cogARCH:Simulating Wayfinding by Architecture in Multilevel Buildings

Gath-Morad, Michal and Aguilar, Leonel and Conroy-Dalton, Ruth and Hölscher, Christoph (2020) cogARCH:Simulating Wayfinding by Architecture in Multilevel Buildings. In: 2020 Proceedings of the Symposium on Simulation for Architecture and Urban Design. SimAUD, Online, pp. 27-34. ISBN 1565553713

Full text not available from this repository.


Findings from cognitive science link the architectural complexity of multilevel buildings with occupants’ difficulty in orienting and finding their way. Nevertheless, current approaches to modelling occupants’ wayfinding reduce the representation of 3D multilevel buildings to isolated 2D graphs of each floor. These graphs do not take account of the interplay between agents’ 3D field of view and buildings’ 3D geometry, topology, or semantics, yet these are necessary to inform occupants’ path differentiation during wayfinding. Instead, agents are often modeled as unbounded and rational, able to calculate complete paths towards goals that are not immediately visible using direct routing algorithms. In turn, simulated behavior in most cases is unrealistically optimal (e.g. shortest or fastest route). This gap may hinder architects’ ability to foresee how their design decisions may result in suboptimal wayfinding behavior, whether intended or not. To bridge this gap, the paper presents cogARCH, a computational, agent-based simulation framework. cogARCH is grounded in research on spatial cognition and heuristic decision making to support pre-occupancy evaluation of wayfinding in multilevel buildings. To demonstrate the relevance of cogARCH to architectural design, we apply it to assess wayfinding performance across three architectural variations of a multilevel education building. Preliminary results showcase significant variability in cognitive agents’ wayfinding performance between building scenarios. In contrast, behavior of shortest-path agents sampled across respective conditions displayed significantly less variance and thus failed to reflect potential effects of architectural changes applied to 3D building configuration on wayfinding behavior.

Item Type:
Contribution in Book/Report/Proceedings
ID Code:
Deposited By:
Deposited On:
21 Apr 2021 14:00
Last Modified:
12 Sep 2023 03:04