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Abstract

Delayed-acceptance Metropolis-Hastings and delayed-acceptance pseudo-marginal Metropolis-Hastings
algorithms can be applied when it is computationally expensive to calculate the true posterior or an un-
biased stochastic approximation thereof, but a computationally cheap deterministic approximation is
available. An initial accept-reject stage uses the cheap approximation for computing the Metropolis-
Hastings ratio; proposals which are accepted at this stage are then subjected to a further accept-reject
step which corrects for the error in the approximation. Since the expensive posterior, or the approx-
imation thereof, is only evaluated for proposals which are accepted at the first stage, the cost of the
algorithm is reduced and larger scalings may be used.

We focus on the random walk Metropolis (RWM) and consider the delayed-acceptance RWM and
the delayed-acceptance pseudo-marginal RWM. We provide a framework for incorporating relatively
general deterministic approximations into the theoretical analysis of high-dimensional targets. Justified
by diffusion approximation arguments, we derive expressions for the limiting efficiency and acceptance
rates in high-dimensional settings. These theoretical insights are finally leveraged to formulate practical
guidelines for the efficient tuning of the algorithms. The robustness of these guidelines and predicted
properties are verified against simulation studies, all of which are strictly outside of the domain of validity
of our limit results.

Keywords: Markov Chain Monte Carlo, delayed acceptance, pseudo-marginal MCMC, particle methods,
diffusion limit.
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1 Introduction

The Metropolis-Hastings algorithm is widely used to approximately compute expectations with respect to
complicated high-dimensional posterior distributions [GRS96, BGJM11]. The algorithm requires that it be
possible to evaluate point-wise the posterior density @ up to a fixed but arbitrary constant of proportionality.
In many cases each such evaluation can be computationally expensive, prompting the use of a surrogate
model to accelerate the computations; for example, a Gaussian process-based approximation is used in
[Ras03, FNL11].

The delayed-acceptance Metropolis-Hastings algorithm [CF05, MFS08, HRM™11, CFO11, BGLR15,
SGH17, SL17], also called the surrogate transition method [Liu01], the modified Metropolis algorithm
[ABO1, CB18], preconditioned MCMC [EHL06] and two-stage MCMC [EDGG™105], assumes that the ex-
act posterior 7 is available up to a constant of integration, but is computationally expensive to evaluate.
This framework is particularly relevant to the Bayesian approach to inverse problems [KS06, Stul0] where
point estimations of the posterior density typically involve numerically solving sets of partial differential
equations. A fast approximation is therefore employed as a first “screening” stage, with proposals which are
rejected at the screening stage simply discarded. The correct posterior, 7, is only evaluated for proposals
which pass the screening stage. A second Metropolis-Hastings accept-reject step, which corrects for the error
in the fast approximation, is then calculated so that the desired true posterior is obtained as the limiting
distribution of the Markov chain. The delayed-acceptance Metropolis-Hastings algorithm thus provides a
principled method to leverage deterministic approximations to the posterior distribution in inverse problem
modeling.



The pseudo-marginal Metropolis-Hastings algorithm [Bea03, AR09] allows Bayesian inference to be im-
plemented when only an unbiased stochastic estimate of the target density, possibly up to an unknown nor-
malisation constant, is available. The particle marginal Metropolis-Hastings algorithm [ADH10], a special
instance of the pseudo-marginal Metropolis-Hastings algorithm when the unbiased estimate are obtained
by using a particle filter, is a popular method for estimating parameters in hidden Markov models [e.g.
GW11, KdV12].

The mixing efficiency of a pseudo-marginal algorithm increases with decreasing variability in the stochas-
tic approximation [AR09, AV15]. However, decreasing the variability of the stochastic estimates of the target
density typically comes at a computational price. This leads to a trade-off between mixing efficiency and
computational expense and suggests that, for a given algorithm and target, there might be an optimal value
for the stochasticity of the unbiased estimate, a tuning parameter often easily controlled. When particle
filters or importance sampling procedures are used for constructing the unbiased estimate to the target dis-
tribution, this trade-off translates into choosing an optimal number of particles. The existing literature on
this topic is reviewed in Section 2.2.

The computational expense involved in creating each unbiased stochastic estimate suggests that an ini-
tial accept-reject stage using a computationally cheap, deterministic, approximation [vK01, BC14] to the
posterior might be beneficial. This motivates the delayed-acceptance pseudo-marginal Metropolis-Hastings
algorithm [Smill, GHS15, SGH17, QTVK18, ER17, VHF16].

Although the theoretical understanding of delayed-acceptance methods is still limited, several results are
available. [SL17] compares the ergodicity properties of a delayed-acceptance algorithm with those of the
parent MH algorithm, while [FV17] compares the asymptotic variance of the ergodic average from a delayed-
acceptance algorithm with the variance of an importance-sampling estimator which takes as its proposal a
sample from an MCMC targeting a surrogate. Historically, key insights into the performance and tuning
of MCMC algorithms have been obtained by examining the limiting behaviour of a rescaled version of the
Markov chain as the dimension of the statespace increases to infinity [RGG97, RR98, RR01, Béd07, BROS,
STRR15, ZBK17, DLCMR17, YRR19]. In this article, we focus on random-walk proposals since this class of
methods has the advantage of not requiring further information about the target, such as the local gradient
or Hessian — if it is not possible to evaluate the posterior density, it is usually also impossible to evaluate these
quantities and they are generally more computationally expensive to approximate than the target density
itself [PDS11]. We thus concentrate on the delayed-acceptance random walk Metropolis (DARWM) and the
delayed-acceptance pseudo-marginal random walk Metropolis (DAPsMRWM) algorithms: we obtain tuning
and efficiency insights into these important algorithms through diffusion approximation arguments.

1.1 Contributions

When an accurate approximate posterior distribution is available, the use of well-tuned DARWM and
DAPsMRWM algorithms can lead to large computational savings. Unfortunately, the tuning of these meth-
ods is delicate: it involves choosing an appropriate scale for the random walk proposals and, for the DAPsM-
RWM, a computational budget allocated to the creation of unbiased estimates of the posterior distribution.
Tuning these parameters by estimating the Effective Sample Size (ESS) it typically impractical since the ESS
is notoriously difficult and computationally expensive to estimate. These tuning difficulties have hindered
the adoption of these powerful methods.

We examine the efficiency of the DARWM and DAPsMRWM algorithms when employed to explore
high-dimensional posterior distributions. We express the efficiency of the methods as a function of the
scaling of the random walk proposals and, for the DAPsMRWM, of the quality and computational cost
of the unbiased estimates of the posterior distribution. One of our main innovations is to circumvent the
difficulty of characterising the infinite variety of problem-specific errors in the cheap approximations to the
posterior distribution by assuming that the error is a realisation of a random function — importantly, we
empirically demonstrate that, in high-dimensional settings, this framework leads to robust conclusions that
can be leveraged to develop efficient tuning guidelines. Under assumptions, we obtain MCMC diffusion limits
through homogenization arguments. Despite the flexibility inherent to our specification of the deterministic
approximation, the form of the limiting diffusion depends on the random function through just two key
scalar properties. These limiting results are used to investigate the overall efficiency of these methods,
taking computational time into account. For the DAPsMRWM algorithm, we focus on a specific standard



asymptotic regime which occurs for instance when the unbiased stochastic estimates are obtained through a
particle filter or when using a product of importance samplers for panel data.

We imagine that a practitioner has tuned a (pseudo-marginal) RWM algorithm, found it too inefficient,
and implemented a delayed-acceptance (pseudo-marginal) RWM algorithm. Our analysis shows that the
relative efficiency of the optimally tuned delayed-acceptance algorithm when compared to the optimally
tuned parent algorithm, as well as the relative changes in the optimal random-walk scaling and computational
budget allocated to the creation of unbiased estimates, can be characterised by two parameters (1) the
relative computational cost of the cheap approximation compared to the cost of the posterior distribution,
and (2) a measure of the accuracy of the cheap approximation involving the acceptance rate for proposals
that have passed the first, screening stage. Crucially, these properties can be estimated easily and robustly,
and thus used for tuning the DARWM and DAPsMRWM algorithms.

Three simulation studies verify different aspects of the theory and theoretical predictions. A pivotal
result on the relationship between changes in the posterior and changes in the deterministic approximation
is verified against a toy Bayesian inverse problem. The scaling and efficiency predictions for the DARWM
are verified across a wide range of approximations in tractable settings. Finally, a real statistical example
of pseudo-marginal inference on the parameters governing a Markov jump process is shown to fit with the
predictions for the DAPsMRWM.

1.2 Organisation

The article proceeds as follows. Section 2 builds up descriptions of the DARWM and DAPsMRWM algorithms
through their constituent algorithms, and provides a brief review of the literature on the efficiency of random-
walk based algorithms. Section 3 describes the high-dimensional asymptotic regime studied in this article,
sets up the models for the two approximations to the posterior and states the assumptions that are made
on the posterior itself. In Section 4, we develop an asymptotic analysis of the DAPsMRWM, of which the
DARWM is a special case; we formally introduce the expected squared jump distance and obtain asymptotic
properties. A diffusion limit that gives theoretical justification for the optimization study presented in the
subsequent section is then established. The asymptotic result are leveraged in Section 5 where we discuss
the tuning of the DARWM and DAPsMRWM algorithms. The proofs and technical results are gathered in
Section 6 and Appendix B. Section 7 provides practical advice and ratifies this against simulation studies.
The article concludes with a discussion.

2 Delayed-acceptance Random Walks

Consider a posterior distribution m(dx) on a state-space X C R?. We assume throughout this text that
7 possesses a density 7(x) with respect to the Lebesgue measure. The Random-Walk Metropolis-Hastings
updating scheme provides a general class of algorithms for obtaining approximate samples from the distri-
bution 7 by constructing a Markov chain that is reversible with respect to m. Given the current value x € X
of the Markov chain, a new value x* is proposed from a pre-specified symmetric proposal and accepted with
probability a (x;x*) = 1 A [r(x*)/m(x)]. Upon acceptance, the proposal x* € X becomes the next current
value. Otherwise the current value is left unchanged.

2.1 Delayed-Acceptance strategies

As described in the introduction, there are many situations where 7 is computationally expensive to calculate
while a computationally cheap approximation 7,(x) to the density m(x) is available and can be leveraged
within MCMC schemes using the delayed-acceptance algorithm [Liu01, AB0O1, CF05, EHL06]. At the k-th
iteration and given the current value x; € X of the parameter, the DARWM generates a proposal x* € X
from a symmetric proposal kernel and proceeds as follows.

1. Stage One: compute the approximation 7(x*) and the screening acceptance probability

o (X*)
Wa(xk>'

og (Xp;x*) = 1 A



With probability a; (xx;x*) proceed to Stage Two. Otherwise set x;41 = X, and iterate.

2. Stage Two: compute the posterior distribution 7 (x*) and the second stage probability

az(xp;x") = 1 A i

m(xg) T (x*) 21)

With probability as(xg;x*), set xx1 = x*. Otherwise, set Xp4+1 = Xg.

This defines a Markov chain that is reversible with respect to the posterior distribution . Clearly, the more
accurate the approximation m,, the higher the Stage Two acceptance probability. The overall acceptance
probability is

a12(Xg; X") = ap(xp;X*) X as(xp;x¥).

Pseudo-marginal Metropolis-Hastings algorithms [Bea03, AR09] presume that it is computationally infeasible
to evaluate the posterior density m(x), even up to a multiplicative constant, but that it is possible to generate
a positive and unbiased estimate 7(x;u) of it. The quantity u € U represents a sample from a source of
randomness necessary to produce the stochastic estimate 7(x;u). Without loss of generality, one can assume
that the auxiliary variables u € U is sampled from a fixed and known density p(u). The pseudo-marginal
version of the DARWM can be described as follows. At the k-th iteration, given the current value x; € X
of the parameter and its current stochastic estimate 7(xg, uy), the DAPsMRWM [Smill, GHS15] generates
a proposal x* € X from a symmetric proposal kernel. The stage one screening procedure is identical to that
of the DARWM. If this screening procedure is successful, a new auxiliary distribution u* is generated from
p(u) and independently from all other sources of randomness to generate a stochastic estimate 7(x*; u*) to
the (intractable) posterior distribution 7(x). The modified stage two acceptance probability reads

fayum™ *
o (X, ug, x*,u*) =1 A w
T(Xp, Ug) o (X*
With probability ao(xk, ug,x*,u*) one sets (Xgt1,urt1) = (X*,u*). Otherwise, one sets (Xgt1,Uk+1) =
(xk,ug). Standard arguments show that the DAPsRWM is reversible with respect to the extended density
m(x) p(u) on X x Y. Particle marginal MCMC [ADH10], a special case of pseudo-marginal MCMC where
the unbiased estimate of the posterior is obtained using a particle filter, has become the method of choice

for Bayesian inference on hidden Markov models [e.g. FS11, GW11, DS19]

2.2 Tuning

The efficiency of a given RWM algorithm varies enormously with the scale of the proposed jumps[RRO1,
SFR10]. Small proposed jumps lead to high acceptance rates but little movement across the state-space,
whereas large proposed jumps lead to low acceptance rates and again to inefficient exploration of the state
space. The problem of choosing the optimal scale of the RWM proposal has been tackled for various shapes
of target [RGG97, RRO1, Béd07, BRS09, SR09, Shel3] and has led to the following rule of thumb: choose
the scale so that the acceptance rate is approximately Qm ~ 23%. Although nearly all of the theoretical
results are based upon limiting arguments in high dimension, the rule of thumb appears to be applicable
even in relatively low dimensions [SFR10].

In discussing the literature on optimising pseudo-marginal algorithms it is helpful to define the Standard
Asymptotic Regime (SAR), where the noise in the stochastic estimator of the log-posterior is additive,
Gaussian with a variance that is independent of x and is inversely proportional to the computation effort
required to produce the estimate. The Gaussianity and computational cost can be justified in the case of
a particle filter, or a product of importance sampling estimators, by the asymptotic results in [BDMD13,
SDDP13].

A relatively tractable lower bound on the efficiency of a pseudo-marginal Metropolis-Hastings algorithm
is provided for an unrealistic special case in [PdSSGK12] and then extended considerably in [DPDKI15].
Under the SAR, it is shown that the integrated autocorrelation time of the bounding chain is minimised
when the variance of the noise in the estimated log-posterior is between 0.922 and 1.682. [STRR15] examine



the behaviour of the pseudo-marginal random walk Metropolis algorithm under various regimes for the noise
in the estimate of the posterior. Mixing efficiency is considered in terms of both limiting expected squared
jump distance and the speed of a limiting diffusion, and an overall efficiency (ESJD/time) is defined, which
takes into account the total computational time. Under the SAR, joint optimisation of this efficiency with
respect to the variance of the noise in the log-target and the RWM scale parameter is considered. It is shown
that the optimal scaling occurs when the acceptance rate is approximately &y, ~ 7.0% and the variance of
the noise in the estimate of the log-posterior is approximately -, ~ 1.82%. [STRR15] also note that for the
two different noise distributions considered in the article, the optimal scaling appears to be insensitive to
the noise variance, and even to the distribution. This phenomenon is shown to hold across a large class of
noise distributions in [Shel6].

This article extends [STRR15] to the corresponding delayed-acceptance algorithm, of which the DARWM
is a special case. Results on limiting acceptance rates and mixing efficiency are proved, as is a diffusion limit.
For the DARWM and for the DAPSMRWM under the Standard Asymptotic Regime (SAR), efficiency is then
considered in detail.

3 High dimensional regime

In this section we introduce the high-dimensional asymptotic regime to be analysed in Sections 4, 5 and
6. In Section 3.1, the target distributions are described. In Section 3.2 and 3.3 respectively, we introduce
the deterministic and stochastic approximation to the target distribution and the associated notations. We
conclude in Section 3.4 with a careful description of the two-stage accept-reject mechanism.

3.1 Product form target distributions

We consider in this article target densities that have a simple product form. A research program along these
lines was initiated in the pair of papers [RGG97, RR98]. Although only simple exchangeable product form
targets were considered, a range of subsequent theoretical analyses confirmed that the results obtained in
these articles also hold for more complex target distributions, such as products of one-dimensional distribu-
tions with different variances and elliptically symmetric distributions [RR01, BPS04, SR09, Béd07, SFR10].
Infinite-dimensional extensions were obtained in [MPS12, PST12, PST14]. We consider a target distribution
7@ (dx) in R? with a density 7(? (x) with respect to the Lebesgue measure that can expressed as

d

’/T(d)(x) :Tr(d)(xla"'?xd) = Hﬂ—(xl) (31)
=1

for a one-dimensional density 7 = 7(1) on the real line. Throughout this article we assume that the Markov
chain {(Xg, Ug) x>0 is stationary. For any algorithmic index k > 0, each component of X}, has distribution 7.
We consider Gaussian random walk proposals: for a current position x € R¢, the proposal X* is distributed
as

X*=x+ADZ@D  with  A@ = (%) 4172 (3.2)

and a standard centred Gaussian random variable Z(? and a tuning parameter y > 0. The target dependent
coefficient I > 0 is given by

I? = E [0, (log ) (X)?] = ~E [0z (log 7) (X)) (3.3)

for a scalar random variable X < 7. The second equality in Equation (3.3) follows from an integration by
parts that is justified, for example, by the regularity Assumption 4 described in Section 4. The constant
I > 0 is introduced to simplify the statements of the results to follow. The scaling d~/? ensures that, in the
high-dimensional regime d — oo the mean acceptance probability of a standard Random Walk Metropolis
algorithm with proposals (3.2) and target distribution (3.1) stays bounded away from zero and one. Under
mild assumptions, this scaling is optimal [RGG97, Béd07, BRS09, MPS12].



3.2 Deterministic approximation

To circumvent the difficulty of characterising the infinite variety of problem-specific errors in the cheap
approximations 7, to the posterior distribution 7, we choose model the discrepancy s(x) := log (7, (x)/m(x))
as the realisation of a random function. In our setting the target distribution is a d-dimensional product
of one-dimensional distributions and we imagine that each of the terms in this product is approximated
through an independent realisation of a random function. This means that the deterministic approximation
i® (x) = 7@(x) x exp (s'?(x)) to the posterior density m(?(x) possesses a deterministic error, on a
logarithmic scale, of the form

d

s\ (x) = ZS(%’,%% (3.4)

i=1

where {v;};>1 is the realisation of an i.i.d sequence of auxiliary random variables {I';};>1. Without loss of
generality, we can assume that these auxiliary random variables are uniformly distributed on the interval
[0,1]. We assume that the deterministic function & : R x [0,1] — R in Equation (3.4) satisfies the regularity
Assumption 4 stated below. The following two properties of the function S directly influence the limiting
efficiency of the delayed acceptance algorithm,

_ E[0:S5(X,T)]

f = ————¢€R and B2 = { (3.5)

12 I?

1/2
E[0,8(X,T)?
[0:S(X.1)?] } -
where expectation is taken over two independent random variables I' R Uniform([0,1]) and X R r. An
integration by parts and the Cauchy-Schwarz inequality yield that

I?161] = [E[0..8(X,T)]| = [E[9,(log7)(X) 9,S(X,T)]|
< E [0, (log ) (X)2]"? x E [0,8(X,T)2]"* = 1?8,

The quantity —3; may be interpreted as a measure of the excess curvature in the deterministic approximation,
whereas (35 is a measure of total discrepancy in the gradient. We thus have

— B2 < B1 < Bo. (3.6)

It seems natural that a good approximation would match the curvature of the target, and indeed a matching
of the curvature of an effectively-unimodal target at its mode is the basis of many importance samplers
and independence samplers. However in many scenarios, such as the real statistical example considered in
Section 7.3, the user has a single approximation and is not at liberty to choose the best from a whole family.
Section 7.2 details a short simulation study in d = 10 where a Gaussian target is approximated by a logistic
density and includes investigations of several different choices for the curvature with the mode fixed at the
truth. Both the DAPsMRWM and the DARWM algorithms are considered. The study shows that whilst
the best gain in efficiency is obtained when 87 ~ 0 (and the mode is in the correct location), a substantial
gain in efficiency can still be obtained even when the curvature of the approximation does not match that
of the target. In all that follows we therefore consider the general case with 51 # 0.

We conclude this section by a simple example that provides an intuitive basis for some of our theo-
retical results in Section 5. Consider a standard centred Gaussian target in R? with inverse covariance
matrix ¥ = Diag(1/L,...,1/L) and an approximate distribution 7, whose i*" coordinate is distributed as
N (a(v;),b(7;) ™) for two arbitrary functions a : [0,1] — R and b: [0,1] — R,.. Algebra shows that

{10 } ML

ﬁlzl—]E{b(LF)} and pB2=FE

This confirms the heuristic that the quantity —(3; measures the excess curvature in the deterministic ap-
proximation 7,, whereas (o is a measure of total discrepancy in the gradient.



3.3 Stochastic approximation

Following [PASSGK12, STRR15, DPDK15], define W = W(U;x) € R and W* = W*(U*;x*) € R implicitly
through the equations
T(x*ut) = 7(x*) eV and 7(x;u) = w(x) e,

The superscript (9 on all variables has been suppressed for simplicity of presentation. We sometimes write
7(x*;w*) instead of 7(x*)e”” in order to stress the value of w*. The random variables W* and W, whose
distributions depend on x* and x respectively, are typically intractable and are only introduced to carry
out the theoretical analysis of the DAPsMRWM algorithms. Let my«(w* | x*) be the conditional density of
W* = W*(U*; x*), deriving from p(u*). The stationary density of 7(x;u)p(u) from Section 2 translates to

a joint target of
m(x,w) x w(x) Ty (w | x) where mw(w | x) = T (w | x)e”. (3.7)

The unbiasedness of the estimate 7(x*) yields that E [exp (W*)|x*] = 1 for any x* € X. This shows that
mw(w | x) = exp(w)mw~(w | x) is a valid conditional density. With this notation, we write the acceptance
rate for the PsMMH as «; (x;w;x*;w*;7,q), and the Stage Two acceptance rate for the DAPsMMH as
ag (x;w; X*; w*; 7, m,). For simplicity, and as in the articles [PASSGK12, DPDK15, STRR15], we assume
the following.

Assumptions 1. The additive noise, W*, in the estimated log-target at the proposal, X*, is independent
of the proposal value itself. We write my« to denote its distribution.

An asymptotic argument justifying this assumption for panel data, where the unbiased estimate is ob-
tained from a product of importance-sampling estimates, and hidden-Markov models, where it is obtained
from a particle filter, using the posterior concentration as the number of observations increases to infinity is
given in [SDDP18|. Assumption 1 means that, for any value of the proposal X*, the stochastic estimate of

the target 7(X*) can expressed as 7(X*) x ¢V for a random variable W* R independent of any other
source of randomness. From (3.7), in our d-dimensional setting, the process {(X, W)}r>o0 is a Markov chain
with invariant distribution 7(%) @ wy,. The distribution 7wy, does not vary with the dimension d > 1), where

dﬂ'W

p) (w) = exp(w). (3.8)
TOW *
This is Lemma 1 of [PASSGK12]. In Section 5, we examine the behaviour of the algorithm under the following
Gaussian assumption.

Assumptions 2. In addition to being independent of the proposal, X*, the additive noise in the estimated
log-target at the proposal, W*, is Gaussian:

W* XN (=0%/2,0%). (3.9)

In Equation (3.9) the mean is determined by the variance so as to give an unbiased estimate of the
posterior, E [exp (W*)] = 1. It follows from (3.8) that at stationarity, under Assumption 2, we have

W RN (02/2,07%). (3.10)

This article focuses on algorithms where the stochastic approximation to the likelihood is computationally
expensive. In most scenarios of interest [GW11, KdV12, GHS15, FG14] the stochastic approximation is
obtained through Monte-Carlo methods (e.g. importance sampling, particle filter) that converge at the
standard N ~'/2 rate where N designates the number of samples/particles used. For taking into account the
computational costs necessary to produce a stochastic estimate of the target-density, we thus assume the
following in the rest of this article.

Assumptions 3. When Assumption 2 holds, the computational cost of obtaining an estimate of the log-
target density with variance o2 is inversely proportional to o2.



The article [BDMD13] shows, among other things, that for state-space models (and panel data) the
unbiased estimate of the likelihood obtained from standard particle methods [DMO04] (or a product of impor-
tance sampling estimators) satisfies a log-normal central limit theorem, as the number of observations and
particles (or importance samples) goes to infinity, if this number is of the same order as the number of noisy
observations. This justifies the Gaussian approximation (3.9) and shows that the log-error is asymptotically
inversely proportional to the number of particles used, justifying Assumptions 3. The article [STL17] studies
the tuning of pseudo-marginal MCMC methods when the assumption 3 is not appropriate.

3.4 Acceptance probabilities

In this section we give formulae for the different acceptance probabilities when the DAPsMRWM algorithm
is used for product-form targets as described in Section 3.1. When the current position of the algorithm is
(x(D @) € R? x R, a proposal (x(* w(®*) distributed as

XD = x(d) 4 (%) e AC) and WD R . (3.11)

is generated. In this section and subsequently we will need to refer to three separate quantities and to
distinguish for each which parts are fixed and which are random. We therefore define

{qX“(x(@,x(d%*) = log [ (x(®7) /D (xD)],

" (3.12)
S(A (x( D, x(@Dx) = (@) (x(d)x) _ gd)(x(d)),

The deterministic approximation 7r((1 ) to the posterior density is used for a first screening procedure and the

stochastic approximation is used for the second part of the accept-reject mechanism. The Stage One and
overall acceptance probabilities read

agd) (x(@, w@; x(@* D) = F (qgi)(x(d)’x(d), )+ (d) (x(@) | x(@)* )

oD (x@ 1@ x (@D p(@D#) = oD (x(@) (@) x(Drx (D)) F( D5 _ (@) 5(D (x(@) X<d>,*))_
where, for the Metropolis-Hastings accept-reject function F'(u) = 1Aexp(u). The proofs readily adapt, under
mild regularity assumptions, to the case where F' : R — (0, 1] is a continuous and increasing function that
satisfies the reversibility condition e™* F'(u) = F(—u) for all v € R.

When the current position of the algorithm is (x(¥ w(®) € X x U, the first and second stage acceptance
rate are defined by

ol (X(d)7w(d)) ) [a@ (x<d>,w<d>; X (@ W(d),*)}

oD (x<d>,w<d>) _E [a@ (X(d),w(d); X (D W(d»*)}

for a proposal (X (%) W(@:*) ¢ X x U distributed as in (3.11). The conditional second stage acceptance
rate is defined through Bayes rule as ozglil) (x(d), w(d)) = agg) (x(d), w(d)) /agd) (x(d), w(d)). We will eventually
be interested in the acceptance rate at Stage One and the overall acceptance rate, which are defined as

ol =B [of? (XD, w@)]  and ol =E[aff (X, w®)]

with (X4, W) Radg Tw, as well as in the conditional Stage T'wo acceptance rate a2\1 = a12 /cu1 .

4 Asymptotic analysis

In this section we investigate the behaviour of the DAPsMRWM, and hence of the DARWM) as a special
case, in the high-dimensional regime described in Section 3. We make the following regularity assumptions.

Assumptions 4. The density 7 : R — (0,00) and the function S : R x [0,1] — R satisfy the following.



1. The function =z +— logm is thrice differentiable, with second and third derivative bounded and the
quantity E [(9, log 7)?(X)] is finite, for X R

2. The first three derivatives with respect to the first argument of the function (z,v) — S(z,~) exist and
are bounded over (z,7) € R x [0,1].

Assumptions 4 are repeatedly used for controlling the behaviour of second-order Taylor expansions; they
could be relaxed in several directions at the costs of increasing technicality in the proofs. The following
lemma is pivotal, and is proved in Section 6.1.

Lemma 4.1. Let the regularity Assumptions 4 hold. Let {~;};>1 be a realisation of the sequence of auziliary
random variable used to described the deterministic approzimation (3.4) to the posterior density. Let {x;}i>1
be the realisation of an i.i.d sequence marginally distributed as . For d > 1, set x\9 = (z1,...,24) € R?
and define the random variable

XD = x(@) (%) dV2ZD  for  Z@DE N0, 1)

For almost all realisations {x;};>1 and {v;}i>1 and w € R, the following limit

(d) (4 (d) x(d),* o0 2 _
: qn (x4, X )| _ | QX | »p I 1 2 1 B1
1 = ~ N -5 . 4.1
dl{fjo [ SXI) (X(d)7 X(d),*) S 9 —B y [ ) 53 ( )
holds in distributions with parameters 1 and By defined in (3.5).

That the correlation is —f1/82 € [—1,1] is another manifestation of inequality (3.6). In the Gaussian
example described at the end of Section 3.2 with b(I') = b > L and a(I') = 0, and thus §; < 0, it is
readily seen that q(Ad) (x@, X(D:*) and s(Ad) (x(@ X(D:*) have the same sign and are positively correlated. In
general, Lemma 4.1 shows that if the approximating density has an average excess of (negative) curvature

(i.e. B1 < 0), the limiting random variables QX and S are positively correlated.

4.1 Numerical confirmation of Lemma 4.1

Lemma 4.1 is pivotal to the high-dimensional asymptotic analysis to be described in subsequent sections.
The product form Assumptions (3.1) and (3.4) from which we derive the bivariate Gaussian distribution in
Lemma 4.1 are chosen for convenience. We expect the same conclusions to hold, at least approximately, in
much broader settings; for example, we believe that extensions of Lemma 4.1 to non i.i.d target distributions
similar to those discussed in [BPS04, Béd07, BR08, SR09, BRS09, PST12] are possible, at the cost of much
less transparent proofs. In order to test the (approximate) validity of Lemma 4.1 in more realistic scenarios,
and thus test the robustness of the results proved in this article, we consider a toy Bayesian inverse problem
[Stul0] where none of the i.i.d assumptions are satisfied. We consider the problem of reconstructing an
initial one-dimensional temperature field represented by a continuous function T'(-,¢ = 0) : [0,1] — R
from N observations at time ¢ = 7 corrupted by independent Gaussian additive noise with known variance
02 e > 0. In other words, we collect {yi}f.v:l with y; ~ N (T(z;,t =T),02,) for 1 <i < N at some
location x; € [0, 1]. We assume that the evolution of the temperature field is described by the heat equation
0T = (1/2) Oy, T with Dirichlet boundary T(z = 0,t) = T'(x = 1,t) = 0 for all time ¢t € [0,7]. We adopt a
Gaussian process prior on the initial and unobserved temperature field and represent this prior as a finite
Karhunen-Loeéve expansion

K
T(x,t=0) = ka sin(kmz),
k=1

for independent Gaussian random variables & ~ N (0, kx); the decay of the sequence kr > 0 controls the
a-priori smoothness of the initial temperature field. We chose k; = 1/k and K = 40 in our simulations.
We have chosen this simple Bayesian inversion problem since a closed form solution for the heat equation
is available; this allows a straightforward analysis of the approximation. Our approximate target is ob-
tained through a coarse discretisation of the heat equation on N, = 50 and N, = 10 equidistant spatial
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and temporal points and using a standard fully-implicit finite-difference scheme [e.g. Thol3]. We imple-
mented an exact RWM algorithm in the Fourier domain; i.e. the initial temperature field T'(-,¢ = 0) is
represented by its K-dimensional Karhunen-Loeve expansion ¢ = (¢1,. .., ck ). The prior log-density equals,
up to an irrelevant additive constant, —(1/2) 2521 2 /ki, and the log-likelihood reads, up to a constant,
—(1/202,..) Zszl {y; — F(¢)(z;)}* where F(c)(z) = Zszl cr exp (—(km)?7/2) sin(kmrz). The variance of
the RWM proposal was proportional to the prior variance matrix (which is not optimal, but reasonable in
our example) with a scaling A > 0 chosen so that roughly 25% of the proposals were accepted.

(Qa.Sa)

1500

Density
, 0 10 20 30 40 50 60
Density

1000

500

Figure 1: Empirical distribution of qxi) (x(@, X (D)) and s(Ad) (x4, X)) evaluated from a current point
in the bulk of the target distribution. The dashed lines in the left and right panels show the densities of

Gaussian fits to the empirical marginal distributions of qgi) (x@, X(@:*) and S(Ad) (x(@, X(D:*) respectively.

We focus on the aspects of Lemma 4.1 that are new: the properties of s(Ad)(X(d),X(d)**) and its rela-
tionship with qgi) (X4, X)), The marginal properties of q(Ad)(X(d),X(d)’*) have been known for some
time [RGGI7]. We ran 10° iterations of the exact RWM Markov chain in the Fourier domain and inves-
tigated numerically the distribution of the pair q(Ad) (X (@) x(D*) and sxl) (x(@ X (D:*) at the final position
of the RWM chain (in order to be in the main mass of the target distribution). The Gaussian behaviour
of qgi) (x(@, X(D:*) and S(Ad) (x(@, X(@:*) is confirmed, as well as its non-trivial correlation structure (Fig.
1). Furthermore, we repeated the same experiment (results not presented here) at several other locations
in the bulk of the target distribution and the distribution of q(Ad) (x(@, X(D:*) and s(Ad) (x@ X(D:*) appears
approximately independent of the location, as predicted by the theory.

To investigate the validity of Equation (4.1), we computed the quantities E[s'" (X(®, X(®*)]/)\2 and
Var [S(Ad) (X4, X(d)’*)} /A? and Corr [qgi)(X(d), X (D)), s(Ad) (X, X(d)’*)] for several choices of jump scaling

A > 0; Lemma 4.1 predicts that these quantities are independent of the scaling A > 0, as is approximately
numerically confirmed in Figure 2.

4.2 Limiting acceptance probability
The following lemma identifies the limiting acceptance rates as the dimension d goes to infinity.

Proposition 4.1. Let Assumptions 1 and j hold. For almost every realisation {v;};>1 of the sequence of
auziliary random variables used to describe the deterministic approximation (3.4) to the posterior density we
have

d—o0

2 2
lim E [W (X<d),W<d>) - al‘ } =0 and  ImE Ua@ (XD Wiy au’ ] =0 (4.2)
—00

where the limiting acceptance rates are given by

ar =E[F(QX +5X)]  and  ap=E[F(QX + SX) x F(Wa — SX)] (4.3)
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Scaled expectation and variance of S,, and Cor[Qa,Sa]
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Figure 2: To investigate the wvalidity of Equation (4.1), we computed the
quantities  —E[s{(X@ X@D*)5]/A2 ()  and  Var [${0(X@ X@D*)] /A2 (A)  and

Corr [le)(X(d),X(d)’*),sf)(X(d),X(d)’*)} (+) for several choices of jump scaling A > 0; Lemma 4.1
predicts that these quantities are independent of the jump size A > 0; this is approximately true in this
Bayesian inverse problem toy example.

for (QX,SX) as described in (4.1) and Wa = W* =W for (W*, W) R twe @ mw. The dependence of oy
and a2 upon (p, B1, B2, mw) is implicit.

Corollary 4.1. Under Assumptions 1 and 4 we have limg_, o agd) = a1 and limg_o ag) = a12.

Proof of Proposition 4.1 . We prove the first limit in Equation (4.2); the proof of the second limit is analo-
gous. The first limit is equivalent to

lim E [{E[F (qgi)(x(d)’x(d),*)_|_3(A“1)(X(d)’X(d),*)) ‘X<d)] _E[F(Q°A°+Sg°)]}2] - 0.

d—o0

This follows from the dominated convergence theorem, since the function F' is bounded and continuous, and
from the convergence in distribution proved in Lemma 4.1. O

For the remainder of our discussion of acceptance rates we adopt the Metropolis-Hastings acceptance
probability, so F'(u) = 1 A exp(u), and we suppose that Assumption 2 holds: there is additive Gaussian
noise in the logarithm of the stochastic approximation. We also make the dependence of the acceptance
rate on the approximation parameters, 51 and (s, explicit. Standard computations (e.g. Proposition 2.4 of
[RGGIT]) yield that E [1 A exp(N (a,b?))] = ®(a/b) + exp (a + b*/2) ®(—b — a/b), with ® : R — [0,1] the
standard Gaussian cumulative distribution function. This permits straightforward evaluation of

aa(p, 0% Br, B2) = E[{1 Aexp(QRX + SX)H1 Aexp(Wa — SX)}
042|1(Ma02;51,ﬁ2) = @12(%02;517/32)/041(%51,52)

in terms of standard functions and (for a;3) a one-dimensional numerical integral, as detailed in Appendix
A. The limit as #; — 0 and B2 — 0 corresponds to the case when there is no deterministic error and leads
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to the usual [RGG97, MPS12] limiting acceptance rate of 2 x ®(—p/2). For computing the limiting overall

acceptance rate, note that under the Gaussian Assumption 2 we have W EN (—02, 202).
The following result, whose proof is deferred to Appendix B.1, shows that it is possible to characterise
the (unknown) values of ;1 and o2 in terms of the Stage One and the conditional Stage Two acceptance rates.

Proposition 4.2. Let Assumptions 1, 2 and 4 hold and let the Metropolis-Hastings accept-reject function
be used.

1. For any B2 > 0 and B1 < 1 the Stage One acceptance rate o1(p;B1,P2) is a continuous decreasing
biection in p from [0,00) to (0,1].

2. For any fized ji, B2 > 0 and Bi, the conditional Stage Two acceptance rate ag)1(p, o3 1, B2) is a de-
creasing bijection in o from [0,00) to (0, azpi (1, 0; B1, B2)].

For the DARWM algorithm, we have that Wa = 0. Equation (4.5) yields

arz(p, 0; 81, f2) = E[{1 A exp(QX + SX)H1L A exp(=SX)},

which, as with DAPsMRWM, may be evaluated via a one-dimensional numerical integral. When 3; = /33,
which necessitates 82 < 1 by (3.6)), we have Cov [QX + S, —SX°] = 0 so that the random variables QX +S%°
and Wa — SY° are independent and

1
ot (p, 0% 83, B2) = E {1 A exp {N <—25§M2 — o, By’ + 202> H

1 7

This is the limiting acceptance probability of a pseudo-marginal RWM algorithm with a scaling of o u
and a noise variance of o2 [STRR15]. Substituting 02 = 0 into (4.7), we find that for the DARWM,
g1 (i, 0; B2, B2) = 2®(—fp/2), the limiting acceptance probability for a RWM algorithm with a scaling
of B2 u [RGGIT7]. In Section 5 the insights arising from this phenomenon help to motivate our approach to
understanding the efficiency and tuning of DARWM and DAPsMRWM algorithms.

(4.7)

4.3 Limiting expected squared jumping distance

A standard measure of efficiency [SR09, BRS09, She13] for local algorithms is the Euclidian Expected Squared
Jumping Distance (ESJD); see [RR14b, PG10] for detailed discussions. Theoretical motivations for our use
of the ESJD are given by the diffusion approximation proved in Section 4.4. In our d-dimensional setting, it
is defined as

B0 = 5 [ X, - x(7*]

where the Markov chain {(Xéd), Wéd)} is assumed to evolve at stationarity and | - || is the standard
E>0

Euclidian norm.

Proposition 4.3. Let Assumptions 1 and j hold. For almost every realisation {v;};>1 of the sequence of
auziliary random variables used to describe the deterministic approximation (3.4) to the posterior density we
have

2
lim BSID = a1z (%) = J () (4.8)

where a2 s the limiting acceptance rate identified in Proposition 4.1. The dependence of the limiting expected
squared jumping distance J(p) upon (B, mw) is implicit.
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4.4 Diffusion limit

We are motivated to prove that the DAPsMRWM algorithm in high dimensions can be well-approximated by
an appropriate diffusion limit as this provides theoretical underpinning to our use of the ESJD as measure
of efficiency [BDM12, RR14b]. The connection between ESJD and diffusions comes from the fact that
the asymptotic jumping distance limg_, ESJD@ = J (1) is equal to the square of the limiting process’s
diffusion coefficient and is proportional to the drift coefficient. By a simple time change argument, the
asymptotic variance of any Monte Carlo estimate of interest is inversely proportional to J(u). Consequently,
J(1) becomes, at least in the limit, unambiguously the right quantity to optimise.

It is important to stress that the existence of the diffusion limit in this argument cannot be circumvented.
MCMC algorithms which have non-diffusion limits can behave in very different ways and ESJD may not
be a natural way to compare algorithms. The main result of this section is a diffusion limit for a rescaled
version V(4 of the first coordinate process. For time ¢ > 0 we define the piecewise constant continuous time
process

with the notation X,(Cd) = (X,&il), e ,X,gii;) € R%. In general, the process V(? is not Markovian; the next
theorem shows nevertheless that in the limit d — oo the process V(# can be approximated by a Langevin
diffusion.

Theorem 4.1. Let Assumptions 1 and 4 hold. Let T > 0 be a finite time horizon and suppose that for all

d > 1 the DAPsMRWM Markov chain starts at stationarity, (X;Cd), W(d)) Rrdg mw. Then, as d — oo,
the sequence of processes V49 converges weakly to V in the Skorokhod topology on D(]0,T],R) where the
diffusion process V' satisfies the Langevin stochastic differential equation

AV = 5 J(u) (log ) (Vi) di + J*/2(s) dB, (4.9)

with initial distribution Vj K x. The process By is a standard scalar Brownian motion.

Note that, as with Propositions 4.1 and 4.3, the Gaussian Assumption 2 is not necessary for the conclusion
of Theorem 4.1 to hold. The proof can be found in Section 6.3. Theorem 4.1 shows that the rescaled
first coordinate process converges to a Langevin diffusion V that is a time-change of the diffusion dV; =
%(log 7) (Vi) dt + dBy; indeed, t — V; has the same law as t VJ(H)t. This reveals that when speed
of mixing is measured in terms of the number of iterations of the algorithm, the higher J(u), the faster
the mixing of the Markov chain. See [RR14a] for a detailed discussion and rigorous results. However any
measure of overall efficiency should also take into account the computational time required for each iteration
of the algorithm, and this is the subject of the next section.

5 Optimising the efficiency

When examining the efficiency of a standard RWM the computational time is usually either not taken
into account or is implicitly supposed to be independent of the choice of tuning parameter(s). In any
delayed-acceptance scenario, the computational time depends on the number of acceptances at Stage One;
furthermore, in any pseudo-marginal setting the computational time also depends on the variance of the
stochastic estimate of logw. For this article, we measure the efficiency through a rescaled version of the
expected squared jump distance,

(Expected Squared Jump Distance)

(Efficiency) = (5.1)

(Averaged one step computing time)

For any increasing function .# the quantity % (ESJD)/(Averaged one step computing time) is a valid mea-
sure of efficiency; the discussion at the start of Section 4.4 reveals nonetheless, because of the diffusion
approximation proved in Theorem 4.1, that (5.1) is the essentially unique measure of efficiency valid in the
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high-dimensional asymptotic regime considered in this article. Proposition 4.3 shows that the limiting ESJD
equals ajp x (11/I)? where I, defined in Equation (3.3), is a constant irrelevant for the optimisation of the
efficiency discussed in this section; the constant also appears in the same form in the limiting ESJD for the
equivalent non-delayed acceptance algorithm, and so it may also safely be ignored when calculating relative
efficiencies. We examine the efficiency of the DARWM first, then move on to the DAPsMRWM.

5.1 Delayed-acceptance random walk Metropolis

For the DARWM we define an evaluation of 7 as taking one unit of time and define 7 to be the time for
an evaluation of m,: the one-step cost of a DARWM algorithm is n + a;. Following Equation (5.1) and
eliminating unnecessary constants, the limiting efficiency of the DARWM can be quantified by the following
efficiency functional:
1% a2 (p, 0)
Bff g, () = 01200,
n + o1 (p)
The dependence upon 57 and [ is implicit. Using the same timescale, the efficiency of the RWM is
Effpym (1) := 202®(—p/2) [RGGIT], which is optimised at p = flypm ~ 2.38. We may therefore define the
relative efficiency of the DARWM algorithm compared with the optimal efficiency of the RWM algorithm

Eff(n)
Effrwm (ﬂrwm)

In the special case of 8, = 42, and as investigated in and around (4.7), we have that

rel/ . 2 _ :U‘2 al(ﬂ;ﬂlvﬂ2)¢(iuﬂ2/2)
Eﬂ‘da(:““ 52’52) B lagwm (77 + aq (,uv Bla ﬂ?)) q)(_ﬂrwm/2) '

In the limit of an infinitesimal cost to evaluating m,,i.e. n = 0, the efficiency is maximised at fige = firwm/ B2,
giving an overall relative efficiency of Eﬁ"fﬁi(ﬁmm) = 1/B3. In reality, n > 0, and if u is large enough so
that () < n then p?aq2(p; 81, B2) will decrease rapidly with p, as will the efficiency. This suggests that

the quantity agi (Zrwm; B1,B2) might provide insight into the optimal scaling, fiqq, and of the magnitude

(5.2)

Efff (1) = (5.3)

of Effffl(ﬂda), provided that 7 is also taken into account. Figure 3 shows a1 (rwm; 81, 82) and fida /firwm

a

and Eff' (7iga) as functions of B; and By when n = 0.01. The shapes of the contours are almost identical,
indicating that whatever the values of B1 and 32, the quantity cojy(rwm; B1, B2) provides information on
the optimal increase in scaling (relative to the optimal scaling for the RWM) and the corresponding increase
in efficiency. Along the line where 31 = 33, as predicted, at 82 = 1, figa ~ Jirwm/ B2, but, since n > 0, as B2
decreases the optimal scaling does not increase as quickly as this simple formula suggests.

Figure 4 plots fide/firwm (left) and BT (fige) (right) vs @91 (Hrwm) over the fine grid of values of (31, 32)
used to create Figure 3. It shows that co)q (firwm) combined with 7 does indeed provide information on the
relative increase in scaling needed over fi,.., and the resulting relative efficiency.

5.2 Delayed acceptance pseudo-marginal RWM

For the DAPsMRWM we define an evaluation of 7 with 02 = 1 as taking one unit of time, and 1 > 0 is
defined to be the time for an evaluation of 7, on this scale. Under Assumption 3, the average time needed
to compute the stochastic approximation is inversely proportional to the variance, o2, of the estimate of the
log-target, which leads to an average computational time for a single iteration of the algorithm of

(Averaged one-step computing time) = 7+ oy /0.

As discussed in Section 3.3, Assumption 3 is reasonable when using particle MCMC to perform inference
on the parameters of a hidden-Markov model, or when analysing panel data using a product of importance
sampling estimators. We therefore simplify notation and refer the resulting efficiency as that of a Delayed-
Acceptance Particle Marginal method. Our efficiency functional is, therefore,

P ot an(p,0)

Eff qapm (11, 02) = ) 5.4
dp(ua) 7]02+041(M) ( )
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Figure 4: Scatter plots of [igq/frwm (left) and Effffl(ﬂda) (right) vs a1 (firwm), Partitioned by n.
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Figure 5: Scatter plots of [dapm/Lpm (left), Eﬁapm/ﬁzm (centre) and Efffiapm(ﬁdapm,ﬁﬁapm), Vs
21 (Tipm, Oy ) (right), partitioned by 7.

Theorem 5.1, which is proved in Appendix B.2, shows that the efficiency functional Eff(u,o?) possesses
intuitive limiting properties: too large or too small a jump size and/or stochastic variability in the estimation
of the target is sub-optimal.

Theorem 5.1. Let the regqularity Assumption 4, the cost Assumption 3 and the Gaussian Assumption 2
hold. Suppose further that the Metropolis-Hastings accept-reject function has been used.

1. For a fized variance 0 > 0 we have Eff (u,02) — 0 as u — 0 or pu — .
2. For a fized jump size u > 0 we have Eff(u,0%) — 0 as 02 — 0 or 0% — oc.

Using the same time scale as in (5.4), the equivalent efficiency function for the Particle-Marginal RWM is
Eff y (1, 02) := 20202 (f%, /12 + 202), and this is maximised at i, ~ 2.562 and 67, ~ 3.283 [STRR15].
We may therefore define the relative efficiency of the DAPsMRWM algorithm compared with the maximum
achievable efficiency of the Particle-Marginal RWM as follows,

Eff dapm (1, 0°)
Eﬁ‘rel 2 = ap ’ .
dapm (Mv a ) Effpm (ﬂpma a_gm)

(5.5)

An argument analogous to the one used for analyzing the DARWM suggests that a1 (fipm0py,) and 1 > 0

together should be informative on figqpm and Eflapm and Eﬂgﬁpm(ﬁdapm,agapm). Analogous contour plots
to those in Figure 3, provided in Appendix A.1, /s\how the same key property. Figure 5 shows scatter plots
of Hdapm., 6(21apm and Eﬂg’ipm against a1 (Hpm,02pm) segregated by 7. Again the combination of known
quantities provides insight on the optimal relative tunings of the DA parameters compared with their non-
DA optimal values. The efficiency plot also makes clear that it is not worth implementing a DAPsMRWM
algorithm if 7, is only ten times faster to evaluate than 7 is with o2 = 1.

As discussed in Section 2.2, an alternative tuning methodology relies on the property of the Particle-
Marginal MRWM algorithm that the optimal p for a given o2, 7i(02), is almost independent of o2 [STRR15,
Shel6]. This effectively reduces a two-dimensional optimisation problem to two one-dimensional problems.
Figure 6, which is typical of many other such figures that we produced, shows contour plots of Efffﬁipm as a
function of p and o for specific combinations of 85 > 0, |81] < B2 and > 0. Each plot shows a single mode
and also shows that for a particular variance, the optimal scaling fi(¢) is insensitive to the value of o, except
when, approximately, o < 1, at which point the optimal scaling increases. Provided the noise variance is not

made too small, therefore, ;1 and o may also be tuned independently for the DAPsMRWM.
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Figure 6: Contour plots of the asymptotic efficiency relative to the optimal efficiency of the equivalent
pseudo-marginal RWM algorithm, E ffalpm, as a function of the scaling, p, and the variance of the noise
in the log-target, o2, for different choices of 51, B2 at n = 1073. For comparability, all contours are at
0.5,1,2,3,4,5,6,7,8,10,12,15. The horizontal dashed line denotes 2 = 1.

6 Proofs

It will be helpful to introduce i.i.d sequences {X;};>1 and {I';};>1 respectively marginally distributed as m
and 7r, and corresponding realisations of them, {x;};>1 and {~;};>1. Similarly, we consider an i.i.d sequence
{Z; }i k>0 of standard Gaussian N (0, 1) random variables, {Ug}r>0 an i.i.d sequence of random variables
uniformly distributed on [0,1], W a random variable distributed as my and {W;}r>o an i.i.d sequence

distributed as mw+. For any dimension d > 1 we set Xéd) = (X1,...,Xq) € R? and Wéd) = W and

X,gdj)* = X,g‘? + (u/T)d=Y/2 Zy ;; we recursively define

<@ @y _ [ 0T WE) i Uy <l (x4, Wi x (0w )
( k+1> k+1)_ (d) (d) .
(X7, W,") otherwise,
for a proposal ng)’* = (X,g"il)’*, e ,X,i”i;’*). Indeed, the process (Xéd),ngd)) is a DAPsMRWM Markov

chain started at stationarity and targeting 7% ® my. We denote by Fj the o-algebra generated by the
family of random variables {ng), Wt(d) |t < k} and use the notation E[-] for designating the conditional
expectation E[- | F¢]. Similarly, we use the notation Ex ,[-] instead of E[- | (Xéd), Wéd)) = (x,w)]. Finally,
we set
qgi) _ qgi)(x(d)7x(d),*)7 SXl) _ (d)(x(d) X(d),*)’ le) — w( @ qp(d),
Q(Ad) — q(Ad) (x(D, X (D), Sgd) = 5(d) , (x(D, X(D:x), W(Ad) — WD (@) (6.1)
R = (@) 2 (XD, XD, S0 = s(d) (XD, XD, W = WD -,

and use the shorthand notation ¢(z) = log 7(x).

6.1 Proof of Lemma 4.1

The Law of Large Numbers and the separability of L!(r @) readily yield that for almost every realisations
{z:}i>1 and {v;};>1, the following holds,

n

lim n~! ng(xi,%) = /go(x,’y) (r ® 7r) (dzx, dv) for all ¢ € L' (7 @ mr). (6.2)

n—oo :
i=1

We can thus safely assume in the remainder of this section that Equation (6.2) holds for the realisation
{7i}i>1 of the auxiliary random variables used to describe the deterministic approximation (3.4) . By the
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Cramer-Wold device, for proving Lemma 4.1 it suffices to establish that for any coefficient cg,cs € R the
sequence cq di) (x®) +cg S(Ad) (x(®) converges in law towards ¢ QX +c¢s ST; the boundedness assumption
on the derivatives of the functions = — ¢(z) and = — S(x, u) and a second order Taylor expansion show that
this is equivalent to proving that the sum

d
\/ITZ{CQE sz +Csa 8(551771)} i %%Z{CQK xz +Csamm8($z771)}

converges in law towards cg QX + c¢s SX°. Definition (3.5) of the coefficient 81 and B3 yields that for almost
every realisation {x;};>1 and {7;};>1 we have

d
3 (P, ), 0, 00 ), € 08 (ri)) = (1 -1, B3, B 1), (63
i=1

from which the conclusion directly follows since cg QX + cg SX has a Gaussian distribution with mean
p? (esPr — cq)/2 and variance p” (¢ + ¢ B3 — 2¢q ¢s ).

6.2 Proof of Proposition 4.3

The quantity ESID@ can also be expressed as

eI = (43 Sk [(27) s (0 50) (w0 - 10)]

Jj=1

-k {(z@) < F QR+ 80 x 1 (W - sgﬂﬂ

for di), S(Ad)7 Wéd’) defined in (6.1); the second equality follows from the exchangeability, at stationarity,

of the d coordinates of the Markov chain. One can decompose Qxl) and Sgi) as a sum of a term that is

independent of Z\* and a negligible term; we have Q'Y = Q¥+ 4 log [W(ng)’*)/w(xgd))] and S\ =

Sgi)’l + S(ng)’*,’yl) — S(ng),%) with
d d d 4 d d
L .
QW Zk’g M EX)] and S = ZS(X§ ) = X ).
=2

Note that Q(Ad)’L and Sgi)’L are independent of Zﬁd). Under Assumption 4, the moments of order two of the
differences Q(Ad) — QXI)’L and S(Ad) — S(Ad)’L are finite and converges to zero as d — co. The Cauchy-Schwarz
inequality and the fact that F is bounded and Lipschitz yield that ESJD(? /(1/I)?* can also be expressed as

E| (Zfd))z x F Q" + 50 ) < P (WS — s |
o[ (@ )« () ()

+E [(2@)2 < {F Q¥ +55) = F (@ + L) b x P (Wl - S(AC”)}

=B [F(QQ" +55) x F (WL = 54)] +0(1)
= E[F (QX +5%) x F (Wa — 53)] + o(1) = aza + o(1),

as required. We have used the fact that for almost every realisation of the auxiliary random variable {I'; };>1

(DL gld),L
A 7SA )

the sequence ( converges in distribution to (Q¥X, SX°), which readily follows from Lemma 4.1.
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6.3 Proof of Theorem 4.1
The proof is a generalisation of the generator approach of [RGG97, Béd07] coupled with an homogenization
argument. We introduce the subsampled processes X(¥ and W@ defined by

X — x(@

==(d d
e T and W,E ) = WP

for an intermediary time scale defined as T(9) = |d” | where v is an arbitrary exponent such that v € (0,1/4).
One step of the process X (d) (resp. W(d)) corresponds to T(9) steps of the process X(@ (resp. W(®). We
then define an accelerated version V(@ of the subsampled process X@_ In order to prove a diffusion limit
for the process X (%), one needs to accelerate time by a factor of d; consequently, in order to prove a diffusion
limit for the process X (d) one needs to accelerate time by a factor d/ T@ and thus define V(<) by

d (d)

v )( t) = XLtd/T(d)J 1
The proof then consists of showing that the sequence V@ converges weakly in the Skorohod topology towards
the limiting diffusion (4.9) and verifying that ||V(4) — V@D [0,7] converges to zero in probability; this is
enough to prove that the sequence V(% converges weakly in the Skorohod topology towards the limiting

diffusion (4.9). We denote by .Z the generator of the limiting diffusion (4.9). Similarly, we define Z(%)
and .24 the approximate generators of the first coordinate processes Xl(d) and Xl(d); for any smooth and

compactly supported test function ¢ : R — R, vector x = (z1,...,74) € R? and scalar z,w € R we have

LDox,w) = Exulo(X(Y) = o(X§)/6
LD o(x,w) = Exulp(¥ ZD) — o DT x5)  for  s=1/d
Zo(x) = L J() x (¢ ()¢ () + ¢ ().

Note that although ¢ is a scalar function, the functions .Z(® ¢ and j;(d)@ are defined on R? x R. The law
of iterated conditional expectation yields the important identity between the generators .Z(® and 2@,

T _1

1 d d
LDp(x,w) = w5 B | Y. L (X,(C),W,E )) . (6.4)

For clarity, the proof of Theorem 4.1 is divided into several steps.

6.3.1 The finite dimensional marginals of V¢ converge to those of the diffusion (4.9)

Since the limiting process is a scalar diffusion, the set of smooth and compactly supported functions is a core
for the generator of the limiting diffusion ([EK86],Theorem 2.1, Chapter 8); in the sequel, one can thus work
with test functions belonging to this core only. Because the processes are started at stationarity, it suffices to
show ([EK86],Chapter 4, Theorem 8.2, Corollary 8.4) that for any smooth and compactly supported function
¢ : R — R the following limit holds,

—~ 2
lim E “z“hp(xl,...,xd,W) —,,sﬁp(Xl)) ] —0. (6.5)
—00

The proof of Equation (6.5) spans the remaining of this section and is based on an asymptotic expansion
that we now describe. For every x,w € R we define the approximated generator Ap : R x R — R by

2 1 "
Agtaw) = (5)" {0 ¢+ (Gorn + 1400 - B0 ) ¢ (@)} (6.
where A, B : R — (0; 00) are two bounded and continuous functions defined by

{ A(w) :E{F/(ngs*@ x F(W* —w — 8%)
B(w) F(QX +5%) x F'(W* —w — SY°)

(6.7)
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for W* X - and F'(u) = e*I,<o and (QX,SX) as defined in (4.1). The functions A, B : R — Ry are
such that

1
E[A(W)] = E[BOW)] = J aua. (6.8)
The proof of (6.8) can be found in Appendix B.3. It follows from (6.8) that for any fixed © € R we have
E[Ap(e,W)] = Zo() (6.9)

. D
for a random variable W ~ .

Lemma 6.1. Let Assumptions 4 hold. We have

d—o0

2
lim ]E“f(d)ga(Xl,...,Xd,W)Ago(Xl,W)‘ } = 0. (6.10)

The proof of Lemma (6.1) consists in second order Taylor expansion and an averaging argument; details
are in Section B.4. For proving Equation (6.5), note that identity (6.4) and Jensen’s inequality yield the
quantity inside the limit described in Equation (6.5) is less than two times the expectation of

7@ d d d d 2 7D d d
Site £ (X0 W) = Ap (X1, W) o Ae (X0 W) = 2 (X(7)
7@ - @

The expectation of the first term is less than E “X(d)ga(Xl, o Xa, W) — Ap(Xy, W)ﬂ and Lemma (6.1)

shows that this quantity goes to zero as d — oo. To finish the proof it thus remains to verify that the
expectation of the second term also converges to zero; to prove so, note that the second term is less than
two times

(@ d d d an|?
1o [Ae(x 8 WD) — Ap(x{D W (T

+ Ap (X WD) — 2o((x D) T@ 5 (6.11)
T(d) kzzo ( 0,1° "Wk ) ( 0,1)

Under the assumptions of Theorem 4.1, it is straightforward to verify that the function Ay is globally
Lipschitz in the sense that there exists a constant ||Ay||Lip such that for every z1,z2,w € R we have
|Ap(z1,w) — Ap(ze,w)| < || A@||Lip X |21 — z2|; it follows that the expectation of the first term in (6.11)
converges to zero. For proving that the second term also converges to zero, we make use of the following
ergodic averaging Lemma whose proof can be found in Section B.5.

Lemma 6.2. Let h: R — R be a bounded and measurable test function. We have

71 (d) 2
O Ry

. E k=0 k E [h(W
thIl T(d) [h( )] Oa

for a random wvariable W 2 mw independent from any other sources of randomness.

Identity (6.9), a standard conditioning argument and Lemma 6.2 yield that the expectation of the second
term in Equation (6.11) also converges to zero; this finishes the proof of the convergence of the finite
dimensional marginals of V¢ to those of the limiting diffusion (4.9).

6.3.2 The sequence V¢ converges weakly towards the diffusion (4.9)

The finite dimensional marginals of the sequence process % converges to those of the diffusion (4.9). To
prove that the sequence v actually converges to the diffusion (4.9), it thus suffices to verify that the sequence
Vi is relatively weak compact in the Skorohod topology: since the process V(@ is started at stationarity and
the space of smooth functions with compact support is an algebra that strongly separates points, ([EK86],
Chapter 4, Corollary 8.6) states that it suffices to show that for any smooth and compactly supported test

function ¢ the sequence d +— E|gd)gp(X1, oo, Xy, VV)|2 is bounded. Equation (6.5) shows that it suffices

to verify that IE‘.Z (X )’2 < oo for X R 7, which is obvious since ¢ is assumed to be smooth with compact
support.
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6.3.3 The sequence V¢ converges weakly towards the diffusion (4.9)

Because the sequence vd converges weakly to the diffusion (4.9), it suffices to prove that the difference
|V — VdHoo,[o,T] goes to zero in probability. To this end, it suffices to prove that the supremum

sup { [ X\ i = X, |+ b x T@ <dx T, i <T@}

_ x@

KT 41 T 1| 18 less than a constant times

converges to zero in probability. Since ‘X

1
12 {‘ZkT(d),l} + ...+ |Z(k+1)T(d)_171’},

standard Gaussian concentration gives the conclusion. This ends the proof of Theorem 4.1.

7 Practical advice and simulation studies

Theorem 5.1 suggests that our goal of finding the optimal scaling fig, > 0 or, for the DAPsMRWM, figapm > 0
and Ggapm > 0), is sensible. We leverage our theory in section 7.1 to describe practical advice to this end.
We conclude this section by empirically verifying these guidelines.

7.1 Practical advice

The values 31, 82 and I arise from an idealisation of the form of the target distribution, and the dependence
of quantities of interest on these parameters arises from a limiting argument as d — oo. In reality, the
quantities 81 and (2 and I might not exist. Even if they did exist, their values would not be known. We
therefore base our practical advice on features that appear to be approximately independent of the specific
values of 81 and s, and for which I is irrelevant. Specifically, we focus on the quantites described in Figures

5 and 6. Importantly, these quantities can straightforwardly and robustly be estimated from short MCMC
trajectories.

DARWM: as described in Section 2.2, scaling analyses of the RWM led to the commonly used practical
advice of tuning the scaling so that the acceptance rate is approximately Q.. We assume that the
practitioner has already found a scaling, A;.,m that is approximately optimal for the basic RWM, and noted
Qrwm (A). Discovering that the efficiency is still too low, they have implemented a delayed-acceptance version
of the algorithm which they now wish to tune.

Standard diagnostics give the relative computational cost, 7, for the evaluations of 7, and m. The user
should then run the DARWM algorithm with a scaling of )\mm, noting a2‘1()\mm) Figure 4 then gives the

ratio Xda /erm = (Gda/I)/(frwm/I) that will be approximately optimal, as well as the estimated gain in
efficiency.

DAPsMRWDM: as described in Section 2.2 there are two possible tuning strategies based on the fact
that the effect of altering the number of particles is approximately orthogonal to the effect of altering the
scaling: either conditional on a given scaling, tune the number of particles to optimise efficiency, then with
this number of particles, tune the scaling to optimise efficiency or change the number of particles to achieve
the approximately optimal variance value, 3127,”, and tune the scaling to achieve an approximately optimal
acceptance rate, &p,. For the first stage in the second option, the variance should be evaluated by running
the PsMRWM algorithm with A\ = 0 at some representative value x(°), such as an approximate posterior
mean, median or mode, as well as several other values, x(*), ..., x*) from the approximate posterior.

Figure 6 suggests that the first strategy should still apply directly to the DAPsMRWM, provided the
variance is kept at 02 > 1. Alternatively, if the user already has an approximately optimal scaling and vari-
ance for the pseudo-marginal RWM, then, running the DAPsMRWM with these parameter values provides
2(1(Apm, 02y, and also 7 (if the relative CPU time is n*, then n ~ n*/32,,). Figure 5 may then be used to
adjust A and o2 for the DAPsMRWM algorithm.

To improve the efficiency of a (pseudo-marginal) RWM algorithms it is usual to make the jump proposal
matrix reflect the overall shape of the posterior [RR01]. One frequently used strategy [SFRlO] is to set the
proposal covariance matrix to be proportional to an estimate of the target covariance matrix, V= Var(X)

obtained from a preliminary run, for example whilst finding )\Twm, or A pm and o a
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Figure 7:  Scatter plots of figa/frwm (d = 10, left and d = 25, centre) and Effy (figq) (d = 25, right), vs
@21 (Hrwm), partitioned by 7.

7.2 Simulation study for the DARWM

We consider a scenario where the true target is a product of standard Gaussians and the deterministic
approximation is a product of logistic densities with a mode at ¢ and inverse-scale parameter s,

1 & d
m(x) o exp {—2 Z:ﬂf} and 7o () ox H
i=1

i—1 (1 + 6902(90«;*901))2 .

2

eP2(xi—p1)

(7.1)

We consider fourteen scenarios: ten different combinations of values for (1, ¢2), three approximations where
the values of ¢1 or ¢y vary from component to component, and the ‘perfect approximation’, 7, = m; see
Appendix C for further details.

Empirical effective sample sizes (ESSs) for each of the d components are calculated using the coda package
in R [PBCVO06]; the overall ESS is taken to be the average of the ESSs over the d individual components.
All algorithms were run for 108 iterations. R

We first obtained the optimal scaling, Ayym, for a RWM targeting 7 by optimising the empirical ESS,
and evaluated @ym (Arwm ) as well as the empirical ESS at this tuning. Then we ran the DA algorithm with
this scaling to find azu(imm). Next, we artifically induced three different values of n: 0.1, 0.01, 0.001 and
evaluated the efficiency, (empirical ESS-100) / CPU time) over a grid of possible scalings, A, to find the
optimal scaling. The regularisation penalty is needed because for very poorly mixing chains the empirical
ESS tends to overestimate the true efficiency. L

Figure 7 reproduces Figure 4 but in three shades of grey, then plots Aga/Arwm (d = 10 and d = 25)
and the relative efficiency (d = 25) against a2|1(xda) / a,«wm(}\\,«wm). At d = 10 the theory sometimes slightly
overestimates the increase in scaling that is required, although (not shown) the predicted range of gains
in efficiency is accurate except when 7 is small and g1 (rwm)/Qrwm (Brwm) is large, but by d = 25 the
theoretical prediction of the ratio is quite accurate, as is the predicted efficiency gain. Essentially, with a
larger scaling and a smaller dimension the diffusion approximation is less accurate.

7.3 Simulation study for the DAPsMRWM

To illustrate the advice for the DAPsMRWM, and provide a check on its validity, we consider a Lotka-Volterra
predator-prey model [BWKO8]. The model describes the continuous time evolution of U, = (U1 4, Us,¢) where
Ui, (prey) and Us ;. (predator) are non-negative integer-values processes. Starting from an initial value, which
is assumed known for simplicity, U; evolves according to a Markov jump process (MJP) parameterised by
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rate constants ¢ = (¢, cg, ¢3) and characterised by transitions over (t,t + dt] of the form

P (Ut rat = w1 + 1, Uz pqar = Uap|ur e, uze) = crugdt + o(dt),
P(Ursdar = w1 — LUz par = Uayp + ur g, o) = couqpugdt + o(dt),
P(Urar = v1,e, Uzjqrar = uge — Lug g, uzy) = caugdt 4 o(dt).

The process is easily simulated via the Gillespie algorithm [Gil77] and the pseudo-marginal RWM scheme is
straightforward to apply [GW11]. We assume that the MJP is observed with Gaussian error every time unit

for n time units, t =1,...,n:
2
D Ut s1 0
(] [T 8))

As all of the parameters of interest must be strictly positive, we consider inference for

x = (log(er),log(ez),log(cs),log(s1),log(s2)) -

The DAPsMRWM scheme requires that a computationally cheap approximation of the MJP is available. We
follow [GHS15] by constructing a linear noise approximation (LNA) (see e.g. [vKO01]). Under the LNA

Ut’I‘)‘N(Zt+mt7Vt)

where z;, m; and V; satisfy a coupled ODE system

it = S h(Zt, C)
I.ilt = tht (72)
Vt = Vth—‘ + Sdlag {h(Zt7 C)} ST + FtVt

For the Lotka-Volterra model, the rate vector h(z, c), stoichiometry matrix S and Jacobian matrix F; are
given by
h(z, ¢) = (c121,1, C221,422,1, C322,1),

1 -1 0 C1 — C222¢t —C221t
S = ( 0 1 -1 ) ’ Ft o ( C222.t C2z1,t — C3 ) ’

Appendix D describes an algorithm for evaluating the posterior (up to proportionality) under the LNA.
For further details regarding the LNA and its use as an approximation to a MJP, we refer the reader to
[FGS14] and [GHS15]. Data were simulated using an initial value ug = (71,79) for n = 50 time units with
¢ = (1.0,0.005,0.6) and s; = sy = 8. These parameters were assumed to be independent a priori with
independent proper Uniform densities on the interval [—8, 8] ascribed to X;, (i = 1,...,5). For a pseudo-
marginal RWM scheme [STRR15] suggests that for a Gaussian target (where, for each principal component,
I is known) the scaling should be Vgauss = (2.56?/d) x Var(X) to optimise efficiency. We refer to the scaling
relative to this proposal as 7; i.e. we propose Gaussian jumps with a variance of V.op = VQ\A/'GMSS, where
Var(X), has been replaced with an approximation, \//z;r(X), created from an initial run. In this example
we found that the pseudo-marginal RWM was optimised at v ~ 1.2. [STRR15] suggests that the optimal
number of particles should lead to a variance in log7T of approximately 3.3. We found that the optimal
number of particles was m = 180, which occurred when the Var[log 7(x,)] (with z, an initial estimate of the
componentwise posterior median) was approximately 2.9. The mean acceptance probability at this optimal
tuning was ap,, ~ 8.0% and the empirical efficiency, measured in terms of minimum (over each parameter
component) effective sample size per second, was 0.067.

The DAPsMRWM with v = 1.2 and m = 180 gave ay; ~ 20.7%, so that ayi/apm ~ 2.6; timing
diagnostics gave n = 0.0014. For this combination, Figure 5 suggests increasing the scaling by a factor of
around 2.1, decreasing the variance by a factor of between 0.7 and 0.8, and that this should lead to an increase
in efficiency of a factor of between 6 and 7. The tuning suggestions translate to v =~ 2.5 and m =~ 225 — 255.
Alternatively, Figure 6 suggests that provided o2 > 1, m and v may be tuned independently.

To confirm that the practical advice is reasonable and to test some of the other predictions of our theory,
the number of particles m was varied between 80 and 2000 and, for each m, the scaling v was varied
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m 80 100 150 200 250 300 500 800 2000
o? 8.30 5.86 3.53 2.52 1.83 1.50 0.89 0.52 0.20

==

mESS/s | 0.0750 | 0.0808 | 0.0810 0.108 0.118 0.119 0.119 0.113 | 0.0661
a1 0.256 0.255 0.257 0.255 0.257 0.254 0.254 0.255 0.258
Q|1 0.0651 | 0.0883 0.170 0.237 0.289 0.341 0.447 0.547 0.692

2 | mESS/s 0.140 0.218 0.296 0.289 0.319 0.278 0.262 0.181 0.127
&1 | 0.0556 | 0.0514 | 0.0489 | 0.0503 | 0.0517 | 0.0520 | 0.0513 | 0.0517 | 0.0505
agp | 0.0619 | 0.0895 0.163 0.213 0.286 0.313 0.438 0.522 0.674

2.5 | mESS/s 0.142 0.226 0.338 0.381 0.325 0.318 0.330 0.282 0.142
o 0.0244 | 0.0237 | 0.0234 | 0.0259 | 0.0264 | 0.0234 | 0.0241 | 0.0230 | 0.0250
Qa1 0.0600 | 0.0815 0.159 0.218 0.252 0.312 0.434 0.523 0.675

3 | mESS/s 0.160 0.294 0.364 0.441 0.401 0.419 0.364 0.277 0.156
o 0.0143 | 0.0123 | 0.0119 | 0.0114 | 0.0131 | 0.0120 | 0.0114 | 0.0124 | 0.0121
Qa1 0.0416 0.101 0.152 0.233 0.274 0.320 0.426 0.516 0.673

3.5 | mESS/s 0.107 0.225 0.331 0.402 0.374 0.390 0.348 0.307 0.162
&1 | 0.00629 | 0.00789 | 0.00763 | 0.00684 | 0.00669 | 0.00663 | 0.00725 | 0.00634 | 0.00694
Qo1 | 0.0550 | 0.0869 0.170 0.237 0.273 0.312 0.424 0.534 0.673

4 | mESS/s 0.107 0.174 0.176 0.291 0.308 0.319 0.351 0.292 0.162
a1 | 0.00343 | 0.00318 | 0.00401 | 0.00388 | 0.00372 | 0.00357 | 0.00377 | 0.00402 | 0.00418
Gg;1 | 0.0680 0.105 0.151 0.215 0.287 0.310 0.407 0.500 0.681

4.5 | mESS/s | 0.0728 0.159 0.150 0.267 0.310 0.300 0.300 0.258 0.153
&1 | 0.00220 | 0.00183 | 0.00207 | 0.00247 | 0.00230 | 0.00256 | 0.00224 | 0.00249 | 0.00226
Qg1 | 0.0527 0.111 0.143 0.213 0.265 0.280 0.424 0.491 0.658

Table 1: Minimum effective sample size (mESS) per second, stage 1 acceptance probability ¢&; and stage 2
acceptance probability dg); as functions of the number of particles m and scaling . The variance (02) of
the estimated log-posterior at the median is also shown for each choice of m.
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Figure 8: Empirical efficiency measured as the effective sample size per CPU second. The left-hand panel
gives the efficiency plotted against v for various numbers of particles. The right-hand panel gives the efficiency
plotted against o (estimated at the posterior median), for various scalings.

between 1 and 4.5. For each (m,~) pair, a long MCMC run (of at least 4 x 10° iterations) was performed.
Figure 8 shows empirical efficiency as a function of the scaling v (with a varying number of particles m)
and as a function of the number of particles (for various scalings v) and provides empirical evidence of the
insensitivity of the optimal choice of scaling, v, to the value of o2, for values of o2 >= 0.89; furthermore,
for variances below 0.89 the optimal scaling increases, as predicted by our theory. Table 1 shows empirical
efficiency, as well as Stage 1 and conditional Stage 2 acceptance rates; it shows that v = 2.5 gives close to
the optimal efficiency, with 4 ~ 3.1, and m ~ 220 — 250 as predicted. The empirical efficiency gain from
using the DAPsMRWM algorithm compared to the pseudo-marginal RWM algorithm was 0.441/0.067 = 6.6,
which is in the centre of the range predicted by the theory. Finally, Proposition 4.2 proves that, subject to
assumptions, the Stage 2 acceptance probability decreases as the variance in the log-posterior (o2) increases
and the Stage 1 acceptance probability decreases as the scaling increases; these patterns are observed in our
experiments (see Table 1).

8 Discussion

We have provided a theoretical analysis of the delayed-acceptance pseudo-marginal random walk Metropolis
algorithm (DAPsMRWM) in the limit as the dimension, d, of the parameter space tends to infinity. Our
analysis also applies to the delayed-acceptance random walk Metropolis (DARWM).

As with many other analyses [RGG97, RR98] we assume that the target has an iid product form. We
then follow [STRR15] and [DPDK15] in assuming that the noise in the unbiased estimate of the posterior
is additive on the logarithmic scale, with a distribution which is independent of the current position. We
also assume that a cheap deterministic approximation is available for each component of the product, and
that the error in each such approximation is a realisation of a random function. Individual realisations of
the error are subject to only minor regularity conditions. As such, the error model is reasonably general
and should capture the main characteristics of many real, deterministic approximations. This is verified for
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a toy Bayesian inverse problem. We examine the above model as dimension d — oo and we obtain limiting
forms for the Stage One and the conditional Stage Two acceptance rates and the expected squared jump
distance. We also obtain a diffusion approximation for the first component of the target, which justifies the
use of expected squared jump distance as a measure of efficiency.

For the DARWM, and for the DAPsMRWM subject to the assumption of the Standard Asymptotic
Regime, introduced in Section 2.2, we obtain simplified forms for the acceptance rates and for the efficiency
in terms of both the mixing of the Markov chain and of the computational time. The Standard Asymptotic
Regime applies, for example in cases where likelihood estimates are obtained using a particle filter, or a
product of importance sampling estimates. We show that when compared to the optimally tuned non-DA
algorithm, the relative changes in the efficiency, optimal scaling and optimal variance can be characterised
by the relative cost of the cheap approximation to the full evaluation and by its accuracy. The accuracy can
be expressed in terms of the conditional stage two acceptance rate of the DA algorithm at the parameter
value that was optimal for the non-DA algorithm. For the DAPsMRWM, the theory also shows that, except
for small values of o2, the optimal scaling i > 0 is almost independent of the variance o2 and, hence, of the
number of particles used. Consequently, as an alterantive tuning route, the two-dimensional optimisation
over the jump scaling and the number of particles can be reduced to two one-dimensional optimisations —
this results greatly simplifies the practical tuning of the DAPsMRWM. The theoretical work also suggests
that even for a very accurate approximation the DAPsMRWM is only worth implementing if the cheap
approximation is at least ten times quicker to compute than the target itself when o2 = 1.

The theoretical work supports the intuition that, provided the cheap deterministic approximation is fast
and reasonably accurate, the DAPsMRWM and DARWM algorithms should be optimally efficient when p
is much larger than (and the overall acceptance rate is much lower than) that of the equivalent (pseudo-
marginal) RWM algorithm.

A Explicit expressions for the acceptance probabilities

Define G(a,b) := E [1 Aexp(N (a,b%))] = ®(a/b) + exp (a+b*/2) ®(—b — a/b) with ® : R — [0,1] the
standard Gaussian cumulative distribution function. Then

2
041(!170;51752) = G(é(l - 51)7 M2 (1 + ﬂg - 251)>- (A~1)

Further, we may rewrite

1 2
Qx = 22 uZe v N (0,2 - p2lL
2 ﬂQ 2

o B
SX = 31/12 — uBaé,

where £ ~ N (0, 1) is independent of any other source of variability. Thus

2 2
al?(ﬂ7025517ﬁ2) =E [G <_N2(1 —B1) +p <g; - ﬂ2> &Mz - N2g§> G <—ﬂ21,u2 —o? +,u52§,202>} .
(A.2)

A.1 Contour plots against 5; and (5, for the DAPsMRWM

Figure 9 shows contour plots of agu(ﬁpm,ﬁzm), Ledapm/ Bpm, Eﬁapm/ﬁgm and Effrel(ﬁdapm,ﬁgame as a
function of 8, and By for n = 0.01.

B Proof of technical results

In this section we denote by ®(x) = [*__ ¢(u) du the cumulative Gaussian function with ¢(u) = e*“2/2/\/ 27,
The bound 1 — ®(z) < p(x)/z for > 0 is used in several places.
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Figure 9:  Contour plots of a1 (fipm, O B1, B2) (left), Laapm /Hpm. Eﬁapm /62, and Eﬁrel(ﬂdap7n,3§apm)
(right), as a function of 8; and B3 for n = 0.01. The red, dotted line satisfies ; = 33.

B.1 Proof of Proposition 4.2

The only not entirely trivial parts of this proposition involve establishing that a; and ag); are decreasing in
w and o respectively. For proving that a; = G(—”;(l — B1), p? (1 + B2 — 261)> is decreasing as a function

of u when 81 < 1, note that since |S1| < B2, 1+ 53 — 231 > (1 — B1)?; hence it suffices to show that for any
positive constant ¢ > 0 the function h : p — G(—p?, ¢?p?) is decreasing. Since h(p) = E [F(—p? + cpé)]

for a random variable £ EN (0,1) and F'(x) = e*I(z < 0) it follows that
B (1) =/ Fl(—p? 4+ cpz) (=2p+cz) w(Z)dZZ/ Fl(—p? +cepz) (=2 p+cz)p(z)dz.
z€R z<pu/c

This quantity is negative since =2 + cz < 0 on the event {z : z < p/c}. Proving that ay); is decreasing
as a function of o readily follows from the fact that for any fixed a € R the derivative of the function
o G(—0% 4 a,20%) < —2p(—0/v/2 +a/(0V/2)) < 0 and differentiation under the integral sign.

B.2 Proof of Theorem 5.1

Since Eff(u,0?) = m%, for a fixed value of scaling p > 0 the efficiency functional goes to zero as

0 — 0 and 0 — oco. Similarly, the fact that the efficiency goes to zero as y — 0 for any fixed value of o > 0
is straightforward; it remains to verify that the efficiency also converge to zero as u — co. It suffices to show
that 2 ai2(p, o) — 0; since for any z,y € R we have min (1, e*) min (1,¢¥) < min (1, %),

(’u2 + 202)1/2}

a12 SE[F (QX +Wa)) :ch{_ .

and the conclusion readily follows.

B.3 Proof of Equation (6.8)

Equation (3.8) yields that R = W* — W for (W*, W) ~ my~ ® my has a density mr such that the function
7 e"/2 mp(r) is symmetric i.e. e/2wg(r) = e /2 r(—r). Similarly, algebra reveals that the joint Gaussian
density 7, 5(g, s) of the pair (QX, SX°) described in Lemma 4.1 is such that

e?1g.5(q,8) = e V1o s(—q,—3).

That is because —logmg s(q,s) = aq® + bs? + cqs — q/2 + (constant) for some coefficients a,b,c € R.
Consequently, since the accept reject function F' is such that e ™ F'(u) = F(—u) for any u € R, the function

g(g,r,8) = )2 F(r — 5)7q,5(q, 5) mR(r)
— ¢ (r=s)/2 F(r—s) (eq/2 70,5(q, s)) (er/g WR(T))

28



is such that g(q,r, s) = g(—q, —r, —s). It follows that

E[AW)] = E[F'(QX + SX) x F(R — SY)] ///]R3 (g+s)F(r—s)mg.s(q,s) mr(r) dgdrds

~ [[[ e g dadras = [[[ 20 gk s gtans) daar ds
R3 R3
= E [93+55 /(- [QF + ST F(R - ST))| .
Consequently, since F'(u) 4+ e¢* F'(—u) = F(u) for u € R, it follows that
2 X E[AW)] = E |F/(QX + %) x F(R— SX) + %% 55 F/(<[QX + SF])F(R - 5%)]

=E[F(QRX + SX)] = ara.
The proof that E[B(W)] = a12/2 is similar and thus omitted.

B.4 Proof of Lemma 6.1

In this section we need to consider asymptotic expansions of the type Ex [...] = ¥(x,w) + (error term),
where (x,w) € R? x R and (error term) = g4(x,w) for a function 4 : R x R — R. We use the notation
(error term) = or2(1) to indicates that, under the equilibrium distribution, the moment of order two of the

error term is asymptotically negligible, E [sd(X(d), W)?] = 0 as d — oo for (X W) R 7@ @y Since ©
is smooth with compact support, a second order Taylor expansion reveals that

LD o(x, w) = (drift term) ¢’ (x) + (1/2) (volatility term) ¢ (x) + oz2(1) (B.1)
where the drift and volatility terms are given by the following conditional expectations,

(drift term) = (1/6) x Ex. (X{df’* - J;1> oD (x, w, X (@, W<d>v*)}
(d),+ (@) (B.2)
(volatility term) = (1/6) x Ex (X1 1= £C1) o)y (x,w, XD, W(d)’*)}
with ng)’* =x+ (u/1)6"/2 ZD and standard centred Gaussian random variable Z(¥ = (7, ..., Z,)
e It readily follows from Lemma 4.1 that for m-almost every x we have
(volatility term) = aqo x (u1/1)* = J(1) + 0r2(1). (B.3)
e For the drift term, we make use of the following integration-by-part formula, also known as Stein’s
identity,
E[Zxg(2)=E[g(2)] for  ZEN(0.1), (B.4)
which holds for any continuous and piecewise continuously differentiable function g : R — R such that
x — max (g(x), ¢’'(z)) is polynomially bounded. In what follows, F'(u) = e*I,«o. The expression for
ag) (x, w, X (D W(d)**), identity (B.4) and standard algebraic manipulations yield that
(drift term) = 512 (u/I)Ex [ 21 ag) (x,w, X (D) W(d)v*)]
d d d d d),
(/1) Ex.o[F/(QR + SE) FWR) = SI0) {£/(X() + 2,8 (X1 " )]
— (/D Bx[FQR + S (WL = SX) 0.8 (X177 7))
(1/1)? A(w) €' (1) + (1/1)? [A(w) = B(w)] 0:S(x1,m) + 0r2(1),
where the functions 4, B : R — R™ are defined in Equation (6.7) and the quantities Q(Ad),S(Ad) and
W in Equation (6.1).
Plugging (B.5) and (B.3) into (B.1) shows that the limit

2
lim E Uz (XD W) — A<p(X1(d>,W)( ] =0

d— o0

holds for (X(d), W) ~ 7@ @y, as required.
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B.5 Proof of Lemma 6.2

The strategy of the proof is as follows. We define three stochastic processes {Wédi} , {W; ;C} ,
F ) k>0 k>0

{Wa},, such that

limg o0 P (W,,(,,dL W 0<k< T(d)) =1,
d d law d d
(W.@l:W;E) : 0§k§T<d>) = (W},}{:W,g) : ogkgT(dD),

{W.»k}k>o is a Markov chain that is ergodic with respect to myy .

(B.6)

Once (B.6) is proved, Lemma 6.2 immediately follows. Let us now defines these three processes and verify
that Equation (B.6) holds. To do so, let us consider i.i.d sequences {X;};>1 and {W}};>1 and {Z; i} x>1 and
{Uk}k>0 respectively marginally distributed as 7w and 7y« and N (0,1) and Uniform([0, 1]). We consider
{z:}i>1 a realisation of {X;};>1 and for any index d > 1 we set X(()d) = (z1,...,24) and Wo(d) 2 W
and recursively define (X,(ﬂl,W,Ef?l) = (XédL*,Wg), with X’(cd),* = X;Cd) + (/1) 642 Z,(Cd) and Z,(Cd) =

(Zigs- s Zag), if

U < F (Q€) + 88 ) x F (Wi - wi® — 5 (B.7)
and (X,i‘?l,W,gﬂ) = (ng), Wéd)) otherwise. In the above

- () o (1)
s = (x2) - ().

Indeed, for any index d > 1 the process {(X;d), Wéd)) }k> is a DAPsMRWM Markov chain that targets
>0

7D @ my. Let us now define the processes We,Wa,Wa.

o We set WS()) = Wéd) and recursively define Ws.d;c =Wt

d d * d d
Up < F (Q&,)A,k + S-(!-,)A,Ic> X F (Wk - -;-;c - S-('.,)A,k) (B.8)
and Wéd;c 1= idi otherwise; we have used the notations

QWn s = (u8/1) S 0 (w:) Zig + (1262/212) S ()
Senn = Wo/1) S S (w4 7i) Zige + (1262)212) S, 8" (i, 71).

e Similarly, we set W:% = Wéd) and recursively define Widzc =Wt

d d * d d
Uk < F (QWss+ Saa) < F (Wi =Wyl = S5 ) (B.9)
and W9 = W otherwise; we have used the notations (Q(d) S ) to designate a Gaus-
& kt1 »k ) ALK O WA K g

sian random variable in R2, independent from any other source of randomness, with same law as
Q(d) S(d)
LIAW 2iad WAW. YN

o Finally, we set W‘dé = Wo(d) and recursively define W‘d;e =Wt
U < F(QS3 +5550) < F (Wi = wigh, — 553 (B.10)
(d) _ (d) s (00)  ai(o0) . .. .
and Wgy | = Wy otherwise; in the above §(Qa 1, SAx 0 is an i.i.d sequence marginally

distributed as (Q(Aoo), S(AOO)); see Lemma 4.1.
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It is obvious that {W(d) } a0 and {W(d) } 0 have the same law. The fact that {W(d) } 0 is a Markov

chain ergodic with respect to my readily follows from the fact that it is reversible with respect to my; it
is a standard Gaussian computation. The proof of the first and third equation in (B.6) is based on the
following basic remark. For convenience, let us denote by &, (d) Elgd}.,ﬁ (@) £ (d) the Bernoulli random variables

indicating whether or not the respective events (B.7),(B. 8) (B.9), (B. 10) are realised or not. We have

7 1
d d d d
(Wéi-W,ﬁ):OSkST(d))S Zp(gli)#gk ‘Wii— ) (B.11)
k=0
and the conditional probability P (5,2 (d) ‘ Widgc = W,gd)) is less than the expectation, conditioned upon

the event {Wédi = W,Ed) }, of the absolute difference

P (4 550) P (W7 - W0 S) - P (@ + Si0a) P (W - Wil 5| )

Because the [0, 1]-valued function F is assumed to be Lipschitz, if W(dzc = W,gd) the absolute difference

in (B.12) is less than 2 x ||F||Lip X {‘ g) *’A k‘ + ‘Sgi)k - S&A k‘} Because the second and third
derivatives of the log-likelihood function ¢ are globally bounded, a third order Taylor expansion yield that

d
> () - @) 22

=1

d
(El( kz)_‘gl(xl)) Zix| +d'E +O(d™1/?)

E ’di)k _ Qf,)A,k’ < d-1?E

4 , 1/2 , 1/2
<d {ZE (e - @) } {ZE (i - )] } O
=0k d*l/;).

py1/p
We have used the fact that for any exponent p > 1 we have E HXk ;- xl‘ ] < kd~'/2?, which readily

follows from the triangular inequality. Similarly, we have that E ’S Ak~ S, . A’k‘ < kd1/?

estimates in (B.11) shows that

. Plugging these

T(d)_l
d d B
1B (W =W o<k <TO)<a? Y ko0
k=0

since T(9) = d7 for some exponent v € (0,1/4); we have thus proved that P (Wédzc = W,Ed) :0<k< T(d))

converges to one as d — oo. The proof of the estimate P (W¢ L= VV‘d;c c0<k<TU )) — 1 uses the same

ingredients and is thus omitted.

C DARWM simulation study on Gaussian target with logistic ap-
proximation

Table 2 lists the values of ¢ and @5 used for the thirteen different logistic approximations, 7,, together with
the relevant acceptance rates.
D Marginal likelihood under the linear noise approximation

For simplicity of exposition we assume an observation regime of the form Y, = U; + e; with e, ~ N (0,3)
where €; is a length-d, Gaussian random vector. Suppose that U; is fixed at some value u;. The marginal
likelihood (and hence the posterior up to proportionality) under the LNA, 7, (y1.,|X) can be obtained as
follows.
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Algorithm V1 P2 51 B o Qg1
RWM 0.2616

DA 0.0 0.6 0.834 0.834 | 0.261 0.128
DA 0.0 1.2 0.441 0.449 | 0.069  0.533
DA 0.0 1.8 -0.042 0.262 | 0.041 0.738
DA 0.0 2.3 -0.467 0.649 | 0.034  0.595
DA 0.0 2.7 -0.810 1.025 | 0.032  0.492
DA 0.5 1.2 0.466 0.552 | 0.370  0.547
DA 1.0 1.2 0.535 0.763 | 0.140  0.151
DA 1.5 1.2 0.630 0.979 | 0.482  0.276
DA 0.6 1.8 0.056  0.681 | 0.0650 0.279
DA 0.5 2.3 -0.351  0.941 | 0.049  0.289
DA 0.0 1.5-2.0 0.248  0.772
DA 0.0 1.2-2.7 0.238  0.609
DA 0.0-1.0 1.2 0.377  0.517

Table 2: Values of ¢; and s used in (7.1), and the corresponding values of 81 and f2 (where calculable),

~

(€3] ()\rwm) and O‘2|1 (Arwm)-

1. Initialisation. Compute 7, (y1|x) = ¢ (y1; w1, X) where ¢ (y1; ur, X) denotes the Gaussian density
with mean vector u; and variance matrix 3. Set a; = u; and C to be the d, X d, matrix of zeros.

2. For timest=1,2,...,n—1,

(a) Prior at t + 1. Initialise the LNA with z; = a;, m; = 0 and V; = C;. Note that mg; = 0 for
all s > t. Integrate the ODE system (7.2) forward to ¢t + 1 to obtain z;41 and V1. Hence
Xit1lyre ~ N (i1, Vi) -

(b) One-step forecast. Using the observation equation, we have that Yy y1|y1.: ~ N (z¢41, Vig1 + 2).
Compute 74 (y1:4411%) = Ta(Y1:41X) @ (Ye415 Ze1, Virr + ).

(c¢) Posterior at ¢t + 1. Combining the distributions in (a) and (b) gives Uyt1]y1.641 ~ N (ai41, Cit1)
where ayy1 = Zi41+ Vg1 (Vigr + 2)71 (¥t+1 — 2Ze41) and Crp1 = Vg1 — Vi1 (Vg + 2)71Vt+1~
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