estimation. Then the estimator is uniformly convergent on

D:

sup
d∈D
|ĝ(d)− g(d)| → 0 as N →∞,

with probability 1, and so obeys the Uniform Law of Large Numbers (ULLN).

Assumption AE.2: Let ∇̂g(d) be the estimator of ∇g(d), and let M be the number

of replications used within the experimental design (assuming the design has enough

design points to support the model). Suppose further that M grows not only by

increasing the replications at design points, but also by including additional design

points closer to d, and that these design points have more replications than those

further from d. Then the estimator is uniformly convergent on D:

sup
d∈D
||∇̂g(d)−∇g(d)||2 → 0 as M →∞,

with probability 1, and so obeys the ULLN as the trust region shrinks to 0.

These two assumptions are important to ensure that, given sufficient simulation

effort, one can get a good approximation of the objective function and its gradient.

The specification about how M grows is to ensure that bias incurred from the meta-

model assumption decreases with effort. To enable this, we force the number of

observations used to estimate ∇̂gj(dj) in iteration j (before the inner loop begins),

Mj, to gradually increase; Mj →∞ as j →∞. The rate does not change the result,

but a larger Mj will give a better gradient estimator at the price of more effort at

each iteration.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 167

6.5.3 Use of the `∞ Norm

The `∞ norm is uniformly equivalent to the `2 norm, giving two important bounds:

||d||2∞ = max
k=1,...,n

(dk)2 ≤
n∑
k=1

(dk)2 = ||d||22

⇒ ||d||∞ ≤ ||d||2 (6.5.1)

||d||22 =
n∑
k=1

(dk)2 ≤
n∑
k=1

max
i=1,...,n

(di)2 = n max
i=1,...,n

(di)2 = n||d||2∞

⇒ ||d||2 ≤
√
n||d||∞ (6.5.2)

6.5.4 Meta-model

The meta-model used for the trust-region sub-problem takes either a linear or a

quadratic form:

r̂j(dj + s) :=


ĝj(dj) + ∇̂gj(dj)T s if ∆j > ∆̃;

ĝj(dj) + ∇̂gj(dj)T s + 1
2
sT Ĥj(dj)s if ∆j ≤ ∆̃.

(6.5.3)

This ensures that the meta-model is twice continuously differentiable on the trust

region for all iterations. We also impose an upper bound on the operator norm of the

Hessian estimator Ĥj(dj), κ ≥ 1, such that

||Ĥj(dj)|| ≤ κ− 1, ∀j. (6.5.4)

If the fitted Hessian has ||Ĥj(dj)|| > κ − 1, we replace it with Ĥj(dj) = (κ − 1) ×

Ĥj(dj)/||Ĥj(dj)||. We also introduce the quantity

κj := 1 + ||Ĥj(dj)|| ≤ κ ∀j. (6.5.5)

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 168

6.5.5 Significance Level for the Sufficient Reduction Test

The Sufficient Reduction (SR) test at each iteration has a Type I error rate of αj. To

aid convergence αj is chosen such that

∞∑
j=0

αj <∞. (6.5.6)

A simple way to ensure this condition is to let αj decrease geometrically, such as

αj = α0α
j.

6.6 Proof of Convergence

This section presents a series of results that are needed to prove convergence. For

some, it is unclear whether or not they are true, but they would be required for

convergence with probability 1 in the sense of Equation (6.1.4) to hold. Throughout,

we make reference to results in Conn et al. (2000) which are quoted in Appendix

Section C.2 for reference.

6.6.1 The Criticality Measure Estimate is Consistent

It is important to show that the estimator of the criticality measure in Equation

(6.2.5) is adequate. We show that, under Assumption AE.2, π̂ also follows the ULLN.

Lemma 6.6.1. Suppose that Assumption AE.2 holds. Then

sup
d∈D
|π̂(d)− π(d)| → 0

with probability 1 as the number of observations used tends to infinity.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 169

Proof. Take d ∈ D. Let A = {y : d + y ∈ D, ||y||2 ≤ 1}. Note that 0 ∈ A, and so

min
y∈A

(
∇̂g(d)Ty

)
≤ ∇̂g(d)T0 = 0.

Therefore,

0 ≥ min
y∈A

(
∇̂g(d)Ty

)
= min

y∈A

((
∇̂g(d)−∇g(d)

)T
y +∇g(d)Ty

)
≥ min

y∈A

[(
∇̂g(d)−∇g(d)

)T
y

]
+ min

y∈A

(
∇g(d)Ty

)
.

Using the definitions of χ(d, 1) and χ̂(d, 1) and the triangle inequality we get:

χ̂(d, 1) =

∣∣∣∣min
y∈A

(
∇̂g(d)Ty

) ∣∣∣∣ ≤ ∣∣∣∣min
y∈A

(
∇̂g(d)−∇g(d)

)T
y

∣∣∣∣+

∣∣∣∣min
y∈A

(
∇g(d)Ty

) ∣∣∣∣
=

∣∣∣∣min
y∈A

(
∇̂g(d)−∇g(d)

)T
y

∣∣∣∣+ χ(d, 1)

⇒ χ̂(d, 1)− χ(d, 1) ≤
∣∣∣∣min
y∈A

(
∇̂g(d)−∇g(d)

)T
y

∣∣∣∣. (6.6.1)

Using a similar argument, one can show that

χ(d, 1)− χ̂(d, 1) ≤
∣∣∣∣min
y∈A

(
∇g(d)− ∇̂g(d)

)T
y

∣∣∣∣. (6.6.2)

Let y∗,y′ ∈ A be the solutions of the optimisation problems in the right-hand sides

of (6.6.1) and (6.6.2) respectively. Then, combining (6.6.1) and (6.6.2) gives us

|χ̂(d, 1)− χ(d, 1)| ≤ max

{∣∣∣∣min
y∈A

(
∇̂g(d)−∇g(d)

)T
y

∣∣∣∣ , ∣∣∣∣min
y∈A

(
∇g(d)− ∇̂g(d)

)T
y

∣∣∣∣}
= max

{∣∣∣∣ (∇̂g(d)−∇g(d)
)T

y∗
∣∣∣∣ , ∣∣∣∣ (∇g(d)− ∇̂g(d)

)T
y′
∣∣∣∣}

≤ max
{
||∇̂g(d)−∇g(d)||2 · ||y∗||2 , ||∇g(d)− ∇̂g(d)||2 · ||y′||2

}
,

where the last inequality holds using the Cauchy-Schwarz inequality. Furthermore, as

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 170

y∗,y′ ∈ A, ||y∗||2, ||y′||2 ≤ 1. Thus

|χ̂(d, 1)− χ(d, 1)| ≤ ||∇̂g(d)−∇g(d)||2 max {||y∗||2, ||y′||2}

≤ ||∇̂g(d)−∇g(d)||2. (6.6.3)

Now consider the error of π̂(d):

|π̂(d)− π(d)| = |min{1, χ̂(d, 1)} −min{1, χ(d, 1)}|

=



0 if χ̂(d, 1) > 1, χ(d, 1) > 1

1− χ(d, 1) if χ̂(d, 1) > 1, χ(d, 1) ≤ 1

1− χ̂(d, 1) if χ̂(d, 1) ≤ 1, χ(d, 1) > 1

|χ̂(d, 1)− χ(d, 1)| if χ̂(d, 1) ≤ 1, χ(d, 1) ≤ 1

≤ |χ̂(d, 1)− χ(d, 1)|

≤ ||∇̂g(d)−∇g(d)||2,

where we have used (6.6.3). As this applies for an arbitrary d ∈ D, we have that

sup
d∈D
|π̂(d)− π(d)| ≤ sup

d∈D
||∇̂g(d)−∇g(d)||2 → 0

with probability 1, by AE.2, as the number of observations tends to infinity. Thus,

the result holds.

6.6.2 Meta-model Reduction

The first step of the proof of convergence of a trust-region procedure is to show that

the choice of step gives a reduction in the meta-model that is bounded away from 0

as long as an improvement is possible. We separate this into the linear (Stage I) and

quadratic (Stage II) cases.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 171

Lemma 6.6.2. Suppose that the Algorithm is in Stage I during iteration j. Then the

proposed solution d∗j produces the reduction:

r̂j(dj)− r̂j(d∗j) ≥ ζj := π̂j(dj) min{∆j, 1}. (6.6.4)

Proof. Using the linear condition of Equation (6.5.3) we can see that

r̂j(dj)− r̂j(dj + sj(τ)) = −∇̂gj(dj)T sj(τ) = |∇̂gj(dj)T sj(τ)|.

As sj(τ) lies on the projected-gradient path, Theorem 12.1.4 of Conn et al. (2000)

states that sj(τ) is the solution to the optimisation problem in Equation (6.2.3), so

r̂j(dj)− r̂j(dj + sj(τ)) = χ̂j(dj, ||sj(τ)||2). (6.6.5)

By the first part of Theorem 12.1.3 of Conn et al. (2000), ||sj(τ)||2 is a non-decreasing

function of τ ≥ 0. By Theorem 12.1.5(i) of Conn et al. (2000), χ̂(dj, θ) is a non-

decreasing function of θ. Therefore, χ̂j(dj, ||sj(τ)||2) is non-decreasing in τ .

Thus, to maximise the model decrease, we wish to choose the largest τ possible,

subject to

||sj(τ)||∞ ≤ ∆j (6.6.6)

dj + sj(τ) ∈ D. (6.6.7)

Let τ ′ be the chosen value of τ .

Suppose, firstly, that ||sj(τ ′)||2 = 0. Then p(τ,dj) = dj for all τ ≥ 0, which is

equivalent to being first-order critical, by Theorem 12.1.2, of Conn et al. (2000), and

so π̂j(dj) = 0. So (6.6.4) holds.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 172

Next, suppose that ||sj(τ ′)||2 ≥ 1. Then, using Theorem 12.1.5(i) of Conn et al.

(2000) again:

χ̂j(dj, ||sj(τ ′)||2) ≥ χ̂j(dj, 1). (6.6.8)

Now suppose that 0 < ||sj(τ ′)||2 < 1. We split this into two cases.

Case 1 Suppose that the value of τ ′ is restricted by constraint (6.6.6). Then

⇒ ∃k such that |sj(τ ′)k| = ∆j < 1

⇒ 1 > ||sj(τ ′)||2 ≥ ∆j

⇒ χ̂j(dj, ||sj(τ ′)||2) ≥ χ̂j(dj,∆j)

where the last line follows from Theorem 12.1.5(i) of Conn et al. (2000). Theorem

12.1.5(ii) states that χj(dj, θ)/θ is non-increasing in θ, so χ̂j(dj,∆j)/∆j ≥ χ̂j(dj, 1)/1.

Therefore

χ̂j(dj, ||sj(τ ′)||2) ≥ ∆jχ̂j(dj, 1). (6.6.9)

Case 2 Suppose instead that sj(τ
′) is restricted by constraint (6.6.7) but not (6.6.6).

Then we must be at the end of the projected-gradient path, that is, sj(τ
′) = p(τm,dj)−

dj. Therefore

||sj(τ ′)||2 = lim
τ→∞
||p(τ,dj)− dj||2 <∞,

so by Theorem 12.1.3 of Conn et al. (2000)

||PTD(dj+sj(τ ′))[−∇̂gj(dj)]||2 = 0,

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 173

where TD(dj + sj(τ
′)) is the Tangent cone of D at the point dj + sj(τ

′) (see Definition

C.1.1 in Appendix C.1). Note that ||sj(τ ′)||∞ < ∆j, so ||sj(τ ′)||2 <
√
n∆j. Thus,

using Theorem 12.1.5(iii) of Conn et al. (2000):

χ̂j(dj,
√
n∆j) ≤ |∇̂gj(dj)T sj(τ

′)|+ 2
√
n∆j||PTD(dj+sj(τ ′))[−∇̂gj(dj)]||2

= |∇̂gj(dj)T sj(τ
′)|

= χ̂j(dj, ||sj(τ ′)||2).

Then, using Theorem 12.1.5(ii) of Conn et al. (2000) again, we have that

χ̂j(dj, ||sj(τ ′)||2) ≥ χ̂j(dj,
√
n∆j) ≥

√
n∆jχ̂j(dj, 1). (6.6.10)

Combining (6.6.5), (6.6.8), (6.6.9) and (6.6.10) we obtain:

r̂j(dj)− r̂j(dj + sj(τ
′)) ≥ χ̂j(dj, 1) min{1,∆j,

√
n∆j}

= χ̂j(dj, 1) min{1,∆j}

≥ π̂j(dj) min{1,∆j}.

where the final inequality comes from π̂j(dj) = min{1, χ̂j(dj, 1)}. This achieves the

result.

The next result considers the model decrease that can be achieved when the

quadratic model is used.

Lemma 6.6.3. Suppose that the Algorithm is in Stage II during iteration j. Then

the proposed solution d∗j produces the reduction:

r̂j(dj)− r̂j(d∗j) ≥ ζj := µπ̂j(dj) min

{
π̂j(dj)

κj
,∆j

}
. (6.6.11)

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 174

If in the ith inner loop of iteration j, the proposed solution d∗ji produces the reduction:

r̂ji(dj)− r̂ji(d∗ji) ≥ ζji := µπ̂ji(dj) min

{
π̂ji(dj)

κji
,∆ji

}
, (6.6.12)

where µ ∈ (0, 1).

Proof. We will consider the Stage II situation first. Firstly, note that an approximate

Generalised Cauchy Point, dAGCj , that satisfies the conditions (C.1) and (C.2) gives a

model decrease of:

r̂j(dj)− r̂j(dAGCj) ≥ µχ̂j(dj, 1) min

{
χ̂j(dj, 1)

κj
,∆j, 1

}
,

by Theorem 12.2.2 of Conn et al. (2000). This point dAGCj is simply a point on

the projected-gradient path within a spherical trust region of radius ∆j. Note that,

by the properties of the `2 and `∞ norms, ||y||2 ≥ ||y||∞ for all y ∈ Rn and so

{y : ||y||2 ≤ ∆j} ⊂ {y : ||y||∞ ≤ ∆j}. The algorithm in Section 6.4 finds the

minimum along the projected-gradient path in the hyper-box trust region, d∗j , which

includes all of the projected-gradient path within the corresponding feasible spherical

trust region. Therefore, d∗j satisfies

r̂j(d
∗
j) ≤ r̂j(d

AGC
j)

⇒ r̂j(dj)− r̂j(d∗j) ≥ r̂j(dj)− r̂j(dAGCj)

≥ µχ̂j(dj, 1) min

{
χ̂j(dj, 1)

κj
,∆j, 1

}
≥ µπ̂j(dj) min

{
π̂j(dj)

κj
,∆j, 1

}
,

by the definition of π̂j(dj) = min{1, χ̂j(dj, 1)} ≤ χ̂j(dj, 1). We also have that

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 175

π̂j(dj) ≤ 1 and κj ≥ 1 by definition (6.5.5). Therefore

π̂j(dj)

κj
≤ 1

κj
≤ 1,

⇒ min

{
π̂j(dj)

κj
,∆j, 1

}
= min

{
π̂j(dj)

κj
,∆j

}
.

Thus, we have the first result (6.6.11) that

r̂j(dj)− r̂j(d∗j) ≥ µπ̂j(dj) min

{
π̂j(dj)

κj
,∆j

}
.

The result for the inner loop (6.6.12) is shown using the same logic, but with an

additional subscript i.

6.6.3 The Inner Loop Can Always Find an Improvement

Having shown that the algorithm can produce an improvement in the meta-model,

we are interested in how this translates into a reduction in the objective function,

referring to the RC and SR tests. In the stochastic setting, this must account for the

uncertainty in the objective and gradient estimators. Thus the statements are of a

probabilistic nature, looking at the inner loop mechanism of STRONG.

First we put bounds on the error in the estimators during the inner loop.

Lemma 6.6.4. Suppose that Assumptions AF.1, AF.2, AE.1 and AE.2 hold. Then,

for any dj ∈ D and given j

Pr
{
|ĝji(dj)− g(dj)| > ∆2

ji
infinitely often

}
= 0,

Pr
{
||∇̂gji(dj)−∇g(dj)||2 > ∆ji infinitely often

}
= 0.

The proof of the first statement is exactly the same as that of Lemma 2 in the

STRONG paper (Chang et al., 2013), with the same assumptions on the growth of the

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 176

number of observations with each inner loop, N c
ji+1

=
⌈
(γ−4

0 + 1)N c
ji

⌉
. The authors

also proved the second statement for OLS gradient estimators with orthogonal designs,

based on the diagonal covariance matrix. Further work is required to extend this to

a general OLS gradient estimator.

Using this result, we can show that for any centre point dj, the prediction error at

the proposed point d∗ji will eventually shrink quadratically with the trust-region size.

Lemma 6.6.5. Suppose that Assumptions AF.1, AF.2, AF.3, AE.1 and AE.2 hold.

Then, for any dj ∈ D and given j,

Pr
{
|r̂ji(d∗ji)− ĝji(d

∗
ji

)| > c∆2
ji

infinitely often
}

= 0

for some constant c > 0.

Proof. The proof of this Lemma is very similar to the proof of Lemma 3 in Chang

et al. (2013). The difference comes in a small adjustment because of the use of the

`∞ norm changes the value of the constant c.

By the same arguments used in proving Lemma 6.6.4, we can also prove that

Pr
{
|ĝji(d∗ji)− g(d∗ji)| > ∆2

ji
infinitely often

}
= 0. (6.6.13)

Let sji = d∗ji − dj and note that

|r̂ji(d∗ji)− ĝji(d
∗
ji

)| ≤ |r̂ji(d∗ji)− g(d∗ji)|+ |ĝji(d
∗
ji

)− g(d∗ji)|

=
∣∣ĝji(dj) + ∇̂gji(dj)T sji +

1

2
sTjiĤji(dj)sji − g(d∗ji)

∣∣
+ |ĝji(d∗ji)− g(d∗ji)|, (6.6.14)

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 177

where we have used the definition of the quadratic meta-model r̂ji , Equation (6.5.3).

Using the second-order Taylor Theorem, we can say that, for some yi

g(d∗ji) = g(dj + sji) = g(dj) +∇g(dj)
T sji +

1

2
sTjiH(yi)sji ,

where H is the true Hessian of g. Combining this with (6.6.14) we get

|r̂ji(d∗ji)− ĝji(d
∗
ji

)|

≤
∣∣ĝji(dj) + ∇̂gji(dj)T sji +

1

2
sTjiĤji(dj)sji − g(dj)−∇g(dj)

T sji −
1

2
sTjiH(yi)sji

∣∣
+ |ĝji(d∗ji)− g(d∗ji)|

=

∣∣∣∣ĝji(dj)− g(dj) +
(
∇̂gji(dj)−∇g(dj)

)T
sji +

1

2
sTji(Ĥji(dj)−H(yi))sji

∣∣∣∣
+ |ĝji(d∗ji)− g(d∗ji)|

≤ |ĝji(dj)− g(dj)|+
∣∣∣ (∇̂gji(dj)−∇g(dj)

)T
sji

∣∣∣+
1

2

∣∣∣sTji(Ĥji(dj)−H(yi))sji

∣∣∣
+ |ĝji(d∗ji)− g(d∗ji)|

≤ |ĝji(dj)− g(dj)|+ ||∇̂gji(dj)−∇g(dj)||2 · ||sji ||2 +
1

2
||Ĥji(dj)−H(yi)|| · ||sji||22

+ |ĝji(d∗ji)− g(d∗ji)|.

The final inequality holds through the Cauchy-Schwarz inequality and Operator Norm

inequality. We know that ||sji||∞ ≤ ∆ji , and so ||sji ||2 ≤
√
n∆ji . Furthermore, by

AF.3 and Equation (6.5.4),

||Ĥji(dj)−H(y)|| ≤ ||Ĥji(dj)||+ ||H(yi)|| ≤ κ− 1 + βH , ∀i.

Whilst yi will be iteration dependent, the right-hand side of this inequality is not.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 178

Therefore, we have that

|r̂ji(d∗ji)− ĝji(d
∗
ji

)| ≤ |ĝji(dj)− g(dj)|+ |ĝji(d∗ji)− g(d∗ji)|+

||∇̂gji(dj)−∇g(dj)||2
√
n∆ji +

κ− 1 + βH
2

n∆2
ji
.

Using Lemma 6.6.4 and Equation (6.6.13), we can see that, eventually, (that is, for

sufficiently large i)

|r̂ji(d∗ji)− ĝji(d
∗
ji

)| ≤ ∆2
ji

+ ∆2
ji

+
√
n∆2

ji
+
κ− 1 + βH

2
n∆2

ji
.

Taking c = 2 +
√
n+ n(κ− 1 + βH)/2 gives the result.

The next Lemma shows that the inner loop will always find improvement if not

at a first-order critical point, by finding a solution that passes both the RC and the

SR tests (defined in Section 4.3.2).

Lemma 6.6.6. Suppose that Assumptions AF.1, AF.2, AF.3, AF.4, AE.1 and AE.2

hold. Then for any dj ∈ D and given j, if π(dj) > 0, the algorithm can always find

a satisfactory solution in iteration j.

Proof. Take dj ∈ D such that π(dj) = ξ > 0. First we consider the RC test using ρji

defined in Equation (4.3.12).

|ρji − 1| =
∣∣∣∣ ĝji(dj)− ĝji(d∗ji)r̂ji(dj)− r̂ji(d∗ji)

− 1

∣∣∣∣ =

∣∣∣∣ ĝji(dj)− ĝji(d∗ji)− r̂ji(dj) + r̂ji(d
∗
ji

)

r̂ji(dj)− r̂ji(d∗ji)

∣∣∣∣ .
Using the definition of r̂ji in Equation (6.5.3), we have that r̂ji(dj) = ĝji(dj) and so

|ρji − 1| =
∣∣∣∣ r̂ji(d∗ji)− ĝji(d∗ji)r̂ji(dj)− r̂ji(d∗ji)

∣∣∣∣ .

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 179

By Lemma 6.6.3 and using κji ≤ κ for all i:

|ρji − 1| ≤
|r̂ji(d∗ji)− ĝji(d

∗
ji

)|

µπ̂ji(dji) min
{
π̂ji (dji)

κ
,∆ji

} . (6.6.15)

Let us assume that the RC test is failed infinitely often, i.e., the algorithm gets stuck

in this loop. Therefore the number of observations used for the gradient, Mji → ∞,

and the trust region shrinks, ∆ji → 0. Then, by the uniform convergence of π̂ji

(Lemma 6.6.1):

Pr {π̂ji(dj) < ξ/2 infinitely often} = 0,

and by the procedure of the inner loop

Pr {∆ji > δ infinitely often} = 0, ∀δ > 0.

Thus, for sufficiently large i, π̂ji(dj) > ξ/2 and by Lemma 6.6.5

|r̂ji(d∗ji)− ĝji(d
∗
ji

)| < c∆2
ji
.

Therefore, eventually,

|r̂ji(d∗ji)− ĝji(d
∗
ji

)|

µπ̂ji(dji) min
{
π̂ji (dji)

κ
,∆ji

} ≤ c∆2
ji

µ ξ
2

min
{
ξ

2κ
,∆ji

} and ∆ji < δ.

⇒ Pr

 |r̂ji(d∗ji)− ĝji(d
∗
ji

)|

µπ̂ji(dji) min
{
π̂ji (dji)

κ
,∆ji

} >
2cδ2

µξmin
{
ξ

2κ
, δ
} infinitely often

 = 0,

(6.6.16)

for any δ > 0.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 180

We wish to choose δ such that:

2cδ2

µξmin
{
ξ

2κ
, δ
} ≤ 1− η0

⇒ 2cδ2

µξ ξ
2κ

≤ 1− η0 and
2cδ2

µξδ
≤ 1− η0

⇒ δ2 ≤ µξ2(1− η0)

4cκ
and δ ≤ µξ(1− η0)

2c

⇒ δ =
ξ

2
min

{√
µ(1− η0)

cκ
,
µ(1− η0)

c

}
.

With this choice of δ, the right-hand side of condition (6.6.16) is less than 1− η0, and

the left-hand side is greater than |ρji − 1| by (6.6.15). Thus, using (6.6.16) we have

Pr {|ρji − 1| > 1− η0 infinitely often} = 0

Using this, we can see that for sufficiently large i,

|ρji − 1| ≤ 1− η0

⇒ 1− ρji ≤ 1− η0

⇒ ρji ≥ η0

⇒ Pr{ρji < η0 infinitely often} = 0.

This contradicts the assumption that the RC test is failed infinitely often. Therefore,

when i is sufficiently large, d∗ji will pass the RC test with probability 1.

Now consider the SR test. We know that the RC test has already been passed, so

by Lemma 6.6.3

ĝji(dj)− ĝji(d∗ji) ≥ η0(r̂ji(dj)− r̂ji(d∗ji)) ≥ η0ζji .

This implies that the test statistic

T ∗ji =
ĝji(dj)− ĝji(d∗ji)− η

2
0ζji

Sji
≥ η0(1− η0)ζji

Sji
,

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 181

where

S2
ji

=
S2(dj, Nji)

Nji

+
S2(d∗ji , N

c
ji

)

N c
ji

is the sampled variance and Nji ≥ N c
ji

is the accumulated number of replications at

dj until this point.

Suppose that the SR test is always failed: i.e., T ∗ji ≤ t1−αj ,φ̂ ∀i ∈ N. Then both

Nji → ∞ and N c
ji
→ ∞, and so S2

ji
→ 0 with probability 1 and t1−αj ,φ̂ → z1−αj (the

1− αj quantile of the standard normal distribution). Furthermore, as the RC test is

eventually always passed, ∆ji is bounded away from 0 with probability 1. Therefore.

ζji = µπ̂ji(dji) min

{
π̂ji(dji)

κji
,∆ji

}

is bounded away from 0. Thus, T ∗ji → ∞ as i → ∞, so for i sufficiently large,

T ∗ji > t1−αj ,φ̂. This is a contradiction, and so d∗ji will pass the SR test for some i with

probability 1.

6.6.4 Convergence of the Algorithm

Once it is established that the meta-model can be used to satisfactorally improve upon

the current solution, the convergence proofs for deterministic trust-region algorithms

go on to show that these individual iterations combine into a sequence with a first-

order critical point as a limit point. STRONG and its extension rely on the inner loop,

which characterises the state of information and the improvement found in the new

solution. It is these quantities at the end of the iteration that influence convergence.

Thus, we introduce new notation. If a quantity is primed, such as π̂′j(dj) or ∆′j, this

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 182

refers to its value at the end of the jth iteration, including the inner loop if this is

used.

The proof in the deterministic case starts by assuming that the sequence of solu-

tions never reaches a first-order critical point and showing that when ∆′j is sufficiently

small, the RC test is always passed. Thus, {∆′j}∞j=0 is bounded away from 0. This

implies that the sum of improvements is divergent (see the proof of Theorem 6.6.9).

Due to stochasticity, this result is more complex for a simulation optimisation problem

as {∆′j}∞j=0 is a stochastic sequence.

Conjecture 6.6.7. Suppose that Assumptions AF.1, AF.2, AF.3, AF.4, AE.1 and

AE.2 hold. Then, with probability 1:

lim inf
j→∞

π̂′j(dj) > 0 ⇒ lim inf
j→∞

∆′j > 0.

To establish the convergence requires this result or a similar one. For example,

the weaker result limiting the speed of ∆′j tending to 0:

lim
J→∞

J∑
j=0

∆′j =∞ w.p. 1 (6.6.17)

could also be used for the proof. It is unclear at this point whether either property is

true, and further work is required to establish or dismiss this conjecture.

As the algorithm does not deal with the true value of π(dj), it is important to

show that if the estimated criticality measure, π̂j(dj), converges to 0, so does the

truth. This is the purpose of the next result.

Lemma 6.6.8. Suppose that Assumptions AF.1, AF.2, AF.3, AE.1 and AE.2 hold.

If there is a subsequence of {dj}∞j=0, denoted {djk}∞k=0, such that limk→∞ π̂
′
jk

(djk) = 0

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 183

with probability 1, then

lim
k→∞

πjk(djk) = 0

with probability 1.

Proof. Let M ′
jk

be the total number of replications used for estimating the gradient,

∇̂g′jk(djk), by the end of the inner loop of iteration jk, and thus the number used

to estimate π̂′jk(djk). Note that M ′
jk
≥ Mjk , the number of observations used for

the first estimate of π(djk). By the condition discussed in Section 6.5.2, Mjk → ∞

as k → ∞. Therefore M ′
jk
→ ∞. Then, by Lemma 6.6.1, π̂′jk(djk) is a uniformly

convergent estimator of π(djk) and so:

0 = lim
k→∞

π̂′jk(djk) = lim
k→∞

π(djk),

with probability 1.

The results discussed so far can now be combined into the final result of the

sequence of solutions having a first-order critical point as a limit point with probability

1.

Theorem 6.6.9. Suppose that Assumptions AF.1, AF.2, AF.3, AF.4, AE.1 and AE.2

hold. If the Algorithm has infinitely many successful iterations, then

lim inf
j→∞

π(dj) = 0 (6.6.18)

with probability 1.

Proof. We analyse the outer loop, where dj is random in the decision space. If

lim infj→∞ π̂
′
j(dj) = 0, then there exists a subsequence of solutions {djk}∞k=0 such that

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 184

limk→∞ π̂
′
jk

(djk) = 0. Then, by Lemma 6.6.8 we have that limk→∞ π(djk) = 0 with

probability 1 and so

lim inf
j→∞

π(dj) = 0.

Therefore, it suffices to show that

lim inf
j→∞

π̂′j(dj) = 0 w.p.1. (6.6.19)

Suppose the contrary, that is, there exists a set of sample paths, Ω†, such that each

sample path ω ∈ Ω† has a lower limit on the optimality measure, ε(ω) > 0:

lim inf
j→∞

π̂′j(dj) = ε(ω).

and Pr(Ω†) > 0. The analysis focusses on sample paths in Ω†. Then by Conjecture

6.6.7

lim inf
j→∞

∆′j > 0,

on ω ∈ Ω†. Then, for such sample paths, there exists a constant J1 such that π̂′j(dj) ≥

ε(ω) and ∆′jk ≥ ∆L for all j ≥ J1 for some ∆L.

Now, let Aj be the event

Aj =
{
ω ∈ Ω† : g(dj)− g(dj+1) ≤ η2

0π̂
′
j(dj) min{∆′j, 1} for stage I

}
∪

{
ω ∈ Ω† : g(dj)− g(dj+1) ≤ η2

0µπ̂
′
j(dj) min

{
π̂′j(dj)

κ′j
,∆′j

}

for stage II or the inner loop

}
.

This is the set of events that the SR test in iteration j has a Type I error, accepting

a solution that does not satisfy the reduction criterion. The properties of the SR test

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 185

guarantees that Pr(Aj) ≤ αj. Since
∑∞

j=0 αj <∞, by the first Borel-Cantelli Lemma

(see for example Loève (1977) page 240), Pr(Aj infinitely often) = 0. Then, for all

sample paths in Ω†, there exists a constant J2 > 0 such that

g(dj)− g(dj+1) > η2
0π̂
′
j(dj) min{∆′j, 1} for stage I or

g(dj)− g(dj+1) > η2
0µπ̂

′
j(dj) min

{
π̂′j(dj)

κ′j
,∆′j

}
for stage II or the inner loop,

when j ≥ J2.

Let J = max{J1, J2}. Then, for all sample paths in Ω†,

J3∑
j=J

[g(dj)− g(dj+1)] ≥ η2
0ε(ω)NI(J, J3) min{∆̃, 1}

+ η2
0µε(ω)NII(J, J3) min

{
ε(ω)

κ
,∆L

}
(6.6.20)

where NI(J, J3) and NII(J, J3) are the number of successful iterations of stages I and

II respectively between iterations J and J3, ∆̃ is the threshold trust-region radius to

switch to stage II and κ comes from (6.5.4). As there are infinitely many successful

iterations, NI(J, J3) + NII(J, J3) → ∞ as J3 → ∞. Therefore, it is clear that, for

almost all sample paths in Ω†

lim
J3→∞

J3∑
j=J

[g(dj)− g(dj+1)] =∞.

However, note that

∞∑
j=J

[g(dj)− g(dj+1)] ≤ g(dJ)− lim inf
j→∞

g(dj) <∞

because by AF.2, g is bounded below on D. This is a contradiction. Therefore,

equation (6.6.19) holds, completing the proof.

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 186

Note the reliance on Conjecture 6.6.7 in the final proof. This could be adapted in

Equation (6.6.20) if the weaker result of Equation (6.6.17) was guaranteed, achieving

the same goal.

6.7 Conclusions and Further Work

This chapter has given a more detailed description of the extension to STRONG de-

veloped in this thesis to handle bound constraints and has presented a pathway for

a potential proof of convergence of the algorithm. The adaptations involve using an

alternative criticality measure, using the Generalised Cauchy Step and the application

of Coordinate-Exchange Algorithms to build experimental designs from which to es-

timate the response surface. These were chosen in such a way to support convergence

properties, in line with deterministic trust-region optimisation. The analyses in this

chapter are designed to show the potential of the proposed algorithm regardless of

the simulation model used in the multi-fidelity modelling approach to the ARP. To

the best of our knowledge, no other work proposes the use of simulation directly in

the search algorithm for the ARP.

The primary further work lies in two areas. Firstly, further experimentation on

known functions with additional noise would enable us to build an understanding of

the more general practical performance of the algorithm. Secondly, work is required

to fill in the two blanks in the pathway to provable asymptotic behaviour. Whilst we

believe that it is possible to prove the second statement of Lemma 6.6.4, it is currently

unclear whether the conjecture that lim infj→∞ π̂
′
j(dj) > 0 implies lim infj→∞∆′j > 0

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 187

is true.

Improvements to the algorithm itself could be made. For example, our experimen-

tation shows the steps in the linear model stages, Equation (6.4.1), are very sensitive

to the sign of the gradient estimator, ∇̂gj(dj)k, without accounting for it’s magni-

tude. Thus, large steps can be taken in one component direction even with a very

small gradient, potentially producing a poor proposal, which is not the case when

using a Cauchy Point step (as in STRONG). One potential option would be to set

∇̂gj(dj)k to 0 if it is not significantly different from 0 to some confidence level greater

than 0.5, making the probability of the third part of Equation (6.4.1) non-zero. In

addition, during the inner loop, the design is augmented by creating a new design by

CEA and appending this to the design matrix. An alternative would be to directly

add points accounting for the design points already included in the design from pre-

vious iterations. This would improve the D-optimality measure of the whole design.

One could also investigate the use of alternative gradient estimators where these are

possible.

To go beyond bound constraints to general convex constraints would require some

adaptations. The Generalised Cauchy Point method, as set out in Chapter 12 of Conn

et al. (2000), could provide a framework for all problems with convex feasible regions.

Much of the proof in Section 6.6 would remain valid, as the measure π(d) is still

applicable. The choice of step could be the approximate Generalised Cauchy Point,

produced by Algorithm C.1, which would satisfy similar conditions to Lemmas 6.6.2

and 6.6.3. This would present challenges in calculating the projections and the choice

of trust region. The main difficulty would be in finding an experimental design that

CHAPTER 6. EXTENSION OF STRONG TO BOUND CONSTRAINTS 188

could produce a good estimate of the gradient. Generalising to all convex constraints

would mean the Coordinate-Exchange Algorithms could not be used, as constraints

would involve relationships between (potentially all) variables. Standard exchange

algorithms may be used in this context. An initial start may be to consider linear

constraints and investigate a change of basis by a linear transformation to align the

constraints with the region of interest. This would involve investigating the properties

of a design under transformations.

Chapter 7

Empirical Evaluation of

Simulation-Based Operational

Decisions

7.1 Introduction

In its traditional setting, simulation has mostly been used for problems of system

design, in making tactical or strategic decisions. For an aviation based example,

Mujica Mota et al. (2017) use simulation to choose between airport apron and runway

configurations to improve airport capacity. These are individual decisions, rather

than repeated ones. Similarly, this has also been the focus of simulation optimisation

techniques. The result is that, once a final decision has been made the simulation is

unlikely to be re-used. The stakeholders then have to make the most of the decision

without ongoing guidance from the simulation.

189

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 190

However, simulation has recently been used for repeated, operational level deci-

sions, making use of up-to-date information from the system, such as the recovery from

disruption considered in this thesis. An example of this is through symbiotic simula-

tion (Fujimoto et al., 2002; Aydt et al., 2009), but it is not limited to this paradigm

(Cheng, 2007). For repeated decisions, tracking the effectiveness of a simulation-based

Decision Support System (DSS) becomes important, as consistent and systematically

poor decisions due to a simulation not capturing critical system behaviour could be

costly. Unlike the traditional case, however, the stake-holders will repeatedly observe

what actually happened in the real system whilst the simulation is still in use. This

gives some opportunity for a comparison between the prediction and the reality. How-

ever, this comparison is not as simple as asking “did this decision work out well?”

Natural system variability may cause good solutions to lead to poor performance. If

this does occur, it is incorrect to conclude that the solution was necessarily a poor

decision.

Furthermore, each decision made will be under different circumstances, thus in-

volving a series of heterogeneous decisions so that only one observation from the real

system per decision is ever received. This means that recognising and diagnosing sys-

tematic error is a difficult problem. How can we tell if a single observation actually

comes from the predicted distribution according to the simulation or not?

There are two primary components that contribute to a simulation-based DSS: the

optimisation algorithm and the simulation itself. Both are important when consider-

ing the quality of the solutions found. Assessing the quality of the optimisation on

a given real-time problem is very difficult as the optimal solution will not be known.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 191

We will not look at this aspect of the problem. Instead we focus on a surrogate prob-

lem: whether the simulation-predicted performance matches up with the real-world

performance. Even when the optimisation is perfect, if the simulation model is poor

the optimisation is solving the wrong problem, probably leading to bad performance.

This may seem similar to the issue of model validation, an important part of build-

ing confidence in the model. However, validation of an online stochastic simulation

is difficult. As pointed out in Section 5.1 of Nelson (2013), validation can only be

made against an existing real system, and even this does not guarantee the validity

for the conceptual systems simulated in the DSS. Oakley et al. (2020) acknowledge

that validity depends on the initial system state. This could involve a combinatorially

large set of possibilities, for which it is not possible to validate in all scenarios. If the

system processes remain unchanged irrespective of the scenario, the ∆-method pro-

posed by Oakley et al. (2020) can be used by assessing changes in state. If this is not

the case, then the simulation will be unvalidated for many of the possible situations.

Furthermore, as the intention is that the simulation model is reused over a long period

of time, the processes in the real-world system it is modelling may evolve over time,

producing a divergence between the system and the model.

Section 5.1 of Nelson (2013) categorises two errors that could occur. One is in-

put uncertainty. The use of symbiotic simulation to bring in up-to-date data for

distribution fitting and the use of Machine Learning based methods for calibration

(as mentioned in Onggo et al. (2018)) can help to reduce this issue without major

re-modelling. The second error, modelling error, is much harder to address. A partic-

ular scenario may highlight the importance of a process that did not feature strongly

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 192

in the settings used for validation, leading to a large discrepancy in the simulation

predictions.

This thesis has been focussed on the Aircraft Recovery Problem. In principle,

the techniques proposed could form the basis of a symbiotic simulation DSS triggered

when a disruption occurs by matching the initial conditions of the physical system. In

this case, the issue of evaluating the decision certainly plays a role. No two disruptions

will be identical, and there are a number of sources of natural variability within the

industry. Furthermore, a model is likely to be validated on regular operations, but

used when things do not go according to plan.

This chapter will focus on exploring questions related to evaluating a simulation-

based DSS. To our knowledge, this area has not been previously studied and yet is an

important issue when using simulation for operational decisions. Section 7.2 describes

the problem and introduces some notation. Section 7.3 discusses an initial method for

detecting systematic discrepancies between the simulation and the real world. Some

experiments involving the airline disruption problem are presented in Section 7.4.

Section 7.5 discusses some of the wider issues related to this problem before some

concluding remarks and ideas for further work in Section 7.6.

7.2 Problem Definition and Notation

Suppose that we have a symbiotic simulation system, involving a real-world, or phys-

ical, system and a simulation model used as a DSS. Let {Tj = [tj1, tj2]}Jj=1 be a series

of intervals over which the simulation is used to make decisions. Here tj1 is the point

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 193

in time at which the DSS is triggered, and tj2 is the time horizon for the period of in-

terest. An example of this could be an airline disruption occurring at time tj1 and the

end of the recovery window being tj2. Over the jth time period, Tj, a key performance

measure in the real world will take some value, Rj. In the airline disruption problem,

this could be disruption cost. Rj can be considered a random variable coming from

a distribution dependent on the time interval Tj, the state of the system at t1j, Ψj,

which may include the history of the physical system, and the decision implemented

x ∈ Xj:

Rj ∼ F (· |Ψj, Tj, x) . (7.2.1)

Note that F (· |Ψj, Tj, x) is unknown and only a single observation of Rj will ever be

seen.

Suppose we are using a simulation model and optimisation techniques to make our

decision at time tj1. The same performance measure according to the simulation is

Sj ∼ G(· |Ψ̂j, Tj, x). (7.2.2)

Again the distribution of Sj is dependent on Tj, the decision x and the simulation

state Ψ̂j, which will almost always be an incomplete description of the real system

state. G(· |Ψ̂j, Tj, x) is also unknown. The aim of the simulation optimisation is to

find some xj ∈ Xj that ‘optimises’ the system in some way; this is often defined by

xj = arg min
x∈Xj

{
HG(· |Ψ̂j ,Tj ,x)[Sj]

}
(7.2.3)

where H is an operator with respect to the simulation distribution. Equation (7.2.3)

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 194

defines a ‘good’ solution. A common choice of H is the expectation of Sj,

HG(· |Ψ̂j ,Tj ,x)[Sj] = E [Sj] .

The process involves simulating the period Tj multiple times under a variety of de-

cisions x to estimate HG(· |Ψ̂j ,Tj ,x)[Sj], often with a sample average, and propose the

solution that minimises the estimate. This assumes that G(· |Ψ̂j, Tj, x) is a ‘suffi-

ciently good’ approximation of F (· |Ψj, Tj, x).

Let xj be the decision suggested by the DSS. This is then implemented in the real-

world system over Tj, and we observe Rj at or after tj2. Due to natural variability

inherent in the physical system, it is possible that Rj will represent poor performance

by coming from unfavourable portions of the support of F (· |Ψj, Tj, xj), even if xj

is a good solution. Therefore, a single observation is not sufficient to evaluate the

efficacy of the procedure.

Suppose that the DSS is used repeatedly across the sequence of intervals {Tj}Jj=1

to propose solutions. The result will be a series of real-world observations, {Rj}Jj=1,

each coming from a different distribution. One question that arises is: how can we

use these observations to see if the DSS is providing good predictions of solution

performance?

7.3 Initial Transformation Approach

This section proposes a basic approach to the question by transforming {Rj}Jj=1,

aiming for a set of identically distributed random variables. To do so, it is assumed

that the intervals {Tj}Jj=1 are such that the performance measures of each interval are

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 195

conditionally independent given the current system state. This may or may not be

true for overlapping intervals, which is an area for future investigation.

Whilst G(· |Ψ̂j, Tj, xj) is unknown, it can be approximated to arbitrary preci-

sion by simulating the consequences of decision xj many times and using the em-

pirical distribution. This can be done during the interval Tj. Using N replications

of the simulation to obtain independent and identically distributed (i.i.d.) samples

Snj , n = 1, 2, ..., N , G(s|Ψ̂j, Tj, xj) can be estimated using the Empirical Cumulative

Distribution Function (ECDF)

G(s|Ψ̂j, Tj, xj) ≈ Ĝj(s,N) =
1

N

N∑
n=1

I(Snj ≤ s), (7.3.1)

where I(·) is an indicator function. Note that, by the Glivenko-Cantelli theorem (see

for example Loève (1977) page 20),

Pr

(
lim
N→∞

sup
s∈R

∣∣∣Ĝj(s,N)−G(s|Ψ̂j, Tj, xj)
∣∣∣ = 0

)
= 1. (7.3.2)

That is, with probability 1, Ĝj(s,N)→ G(s|Ψ̂j, Tj, xj) uniformly in s as N →∞.

To enable the real-world observation to be compared with the simulation predic-

tions, we transform Rj using the Probability Integral Transformation based on the

ECDF resulting from the intensive simulation of xj. Define the transformed observa-

tions as

Uj = Ĝj (Rj, N) . (7.3.3)

If Rj does come from G(· |Ψ̂j, Tj, xj), then the properties of the CDF state that

Uj ≈ G(Rj|Ψ̂j, Tj, xj) ∼ U(0, 1). (7.3.4)

That is, {Uj}Jj=1 are a set of (approximately) i.i.d. uniform random variables.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 196

However, if the performance is systematically different from the simulation pre-

dictions due to the model not capturing an important real-world process, then Rj 6∼

G(· |Ψ̂j, Tj, xj), so {Uj}Jj=1 will not be uniformly distributed.

This can be tested using a goodness-of-fit hypothesis test:

H0 : Uj ∼ U(0, 1) versus H1 : Uj 6∼ U(0, 1).

There are several possible test statistics that could be used to detect any departures

from uniformity, such as the Kolmogorov-Smirnov test (see, for example, Thas (2010)

pages 123-129). The choice of test statistic is explored in Section 7.4.4. If the null

hypothesis is rejected, it would provide evidence towards the simulation requiring an

update or modification before further use.

For example a possible departure from uniformity might be Rj regularly being

above the 0.8 quantile of G(· |Ψ̂j, Tj, xj). In this case the transformation (7.3.3)

would lead to a high proportion of Uj being above 0.8, indicating that the simulation

is underestimating the performance measure, which should be detected by a goodness-

of-fit test.

Algorithm 7.1 summarises the proposed method.

7.4 Evaluation

To investigate the approach, we need a way to create real-world observations. As we

do not have access to an airline’s operations, for the purposes of this investigation, the

simulation model is modified to create a range of proxy real worlds. The modifications

are to characteristics of the service times on the runways, and are chosen so that the

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 197

Algorithm 7.1 Framework for Detecting Poor Simulation Prediction

1: Set significance level of hypothesis test, α, and the number of past decisions to

include in the test, J

2: for j = 1, ..., J do

3: At tj1, DSS triggered and solution xj found

4: Implement xj in real world

5: During Tj, perform Nj simulations of xj and calculate Ĝj(·, Nj)

6: At tj2, observe Rj

7: Uj ← Ĝj(Rj, Nj)

8: end for

9: Set up hypothesis test

H0 : Uj ∼ U(0, 1) versus H1 : Uj 6∼ U(0, 1).

10: Test using a goodness-of-fit test, calculate the p-value pJ

11: if pJ < α then

12: Investigate to identify issue in simulation

13: end if

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 198

scale of the difference is controllable.

7.4.1 Proxy Real Worlds

Whilst the model described in Section 4.2 used a deterministic model for service times

at airport runway queues, in reality there is variability. Aircraft approaches and take-

offs can be very tightly controlled, with minimal variation in the actual spacing, bar

communication delays in take-off (Stamatopoulos et al., 2004), but there are different

rules for separation between different aircraft types due to wake turbulence (ICAO,

2016). Given an order of take-offs or landings, the variability is very small. However,

as the sequence is often random depending on the order of arrivals, many analytical

runway queueing models, see for example Shone et al. (2019), use Erlang distributions

to represent the uncertainty. The ICAO rules dictate a minimum separation that must

be applied (ICAO, 2016), suggesting that if an aircraft is too close to the preceding

aircraft, it will be told to reduce speed to maintain the minimum separation.

To incorporate these mechanisms into the model, the simulation is altered so that

the ith service time is modelled as

Qi = max{s(t), Yi}+ w(t). (7.4.1)

Here s(t) is a time dependent minimum allowable aircraft separation, increasing

overnight (11pm-6am) due to noise pollution restrictions and w(t) represents an in-

crease in the separation due to poor meteorological conditions (see, for example, ICAO

(2016)). Let

Yi = max{smin, Zi} (7.4.2)

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 199

where Zi has a marginal Erlang distribution with k phases and smin = mint{s(t)} is

the lowest legal separation time. The marginal CDF of the process Yi is therefore:

FY (y) = FZ(y)I(y ≥ smin).

Air Traffic Controllers often wish to sequence similar sized aircraft together, as this can

increase the runway capacity (Stamatopoulos et al., 2004). This leads to a dependence

between successive service times. To model this, we allow the sequence Yi to be

autocorrelated, with a lag-1 autocorrelation ρ. When ρ = 0, Equation (7.4.2) is used

with Zi simply sampled from an Erlang distribution. When ρ > 0, we work with

the CDF of Yi directly, as the minimum alters the autocorrelation. This is simulated

using the order 1 auto-regressive-to-anything (ARTA(1)) process (Cario and Nelson,

1996).

The ARTA(1) process transforms the order 1 auto-regressive process (AR(1)) using

the standard normal CDF, Φ, and the inverse CDF of the marginal distribution of

the desired process. As the autocorrelation is not guaranteed to be preserved by this

transformation, one needs to calculate the base autocorrelation of the AR(1) process,

r, to give the desired autocorrelation, ρ. One can use numerical methods for this, but

here we use the simulation matching described for the normal-to-anything (NORTA)

transformation for bivariate random variables in Nelson (2013, page 148).

For each k, the mean for the Erlang distribution is chosen such that the mean

of the resulting service times during the day in good weather (w(t) = 0) is 78 sec-

onds. Whilst this value is lower than those considered in some aircraft sequencing

studies such as Bennell et al. (2017) or simulations of individual airports such as Mori

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 200

(2015), it was chosen to produce a reasonable level of congestion across airports using

segregated operations (an assumption of the model discussed in Section 4.2). The re-

striction to two runways is lifted during busy periods (6am-3pm and 4pm-9pm) at the

largest airports, namely Paris Charles de Gaulle Airport (CDG), Amsterdam Airport

Schiphol (AMS) and Adolfo Suárez Madrid–Barajas Airport (MAD).

Twelve proxy real world systems are considered, defined by combinations of the

variance and autocorrelation of the service time models. Specifically:

• variance of the service times at airport runways, using the maximum of an

Erlang distribution with k = 1000, 100, 10 and 2 phases and mint{s(t)} = 1

minute;

• lag-1 autocorrelation of the service times at airport runways, using ρ = 0, 0.5

and 0.9.

The proxy real world with k phases and lag-1 autocorrelation ρ is denoted as (k, ρ)

and a cost observation from (k, ρ) with a superscript k and ρ. The (1000, 0) system

is used as the model for the simulation optimisation. This has very low variance

(coefficient of variation 0.001) and independent service times at the runways. As k

gets smaller and ρ gets larger, the simulation deviates more from the proxy real worlds.

Thus, we expect that detection should become easier. Other than the service times

for the runway queues, the simulations are identical. Whilst there are many other

possible and realistic deviations, we focussed solely on the service times as results

from queueing theory provide an expectation of how changes in queueing behaviour

will effect the system.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 201

7.4.2 Hypothesis Tests for Uniformity

The choice of goodness-of-fit test may have a large impact on whether any differences

between the real world and the simulation are detected. In this case, it is the power of

the tests that is important, as we want to be able to detect a difference if it exists. A

Type I error is not as important. There are many tests for uniformity, mostly designed

for a specific alternative distribution. Quesenberry and Miller (1977) and Miller and

Quesenberry (1979) performed power studies across a range of goodness-of-fit tests

with four families of alternative distributions. The results gave a most powerful test

for each distribution, as well as a set of generally good performing tests.

In the setting described above, one class of concerning deviations between the

simulation and the real world are those that lead to an inconsistent underestimation

of cost (or an overestimation of profit). That is, the solution does not perform as well

as it was predicted, with an unpredictable bias that cannot be corrected for. This

matches the first family of alternative distributions in Quesenberry and Miller (1977),

where the mass of the distribution is concentrated towards one end of the unit interval.

For this family, the Anderson-Darling test (see, for example, Thas (2010) pages 129-

141) achieved the highest power. Thus, we shall include the Anderson-Darling (A-D)

test in our experimentation.

Quesenberry and Miller (1977) and Miller and Quesenberry (1979) also find three

other tests that are good all-round performers. These are the Watson test (W) (see,

for example, Thas (2010) pages 142-144) and the Neyman-Smooth tests with 2 and 4

degrees (NS2 and NS4 respectively) (see, for example, Thas (2010) pages 82-95). As

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 202

Table 7.4.1: Summary of each problem.

Problem Cause Disrupted Aircraft Time

Day 1 aircraft 1 16:00

Day 2 weather 2 9:40

Day 4 aircraft 1 13:20

Day 5 weather 2 10:40

Day 6 weather 5 10:10

we do not know for certain that discrepancies will lead to alternatives with a one-sided

concentration we include these three tests in the experimentation.

For comparison purposes, we also include the Kolmogorov-Smirnov test (K-S) and

the Cramer-von Mises test (C-vM) (see, for example, Thas (2010) pages 129-141).

7.4.3 Experimental Setup

For this experiment, we considered five problems originally discussed in Section 5.6.

These are based on a fleet of 116 aircraft and their descriptions are summarised in

Table 7.4.1. Day 3 is excluded as the IP solution contains no delays, so there is no

need for simulation optimisation. The ‘Cause’ column refers to either a technical

problem grounding an aircraft (labelled ‘aircraft’) or poor weather conditions leading

to heavy airport congestion. Certain types of disruptions or system states may be

more sensitive to a deviation than others, which would alter both the need and the

ability to detect a deviation. For example, one would expect that a disruption caused

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 203

by airport congestion would be quite sensitive to deviations in queueing behaviour.

Therefore, testing the proposed method on a sequence of disruptions with different

causes, scales and settings could create too many moving parts in the experiment

to allow for a thorough analysis of its ability to detect differences. To control for

this variable sensitivity, rather than using a sequence of distinct disruptions, our ‘se-

quence’ consists of the same disruption solved multiple times. Effectively, an identical

disruption occurs on each day of the sequence. As the solution depends in part on

the starting seed of the optimisation algorithm, there will be several distinct solutions

with different ECDFs. This allows us to partly mimic the real world.

The sequence of intervals {Tj}Jj=1 will be a repeat of the interval T1. For each, the

multi-fidelity optimisation procedure described in Chapters 3 and 4 is used to generate

a solution xj = (x,dj), which is simulated N = 1000 times under the (1000, 0) system

to produce an ECDF Ĝj. Each solution is simulated under each proxy real world

to obtain a sequence of real-world observations {Rkρ
j }Jj=1. These are transformed

using Equation (7.3.3) to obtain the supposedly uniform random variables {Ukρ
j }Jj=1,

on which we perform each goodness-of-fit test for uniformity. The full procedure is

summarised in Algorithm 7.2.

As the simulation produces random outputs, the rejection of the null hypothesis

is also random. Thus, performing one test does not give a meaningful indication of

the behaviour of the test. The M repetitions of steps 7-13 in Algorithm 7.2 results

in a set of M different p-values for the system (k, ρ), each coming from a possible

realisation of the proxy real world. This allows us to look at the rejection rate for

the system (k, ρ), helping to account for the dependence on the starting seed in our

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 204

Algorithm 7.2 Experimental Procedure

1: for j = 1 to J(=25) do

2: Solve the disruption to get solution xj

3: Perform N = 1000 simulations of xj using CRNs to produce ECDF Ĝj

4: end for

5: for Each Proxy Real World System (k, ρ) do

6: for m = 1 to M(=100) do

7: for j = 1 to J do

8: Simulate xj once under (k, ρ) to get one cost observation Rkρ
j

9: Transform Rkρ
j using Equation (7.3.3): Ukρ

j ← Ĝj(R
kρ
j , N)

10: end for

11: Result is two sequences, one of real-world observations, {Rkρ
j }Jj=1, and their

transformed values {Ukρ
j }Jj=1.

12: Perform the hypothesis test:

H0 : Ukρ ∼ U(0, 1) versus H1 : Ukρ 6∼ U(0, 1)

using each goodness-of-fit test for uniformity on the set {Ukρ
j }Jj=1.

13: Note p−value of test

14: end for

15: Calculate the empirical power of test in setting (k, ρ)

16: end for

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 205

proxy real world.

7.4.4 Initial Results

This section presents and discusses the results from the five experiments. In each

case, the simulation optimisation has been used J = 25 times to give 25 solutions.

We take M = 100 observations of each solution for each system (k, ρ). Days 1, 2 and

6 are discussed in detail. Results for Days 4 and 5 are similar, and the plots are shown

in Appendix D.

Figure 7.4.1 shows the P-P plots of {Ukρ
j }Jj=1 for each system (k, ρ) for the Day

1 disruption. Each line represents the ECDF of one set of {Ukρ
j }Jj=1, produced by

performing steps 7-10 of Algorithm 7.2 once. Each goodness-of-fit test measures how

different a line is from the diagonal. If the simulation is systematically underestimat-

ing (overestimating) the cost of a solution, one would expect most of the lines to lie

below (above) the diagonal. The plots seem to suggest that the cost of each solution is

not overly sensitive to the deviations considered here. The first appreciable difference

(by eye) appears to be the (10,0.9) system. Here there is a clear tendency for the lines

to be below the diagonal, suggesting that the simulation underestimates the cost. A

similar observation can be made from the (2,0.5) system. In the (2,0.9) system, the

most extreme case, the discrepancy is clear for all 100 lines.

The effect of autocorrelation seems to increase as k decreases and the variance gets

larger. For high k, the deviation from the mean is very small, meaning that even a

sequence of relatively ‘high’ service times due to autocorrelation make little difference

compared with the uncorrelated case. As the variance increases, the longer service

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 206

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

Figure 7.4.1: Day 1 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are k=1000,

100, 10, 2, columns are ρ = 0, 0.5, 0.9.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 207

times have more effect on the waiting times, and a sequence of longer service times

becomes more likely when autocorrelation is included.

The sensitivity of a system to such deviations plays an important role in whether

or not a difference is detected. To quantify this, we define sensitivity to the deviation

(k, ρ) as

Skρ =
1

|J |
∑
j∈J

R̄kρ(xj)− R̄1000,0(xj)

R̄1000,0(xj)
. (7.4.3)

here J is the set of distinct solutions in {xj}Jj=1 and R̄kρ(xj) is the mean of 1000

simulations of solution xj under the system (k, ρ). The use of CRN reduces the

uncertainty in Skρ. The widths of the 95% confidence intervals of Skρ are generally

one order of magnitude smaller than Skρ, with the widest having a half-width of 2.5%.

For Day 1, only three systems had Skρ greater than 1%, S10,0.9=2.9%, S2,0.5=2.4% and

S2,0.9=22%.

Figure 7.4.2 shows the rejection frequency at the 5% significance level for each

statistical test in the (k, ρ) system, i.e., how many lines from Figure 7.4.1 did the

goodness-of-fit test reject. It is an estimate of the test’s power. The results show

fairly low powers for all but the (2,0.9) system. In general the Anderson-Darling

test performs the best. This is consistent with the results of Quesenberry and Miller

(1977), as the distributions of Ukρ are concentrated towards one end of the [0,1]

interval. The power from the (10,0.9) and (2,0.5) systems are disappointing, as we

would hope the test would pick out deviations that lead to a visible discrepancy in

the P-P plots.

The story for Day 2 is very similar. Figures 7.4.3 and 7.4.4 show the P-P plots

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 208

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

Figure 7.4.2: Number of rejections for each hypothesis test in each system (k, ρ) in

the Day 1 disruption. Rows are k = 1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 209

and rejection frequencies. This disruption is based around congestion at AMS, a large

airport. Furthermore, it occurs earlier in the day, meaning that the knock on effects

of the disruption are larger and so one would expect the cost to be more sensitive

to queueing behaviour. On face value, the results appear to agree and the visible

difference in the (10,0.9), (2,0.5) and (2,0.9) systems are greater, with S2,0.9 = 73%.

However, even here the sensitivity Skρ only exceeds 1% in the five most extreme

deviations.

Figure 7.4.4 shows the power to have improved over the Day 1 problem, but it is

still quite low, even for the (2,0.5) system. This time the Anderson-Darling test is

never beaten in rejection frequency, again consistent with the observations of Quesen-

berry and Miller (1977), suggesting that general underestimation is the problem. The

power has improved in the (10,0.9) system due to an increased sensitivity of 8.8%.

Day 4 and Day 5 follow a similar pattern to Days 1 and 2 respectively. The results

of these are shown in Figures D.1 to D.4 of Appendix D. The Day 6 results in Figures

7.4.5 and 7.4.6, however, show a slightly different pattern. The lines in the (10,0.9),

(2,0.5) and (2,0.9) systems often begin above the diagonal before shifting to below,

quite a different shape from the (2,0.9) systems on the other days, which show a

strong tendency to stay below the diagonal. This suggests a concentration at both

ends of the [0,1] interval, more akin to the third and fourth alternative distributions

in Miller and Quesenberry (1979). Their results suggest that the Neyman Smooth

tests outperform the Anderson-Darling test. This is mirrored in Figure 7.4.6.

The full results across all five days of sensitivity against power are summarised in

Figures 7.4.7 and 7.4.8. It is clear that for systems with a sensitivity of more than

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 210

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

Figure 7.4.3: Day 2 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are k=1000,

100, 10, 2, columns are ρ = 0, 0.5, 0.9.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 211

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

Figure 7.4.4: Number of rejections for each hypothesis test in each system (k, ρ) in

the Day 2 disruption. Rows are k = 1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 212

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

Figure 7.4.5: Day 6 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are k=1000,

100, 10, 2, columns are ρ = 0, 0.5, 0.9.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 213

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

Figure 7.4.6: Number of rejections for each hypothesis test in each system (k, ρ) in

the Day 6 disruption. Rows are k = 1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 214

Figure 7.4.7: Relationship between sensitivity and power.

20%, the proposed transformation leads to a good power. With a sample size of 25,

all the tests have a power above 0.9, and only the Watson test dips below 95%. This

suggests that the proposed method would reliably detect deviations of this magnitude.

The increase in power is particularly sharp in the interval from 5% to 20% sensitivity.

However, if deviations of less than 5% are important to detect, these tests do not

have sufficient power (highlighted particularly in the log-scale plot in Figure 7.4.8).

In these cases, it seems that the Anderson-Darling test is the best performer for the

goodness-of-fit statistic. Further work is required to develop the power for smaller

deviations.

The second observation is counter to our initial expectations. The disruption costs

do not appear to be very sensitive to the queueing behaviour. A large proportion of

the observations have Skρ < 1%. This observation surprised us. The runway queue

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 215

Figure 7.4.8: Relationship between absolute sensitivity and power, plotted on the log

scale.

service times were chosen for the deviations in the proxy real world for two reasons.

Firstly, the model described in Chapter 4 did not account for some of the queueing

mechanisms of the real system; secondly there are well known results from queueing

theory to guide the expected result. The introduction of greater variance increases the

expected time spent in queues, causing more delay and thus increasing cost. Under

high traffic levels, such as in poor weather conditions, we anticipated a more noticeable

effect. The autocorrelation, intended to model aircraft sequencing, also meant that

sequences of long service times would be more likely, again increasing delays.

The observed sensitivity of cost does not match our expectations. As the mean

service time stays the same, the expected delay due to queueing is only dependent on

the number in the queue. The effect of increased service time variance on this appears

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 216

Figure 7.4.9: Trace data of the Day 2 delay of a disrupted aircraft’s flights in the

(1000, 0) (left) and (2, 0.9) (right) systems from 100 replications. Departure time

against delay. Also shows the mean and median across 100 replications.

small, until the extreme case of k=2. The effect of high autocorrelation can lead to

shorter queues if Y1 < 78s, or increased waiting times if Y1 > 78s. Simulation results in

Fiems et al. (2013) show that for an auto-regressive M/AR(1)/1 queue, the expected

number in the queue at steady-state decreased when increasing the autocorrelation.

Furthermore, the expected number initially in the queue has no dependence on k

or ρ. Thus, if an aircraft arrives at a queue with a large backlog near the beginning

of the simulation, its queueing delay and hence its knock on costs will not be greatly

influenced by k or ρ, except in the extreme cases. This is what occurs in Day 2, and

is shown for one of the disrupted aircraft under the (1000, 0) and (2, 0.9) systems in

Figure 7.4.9. The departure delay does not include queueing for the take-off runway,

therefore the effect of the first congested queue is seen in the delay of the second flight

(at around 12 noon). Whilst there is a clear difference between the two systems it is

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 217

not that large and the median delay does not change at all. As time progresses, the

queue lengths seem to become more dependent on k and ρ, the distribution becoming

more skewed (the mean delays increase much more than the median). Therefore, if

aircraft join a disrupted queue later, but before recovery, the delays are much more

variable, and can contribute more to the cost. This is observed in Day 6. In fact,

quite a significant proportion of the additional cost in the (2,0.9) system actually

comes from queues not related to the original disruption, occasionally causing large

delays for ‘non-disrupted aircraft’ later in the day. This is seen in the later part

of the day in Figure 7.4.9. After the delay has uniformly gone to 0, meaning that

normal operation has been resumed, the behaviour of the next two queues change

dramatically. The mean is more heavily affected by the change than the median,

suggesting that it is a change in the tail behaviour of the queue length distribution

rather than the lower behaviour. It is also worth pointing out that scheduled block

time often contains sufficient slack to recover from minor queueing delays without

additional cost.

The full results for sensitivity are shown in Table D.1 in Appendix D.

7.5 Wider Discussion

In this section, we discuss and highlight some broader issues around this topic of

evaluating a simulation-based DSS. This discussion is intended to provide a basis for

further investigations in this area.

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 218

7.5.1 Aims of Detection

The key questions of interest for this chapter are the performance of a simulation-

based DSS and whether it is making good decisions. In the light of this, the most

important deviations between the real world and the simulation are those that affect

the performance measure Rj. It is these departures from a performance that we are

aiming to detect, rather than more general departures from the physical system. A

deviation in the modelling of a process that the difference between F (· |Ψj, Tj, x) and

G(· |Ψ̂j, Tj, x) is not sensitive to is not important. All models make simplifications,

which are desirable from many perspectives, as long as this simpler model leads to

good decisions being made.

Any system used for tracking the efficacy of simulation-based DSS must account for

the fact that even the optimal solution to the problem with distribution F (· |Ψj, Tj, x)

could result in poor performance when implemented due to inherent system variation.

A single poor performance may not be indicative of an error in the procedure. Over-

reaction to this could lead to unnecessary alterations made to the system. Rather,

it is systematic deviations which result in systematically poor decisions that we wish

to detect. In this regard, what we are aiming for is not dissimilar from the Control

Charting methodology in quality and process control, where a system is either deemed

in or out of control. The out-of-control system could be identified after a series of

rejected hypothesis tests based on a rolling time window.

As our primary focus is on whether or not use of the DSS is leading to good

decisions, there may be some types of deviations that a user would not be concerned

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 219

about. For example, consider the case where there exists a constant t such that

F (r|Ψj, Tj, x) = G(r − t|Ψ̂j, Tj, x) ∀r ∈ R,∀x ∈ Xj. (7.5.1)

Here, the simulation does deviate from the true performance, but this bias is uniform

and simply shifts the distributions. In this case, the optimal solution to the simulation

optimisation problem is also the optimal for the physical system. Whilst the underes-

timation may be of interest, it is likely to be a secondary concern if the optimal is still

reached. Thus, one of the most common aims of a statistical test, that of a difference

in mean, is not a primary concern. This example demonstrates a complication in the

problem: we are mostly interested in detecting differences between F (· |Ψj, Tj, x)

and G(· |Ψ̂j, Tj, x) that alter the best course of action. Part of the future work in

this area could be to develop methods that are insensitive to some simple deviations,

such as a shift, that leave the optimal solution unchanged.

7.5.2 Types of Deviations

There are a number of ways that a simulation model could be misspecified, leading

to a deviation from the physical system. We have grouped these into four main

(non-exhaustive) categories.

(i) A modeller may have a good understanding of the system logic, but the real pro-

cesses are modelled by a simpler process, such as a single distribution. A distribution

may differ from reality by:

• misspecification of the mean (though this is less common as the mean is often

matched);

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 220

• misspecification of process variability or not accounting for all sources of vari-

ability, due to both internal and external factors;

• assuming independence when dependence plays a role in the operation.

The deviations in service times in Section 7.4 are of this type. As part of the ab-

straction, a simulation model could ignore factors and complexities in a process that

happen to be important in a particular decision.

(ii) Another group of misspecifications could be that a physical process depends on

the state of the system or varies in time whilst being modelled as a static process.

This stationary assumption may impact predictions, without being important during

normal operations. In our model, the availability of airport resources, such as stands,

will be less predictable during a busy period for the airport, increasing the variability

of turn times. This in not included in our simulation model, but may alter the optimal

solution as leaving more slack at this time of day may be advantageous.

(iii) A more extreme version of the two previous groups is that a process is not

modelled at all. It is common for some real-world processes to be ignored when

building a model, especially when they do not appear to influence the output of the

simulation. However they may be key in some problems, particularly under irregular

operations.

(iv) Our final class of deviations is that the full system state is not described in the

simulation. A simulation may fail to capture the entirety of the initial state of the

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 221

system. This is not to say that the information would be incorrect, but incomplete.

There are circumstances where this could impact the prediction. An example from

our simulation could be that Engine Health Management data are not used directly,

which would impact on the time-to-failure models.

7.5.3 Considerations for the Transformation and Test

Due to the heterogeneity of problems faced, particularly that F (· |Ψj, Tj, xj) is al-

most certainly not the same as F (· |Ψi, Ti, xi), it is likely that some transformation

will be necessary for any hypothesis testing. We have discussed the use of the sim-

ulation ECDF to make this transformation. If the simulation cannot be run many

times or the transformation deviates significantly from uniformity, a smoothed version

of the ECDF may help to improve the estimation of the true distribution. It would

be useful to quantify this deviation and to consider if the hypothesis test should be

changed to account for this approximation. An alternative could be to use a para-

metric distribution, fitted to the observations from the simulation. This would enable

more powerful tests, specific for that distribution type, but at the price of increased

uncertainty due to the necessary choice of distribution. This may be applicable in

some cases more than others, dependent on the knowledge of the system.

The performance measure of interest plays a large role in the efficacy of the de-

tection. Whilst a particular quantity may be of central importance, and so used as

the objective for an optimisation procedure, it may not always be easily or instantly

observable in all contexts. There may be alternative performance measures, which

are of secondary concern but are better understood and more easily observed that

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 222

could provide a better insight into how well the simulation model is doing. The more

that is understood about Rj, the more detailed a detection procedure could be. For

example, throughout this thesis the key performance measure used for the simulation

optimisation procedure has been the cost due to disruption and delays. This includes

aspects like passenger compensation, which may not actually be observed for a week

or so after the events being simulated. The total delay, on the other hand, is related

to cost and very easily observed during Tj, and so could be tested very soon after tj2

rather than waiting.

The transformation and hypothesis tests in Section 7.3 assume some level of in-

dependence between intervals. The short-haul setting involves a natural time horizon

for the simulation, i.e., working days are well defined and, on the whole, operate in-

dependently of each other. Many delays are absorbed over night, meaning that major

issues of a disruption rarely give rise to further problems the next day. Therefore, the

cost and delay observations from the real world on different days are largely indepen-

dent, and so transforming the observations through the simulation ECDF leads to a

set of independent random variables. This is not to say that the intervals themselves

must be non-overlapping or that they cannot impact each other. The key is that we

have independent outcomes given the past decisions. We believe that the minimum

required is that the intervals are independent given the state of the system at the time

the simulation-based DSS is triggered. However, this must apply to both the system

and the simulation. If the state of the simulation system, Ψ̂, did not capture all the

required information from the system’s history, then the independence may not be

guaranteed. In this case, a time-series treatment may be a useful approach to help

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 223

model the dependence. This is an area for further work.

Our approach is concerned with the performance measures over the entire period

Tj. This has been the standard approach to validating simulation models for a long

time. An alternative perspective that has gained some traction recently would be to

consider simulation analytics (see, for example, Nelson (2016)). This would allow the

processes themselves to be compared, rather than a total or time averaged performance

measure. If one could use areas of time-series or functional statistics, there is the

potential to improve the detection of deviations as well as the identification of the

causes of deviation.

7.6 Conclusions

This chapter has highlighted and discussed the issue of the evaluation of simulation-

based Decision Support Systems. It has been demonstrated that the tracking of the

efficacy of such a system is not as straightforward as measuring the outcome, as

natural variability within a system may lead to an optimal solution giving a poor

result. To our knowledge, this area has not been previously studied and yet is an

important issue when using simulation for operational decisions.

This chapter presents a method based on the Probability Integral Transformation

to detect discrepancies between the predicted and observed performance. It has been

demonstrated within the airline disruption context by comparing a simulation with

another simulation acting as a proxy real world. Example results based on 25 disrup-

tions show that the transformation-based method is able to detect deviations of 20%

CHAPTER 7. EVALUATION OF OPERATIONAL DECISIONS 224

or more fairly consistently, but there is quite a dramatic fall off in power as deviations

fall below 10%.

A simple extension of this work would be to investigate the benefits of increasing

the number of decisions used in the test. As this increases, we would expect power to

improve. However, in the context of airline disruption, 25 disruptions could represent

over a month of use, by which time a user may hope to be evaluating a DSS. Hence

further work could also be to investigate the method under a sequence of disruptions,

rather than a single disruption, mimicking the actual use, as well as experimenting

with the transformation to increase the power of the hypothesis tests.

Section 7.5 provided a wider discussion of issues related to the evaluation of the

simulation-based DSS, with potential literatures suggested to help inform the inves-

tigations. There is clearly an interesting range of issues worthy of further research in

the search for an objective method for evaluating a simulation-based DSS.

Chapter 8

Conclusions and Further Work

This thesis has presented research into how one could use simulation within the airline

industry to manage disruption to schedules, specifically looking at the Aircraft Recov-

ery Problem (ARP). The proposed methodology aims to find and evaluate potential

rescheduling options, either allocating an aircraft and a planned delay or a cancella-

tion to each flight, whilst accounting for the inherent uncertainty in the environment.

To the best of our knowledge, this is the first investigation of a high-fidelity discrete

event simulation model within the search process for the ARP.

In addition to the development of this methodology, contributions have been made

in (i) extending the STRONG algorithm to handle more general problems with bound

constraints and (ii) addressing the question of how to evaluate a simulation-based

decision support system in an environment with natural variability.

This chapter summarises the research contributions of this thesis in Section 8.1.

Identified areas for further work and improvement are given in Section 8.2. Final

comments on the work are offered in Section 8.3.

225

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 226

8.1 Contributions

Solving the Aircraft Recovery Problem

The primary contribution of this thesis is the development of a multi-fidelity modelling

approach designed to find a set of good solutions to the Aircraft Recovery Problem.

This algorithm was developed in Chapters 3 and 4. The low-fidelity model takes the

form of an Integer Program (IP) which is solved in a multi-objective manner using

the ε-constraint method. The use of the IP means that the combinatorial aspects of

the ARP do not have to be performed within the simulation optimisation, a problem

that many current methods struggle to handle. The IP is able to quickly find good

aircraft allocations that display different optimal balances between the cost, delay

and schedule alteration objectives. The result is a set of promising solutions that can

then be evaluated within a high-fidelity simulation model.

The IP model developed in Chapter 3 is mainly based on established methods.

The primary novelty is its interaction with the simulation model. As the error of

a low-fidelity model may not be uniform across the solution space, the simulation

optimisation performs an iterative local search to improve the cost objective of each

of the promising solutions. The optimisation takes place over the planned delays,

treating them as continuous variables, as described in Chapter 4. To perform this

optimisation, an extended version of STRONG was developed to handle the bound

constraints on delays. This was necessary as the optimal solution may lie on the

boundary of the feasible region.

The overall method enables the selective use of simulation in a combinatorially

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 227

constrained problem. Furthermore, it is used directly within the search procedure.

An empirical study of the performance of the method based on a set of three

example problems with different practical challenges is presented in Chapter 5. As

the true optimal solution and optimal value to the simulation optimisation problem is

unknown, we evaluated the cost performance of each solution produced by the algo-

rithm using a set of 1000 replications of the simulation. These results demonstrated

that the multi-fidelity modelling approach finds good solutions to the problem, and

that using the simulation directly in the search typically improves upon the IP-based

solution. The final solution varies with the starting seed of the optimisation; it is not

guaranteed to improve the solution (see Section 5.6), though no examples of decreas-

ing quality were found. As the ARP is a one-time-only decision, it is important to

consider how the solution performs in a variety of possible realisations of the future.

To this end, we also reported the histograms of the 0.95 quantile of cost, which some-

times increased compared to the IP-based solution. This should be considered when

choosing a solution to implement.

Extending STRONG

The empirical results in Chapter 5 rely on a particular simulation model (and a slight

variant in Section 5.6). If an airline wanted to include additional problem aspects in

the model the simulation model would change. To show that the proposed method of

local improvement could apply beyond the particular model used here, a more theoret-

ical perspective is given in Chapter 6. Here, the extensions to STRONG are described

in more detail. One extension implements ideas from constrained trust-region opti-

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 228

misation to generalise the optimality measure and the method for proposing a new

solution. The other draws upon ideas from experimental design, using a coordinate-

exchange algorithm to build designs for meta-model estimation when the trust region

is not entirely feasible. These extensions allow the STRONG framework to handle a

general continuous simulation optimisation problem with bound constraints, and are

a contribution to the wider simulation optimisation literature. The adaptations were

developed to support the convergence of the algorithm, intuiting that convergence

theory from constrained trust-region optimisation would have relevance in this con-

text. Whilst a full proof of asymptotic behaviour is not obtained, a pathway for the

proof is developed, highlighting where further work is required.

Evaluating a Simulation-based Decision Support System

If implemented, the proposed method would be used repeatedly for operational deci-

sions regarding the rescheduling of flights and aircraft on a regular basis. The final

contribution of this thesis highlights the difficulty of evaluating the decisions made by

such a simulation-based DSS and proposes some solutions. Chapter 7 discusses this

issue and argues that the problem is difficult due to natural variability of the system,

meaning that even an optimal solution can perform badly, giving the impression that

the DSS has done a bad job. There are two parts to a DSS in this context: the simula-

tion used to predict the performance of a decision and an optimisation methodology,

which includes repeated usage of the simulation. Both of these parts contribute to the

quality of the solutions found. The evaluation of the optimisation is a very difficult

problem due to its interplay with the simulation, and is beyond the scope of this

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 229

work. However, in Chapter 7 we propose a method to evaluate the simulation model,

attempting to detect the presence of systematic inaccuracies. The natural variability

and uniqueness of conditions faced means that statistical detection of the deviations

is difficult. This thesis proposes a simple transformation using the simulation ECDF

combined with a goodness-of-fit hypothesis test to detect issues. This method was

evaluated using the proposed ARP methodology and a set of proxy real worlds cre-

ated by changing the runway service times in the simulation. The results suggest

that, with a sample size of 25 decisions, the test can consistently detect differences

between the simulation and proxy real world of more that 20%. The results also show

that the power of the test is poor for deviations of less than 10%.

8.2 Further Work

Throughout this thesis, areas of further work are identified, both in terms of methods

already existing in the literature but not implemented here and in developments that

require further research. This section gives an overview of some of these.

There are aspects of airline disruption that have not been accounted for in this

research. Whilst we believe many of the key properties are included within the sim-

ulation, there are others that could enhance the utility of the method. For example,

one could include passengers within the simulation and IP to explicitly model the

costs of missed connections, or expand the IP to include different forms of aircraft.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 230

Integer Programming Model Development

The IP model described in this work may not be the best model for solving the ARP.

There are a number of improvements that could be made. These include problem

reduction heuristics, such as that proposed by Rosenberger et al. (2003), and more

problem-specific solution methodologies. The results in Chapter 5 indicate that, whilst

the first solution minimises cost, the pure ε-constraint algorithm takes several iter-

ations to reduce the aircraft exchanges to the Pareto optimal. Initial experiments

with an alternative hybrid multi-objective approach reported in Appendix B appear

to help this issue.

Reducing the Computational Burden of the Simulation Optimisation

Before implementing the simulation optimisation, it is advised that a parameter tun-

ing experiment is undertaken, particularly for those parameters that control the trust-

region radius and the threshold for switching to the quadratic model. The algorithm

can be parallelised fairly easily to reduce the computational burden of the method,

particularly during the experimental designs where each design point could be given

to a separate processor.

At each Stage I iteration, the proposed solution from the linear model is very

sensitive to the sign of the gradient estimator components, regardless of magnitude

(due to the projected gradient step). One way to improve the efficiency of the algo-

rithm could be to set all components that are not significantly non-zero to 0. Rather

than moving to a corner of the hyper-box trust region, the proposal could then be at

the centre of a face. This would prevent large steps in a direction with a very small

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 231

gradient.

The results in Chapter 5 seem to indicate that the simulation optimisation ap-

proach tends to run out of budget rather than converge to an optimal. As the conver-

gence criterion, π(d) = 0, was not obtained, the key aim could be revised to achieve

local improvement within the fixed budget. On reflection, this could support the use

of an inexpensive gradient estimator, such as those used in Stochastic Approximation

methods, rather than the expensive experimental designs. This could be achieved by

looking at the simulation sample paths more closely.

Theoretical Properties of the Simulation Optimisation

There is also further work regarding the simulation optimisation as a general algo-

rithm, such as an investigation of its performance on known analytical functions and

research into filling the gaps in the proof of convergence presented in Chapter 6. The

full proof relies on the trust-region radius either being bounded away from 0 or tend-

ing to zero in such a way that the sum over the iterations is infinite. One other

gap remains, that of proving that the errors from a general OLS gradient estimator

only exceed the trust-region size finitely many times. If these conjectures can be

proven, the path towards asymptotic convergence to a first-order optimal point will

be complete.

Dynamic Application

Throughout this thesis, each disruption has been treated as a static problem, that

is, there is only one decision point during the disruption. In reality, disruptions

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 232

evolve with time, and once some uncertainties become clear, the optimal decision

may change. This motivates two possible research directions for improvement. The

first is to use the power of symbiotic simulation to track the evolution, and periodically

re-evaluate what the best decision is, possibly extending the methods proposed in this

thesis. An extension of this is preventative work, where the simulation is operating

continuously, using weather and aircraft health data to forecast disruption and suggest

schedule rearrangements to avoid the disruption before it happens. This style of

symbiotic simulation was suggested by Aydt et al. (2008b).

The second possibility is to account for some form of recourse action that could

be taken later on in the day and only committing to immediate decisions. Recourse

action could be retiming of flights when some uncertain quantities became known.

To include this within the decision making structure may require changes to the

optimisation methodology considered within this thesis.

Both of these directions are open research topics that could enhance the use of

simulation within disruption management.

Simulation-based Decision Support Systems

The method discussed in Chapter 7 is an early approach to detecting differences

between the simulation and the real world. Further work is required to test the

method on the more realistic scenario of a series of different disruptions to see if this

changes the performance of the test. To understand the properties of this method

more fully, further experiments should be run, considering the effect of sample size

and variations on the transformation (such as using a smoothed ECDF). Ideally this

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 233

should be across a variety of simulation models and applications.

Chapter 7 identified a number of wider issues that are not accounted for in this

research. These include considering how dependence between decisions can be mod-

elled, how one could detect differences that alter the optimal solution to the problem

and how to find the problem in the simulation given that a deviation has been de-

tected. Further research into these areas could help to develop a detection method

to evaluate simulation-based DSS in practical problems, and detect differences that

really affect the decisions made.

8.3 Final Comment

This thesis has investigated the use of simulation to aid airlines to manage disruption

to their schedule by finding and evaluating potential rescheduling options, particularly

focussed on the Aircraft Recovery Problem. To do so, a multi-fidelity methodology

combining deterministic optimisation and simulation optimisation has been proposed

and demonstrated, with promising computational results. We have identified possible

directions for further work to develop the methodology, both theoretically and to

reduce the computation time.

In addition, the issue of how to evaluate this tool once implemented has also been

discussed and a method for detecting poor simulation predictions has been suggested.

The experiments imply the approach has potential, being able to detect substantial

changes with moderate sample sizes.

Appendix A

Simulation Model

This appendix gives more details of the simulation model, and considers the extended

version used in Chapter 7. The simulation is built in AnyLogic 8.2.3 (The AnyLogic

Company, 2017), a Java based simulation software. Throughout this appendix, a

variable type followed by [] (such as String[] or double[2]) will refer to a Java array

of that type, using the Java syntax. The length may or may not be specified.

A.1 Aircraft Entity

The main entity (called an ‘agent’ in AnyLogic) is the Aircraft. The parameters and

variables of the Aircraft are given in Table A.1.1. The ‘airline’ parameter is true for

all aircraft in the fleet, and false for all other aircraft. Other parameters may not

be initialised for aircraft outside the fleet. The ‘inFlight’ and ‘start’ parameters are

used to determine initial conditions: is the aircraft in flight at the start of the period,

and how long has it been in flight or on the ground. The ‘start’ parameter allows

234

APPENDIX A. SIMULATION MODEL 235

Table A.1.1: Parameters and variables for the Aircraft entity.

Parameter Type Description

airline boolean Is the aircraft part of the fleet?

id string Aircraft tail number

flightTime double Flight time (minutes) since last maintenance

flightStart double Time at which last flight began

flightNum integer Index of current flight in the arrays

leg String[2] OD pair of airport names for current flight

failure double Failure time of the aircraft (generated at beginning)

maintenance integer 1 if the aircraft needs maintenance, 0 otherwise

planned integer 1 if the maintenance is scheduled, 0 otherwise

minutes double Scheduled flight time (minutes) during period

CheckTime double Time of next scheduled maintenance

refuel integer 1 if aircraft requires fuel after flight, 0 otherwise

inFlight integer 1 if aircraft in flight at initiation, 0 otherwise

start double Time when aircraft began the current activity

RNG java.util.Random Specific random number stream for this aircraft

origins ArrayList<String> List of origins in schedule

destinations ArrayList<String> List of destinations in schedule

takeoffs ArrayList<double> List of scheduled departure times in schedule

landings ArrayList<double> List of scheduled arrival times in schedule

delays ArrayList<double> List of planned delays in schedule

passengers ArrayList<integer> List of passenger numbers on each flight in schedule

APPENDIX A. SIMULATION MODEL 236

the initial activity times to come from a conditional distribution. To increase the

correlation when using CRN, each aircraft has its own random number generator.

This is used for generating the failure time (‘failure’ parameter), turn times, repair

times and flight durations. The seed is set when the entity is initialised using the

next random integer from the default random number generator of the simulation.

As well as information about the aircraft, the schedule information is stored in arrays

as parameters of the Aircraft class. AnyLogic stores data in SQL databases, which

are quite slow to search. Storing the schedule information in arrays as variables of

the Aircraft class decreases the computation time.

Many of the parameters in Table A.1.1 are read in from a database upon initiali-

sation. Others are calculated from the schedule information. The schedule ArrayLists

of the aircraft are populated from the schedule SQL database, storing only flights that

are allocated to that aircraft. To remove the need for extra rules when the aircraft

has completed its schedule, a pseudo-flight is added to the list, with departure after

the simulation end time. The sequence of flights is checked for feasibility, ensuring

that the destination of one flight matches the origin of the next. If a sequence is

found to be infeasible, the simulation terminates. This prevents errors occurring if

an infeasible schedule is mistakenly used as an input. If an aircraft has no assigned

schedule, it is removed from the population of aircraft.

The failure time for each aircraft is computed on initialisation. For the purposes

of this study, it is assumed that failures resulting in immediate grounding follow a

Weibull distribution with shape parameter α=10 and scale parameter β=30,000. No

other faults are modelled in the simulation. As the time-to-failure is conditioned on

APPENDIX A. SIMULATION MODEL 237

being larger than the period of time previously flown, ‘flightTime’, the failure time is

sampled from a conditional distribution. Rather than rejection sampling, this can be

done using the procedure in Algorithm A.1. The right-hand side of Equation (A.1.1)

is the Weibull(α,β) CDF evaluated at ‘flightTime’. The right-hand side of Equation

(A.1.2) is the inverse CDF of the same distribution. The proof that this creates the

appropriate conditional distribution is straightforward, but not included here.

Algorithm A.1 Generating the failure time of an aircraft

1: Calculate the probability of failing before ‘flightTime’:

u0 = 1− exp

{
−
(

flightTime

β

)α}
(A.1.1)

2: Sample a uniform random number: U ∼ U(u0, 1)

3: Calculate failure time using the Inverse Probability Integral Transformation:

failure = β(− log(1− U))1/α (A.1.2)

4: return failure

A.2 Main

In the simulation model, the aircraft move in two environments. One is the Airport,

which is discussed in Section A.3. The other is the Main ‘agent’, in which the flights

are operated, populations are initialised and output statistics are collected. The

parameters are listed in Table A.2.1. The cost parameters are used to calculate the

objective function. The purposes of these will be explained in the appropriate context

in the following subsections.

APPENDIX A. SIMULATION MODEL 238

Table A.2.1: Main Parameters and Variables

Parameter Type Description

delayCostpm double Cost of delay per minute

exceedancePenalty double Cost per minute of delay exceeding planned delay

delay2hrCost double Compensation per passenger for 2 hour departure delay

delay3hrCost double Compensation per passenger for 3 hour arrival delay

cancelCost double Compensation per passenger for a cancellation

fixedCancelCost double Non passenger-based cost for a cancellation

diversionCost double Cost for diverting a flight

PlanNumber integer Label of the schedule to import for the simulation

stopTime double End of the simulated period

numFlights integer Number of flights in the schedule

disruptedAirport String[] List of airports with weather disruptions

keepPast double Length of history still in the queueing system

busyPeriods double[4] Start and end of the peak periods

autoCorr double Autocorrelation of runway service times

phase integer Phase number of runway service distribution

erlangMean double Erlang mean of runway service distribution

closedAirports ArrayList List of currently closed airports

cost double Output variable used to accumulate cost

APPENDIX A. SIMULATION MODEL 239

A.2.1 Flights

Once the aircraft has been served by the airport take-off runway, the aircraft leaves

the airport class (an agent in AnyLogic) and enters the simple flow chart in the Main

agent. As the SQL search in AnyLogic is slow, a ‘flight’ class is used, with four at-

tributes: origin, destination, shape parameter, α, and scale (distScale) parameter, β.

These are stored in an AnyLogic agent population, which is quick to search when

finding the appropriate distribution parameters. The flight durations are modelled

using a log-logistic distribution, with Maximum Likelihood Estimator (MLE) param-

eters for each route. The data used to fit the parameters (from Flightradar24 AB

(2017)) is the time from take-off to landing. Thus, the service times of both runways,

SpacingDep(t) and SpacingArr(t), are removed from the total. So the flight duration

is

duration = α

(
U

1− U

)1/β

− SpacingDep(t)− SpacingArr(t), (A.2.1)

where U ∼ U(0, 1) and the first term is the inverse CDF of the log-logistic distribution.

If an aircraft is in flight at initialisation, its remaining flight time is sampled from

a conditional distribution based on the time already spent in the air. The sampling

uses the same process as the conditional failure times in Algorithm A.1, replacing the

Weibull CDF with the log-logistic CDF, and ‘flightTime’ with the time already used.

At the end of the flight duration, the simulation identifies the destination airport

environment and the aircraft is sent to that environment.

APPENDIX A. SIMULATION MODEL 240

A.2.2 Runways

The functions that represent the minimum legal separation between aircraft using

runways are held in Main (as they must be accessed when calculating the flight dura-

tion). Both functions, SpacingDep(t) and SpacingArr(t), are step functions. For the

purposes of this research, the minimum spacing is set to 1 minute between 6am and

11pm, and 3 minutes overnight.

The simulation assumes that segregated runway operations are used at each airport

(one runway for arrivals and one for departures) and that they operate independently.

This assumption produces unreasonably high congestion at peak hours at larger air-

ports, namely AMS, CDG and MAD (each of which have at least four runways). Thus,

for peak periods of the day, these airports use two runways for each queue. These

periods are defined by the ‘busyPeriods’ parameter: the first two elements define the

morning interval; the second two define the evening interval. The ‘peakTimeStart’

event increases the capacity of each runway resource to 2 (see Section A.3) and sched-

ules both the end of the peak period, the ‘peakTimeEnd’ event, and the subsequent

‘peakTimeStart’ event. The ‘peakTimeEnd’ event decreases each resource capacity

back to 1. This only applies to the largest airports.

A.2.3 Refuelling Event

An event is scheduled overnight to ensure that all aircraft start the next day refuelled.

As the aircraft ‘refuel’ parameter is updated on leaving the gate, this event sets ‘refuel’

to 1 for each aircraft in the fleet.

APPENDIX A. SIMULATION MODEL 241

A.2.4 Output

The primary output of the simulation is cost. This is added to at various events

during the simulation. Other output statistics, collected in AnyLogic Data Sets, are:

arrival delay of each flight, departure delay of each flight, whether the delay is greater

than 15 minutes (thus affecting on-time performance) and whether an aircraft is late

for scheduled maintenance. An AnyLogic Statistics object stores summary statistics

of all the outputs.

A.2.5 Initialisation

The Main environment controls the initialisation of the simulation, including the fleet

and airport populations which are described in the relevant sections. The ‘erlangMean’

parameter is changed depending on the ‘phase’ parameter using a look-up table. This

ensures that the marginal mean of the runway service time distribution is 78 seconds.

The start time is used to calculate whether the large airports are in a busy period

or not. If it is during a busy period, a ‘peakTimeStart’ event is scheduled to happen

immediately. Otherwise, the next peak period is identified and a ‘peakTimeStart’

event is scheduled for that time.

The compensation costs from all cancelled flights are also calculated at this point.

The cost for each flight is ‘fixedCancelCost’ plus ‘cancelCost’ for each passenger on

the flight. These are added to the ‘cost’ variable.

APPENDIX A. SIMULATION MODEL 242

A.3 Airport Operations

The other environments the aircraft entities operate in are the airports. These are

generated from a database at initialisation. The environment is a discrete event flow

chart. This section details the processes at the airport.

Each airport has a set of parameters. These describe various properties related to

the airport operations and the distributions for activity durations. The parameters

are listed in Table A.3.1 (the longitude and latitude coordinates are also supplied for

visualisation purposes but play no role in the calculations). In principle, they could

vary across airports and be read in from an input file. In this work, some are set

throughout, including ‘turnSTD’ and ‘fixScale’; some are read in via a database, such

as ‘acheck’ and ‘turnShort’; and some are initialised depending on other input data,

such as ‘erlangMean’ and the ArrayLists.

A.3.1 Runway Resources

The Airport environment has two resource entities: ‘landingRunway’ and ‘takeoffRun-

way’. These resources serve the landing and take-off queues, respectively. The default

is that each will have a capacity of 1. For the three large airports in the database,

AMS, CDG and MAD, the capacity is controlled by the peak time events in the Main

environment (see Section A.2.2). Under poor weather conditions, the capacity can be

set to 0, closing the airport (see Section A.3.5).

APPENDIX A. SIMULATION MODEL 243

Table A.3.1: Airport Parameters and Variables

Parameter Type Description

name String IATA name for the airport

fixShape integer Shape parameter for repair time distribution

fixScale double Scale parameter for repair time distribution

acheck double Hours to complete scheduled maintenance

turnSTD double ‘Standard deviation’ of turn time distribution

turnShort double ‘Mean’ of turn time distribution (no refuelling)

turnLong double ‘Mean’ of turn time with refuelling distribution

turnTime double[2] Array of turnShort and turnLong

minTurnTime double[2] Array of minimum turn times

runways integer Number of runways for each queue

autoCorr double Autocorrelation of runway service times

phase integer Phase number of runway service distribution

erlangMean double Erlang mean of runway service distribution

artaAirspace ARTA1Erlang Generator of service times for landing runway

artaRunway ARTA1Erlang Generator of service times for take-off runway

currentWeather double Additional separation time due to poor weather

forecastTime ArrayList<double> Time of weather change

forecastRate ArrayList<double> Additional separation at times in forecastTime

arrivals ArrayList<double> Arrival times to airport from other aircraft

departures ArrayList<double> Departure times from airport of other aircraft

APPENDIX A. SIMULATION MODEL 244

A.3.2 Path through Airport for our Aircraft

Figure A.1 shows the process an aircraft goes through in the airport, and where aircraft

from other airlines interact with this aircraft (in the landing and take-off queues). This

process occurs after an aircraft has completed the flight. On initialisation, when the

flightNum parameter is -1, the aircraft bypasses the first section and goes straight

to the ‘Aircraft requires maintenance?’ decision block. The following subsections

consider parts of this flow diagram in more detail.

A.3.3 Arrivals to the Queues

The arrival processes to the landing and take-off queues are a deviation-from-a-

schedule process. On initialisation, the arrival and departure schedules at that airport

are read from the SQL database into the ‘arrivals’ and ‘departures’ ArrayLists of the

airport environment. For most airports, only flights that are scheduled after the start

time are included. However, for those airports listed in the array ‘disruptedAirport’ in

Main, a history of length ‘keepPast’ is included. Any aircraft that entered the system

less than ‘keepPast’ minutes ago, is expected to still be in the queueing system. The

longer ‘keepPast’ is, the greater the congestion levels. Ideally, the simulation would

use real-time information to set the initial conditions, rather than this mechanism.

Once the schedule has been read in, the deviations are calculated. For the ar-

rivals, a normal random variable is added. The parameters are fitted using MLEs

based on the differences between the scheduled arrival and actual arrival in the data

(where available) from Flightradar24 AB (2017). For the departures, the deviation

APPENDIX A. SIMULATION MODEL 245

Aircraft
from Main

Next scheduled
arrival

Airport
closed?

Queue in
airspace (FIFO)

until airport reopens

Wait too
long?

Landing Queue
Part of
airline?

Sink

Yes

No

Yes Divert

No

No

Aircraft requires
maintenance?

Gate: update aircraft state
(turn time)

Maintenance hangar
(includes turn time)

Destination
closed?

Wait until
destination

opens

Yes

No

Yes

Yes

Next scheduled
departure

Airport
closed?

Queue at airport until it reopens
(prioritised by scheduled departure)

Take-off Queue
Part of
airline?

Sink

Send aircraft
to Main

No

Yes

No

No

Yes

Figure A.1: Flow diagram of the path taken by an Aircraft through the Airport

environment in the simulation.

APPENDIX A. SIMULATION MODEL 246

is modelled using a shifted log-logistic distribution. The shift is set as the smallest

observation, whilst the scale and shape parameters maximise the likelihood of the dif-

ferences between the scheduled and actual departure times in the data. All of these

parameters are modelled individually for each airport. If the deviation means that the

flight arrived or departed before the current time (or more than ‘keepPast’ minutes

before the current time for disrupted airports) it is removed from the ArrayList. The

lists are then sorted to ease the search for the next arrival.

Once the ‘arrivals’ and ‘departures’ ArrayLists are populated and ordered, the

inter-arrival time is the difference between the current time and the first element in

the ArrayList (or a small positive number if the difference is negative, as it may be at

the start of the simulation). This is used to schedule the next arrival event, and then

the element is deleted from the ArrayList. If the list is empty, an infinite inter-arrival

time is set, so that no more arrival events are scheduled. All aircraft generated by

this mechanism have the parameter ‘airline’ set to false.

A.3.4 ARTA Service Times

The service rates follow a first-order ARTA process (Cario and Nelson, 1996). This

transforms a first-order auto-regressive, AR(1), process using the Probability Integral

Transform and its inverse. The base autocorrelation, r, of the AR(1) process to match

the desired ARTA(1) autocorrelation must be calculated. This was done offline, and

a look-up table is used in the simulation to find the appropriate base autocorrelation

(based on the ‘autoCorr’ parameter).

APPENDIX A. SIMULATION MODEL 247

Algorithm A.2 Generating the Runway Service Times

1: Calculate the time-dependent minimum spacing, s(t), from the appropriate step-

function (SpacingDep or SpacingArr)

2: if ‘autoCorr’=0 then

3: Generate Yi, sampling from an Erlang distribution, with ‘phase’ phases and

scale ‘erlangMean’/‘phase’

4: else

5: Sample from Normal noise: ε← N(0, 1− r2)

6: Generate next AR(1) sample: Xi ← rXi−1 + ε

7: Store Xi as ‘currentNormal’ variable for the ARTA1Erlang object

8: Transform to the service time distribution Yi ← F−1
Y (Φ(Xi))

9: end if

10: Calculate spacing: Qi ← max{Yi, s(t)}+‘currentWeather’

11: return Qi

The process for generating the runway service times is given in Algorithm A.2. In

step 8, FY is the CDF of the marginal service time distribution:

FY (y) = FZ(y)I
(
y ≥ min

t
{s(t)}

)
(A.3.1)

where FZ is the CDF of the Erlang distribution and I(·) is the indicator function.

The modelling assumptions are described in Section 7.4.1. If the autocorrelation is

0, the ARTA process is not used, and Yi is simply sampled from the marginal Erlang

distribution.

At the beginning of the service period of the take-off queue, the aircraft’s ‘flight-

APPENDIX A. SIMULATION MODEL 248

Start’ parameter is set to the current time. At the end of the landing queue ser-

vice period, the difference between the current time and ‘flightStart’ is added to the

‘flightTime’ parameter to update the amount of flying since the last maintenance of

the aircraft.

After the service time, the aircraft is checked to see if it belongs to the airline,

using the ‘airline’ parameter. If not, the entity is sent to a sink.

A.3.5 Weather Change

The weather conditions are represented by the airport variable ‘currentWeather’,

which gives the additional separation time required between aircraft using the same

runway (0 refers to normal operations). This variable changes in a discrete manner

according to a forecast. The forecast is read from a database at the beginning of the

simulation. The times of the changes in the forecast and the corresponding values are

stored in the ‘forecastTime’ and ‘forecastRate’ ArrayLists, respectively. The change

is controlled by an event, ‘weatherChange’, initially scheduled for soon after the start

time. The algorithm performed at the event is shown in Algorithm A.3.

This whole process assumes that the airline has a method for taking the weather

forecast data at an airport and converting this into an additional separation.

As well as changing the service times at the runways (see Algorithm A.2), the

‘currentWeather’ variable also indicates whether the airport is open or closed. For the

purposes of this research, we assume that if ‘currentWeather’ exceeds 4, an airport

closes. Much of Algorithm A.3 deals with this. Lines 4 to 8 deal with closing an

airport that was open. This involves setting the capacity of the resources to 0, and

APPENDIX A. SIMULATION MODEL 249

Algorithm A.3 Change in weather event algorithm

1: Get current time t

2: Find first element of forecastTime greater than t, with index i

3: Set currentWeather← forecastRate[i− 1]

4: if currentWeather ≥ 4 & landingRunway.capacity ≥ 1 then

5: Set landingRunway.capacity and takeoffRunway.capacity to 0

6: Label airport as closed

7: Add airport to closedAirports list in Main

8: end if

9: if currentWeather < 4 & landingRunway.capacity = 0 then

10: Set landingRunway.capacity and takeoffRunway.capacity to normal capacity

11: Label airport as open

12: Remove airport from closedAirports list in Main

13: Search through airport population and free aircraft waiting for this destination

to open

14: end if

15: Schedule next weatherChange event at this airport for time forecastTime[i]

APPENDIX A. SIMULATION MODEL 250

then labelling the airport as closed, blocking the runway queues. This forces arriving

aircraft to wait in the airspace. In this case, each aircraft is given a random diversion

time (here 30 minutes plus an exponentially distributed random variable). If the

wait exceeds this value, the aircraft will leave the queue and be diverted to another

airport. Should this happen to an aircraft in the airline, a high cost of ‘diversionCost’

is incurred. Departing aircraft wait in a queue prioritised by the scheduled departure

time.

Figure A.1 shows that after the turn time, the aircraft checks to see if the desti-

nation airport is in the list of closed airports. If it is, it will wait at the origin until it

receives a message that the destination has reopened.

Lines 9 to 14 reopens an airport. This undoes the closing procedure, allowing

all aircraft to join the runway queues. In addition, a search occurs for all aircraft

currently being held on the ground at the origin, allowing the flight to begin.

A.3.6 Time at an Airport

Once the aircraft leave the landing queue, the ‘flightTime’ parameter is updated and

the condition of belonging to the airline is checked. Then the maintenance status of the

aircraft is calculated. If the aircraft’s ‘CheckTime’ parameter is before the next flight

in the schedule ArrayLists (including the planned delay), the ‘planned’ parameter is

set to 1. Then, if either ‘planned’ is 1 or ‘flightTime’ exceeds the ‘failure’ parameter,

the aircraft’s ‘maintenance’ parameter is set to 1, otherwise it remains at 0. This is

the condition checked at the start of the middle section of the flowchart in Figure A.1.

Based on this, the aircraft enters either the Gate area or the Maintenance hangar.

APPENDIX A. SIMULATION MODEL 251

The length of stay in the Gate environment, the turn time, is the minimum of

a random variable from a left-truncated normal distribution (representing the oper-

ational time to prepare the aircraft for flight) and the time to the next scheduled

flight (including the planned delay). To sample from the truncated normal, a random

variable X is repeatedly sampled from a normal distribution with standard deviation

‘turnSTD’ and mean µ until the X is greater than the truncation point. The pa-

rameters of the truncated normal depends on whether the aircraft requires refuelling,

measured by the aircraft parameter ‘refuel’, as this increases the time to ready the

aircraft for flight (Airbus, 2019). If the aircraft does not require refuelling, µ is ‘turn-

Short’ and the first element of ‘minTurnTime’ is used for the minimum. Otherwise,

the parameters are ‘turnLong’ and the second element of ‘minTurnTime’. These pa-

rameters can vary across the airports. The simulation assumes that an aircraft needs

to be refuelled every other flight.

Once the turn time is calculated, the arrival delay is measured and added to the

data sets of the simulation. If the arrival delay is more than 3 hours, passenger com-

pensation is added to the cost (number of passengers × ‘delay3hrCost’). The flight

details of the aircraft are then updated for the next flight and the route is checked

to ensure the aircraft is in the correct place (if not, the simulation terminates). On

departing the gate, the delay cost (delay × ‘delayCostpm’), the penalty for over-

running (‘exceedancePenalty’ × any delay beyond the planned delay) and passenger

compensation if the departure delay is greater than 2 hours (number of passengers

× ‘delay2hrCost’) are added to the cost variable. The refuelling parameter is also

updated.

APPENDIX A. SIMULATION MODEL 252

The Maintenance area contains the same procedures as the Gate area. The length

of stay is altered by the addition of the maintenance time to the operational time to

prepare the aircraft. If the maintenance is scheduled (‘planned’=1) it is assumed to

have a constant duration, given by ‘acheck’. The unscheduled maintenance time is

assumed to come from a Gamma distribution with shape and scale parameters given

by ‘fixShape’ and ‘fixScale’, respectively. This distribution does not change depending

on the type of failure. If the aircraft starts the simulation in maintenance, the time

already used (measured by the ‘start’ parameter) is considered, using a conditional

Gamma distribution for the repair time. In addition to collecting delay statistics and

updating the aircraft’s flight parameters, the maintenance parameters of aircraft are

updated: ‘maintenance’ and ‘planned’ parameters are set to 0; ‘flightTime’ is set to 0;

and a new failure time is generated from the Weibull distribution. If the maintenance

was scheduled, ‘CheckTime’ is updated to a future date (set here to be in 30 days

time).

In both the Gate and Maintenance areas, the aircraft’s individual random number

stream is used for the sampling.

Appendix B

Hybrid Multi-objective

Optimisation

This appendix gives the results of using a hybrid multi-objective solution approach to

the IP problem in Chapter 3. A hybrid approach, such as that described in Section

4.2.2 of Ansari et al. (2018), finds weakly efficient solutions by solving the problem

with a weighted-sum of all the objective functions as the problem objective, subject to

the objective values belonging to a particular interval. Other than the time to solve

each IP, the main issue observed in Chapter 5 with the solution method was that

the algorithm found cost optimal solutions that were dominated by other solutions

with fewer aircraft exchanges. Thus, the only alteration made is that the objective

function used when solving the IP is a weighted sum of the cost and exchanges:

min

(∑
a∈A

∑
fδ∈L

cfδxfδa +
∑
f∈F

Cfyf

)
+ ε

∑
a∈A

∑
fδ∈L

(1− ofa)xfδa . (B.1)

253

APPENDIX B. HYBRID MULTI-OBJECTIVE OPTIMISATION 254

If ε is chosen small enough, the discretised nature of the objective function means

that we can still produce a cost optimal solution whilst having a small penalty for

unnecessary exchanges. In the early results, we chose ε = 0.00001, which is smaller

than any unit of cost in the problem. As costs and delays are linked in the objective

function, it is not necessary to include this in objective (B.1).

Tables B.1 and B.2 show the results of applying this approach to Problems 2 and

3 in Chapter 5. The settings are identical to those used in Section 5.4.2 and 5.4.3.

The asterisks indicate that more than one combination of limits were searched before

finding this feasible solution. The time reported includes the time to search through

these regions as well. The results suggest that the Pareto optimal set is reached

much more quickly than using the original method, and so the time budget is better

spent exploring the Pareto frontier between the objectives. Many of the solutions

are the same as those originally collected, suggesting that the choice of penalty is

sufficiently large to encourage the reduction without inhibiting the cost optimality

of the solutions. For the case in Table B.2, much of the time was spent searching

infeasible regions in the solution space.

APPENDIX B. HYBRID MULTI-OBJECTIVE OPTIMISATION 255

Table B.1: Solutions from the IP for Problem 2 using hybrid multi-objective approach.

Solution Cost Tail Number Delay Cancellations Solution Time

(AC1000) Exchanges (minutes) (seconds)

1 6.00 19 120 0 23.43

2 6.75 17 135 0 27.49

3 9.75 14 195 0 41.91

4 11.06 13 195 0 35.51

5 12.75 12 255 0 47.97

6 14.06 11 255 0 48.77

7 17.75 10 330 0 47.46

8 19.06 9 330 0 48.62

9 18.31 10 315 0 102.29*

10 18.31 9 315 0 49.59

11 13.31 12 240 0 258.44*

12 13.31 11 240 0 52.83

APPENDIX B. HYBRID MULTI-OBJECTIVE OPTIMISATION 256

Table B.2: Solutions from the IP for Problem 3 using hybrid multi-objective approach.

Solution Cost Tail Number Delay Cancellations Solution Time

(AC1000) Exchanges (minutes) (seconds)

1 27.00 17 540 0 75.13

2 29.00 13 580 0 44.12

3 31.00 9 620 0 48.39

4 33.00 8 660 0 68.71

5 35.00 4 700 0 117.33

6 41.00 3 820 0 40.69

7 47.00 0 940 0 102.96

Appendix C

Trust-Region Theorems

This section will discuss a few additional aspects of the trust-region algorithms, includ-

ing the properties of the feasible region D and some theorems regarding trust-region

optimisation for constrained problems.

C.1 Assumptions on the Feasible Region

In Theorem 6.2.2, it is assumed that a first-order constraint qualification applies at the

optimal solution d∗. These conditions essentially state that a linear approximation

to D at d∗ captures the essential geometry of D in the neibourhood of d∗. This is

discussed more fully in Chapter 12 of Nocedal and Wright (2006). We make this

more precise below. This involves defining the Tangent cone and the set of linearised

feasible directions.

Firstly, let us assume that we can characterise D by a set of constraints:

D = {d ∈ Rn : ci(d) = 0 ∀i ∈ E , ci(d) ≥ 0 ∀i ∈ I}

257

APPENDIX C. TRUST-REGION THEOREMS 258

where each ci : Rn → R. Let A(d) be the set of active constraints at d, that is:

A(d) = E ∪ {i ∈ I : ci(d) = 0}.

Definition C.1.1. Let D be a closed, convex subset of Rn. The tangent cone of D at

d ∈ D is the closed set

TD(d) := {θ(y − d) : θ ≥ 0,y ∈ D}.

The set of linearised feasible directions of D at d is

FD(d) :=
{
y : yT∇ci(d) = 0 ∀i ∈ E , yT∇ci(d) ≥ 0 ∀i ∈ A(d) ∩ I

}
Both TD(d) and FD(d) describe a linear approximation to small movements about

d that remain feasible. They can be very different sets, see Nocedal and Wright (2006)

Chapter 12 pages 319-320 for an example, though these are in quite complex problems.

In such cases the characterisation of optimality is more difficult. First-order constraint

qualifications ensure that TD(d) and FD(d) are sufficiently similar, or even equal.

There are several examples of first-order constraint qualifications, listed below:

Definition C.1.2. Given a point d ∈ D and its active set A(d), the Linear Indepen-

dence Constraint Qualification holds if {∇ci(d) : i ∈ A(d)} is linearly independent.

Definition C.1.3. The Mangasarian-Fromovitz Constraint Qualification holds if there

exists a vector y ∈ Rn such that:

∇ci(d)Ty > 0 ∀i ∈ A(d∗) ∩ I,

∇ci(d)Ty = 0 ∀i ∈ E ,

and {∇ci(d) : i ∈ E} is linearly independent.

APPENDIX C. TRUST-REGION THEOREMS 259

Lemma 12.7 from Nocedal and Wright (2006) gives the appropriate condition for

the bound constraints case.

Lemma 12.7: Suppose that for some d∗ ∈ D all active constraints ci, i ∈ A(d∗), are

linear functions. Then TD(d∗) = FD(d∗).

Note that Theorem 6.2.2 only requires this to be true around an optimal solution;

D does not need to be so well behaved everywhere. Furthermore, these are often

sufficient, rather than necessary conditions.

C.2 Theorems on Constrained Trust-Region Opti-

misation

This section quotes some theorems from Conn et al. (2000). Some of the assumptions

are left out as they implicitly hold for our choice of feasible region, model or norm

etc.

Theorem 12.1.2: Suppose that a first order constraint qualification holds. Then a

point d∗ is first-order critical for the problem min{g(d) : d ∈ D} if and only if

p(τ,d∗) = d∗ ∀τ ≥ 0.

Theorem 12.1.3: Suppose that AF.1 holds and that d ∈ D. Then the function

φ(τ) = ||p(τ,d)− d||2

APPENDIX C. TRUST-REGION THEOREMS 260

is non-decreasing for τ ≥ 0. Furthermore

lim
τ→∞

φ(τ) <∞ ⇒ lim
τ→∞
||PT (p(τ,d))[−∇g(d)]||2 = 0,

where T (d) is the tangent cone at d with respect to D.

Theorem 12.1.4: Suppose that AF.1 holds and d ∈ D. Then for each point p(τ,d)

on the projected-gradient path, p(τ,d)− d is a solution of the problem

min
s
{∇g(d)T s : d + s ∈ D, ||s||2 ≤ θ},

where θ = ||p(τ,d)− d||2. Furthermore, p(τ,d)− d is also a solution of this problem

∀θ ≥ ||p(τ,d)− d||2 whenever

−∇g(d) ∈ N (p(τ,d)).

Theorem 12.1.5: Suppose that AF.1 holds and d ∈ D. Then

(i) χ(d, θ) is continuous and non-decreasing in θ for θ ≥ 0;

(ii) χ(d, θ)/θ is non-increasing in θ for θ > 0.

(iii) for any s such that d + s ∈ D, the inequality

χ(d, θ) ≤ |∇g(d)T s|+ 2θ
∣∣∣∣PT (d+s)[−∇g(d)]

∣∣∣∣
holds for all θ > ||s||2.

APPENDIX C. TRUST-REGION THEOREMS 261

The conditions that Conn et al. (2000) want from the Approximate Generalised

Cauchy Point are that both

||sj(τ)||2 ≤ ∆j

and

r̂j(p(τ,dj)) ≤ r̂j(dj) + κubs∇g(dj)
T sj(τ)


(C.1)

are satisfied, and at least one of

||sj(τ)||2 ≥ κfrd∆j

or

r̂j(p(τ,dj)) ≥ r̂j(dj) + κlbs∇g(dj)
T sj(τ)

or

||PT (p(τ,dj))[−∇g(dj)]||2 ≤ κepp
|∇g(dj)T sj(τ)|

∆j



(C.2)

are satisfied, where

0 < κubs < κlbs < 1, κfrd ∈ (0, 1), κepp ∈ (0, 1/2).

The algorithm for finding a point that satisfies is described in Algorithm 12.2.2 in

(Conn et al., 2000) (pages 455-456). For details see Algorithm C.1. This algorithm is

guaranteed to end in finitely many iterations.

Theorem 12.2.1: Suppose AF.1, r̂j is twice continuously differentiable on Bj and a

first order constraint qualification hold. Then Algorithm C.1 terminates in a finite

number of iterations.

Theorem 12.2.2: Suppose that the step sj(τ) satisfies (C.1) and (C.2). Then

r̂j(dj)− r̂j(dj + sj(τ)) ≥ µχ(dj) min

{
χ(dj)

βj
,∆j, 1

}
,

where µ = min{κubsκfrd/2, 2κubs(1− κlbs)} ∈ (0, 1).

APPENDIX C. TRUST-REGION THEOREMS 262

Algorithm C.1 Generating an Approximate Generalised Cauchy Point

1: ∆j, dj ∈ D, model r̂j are given as are κepp, κlbs, κubs, κfrd

2: Set τmin = 0, τmax =∞, τ0 = ∆j/||∇̂gj(dj)||2, i = 0 and FOUND=FALSE

3: repeat

4: p(τi,dj)← PD[dj − τi∇̂gj(dj)] and sj(τi)← p(τi,dj)− dj

5: Evaluate r̂j(dj + sj(τi))

6: if one of (C.1) is violated then

7: τmax ← τi and go to Line 13

8: else if all (C.2) are violated then

9: τmin ← τi and go to Line 13

10: else

11: sGC ← sj(τi), FOUND ← TRUE and go to Line 19

12: end if

13: if τmax =∞ then

14: τi+1 ← 2τi

15: else

16: τi+1 ← (τmin + τmax)/2

17: end if

18: i← i+ 1

19: until FOUND is TRUE

Appendix D

Further Results from Chapter 7

This appendix presents the remaining results on the experiments reported in Chapter

7. Table D.1 shows the sensitivity (defined in Equation (7.4.3)) of each disruption to

the deviations defined by changing the phase number of the Erlang distribution and

the autocorrelation of the runway service times. Figures D.1 and D.2 show the P-P

plots and the rejection frequency of each test statistic for the Day 4 problem, which is

based on an aircraft with technical problems at 13:20. These follow a similar pattern

to Figures 7.4.1 and 7.4.2. Figures D.3 and D.4 show the P-P plots and the rejection

frequency of each test statistic for the Day 5 problem, which is based on a small hub

airport closure at 10:10. This effects two aircraft. These follow a similar pattern to

Figures 7.4.3 and 7.4.4.

263

APPENDIX D. FURTHER RESULTS FROM CHAPTER 7 264

Table D.1: Sensitivity of each system in each disruption scenario.

Sensitivity (4dp)

Phases Autocorrelation Day 1 Day 2 Day 4 Day 5 Day 6

1000 0.5 -0.0002 0.0005 0.0001 -0.0002 0.0002

0.9 -0.0000 0.0012 0.0004 0.0003 0.0008

100 0 -0.0003 0.0009 0.0007 0.0007 0.0004

0.5 0.0005 0.0026 0.0014 0.0011 -0.0026

0.9 0.0014 0.0089 0.0050 0.0047 -0.0012

10 0 0.0027 0.0067 0.0052 0.0050 -0.0084

0.5 0.0056 0.0165 0.0124 0.0110 0.0030

0.9 0.0293 0.0883 0.0591 0.0889 0.0841

2 0 0.0094 0.0192 0.0141 0.0137 0.0072

0.5 0.0235 0.0563 0.0415 0.0464 0.0495

0.9 0.2182 0.7306 0.4233 1.0484 0.5506

APPENDIX D. FURTHER RESULTS FROM CHAPTER 7 265

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

Figure D.1: Day 4 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are k=1000,

100, 10, 2, columns are ρ = 0, 0.5, 0.9.

APPENDIX D. FURTHER RESULTS FROM CHAPTER 7 266

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

Figure D.2: Number of rejections for each hypothesis test in each system (k, ρ) in the

Day 4 disruption. Rows are k = 1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9.

APPENDIX D. FURTHER RESULTS FROM CHAPTER 7 267

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 1000 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 100 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 10 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.5

Simulation CDF(O)

U
ni

fo
rm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phases 2 Lag−1 0.9

Simulation CDF(O)

U
ni

fo
rm

Figure D.3: Day 5 P-P plots of the sets {Ukρ
j }Jj=1, for each (k, ρ). Rows are k=1000,

100, 10, 2, columns are ρ = 0, 0.5, 0.9.

APPENDIX D. FURTHER RESULTS FROM CHAPTER 7 268

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

0

20

40

60

80

100

K−S C−vM A−D W NS2 NS4
Hypothesis Test

R
ej

ec
tio

n
F

re
qu

en
cy

Figure D.4: Number of rejections for each hypothesis test in each system (k, ρ) in the

Day 5 disruption. Rows are k = 1000, 100, 10, 2, columns are ρ = 0, 0.5, 0.9.

Bibliography

Abdelghany, K. F., Abdelghany, A. F., and Ekollu, G. (2008). An Integrated Decision

Support Tool for Airlines Schedule Recovery during Irregular Operations. European

Journal of Operational Research, 185(2):825–848.

Airbus (2019). A319 Aircraft Characteristics - Airport and Maintenance Planning.

Technical report, Airbus.

Allamraju, H. (2017). pyflightdata. Accessed March 11th , 2017. https://github.

com/supercoderz/pyflightdata.

Amaran, S., Sahinidis, N. V., Sharda, B., and Bury, S. J. (2016). Simulation Optimiza-

tion: A Review of Algorithms and Applications. Annals of Operations Research,

240(1):351–380.

Andradóttir, S. (2014). A Review of Random Search Methods. In Fu, M. C., editor,

Handbook of Simulation Optimization, volume 216 of International Series in Opera-

tions Research and Management Science, chapter 10, pages 277–292. Springer, New

York. Retrieved from https://ebookcentral.proquest.com (visited 19/12/2019).

Ansari, Q. H., Köbis, E., and Uao, J.-C. (2018). Vector Variational Inequalites and

269

BIBLIOGRAPHY 270

Vector Optimization: Theory and Applications. Springer International Publishing

AG, Cham, Switzerland.

Arias, P., Mujica Mota, M., Guimarans, D., and Boosten, G. (2013). A Methodology

Combining Optimization and Simulation for Real Applications of the Stochastic

Aircraft Recovery Problem. In Proceedings - 8th EUROSIM Congress on Modelling

and Simulation, EUROSIM 2013, pages 265–270, Washington, DC, USA. IEEE

Computer Society.

Avramidis, A. N., Chan, W., Gendreau, M., L’Ecuyer, P., and Pisacane, O. (2010).

Optimizing Daily Agent Scheduling in a Multiskill Call Center. European Journal

of Operational Research, 200(3):822–832.

Aydt, H., Cai, W., Turner, S. J., and Gan, B. P. (2011). Symbiotic Simulation for

Optimisation of Tool Operations in Semiconductor Manufacturing. In S. Jain et

al., editor, Proceedings of the 2011 Winter Simulation Conference, pages 2088–2099,

Piscataway, New Jersey. IEEE.

Aydt, H., Lees, M., and Knoll, A. (2012). Symbiotic Simulation for Future Electro-

mobility Transportation Systems. In C. Laroque et al., editor, Proceedings of the

2012 Winter Simulation Conference, pages 1–12, Piscataway, New Jersey. IEEE.

Aydt, H., Turner, S. J., Cai, W., and Low, M. Y. H. (2008a). Symbiotic Simulation

Systems: An Extended Definition Motivated by Symbiosis in Biology. In Pro-

ceedings - 22nd Workshop on Principles of Advanced and Distributed Simulation,

PADS, pages 109–116, Los Alamitos, CA. IEEE Computer Society.

BIBLIOGRAPHY 271

Aydt, H., Turner, S. J., Cai, W., and Low, M. Y. H. (2009). Research Issues in

Symbiotic Simulation. In M. D. Rossetti et al., editor, Proceedings of the 2009

Winter Simulation Conference, pages 1213–1222, Piscataway, New Jersey. IEEE.

Aydt, H., Turner, S. J., Cai, W., Low, M. Y. H., Lendermann, P., Gan, B. P., and

Ayani, R. (2008b). Preventive What-if Analysis in Symbiotic Simulation. In S. J.

Mason et al., editor, Proceedings of the 2008 Winter Simulation Conference, pages

750–758, Piscataway, New Jersey. IEEE.

Ball, R. C., Branke, J., and Meisel, S. (2018). Optimal Sampling for Simulated

Annealing Under Noise. INFORMS Journal on Computing, 30(1):200–215.

Bang, J.-Y. and Kim, Y.-D. (2010). Hierarchical Production Planning for Semiconduc-

tor Wafer Fabrication Based on Linear Programming and Discrete-event Simulation.

IEEE Transactions on Automation Science and Engineering, 7(2):326–336.

Bard, J. F., Yu, G., and Arguello, M. F. (2001). Optimizing Aircraft Routings in

Response to Groundings and Delays. IIE Transactions, 33(10):931–947.

Barnhart, C. and Smith, B. C., editors (2012). Quantitative Problem Solving Meth-

ods in the Airline Industry: A Modeling Methodology Handbook, volume 169 of

International Series in Operations Research and Management Science. Springer

Science+Business Media, LLC, New York.

Barton, R. R. (2015). Tutorial: Simulation Metamodeling. In L. Yilmaz et al.,

editor, Proceedings of the 2015 Winter Simulation Conference, pages 1765–1779,

Piscataway, New Jersey. IEEE.

BIBLIOGRAPHY 272

Bennell, J. A., Mesgarpour, M., and Potts, C. N. (2017). Dynamic Scheduling of

Aircraft Landings. European Journal of Operational Research, 258:315–327.

Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr, W. J. (2009). A Survey

on Metaheuristics for Stochastic Combinatorial Optimization. Natural Computing,

8(2):239–287.

Boesel, J., Nelson, B. L., and Kim, S.-H. (2003). Using Ranking and Selection to

“Clean Up” After Simulation Optimization. Operations Research, 51(5):814–825.

Box, G. E. P. and Wilson, K. B. (1951). On the Experimental Attainment of Optimum

Conditions. Journal of the Royal Statistical Society. Series B (Methodological),

13(1):1–38.

Bratu, S. and Barnhart, C. (2006). Flight Operations Recovery: New Approaches

Considering Passenger Recovery. Journal of Scheduling, 9(3):279–298.

Brent, R. P. (1973). Algorithms for Minimzation without Derivatives. Prentice-Hall

Series in Automatic Computation. Prentice-Hall, Inc, Englewood Cliffs, N.J.

Broyden, C. (1970). The Convergence of a Class of Double-rank Minimization Algo-

rithms 1. General Considerations. IMA Journal of Applied Mathematics (Institute

of Mathematics and Its Applications), 6(1):76–90.

Can, B., Beham, A., and Heavey, C. (2008). A Comparative Study of Genetic Al-

gorithm Components in Simulation-based Optimisation. In S. J. Mason et al.,

editor, Proceedings of the 2008 Winter Simulation Conference, pages 1829–1837,

Piscataway, New Jersey. IEEE.

BIBLIOGRAPHY 273

Can, B. and Heavey, C. (2012). A Comparison of Genetic Programming and Artificial

Neural Networks in Metamodeling of Discrete-event Simulation Models. Computers

and Operations Research, 39(2):424–436.

Cario, M. C. and Nelson, B. L. (1996). Autoregressive to Anything: Time-series Input

Processes for Simulation. Operations Research Letters, 19(2):51–58.

Chang, K.-H. (2015). Improving the Efficiency and Efficacy of Stochastic for Simula-

tion Optimization. IEEE Transactions on Automatic Control, 60(5):1235–1243.

Chang, K.-H., Hong, L. J., and Wan, H. (2013). Stochastic Trust-Region Response-

Surface Method (STRONG) - A New Response-Surface Framework for Simulation

Optimization. INFORMS Journal on Computing, 25(2):230–243.

Chang, K.-H., Li, M. K., and Wan, H. (2014). Combining STRONG with Screening

Designs for Large-scale Simulation Optimization. IIE Transactions, 46:357–373.

Chau, M. and Fu, M. C. (2014). An Overview of Stochastic Approximation. In Fu,

M. C., editor, Handbook of Simulation Optimization, volume 216 of International

Series in Operations Research and Management Science, chapter 6, pages 149–

178. Springer, New York. Retrieved from https://ebookcentral.proquest.com

(visited 23/12/2019).

Chau, M., Fu, M. C., Qu, H., and Ryzhov, I. O. (2014). Simulation Optimization:

A Tutorial Overview and Recent Developments in Gradient-based Methods. In A.

Tolk et al., editor, Proceedings of the 2014 Winter Simulation Conference, pages

21–35, Piscataway, New Jersey. IEEE.

BIBLIOGRAPHY 274

Cheng, R. (2007). Determining Efficient Simulation Run Lengths for Real Time

Decision Making. In S. G. Henderson et al., editor, Proceedings of the 2007 Winter

Simulation Conference, pages 340–345, Piscataway, New Jersey. IEEE.

Chiroma, E., Higgins, M., and Chandler, A. (2018). Implementation of a Data-

centric Symbiotic Simulation Technique for Enhancing Ford PTME Throughtput

Simulation Processes. In M. Rabe et al., editor, Proceedings of the 2018 Winter

Simulation Conference, pages 4105–4106, Piscataway, New Jersey. IEEE.

Civil Aviation Authority (2015). Your Rights When You Fly. Accessed July 23rd ,

2018. https://www.caa.co.uk/Passengers/Resolving-travel-problems/

Delays-cancellations/Your-rights/Your-rights-when-you-fly/.

Civil Aviation Authority (2019). Punctuality Statistics 2018. Accessed

January 12th , 2020. https://www.caa.co.uk/Data-and-analysis/

UK-aviation-market/Flight-reliability/Datasets/Punctuality-data/

Punctuality-statistics-2018/.

Clausen, J., Larsen, A., Larsen, J., and Rezanova, N. J. (2010). Disruption Man-

agement in the Airline Industry - Concepts, Models and Methods. Computers and

Operations Research, 37(5):809–821.

Conn, A. R., Gould, N., Sartenaer, A., and Toint, P. L. (1993). Global Convergence

of a Class of Trust Region Algorithms for Optimization using Inexact Projections

on Convex Constraints. SIAM Journal on Numerical Analysis, 3(1):164–221.

Conn, A. R., Gould, N. I. M., and Toint, P. L. (1988). Global Convergence of a Class

BIBLIOGRAPHY 275

of Trust Region Algorithms for Optimization with Simple Bounds. SIAM Journal

on Numerical Analysis, 25(2):433–460.

Conn, A. R., Gould, N. I. M., and Toint, P. L. (2000). Trust Region Methods. Society

for Industrial and Applied Mathematics, Philadelphia.

Cook, A. and Tanner, G. (2015). European Airline Delay Cost Reference Values -

Updated and Extended Values. Technical Report V4.1, University of Westminster.

Cook, R. D. and Nachtsheim, C. J. (1980). A Comparison of Algorithms for Con-

structing Exact D-Optimal Designs. Technometrics, 22(3):315–324.

Deng, G. and Ferris, M. C. (2006). Adaptation of the UOBYQA Algorithm for Noisy

Functions. In L. F. Perrone et al., editor, Proceedings of the 2008 Winter Simulation

Conference, pages 312–319, Piscataway, New Jersey. IEEE.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking Optimization Software with

Performance Profile. Mathematical Programming Series A, 91:199–206.

EUROCONTROL (2018). Standard Inputs for EUROCONTROL Cost Benefit Anal-

yses. Brussels, 8.0 edition.

Fanchao, Z., Turner, S. J., and Aydt, H. (2009). Symbiotic Simulation Control in

Supply Chain of Lubricant Additive Industry. In Proceedings - 2009 13th IEEE

International Symposium on Distributed Simulation and Real-Time Applications,

pages 165–172, Washington, DC, USA. IEEE Computer Society.

Fedorov, V. V. (1972). Theory of Optimal Experiments. (W.J. Studden and E.M.

BIBLIOGRAPHY 276

Klimko, Trans.). Probability and Mathematical Statistics, 12. Academic Press,

INC., New York.

Fiems, D., Prabhu, B., and De Turck, K. (2013). Analytic Approximations of Queues

with Lightly- and Heavily-correlated Autoregressive Service Times. Annals of Op-

erations Research, 202:103–119.

Fletcher, R. (1970). New Approach to Variable Metric Algorithms. Computer Journal,

13(3):317–322.

Flightradar24 AB (2017). Flightradar24. Accessed March 7th , 2017. https://www.

flightradar24.com.

Frazier, P., Powell, W., and Dayanik, S. (2009). The Knowledge-Gradient Policy for

Correlated Normal Beliefs. INFORMS Journal on Computing, 21(4):599–613.

Frazier, P. I. (2010). Decision-Theoretic Foundations of Simulation Optimization. In

J.J. Cochran et al., editor, Wiley Encyclopedia of Operations Research and Man-

agement Science, number 1. John Wiley & Sons, Inc.

Frazier, P. I. (2014). A Fully Sequential Elimination Procedure for Indifference-Zone

Ranking and Selection with Tight Bounds on Probability of Correct Selection. Op-

erations Research, 62(4):926–942.

Frazier, P. I. (2018). Bayesian Optimization. In INFORMS TutORials in Operations

Research, pages 255–278. Published online: 19 Oct 2018. INFORMS, Maryland,

USA.

BIBLIOGRAPHY 277

Fu, M. C., editor (2014). Handbook of Simulation Optimization, volume 216 of Inter-

national Series in Operations Research and Management Science. Springer, New

York. Retrieved from https://ebookcentral.proquest.com (visited 16/12/2019).

Fujimoto, R., Lunceford, D., Page, E., and Uhrmacher, A. M. (editors) (2002). Grand

Challenges for Modeling and Simulation: Dagstuhl Report. Technical Report 350,

Seminar No. 02351. Schloss, Dagstuhl.

Fujimoto, R. M., Celik, N., Damgacioglu, H., Hunter, M., Jin, D., Son, Y.-J., and Xu,

J. (2016). Dynamic Data Driven Application Systems for Smart Cities and Urban

Infrastructures. In T. M. K. Roeder et al., editor, Proceedings of the 2016 Winter

Simulation Conference, pages 1143–1157, Piscataway, New Jersey. IEEE.

Galil, Z. and Kiefer, J. (1980). Time- and Space-saving Computer Methods, Related to

Mitchell’s DETMAX, for Finding D-Optimum Designs. Technometrics, 22(3):301–

313.

Ghasemi, A., Heavey, C., and Laipple, G. (2018). A Review of Simulation-

optimization Methods with Applications to Semiconductor Operational Problems.

In M. Rabe et al., editor, Proceedings of the 2018 Winter Simulation Conference,

pages 3672–3683, Piscataway, New Jersey. IEEE.

Glankwamdee, W., Linderoth, J., Shen, J., Connard, P., and Hutton, J. (2008). Com-

bining Optimization and Simulation for Strategic and Operational Industrial Gas

Production and Distribution. Computers and Chemical Engineering, 32(11):2536–

2546.

BIBLIOGRAPHY 278

Goldfarb, D. (1970). A Family of Variable-metric Methods Derived by Variational

Means. Mathematics of Computation, 24(109):23–26.

Gonzalez-Martin, S., Juan, A., Riera, D., Elizondo, M., and Ramos, J. (2018). A

Simheuristic Algorithm for Solving the Arc Routing Problem with Stochastic De-

mands. Journal of Simulation, 12(1):53–66.

Goudarzi, H., Budeanu, D., Coles, H., Flint, P., de Gheldere, C., King, B., Markou,

C., Oliver, J., Price, A., Simard, M.-C., Touraine, S., Capois, A., Girard, C., and

Shores, M. (2019). Data Science Hype or Ripe for Aviation? International Air

Transport Association (IATA) Aviation Data White Paper Series.

Guimarans, D., Arias, P., and Mujica Mota, M. (2015). Large Neighbourhood Search

and Simulation for Disruption Management in the Airline Industry. In M. Mu-

jica Mota et al., editor, Applied Simulation and Optimization: In Logistics, Indus-

trial and Aeronautical Practice, pages 169–201. Springer International Publishing,

Cham.

Gunn, W. A. (1964). Airline System Simulation. Operations Research, 12(2):206–229.

Gurobi Optimization, LLC. (2017). Gurobi Optimizer Reference Manual. Accessed

July 23rd , 2018. http://www.gurobi.com.

Haimes, Y., Lasdon, L. S., and Wismer, D. A. (1971). On a Bicriterion Formulation of

the Problems of Integrated System Identification and System Optimization. IEEE

Transactions on Systems, Man, and Cybernetics, 1(3):296–297.

BIBLIOGRAPHY 279

Hashemi, H., Abdelghany, K. F., and Abdelghany, A. F. (2017). A Multi-agent

Learning Approach for Online Calibration and Consistency Checking of Real-time

Traffic Network Management Systems. Transportmetrica B, 5(3):369–389.

Hatami, S., Calvet, L., Fernández-Viagas, V., Framiñán, J. M., and Juan, A. A.

(2018). A Simheuristic Algorithm to Set Up Starting Times in the Stochastic

Parallel Flowshop Problem. Simulation Modelling Practice and Theory, 86:55–71.

Hong, L. J. and Nelson, B. L. (2006). Discrete Optimization via Simulation using

COMPASS. Operations Research, 54(1):115–129.

Hong, L. J. and Nelson, B. L. (2009). A Brief Introduction to Optimisation via

Simulation. In Proceedings of the 2009 Winter Simulation Conference, pages 75–

85, Piscataway, New Jersey. IEEE.

Hong, L. J., Nelson, B. L., and Xu, J. (2014). Discrete Optimization via Simulation.

In Fu, M. C., editor, Handbook of Simulation Optimization, volume 216 of Inter-

national Series in Operations Research and Management Science, chapter 2, pages

9–44. Springer, New York. Retrieved from https://ebookcentral.proquest.com

(visited 19/12/2019).

Hu, Y., Liao, H., Zhang, S., and Song, Y. (2017). Multiple Objective Solution Ap-

proaches for Aircraft Rerouting Under the Disruption of Multi-aircraft. Expert

Systems With Applications, 83:283–299.

Hu, Y., Xu, B., Bard, J. F., Chi, H., and Gao, M. (2015). Optimization of Multi-

BIBLIOGRAPHY 280

fleet Aircraft Routing Considering Passenger Transiting under Airline Disruption.

Computers and Industrial Engineering, 80:132–144.

Huang, D., Allen, T. T., Notz, W. I., and Miller, R. A. (2006a). Sequential Kriging

Optimization using Multiple-fidelity Evaluations. Structural and Multidisciplinary

Optimization, 32(5):369–382.

Huang, D., Allen, T. T., Notz, W. I., and Zeng, N. (2006b). Global Optimization

of Stochastic Black-box Systems via Sequential Kriging Meta-models. Journal of

Global Optimization, 34(3):441–466.

Huang, Y., Seck, M. D., and Verbraeck, A. (2010). Towards Automated Model Cal-

ibration and Validation in Rail Transit Simulation. Procedia Computer Science,

1(1):1259–1265.

Huang, Y. and Verbraeck, A. (2009). A Dynamic Data-driven Approach for Rail

Transport System Simulation. In M. D. Rossetti et al., editor, Proceedings of the

2009 Winter Simulation Conference, pages 2553–2562, Piscataway, New Jersey.

IEEE.

Hutchison, D. W. and Hill, S. D. (2001). Simulation Optimization of Airline Delay

with Constraints. In B. A. Peters et al., editor, Proceedings of the 2001 Winter

Simulation Conference, pages 1017–1022, Piscataway, New Jersey. IEEE.

ICAO (2016). Doc. 4444 Procedures for Air Navigation and Air Traffic Managment

(PANS-ATM). Technical Report November, 16th edition, International Civil Avia-

tion Organitzation.

BIBLIOGRAPHY 281

ICAO (2016). European Guidance Material on All Weather Operations. Technical

Report September, 5th edition, International Civil Aviation Organitzation.

Inanlouganji, A., Pedrielli, G., Fainekos, G., and Pokutta, S. (2018). Continuous

Simulation Optimization with Model Mismatch using Gaussian Process Regression.

In M. Rabe et al., editor, Proceedings of the 2018 Winter Simulation Conference,

pages 2131–2142, Piscataway, New Jersey. IEEE.

Izady, N. and Worthington, D. (2012). Setting Staffing Requirements for Time De-

pendent Queueing Networks: The Case of Accident and Emergency Departments.

European Journal of Operational Research, 219(3):531–540.

Jalali, H., Van Nieuwenhuyse, I., and Picheny, V. (2017). Comparison of Kriging-

based Algorithms for Simulation Optimization with Heterogeneous Noise. European

Journal of Operational Research, 261(1):279–301.

Jeng, C.-R. (2012). Real-time Decision Support for Airline Schedule Disruption Man-

agement. African Journal of Business Management, 6(27):8071–8079.

Jian, N. and Henderson, S. G. (2015). An Introduction to Simulation Optimization.

In L. Yilmaz et al., editor, Proceedings of the 2015 Winter Simulation Conference,

pages 1780–1794, Piscataway, New Jersey. IEEE.

Jimenez Serrano, F. J. and Kazda, A. (2017). Airline Disruption Management: Yes-

terday, Today and Tomorrow. Transportation Research Procedia, 28:3–10.

Johnson, M. E. and Jackman, J. (1989). Infinitesimal Perturbation Analysis: A Tool

for Simulation. The Journal of the Operational Research Society, 40(3):243–254.

BIBLIOGRAPHY 282

Jones, D. R., Schonlau, M., and W. J. Welch (1998). Efficient Global Optimization

of Expensive Black-Box Functions. Journal of Global Optimization, 13:455–492.

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., and Figueira, G. (2015). A Review

of Simheuristics: Extending Metaheuristics to Deal with Stochastic Combinatorial

Optimization Problems. Operations Research Perspectives, 2:62–72.

Juan, A. A., Kelton, W. D., Currie, C. S., and Faulin, J. (2018). Simheuristic Appli-

cations: Dealing with Uncertainty in Logistics, Transportation, and Other Supply

Chain Areas. In M. Rabe et al., editor, Proceedings of the 2018 Winter Simulation

Conference, pages 3048–3059, Piscataway, New Jersey. IEEE.

Kim, S., Pasupathy, R., and Henderson, S. G. (2014). A Guide to Sample Av-

erage Approximation. In Fu, M. C., editor, Handbook of Simulation Optimiza-

tion, volume 216 of International Series in Operations Research and Manage-

ment Science, chapter 8, pages 207–243. Springer, New York. Retrieved from

https://ebookcentral.proquest.com (visited 22/12/2019).

Kim, S.-H. and Nelson, B. L. (2001). A Fully Sequential Procedure for Indifference-

Zone Selection in Simulation. ACM Transactions on Modeling and Computer Sim-

ulation, 11(3):251–273.

Kleijnen, J. (1998). Experimental Design for Sensitivity Analysis, Optimization, and

Validation of Simulation Models. In Banks, J., editor, Handbook of Simulation -

Principles, Methodology, Advances, Applications, and Practice, chapter 6, pages

173–223. John Wiley & Sons, New York.

BIBLIOGRAPHY 283

Kleijnen, J. P. (2005). An Overview of the Design and Analysis of Simulation Ex-

periments for Sensitivity Analysis. European Journal of Operational Research,

164(2):287–300.

Kleijnen, J. P. C. (2014). Response Surface Methodology. In Fu, M. C., editor, Hand-

book of Simulation Optimization, volume 216 of International Series in Operations

Research and Management Science, chapter 4, pages 81–104. Springer, New York.

Retrieved from https://ebookcentral.proquest.com (visited 24/12/2019).

Kohl, N., Larsen, A., Larsen, J., Ross, A., and Tiourine, S. (2007). Airline Disruption

Management - Perspectives, Experiences and Outlook. Journal of Air Transport

Management, 13(3):149–162.

Lapp, M., AhmadBeygi, S., Cohn, A., and Tsimhoni, O. (2008). A Recursion-based

Approach to Simulating Airline Schedule Robustness. In S. J. Mason et al., editor,

Proceedings of the 2008 Winter Simulation Conference, pages 2661–2667, Piscat-

away, New Jersey. IEEE.

Laumanns, M., Thiele, L., and Zitzler, E. (2006). An Efficient, Adaptive Parame-

ter Variation Scheme for Metaheuristics Based on the Epsilon-constraint Method.

European Journal of Operational Research, 169(3):932–942.

Lee, L. H., Huang, H. C., Lee, C., Chew, E. P., Wikrom, J., Yong, Y. Y., Liang,

Z., Leong, C. H., Tan, Y. P., Namburi, K., Johnson, E., and Banks, J. (2003).

Discrete Event Simulation Model for Airline Operations: SIMAIR. In S. Chick et

BIBLIOGRAPHY 284

al., editor, Proceedings of the 2003 Winter Simulation Conference, pages 1656–1662,

Piscataway, New Jersey. IEEE.

Lee, L. H., Lee, C. U., and Tan, Y. P. (2007). A Multi-objective Genetic Algorithm

for Robust Flight Scheduling using Simulation. European Journal of Operational

Research, 177(3):1948–1968.

Li, Y. and Fu, M. (2018). Sequential First-order Response Surface Methodology

Augmented with Direct Gradients. In M. Rabe et al., editor, Proceedings of the

2018 Winter Simulation Conference, pages 2143–2154, Piscataway, New Jersey.

IEEE.

Liang, Z., Xiao, F., Qian, X., Zhou, L., Jin, X., Lu, X., and Karichery, S. (2018).

A Column Generation-based Heuristic for Aircraft Recovery Problem with Airport

Capacity Constraints and Maintenance Flexibility. Transportation Research Part

B: Methodological, 113:70–90.

Linz, D. D., Huang, H., and Zabinsky, Z. B. (2017). Multi-fidelity Simulation Opti-

mization with Level Set Approximation using Probabilistic Branch and Bound. In

W. K. V. Chan et al., editor, Proceedings of the 2017 Winter Simulation Conference,

pages 2057–2068, Piscataway, New Jersey. IEEE.

Liu, T. K., Chen, C. H., and Chou, J. H. (2010). Optimization of Short-haul Aircraft

Schedule Recovery Problems using a Hybrid Multiobjective Genetic Algorithm.

Expert Systems with Applications, 37(3):2307–2315.

BIBLIOGRAPHY 285

Loève, M. (1977). Probability Theory I, volume 45 of Graduate Texts in Mathematics.

Springer-Verlag, New York, NY, 4th edition.

Løve, M., Sørensen, K. R., Larsen, J., and Clausen, J. (2005). Using Heuristics

to Solve the Dedicated Aircraft Recovery Problem. Central European Journal of

Operations Research, 13(2):189–207.

Maher, S. J. (2016). Solving the Integrated Airline Recovery Problem using Column-

and-row Generation. Transportation Science, 50(1):216–239.

Meyer, R. K. and Nachtsheim, C. J. (1995). The Coordinate-exchange Algorithm for

Constructing Exact Optimal Experimental Designs. Technometrics, 37(1):60–69.

Miller, Jr., F. L. and Quesenberry, C. P. (1979). Power Studies of Tests for Uniformity,

II. Communications in Statistics - Simulation and Computation, 8(3):271–290.

Mitchell, T. J. (1974). An Algorithm for the Construction of “D-Optimal” Experi-

mental Designs. Technometrics, 16(2):203–210.

Montgomery, D. C. (2009). Design and Analysis of Experiments. John Wiley and

Sons (Asia) Pte Ltd, 7th edition.

Mori, R. (2015). Development of Fast-time Stochastic Airport Ground and Runway

Simulation Model and its Traffic Analysis. Mathematical Problems in Engineering,

2015:1–11.

Mujica Mota, M., Boosten, G., De Bock, N., Jimenez, E., and de Sousa, J. P.

BIBLIOGRAPHY 286

(2017). Simulation-based Turnaround Evaluation for Lelystad Airport. Journal

of Air Transport Management, 64:21–32.

Nelson, B. L. (2013). Foundations and Methods of Stochastic Simulation: A First

Course, volume 187 of International Series in Operations Research and Management

Science. Springer, NY.

Nelson, B. L. (2014). Optimization via Simulation Over Discrete Decision Variables. In

INFORMS Tutorials in Operations Research, chapter 9, pages 193–207. Institute

for Operations Research and the Management Sciences (INFORMS), Maryland,

USA.

Nelson, B. L. (2016). ‘Some Tactical Problems in Digital Simulation’ for the Next 10

Years. Journal of Simulation, 10(1):2–11.

Nocedal, J. and Wright, J. (2006). Numerical Optimization. Springer-Verlag, New

York, NY, second edition.

Oakley, D., Onggo, B. S., and Worthington, D. (2020). Symbiotic simulation for

the operational management of inpatient beds: model development and validation

using ∆-method. Health Care Management Science, 23:153–169.

Onggo, B. S., Mustafee, N., Smart, A., Juan, A. A., and Molloy, O. (2018). Symbiotic

Simulation System: Hybrid Systems Model Meets Big Data Analytics. In M. Rabe

et al., editor, Proceedings of the 2018 Winter Simulation Conference, pages 1358–

1369, Piscataway, New Jersey. IEEE.

BIBLIOGRAPHY 287

Onggo, B. S., Panadero, J., Corlu, C. G., and Juan, A. A. (2019). Agri-food Supply

Chains with Stochastic Demands: A Multi-period Inventory Routing Problem with

Perishable Products. Simulation Modelling Practice and Theory, 97:101970.

Osorio, C. and Bierlaire, M. (2013). A Simulation-Based Optimization Framework

for Urban Transportation Problems. Operations Research, 61(6):1333–1345.

Osorio, C. and Chong, L. (2015). A Computationally Efficient Simulation-Based

Optimization Algorithm for Large-Scale Urban Transportation Problems. Trans-

portation Science, 49(3):623–636.

Osorio, C. and Selvam, K. K. (2017). Simulation-based Optimization: Achieving

Computational Efficiency Through the use of Multiple Simulators. Transportation

Science, 51(2):395–411.

Palhazi Cuervo, D., Goos, P., and Sörensen, K. (2016). Optimal Design of Large-scale

Screening Experiments: A Critical Look at the Coordinate-exchange Algorithm.

Statistics and Computing, 26(1-2):15–28.

Papathanasopoulou, V., Markou, I., and Antoniou, C. (2016). Online Calibration for

Microscopic Traffic Simulation and Dynamic Multi-step Prediction of Traffic Speed.

Transportation Research Part C: Emerging Technologies, 68:144–159.

Pearce, M. and Branke, J. (2017). Bayesian Simulation Optimization with Input

Uncertainty. In W. K. V. Chan et al., editor, Proceedings of the 2017 Winter

Simulation Conference, pages 2740–2751, Piscataway, New Jersey. IEEE.

BIBLIOGRAPHY 288

Pei, L., Nelson, B. L., and Hunter, S. (2018). A New Framework for Parallel Ranking

& Selection using an Adaptive Standard. In M. Rabe et al., editor, Proceedings of

the 2018 Winter Simulation Conference, pages 2201–2212, Piscataway, New Jersey.

IEEE.

Petersen, J. D., Sölveling, G., Clarke, J.-P., Johnson, E. L., and Shebalov, S. (2012).

An Optimization Approach to Airline Integrated Recovery. Transportation Science,

46(4):482–500.

Quansheng, L., DongQing, J., Peng, Z., and TingWei, M. (2013). Research on the

Disrupted Airline Scheduling. In Proceedings of the 10th International Conference

on Service Systems and Service Management, pages 332–336.

Quesenberry, C. P. and Miller, Jr., F. L. (1977). Power Studies Of Some Tests for

Uniformity. Journal of Statistical Computation and Simulation, 5(3):169–191.

Rhodes-Leader, L. (2020). www.lancaster.ac.uk/pg/rhodesle/PhD_data/PhD_

simulation_input_data.php.

Rosenberger, J. M., Johnson, E. L., and Nemhauser, G. L. (2003). Rerouting Aircraft

for Airline Recovery. Transportation Science, 37(4):408–421.

Rosenberger, J. M., Schaefer, A. J., Goldsman, D., Johnson, E. L., Kleywegt, A. J.,

and Nemhauser, G. L. (2000). SIMAIR: A Stochastic Model of Airline Operations.

In J. A. Joines et al., editor, Proceedings of the 2000 Winter Simulation Conference,

pages 1118–1122, Piscataway, New Jersey. IEEE.

BIBLIOGRAPHY 289

Rosenberger, J. M., Schaefer, A. J., Goldsman, D., Johnson, E. L., Kleywegt, A. J.,

and Nemhauser, G. L. (2002). A Stochastic Model of Airline Operations. Trans-

portation Science, 36(4):357–377.

Salemi, P., Song, E., Nelson, B. L., and Staum, J. (2019). Gaussian Markov Ran-

dom Fields for Discrete Optimization via Simulation: Framework and Algorithms.

Operations Research, 67(1):250–266.

Santos, B. F., Wormer, M. M., Achola, T. A., and Curran, R. (2017). Airline Delay

Management Problem with Airport Capacity Constraints and Priority Decisions.

Journal of Air Transport Management, 63:34–44.

Sarac, A., Batta, R., and Rump, C. M. (2006). A Branch-and-Price Approach for Op-

erational Aircraft Maintenance Routing. European Journal of Operational Research,

175(3):1850–1869.

Scala, P., Mujica, M., and Delahaye, D. (2017). A Down to Earth Solution: Applying

a Robust Simulation-optimization Approach to Resolve Aviation Problems. In W.

K. V. Chan et al., editor, Proceedings of the 2017 Winter Simulation Conference,

pages 617–631, Piscataway, New Jersey. IEEE.

Scala, P., Mujica, M., Wu, C.-L., and Delahaye, D. (2018). Sim-Opt in the Loop:

Algorithmic Framework for Solving Airport Capacity Problems. In M. Rabe et al.,

editor, Proceedings of the 2018 Winter Simulation Conference, pages 2261–2272,

Piscataway, New Jersey. IEEE.

Scott, W., Frazier, P., and Powell, W. (2011). The Correlated Knowledge Gradi-

BIBLIOGRAPHY 290

ent for Simulation Optimization of Continuous Parameters using Gaussian Process

Regression. SIAM Journal on Optimization, 21(3):996–1026.

Shanno, D. F. (1970). Conditioning of Quasi-Newton Methods for Function Mini-

mization. Mathematics of Computation, 24(111):647–656.

Shone, R., Glazebrook, K., and Zografos, K. G. (2019). Resource Allocation in Con-

gested Queueing Systems With Time-varying Demand: An Application to Airport

Operations. European Journal of Operational Research, 276(2):566–581.

Sinclair, K., Cordeau, J.-F., and Laporte, G. (2014). Improvements to a Large Neigh-

borhood Search Heuristic for an Integrated Aircraft and Passenger Recovery Prob-

lem. European Journal of Operational Research, 233(1):234–245.

Spall, J. C. (1992). Multivariate Stochastic Approximation using a Simultaneous

Perturbation Gradient Approximantion. IEEE Transactions on Automatic Control,

37(3):332–341.

Stamatopoulos, M. A., Zografos, K. G., and Odoni, A. R. (2004). A Decision Support

System For Airport Strategic Planning. Transportation Research Part C: Emerging

Technologies, 12(2):91–117.

Staum, J. (2009). Better Simulation Metamodeling: The Why, What, and How of

Stochastic Kriging. In M. D. Rossetti et al., editor, Proceedings of the 2009 Winter

Simulation Conference, pages 119–133, Piscataway, New Jersey. IEEE.

Sunderrajan, A., Viswanathan, V., Cai, W., and Knoll, A. (2016). Data Driven

Adaptive Traffic Simulation of an Expressway. In T. M. K. Roeder et al., editor,

BIBLIOGRAPHY 291

Proceedings of the 2016 Winter Simulation Conference, pages 1194–1205, Piscat-

away, New Jersey. IEEE.

Teodorović, D. and Guberinić, S. (1984). Optimal Dispatching Strategy on an Airline

Network After a Schedule Perturbation. European Journal of Operational Research,

15(2):178–182.

Thas, O. (2010). Comparing Distributions. Springer Series in Statistics. Springer

Science+Business Media, NY.

The AnyLogic Company (2017). Anylogic 8.2.3. Accessed July 23rd , 2018. http:

//www.anylogic.com.

Thengvall, B. G., Bard, J. F., and Yu, G. (2000). Balancing User Preferences for Air-

craft Schedule Recovery During Irregular Operations. IIE Transactions, 32(3):181–

193.

Vu, V.-A., Park, G., and Tan, G. (2013). Symbiotic Simulation for the Generation and

Simulation of Incident Management Strategies. In G. Tan et al., editor, AsiaSim

2013. Communications in Computer and Information Science, vol 402., pages 397–

402. Springer,Berlin, Heidelberg.

Wang, D., Wu, Y., Hu, J.-Q., Liu, M., Yu, P., Zhang, C., and Wu, Y. (2019). Flight

Schedule Recovery: A Simulation-based Approach. Asia-Pacific Journal of Opera-

tional Research, 36(6):1–19.

Wang, H., Pasupathy, R., and Schmeiser, B. W. (2013). Integer-Ordered Simulation

Optimization using R-SPLINE: Retrospective Search with Piecewise-Linear Inter-

BIBLIOGRAPHY 292

polation and Neighborhood Enumeration. ACM Transactions on Modeling and

Computer Simulation, 23(3):17:1–24.

Wang, W., Wan, H., and Chang, K. H. (2016). Randomized Block Coordinate De-

scendant STRONG for Large-Scale Stochastic Optimisation. In T. M. K. Roeder et

al., editor, Proceedings of the 2016 Winter Simulation Conference, pages 614–625,

Piscataway, New Jersey. IEEE.

Welch, B. L. (1938). The Significance of the Difference Between Two Means when

the Population Variances are Unequal. Biometrika, 29(3):350–362.

Wu, Z., Li, B., Dang, C., Hu, F., Zhu, Q., and Fu, B. (2017). Solving Long Haul

Airline Disruption Problem Caused by Groundings using a Distributed Fixed-point

Computational Approach to Integer Programming. Neurocomputing, 269:232–255.

Xu, J. (2012). Efficient Discrete Optimization via Simulation using Stochastic Kriging.

In C. Laroque et al., editor, Proceedings of the 2012 Winter Simulation Conference,

pages 1–12, Piscataway, New Jersey. IEEE.

Xu, J., Nelson, B. L., and Hong, L. J. (2013). An Adaptive Hyperbox Algorithm

for High-Dimensional Discrete Optimization via Simulation Problems. INFORMS

Journal on Computing, 25(1):133–146.

Xu, J., Zhang, S., Chen, C.-H., Huang, E., Lee, L. H., and Celik, N. (2014). Efficient

Multi-fidelity Simulation Optimisation. In A. Tolk et al., editor, Proceedings of

the 2014 Winter Simulation Conference, pages 3940–3951, Piscataway, New Jersey.

IEEE.

BIBLIOGRAPHY 293

Xu, J., Zhang, S., Huang, E., Chen, C.-h., Lee, L. H., and Celik, N. (2016). MO2TOS:

Multi-Fidelity Optimization with Ordinal Transformation and Optimal Sampling.

Asia-Pacific Journal of Operational Research, 33(3):1650017:1–26.

Yan, S., Tang, C. H., and Shieh, C. L. (2005). A Simulation Framework for Evaluat-

ing Airline Temporary Schedule Adjustments Following Incidents. Transportation

Planning and Technology, 28(3):189–211.

Zhang, D., Henry Lau, H. Y. K., and Yu, C. (2015). A Two Stage Heuristic Algorithm

for the Integrated Aircraft and Crew Schedule Recovery Problems. Computers and

Industrial Engineering, 87:436–453.

Zhu, B., Zhu, J.-f., and Gao, Q. (2015). A Stochastic Programming Approach on

Aircraft Recovery Problem. Mathematical Problems in Engineering, 2015:1–9.

