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Abstract 

Musicians are at risk of hearing loss due to prolonged noise exposure, but they may also be at risk of 

early sub-clinical hearing damage, such as cochlear synaptopathy. In the current study, we 

investigated the effects of noise exposure on electrophysiological, behavioral and self-report 

correlates of hearing damage in young adult (age range = 18-27 years) musicians and non-musicians 

with normal audiometric thresholds. Early-career musicians (n = 76) and non-musicians (n = 47) 

completed a test battery including the Noise Exposure Structured Interview, pure-tone audiometry 

(PTA; .25 – 8 kHz), extended high-frequency (EHF; 12 and 16 kHz) thresholds, otoacoustic emissions 

(OAEs), auditory brainstem responses (ABRs), speech perception in noise (SPiN), and self-reported 

tinnitus, hyperacusis and hearing in noise difficulties. Total lifetime noise exposure was similar 

between musicians and non-musicians, the majority of which could be accounted for by recreational 

activities. Musicians showed significantly greater ABR wave I/V ratios than non-musicians and were 

also more likely to report experience of - and/or more severe - tinnitus, hyperacusis and hearing in 

noise difficulties, irrespective of noise exposure. A secondary analysis revealed that individuals with 

the highest levels of noise exposure had reduced outer hair cell function compared to individuals 

with the lowest levels of noise exposure, as measured by OAEs. OAE level was also related to PTA 

and EHF thresholds. High levels of noise exposure were also associated with a significant increase in 

ABR wave V latency, but only for males, and a higher prevalence and severity of hyperacusis. These 

findings suggest that there may be sub-clinical effects of noise exposure on various hearing metrics 

even at a relatively young age, but do not support a link between lifetime noise exposure and proxy 

measures of cochlear synaptopathy such as ABR wave amplitudes and SPiN. Closely monitoring 

OAEs, PTA and EHF thresholds when conventional PTA is within the clinically ‘normal’ range could 

provide a useful early metric of noise-induced hearing damage. This may be particularly relevant to 

early-career musicians as they progress through a period of intensive musical training, and thus 

interventions to protect hearing longevity may be vital.   
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Highlights 

• Noise exposure was not related to measures of cochlear synaptopathy 

• Speech perception in noise was similar for musicians and non-musicians  

• Noise exposure affected outer hair cell function despite normal hearing thresholds 

• Noise exposure was related to increased ABR wave V latency for males only 

• Musicians self-reported more hearing difficulties, irrespective of noise exposure 
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1. Introduction 

Musicians are at risk of noise-induced hearing loss due to prolonged exposure to loud music 

(Greasley et al., 2018; Sataloff, 1991; Schink et al., 2014; Zhao et al., 2010). Hearing loss is 

particularly problematic for musicians as it affects their abilities to perform and limits employment 

opportunities, as well as affecting general wellbeing and quality of life. However, musicians’ risk of 

hearing loss is not well understood since i) there is large between-individual variability in the 

susceptibility and extent of hearing loss (Abreu-Silva et al., 2011; Agrawal et al., 2008; Henderson et 

al., 1993; Toppila et al., 2000), ii) musicians may be reluctant to get their hearing tested because of 

concerns about the potential outcomes of getting a test (Greasley et al., 2018; Jansen et al., 2009), 

iii) musical training may enhance auditory and cognitive skills, which could moderate the detrimental 

effects of noise-induced hearing damage (Beach, 2018; Valderrama et al., 2018; Yeend et al., 2017), 

and iv) early signs of hearing loss can be very subtle and may not be easily detected using 

conventional clinical tests (e.g. pure tone audiometry). The aim of the study presented here was to 

determine whether early-career musicians are more likely to show symptoms of sub-clinical hearing 

damage as a result of noise exposure compared to non-musicians. 

Although sub-clinical hearing deficits may have a number of different pathologies, cochlear 

synaptopathy - a loss of synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) 

-has received much attention recently (for reviews see; Hickox et al., 2017; Kujawa and Liberman, 

2015; Liberman and Kujawa, 2017). Numerous studies in rodents (e.g. Kujawa and Liberman, 2009), 

guinea pigs (e.g. Furman et al., 2013; Lin et al., 2011) and rhesus monkeys (e.g. Valero et al., 2017) 

have shown that short-term exposure to medium-to-high intensity noise can cause a loss of 

synapses in basal cochlear regions without widespread hair cell damage. While cochlear thresholds 

were only temporarily increased and appeared to recover post exposure, wave I of the auditory 

brainstem response (ABR), which reflects auditory nerve (AN) activity, was reduced at 

suprathreshold levels and did not recover. High intensity noise exposure appeared to preferentially 
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affect synapses connecting IHCs to high-threshold, low spontaneous rate (low-SR) AN fibers which 

are responsible for coding suprathreshold sounds (Furman et al., 2013). This could explain why 

hearing sensitivity remains intact, but hearing in noise is impaired, and so has also been referred to 

as ‘hidden hearing loss’ (Kujawa and Liberman, 2015; Plack et al., 2014; Schaette and McAlpine, 

2011).  

It is not uncommon for people to report having difficulty with speech perception in noise (SPiN), and 

yet have audiometrically normal hearing (Brattico et al., 2005; Davis, 1989; Kujala et al., 2004; 

Pienkowski, 2017; Soalheiro et al., 2012); indeed it has recently been estimated that the proportion 

of adults who do so was ~10% of individuals aged 18-80 years (Parthasarathy et al., 2020). This has 

motivated numerous research groups to investigate noise-induced cochlear synaptopathy in humans 

(for recent reviews see; Bramhall et al., 2019; Kobel et al., 2017; Le Prell, 2019). A number of studies 

purport to show altered electrophysiology of hearing as a function of noise exposure. For example, 

Stamper and Johnson (2015a, 2015b) found a significant negative correlation between noise 

exposure and ABR wave I amplitude in normal-hearing females. More recently, Bramhall et al. (2017) 

showed reduced wave I amplitudes in military veterans and non-veterans with a history of firearm 

use compared to those with lower levels of noise exposure. Similarly, Liberman et al. (2016) 

demonstrated that the pre-synaptic summating potential (SP) generated by hair cells, and their ratio 

to the action potential (AP; wave I), was increased in individuals deemed as being at high-risk of 

noise-induced hearing damage compared to low-risk. These finding were proposed to be consistent 

with selective neural loss, although the effect was driven mainly by an increase in SP rather than by a 

decrease in AP. The high-risk group in this study also showed significantly poorer word recognition in 

noise performance, though at a low sound level (35 dB HL) not consistent with loss of high-threshold 

AN fibers. 

By contrast, other studies have found no clear evidence of noise-induced cochlear synaptopathy. For 

example, Prendergast and colleagues (2017a) completed a structured interview to obtain a detailed 
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measure of lifetime noise in a large normal-hearing cohort (n = 126), and found no clear relationship 

with ABR wave amplitudes. Furthermore, lifetime noise exposure showed little-to-no effect on a 

wide range of behavioral tasks, and there were no strong correlations between behavioral and 

electrophysiological measures (Prendergast et al., 2017b). Guest and colleagues similarly 

demonstrated that noise exposure was not associated with ABR measures (Guest et al., 2017), and 

that SPiN was not associated with these electrophysiological measures, nor with noise exposure 

(Guest et al., 2018c). Other research groups have used alternative metrics of noise exposure, such as 

the preceding 12 months’ exposure (Fulbright et al., 2017) and exposure to a single noisy event 

(Grinn et al., 2017), and have also found no association between ABR wave I amplitude and noise 

exposure. Recently, Grose et al. (2017) attempted to account for individual differences that affect 

wave I amplitudes (e.g. age, sex, head size) by normalising to wave V amplitudes, demonstrating that 

a history of loud music exposure was associated with a modest reduction in wave I/V ratios, 

consistent with cochlear synaptopathy (see also Gu et al., 2012; Schaette and McAlpine, 2011). 

However, there were no other electrophysiological or behavioral effects, nor any correlations with 

noise exposure, suggesting that even if noise-induced cochlear synaptopathy does occur in humans, 

the implications for hearing abilities are negligible. Le Prell et al. (2018) used a variety of individual 

and composite measures of noise exposure including preferred listening level, years of music player 

use, number of reported exposures, previous impulse noise exposure, and self-reported noise-

induced changes to hearing after loud exposures, showing that there were no significant 

associations with functional measures of hearing. 

Research investigating cochlear synaptopathy in musicians has also produced mixed findings, 

although few studies explicitly investigated musicianship as a factor, and instead targeted musicians 

as a high exposure/high-risk group. For example, 70% of the participants in the high-risk group of the 

study by Liberman et al. (2016) were studying music performance in local music colleges and 

conservatoires, and 71% of the high noise exposure group in the study by Grose et al. (2017) self-

reported as musicians. Skoe and Tufts (2018) also demonstrated that ABR wave latencies were 
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increased (although ABR wave amplitudes were not reduced) for participants with high levels of 

noise exposure, most of whom were students taking part in music ensembles. In this study, noise 

exposure was measured using week-long dosimetry, revealing that musicians experienced 

significantly higher average daily exposure levels than non-musicians, with 47% of the musicians’ 

days exceeding the recommended exposure limits specified by National Institute for Occupational 

Safety and Health (e.g. 3-dB exchange rate based on the doubling of sound intensity for each 3 dB 

increased above 85 dB, for 8-hours per day; NIOSH, 1998), compared with just 10% of the non-

musicians’ days (see Tufts and Skoe, 2018). However, the effects of noise exposure and musicianship 

on perceptual abilities were not measured, plus the effects of exposure on ABR wave latency may be 

attributable to IHC damage or AN demyelination, rather than cochlear synaptopathy per se (Skoe 

and Tufts, 2018).   

Only a small number of studies have specifically accounted for the effects of musical training and 

noise exposure on auditory abilities. Yeend et al. (2017) conducted a comprehensive test battery to 

assess audiometric functioning, temporal and spectral processing, SPiN, cognitive abilities and 

musical training in adults with a range of lifetime noise exposures. The majority of the participants 

with the highest exposures were musicians with high levels of musical training. There were no 

effects of noise exposure on any of the auditory tests, suggesting no clear evidence for noise-

induced synaptopathy. In addition, there was no relationship between musical training and SPiN, 

despite a positive relationship between musical training and temporal processing abilities. A follow-

up electrophysiology study using the high noise exposure participants from this previous study (i.e. 

mostly musicians), plus newly recruited participants with low exposure, showed a moderate 

negative correlation between noise exposure and wave I amplitude (Valderrama et al., 2018). 

However, the results may reflect outer hair-cell dysfunction rather than synaptopathy since 

audiometric thresholds were not controlled for. Moreover, the null effect of noise exposure on SPiN 

persisted. It is also worth highlighting that musical training was not controlled for in this 

electrophysiology study. Prendergast et al. (2017b) included a measure of musical experience (total 
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years spent regularly playing a musical instrument) in their analysis, showing that musical experience 

was predictive of superior performance on a number of behavioural and SPiN measures, despite 

years of musical experience also being associated with increased noise exposure. Still, musical 

experience was not accounted for in the electrophysiological analysis with this participant cohort 

(Prendergast et al., 2017a).    

In combination, the findings from Yeend et al. (2017), Prendergast et al. (2017b) and Grose et al. 

(2017) suggest that there may be very few consequences of noise-induced cochlear synaptopathy on 

SPiN in humans. Instead, noise-induced synaptopathy may be just one of many factors, including 

cognitive and auditory skills, that play a role in SPiN (Beach, 2018; Prendergast et al., 2017b; 

Valderrama et al., 2018; Yeend et al., 2017). Moreover, cognitive and auditory processing skills may 

be enhanced by musical training, which may improve SPiN, and thus lessen the negative effects of 

noise-induced cochlear synaptopathy on SPiN (Grose et al., 2017; Valderrama et al., 2018). Or from a 

reverse perspective, it has been proposed that noise damage may suppress the positive association 

between musical training and SPiN abilities (Skoe et al., 2018). Irrespective of noise exposure and 

hearing damage, there are numerous studies that advocate enhanced SPiN abilities in musicians, 

which may also be related to cognitive factors such as auditory working memory and selective 

attention (for a review see; Coffey et al., 2017). Additionally, musical training could promote neural 

plasticity in the auditory system, which might modify auditory processing, even at the subcortical 

level (i.e. auditory brainstem), and could also explain altered SPiN abilities (Bidelman et al., 2014; 

Kraus and Chandrasekaran, 2010; Musacchia et al., 2008, 2007; Parbery-Clark et al., 2011, 2009a; 

Sanju and Kumar, 2016).  

It has been suggested that cochlear synaptopathy may also underlie the presence of tinnitus and 

hyperacusis in normal-hearing listeners. Several studies have shown that individuals with tinnitus 

and a normal audiogram have reduced wave I amplitudes, but wave V amplitudes are unchanged or 

increased (Bramhall et al., 2019b, 2018; Gu et al., 2012; Schaette and McAlpine, 2011; Valderrama et 



10 
 

al., 2018), though others found no effect on wave I amplitude (Guest et al., 2017).  Similarly, Hickox 

and Liberman (2014) demonstrated that noise exposed mice had a heightened startle response 

associated with hyperacusis, as well as reduced wave I amplitudes and unchanged wave V 

amplitudes. It has been hypothesized that deafferentation of low-SR fibers causes a reduction of 

input to the central auditory system, which leads to a compensatory increase of neural activity to 

normalise input to higher levels of the ascending auditory pathway. This increased ‘central gain’ 

might lead to an amplification of spontaneous activity and neuronal hyperactivity, resulting in 

tinnitus and/or hyperacusis, while hearing thresholds remain unaffected (Hickox and Liberman, 

2014; Schaette and McAlpine, 2011). Jansen et al. (2009) showed that 51% of musicians in their 

study complained of tinnitus compared with approximately 10-15% of the general population (Henry 

et al., 2005; Hoffman and Reed, 2004), and 79% of musicians complained of hyperacusis compared 

with approximately 9-15% of the general population (Andersson et al., 2002; Fabijanska et al., 1999). 

More recently, Camera et al. (2019) demonstrated that normal-hearing young adults with high levels 

of noise exposure, most of whom were musicians, had a reduced tolerance for background noise 

when listening to speech compared to those with low levels of noise exposure.  Accordingly, another 

useful metric of cochlear synaptopathy in musicians may be the presence and severity of tinnitus 

and/or hyperacusis, which may also be less confounded by enhanced cognitive and auditory 

processing skills than SPiN. 

While cochlear synaptopathy has received considerable attention, there are a number of other 

noise-induced hearing impairments that could constitute ‘hidden hearing loss’, and which could also 

explain the sequelae of cochlear synaptopathy, such as reduced ABRs and SPiN difficulties. For 

example, sub-clinical outer hair cell (OHC) dysfunction, as measured by otoacoustic emissions 

(OAEs), is common in young normal-hearing listeners with high levels of noise exposure (Hamdan et 

al., 2008; Job et al., 2009; Lapsley Miller et al., 2006; Lucertini et al., 2002; Mansfield et al., 1999). 

OHCs provide level-dependent amplification of the cochlear response (Brownell et al., 1985; Lu et 

al., 2006; Neely and Kim, 1986), and OHCs directly contribute to the input to IHCs (Dallos et al., 
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2006). This could affect electrophysiological and perceptual measures and could explain the 

differences between high and low noise exposure groups observed in previous studies, rather than 

being due to cochlear synaptopathy.  

Variability in hearing thresholds within the range considered to be ‘normal’ (-10 to 20 dB HL) could 

also account for differences in proxy measures of cochlear synaptopathy in previous studies (e.g. 

Bramhall et al., 2017; Stamper and Johnson, 2015a; Valderrama et al., 2018). In particular, high 

frequency (i.e. basal) cochlear regions provide the greatest contribution to ABR wave I generation 

(Abdala and Folsom, 1995; Don and Eggermont, 1978), especially at high stimulus levels (Eggermont 

and Don, 1980). Therefore, high frequency hearing deficits could also have contributed to reduced 

ABR amplitudes in previous studies (Gu et al., 2012; Liberman et al., 2016; Schaette and McAlpine, 

2011). Furthermore, there is growing evidence that extended high frequency (EHF; > 8 kHz) hearing 

is linked to SPiN performance (Badri et al., 2011; Middlebrooks, 2015; Monson et al., 2019; Motlagh 

Zadeh et al., 2019; Yeend et al., 2017), and could be a sensitive early indicator of hearing deficits (Le 

Prell et al., 2013; Mehrparvar et al., 2011; Moore et al., 2017), irrespective of noise exposure. 

Therefore, it is essential that variability within the normal audiometric range (-10 to 20 dB), and at 

EHFs (>8 kHz), is accounted for when assessing variability in behavioural and electrophysiological 

measures of hearing.  

In sum, there could be two opposing effects that influence SPiN abilities in musicians. First, 

musicians are exposed to more noise and so may be at greater risk of sub-clinical hearing damage 

including, but not limited to, cochlear synaptopathy. Second, musical training could improve SPiN 

and mask some of the negative effects of noise-induced hearing damage. What remains to be 

assessed are the effects of both lifetime noise exposure and musicianship on electrophysiological 

and perceptual measures of sub-clinical hearing impairments. In addition, it is possible that cochlear 

synaptopathy may contribute to the greater prevalence of tinnitus and/or hyperacusis in musicians. 

In the current study, we completed a comprehensive test battery to assess synaptopathic and non-
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synaptopathic hearing damage, including PTA and EHF thresholds, OAEs, a SPiN test, ABRs, and self-

report measures of tinnitus, hyperacusis and hearing in noise difficulties, in a large cohort of 

musicians and non-musicians with a wide range of lifetime noise exposures. In particular, we 

focussed on early-career musicians to determine whether these sub-clinical noise-related effects are 

detectable even at a relatively young age when interventions to protect hearing longevity may be 

vital.      

2. Methods 

2.1 Participants 

Eighty-five early-career musicians and 52 non-musicians were recruited to the study. Musicians were 

recruited from the Royal Northern College of Music or the University of Manchester and were 

undertaking - or within one year of completing - a degree (bachelors or masters) in performance-

based musical studies, across all classifications of instrument; strings (n = 24), wind (n = 7), brass (n = 

13), keys (n = 15), percussion (n = 1), voice (n = 20), pop/amplified instruments (n = 5). Non-

musicians were recruited via the University of Manchester Research Volunteering website and 

mostly consisted of students and staff members. Five participants (two musicians) did not pass the 

otoscope examination due to wax occlusion, eight participants (six musicians) did not pass the 

tympanometric screening, and one musician had moderately severe unilateral hearing loss (55-70 dB 

HL), and were all excluded from subsequent tests (see 2.2 Procedures). Consequently, 76 musicians 

(age range = 18-26; female n = 40) and 47 non-musicians (age range = 18-27; female n = 26) 

completed the full test battery and were included in the analysis. Musicians had an average of 13.3 

years of musical experience (range = 8-20 years), started playing music at an average age of 7.1 years 

(range = 2-13.5 years), and were practicing their instrument an average of 15.1 hours per week at 

the time of testing (range = 1-36 hours). Twenty-eight non-musicians reported having at least some 

musical experience, with these participants reporting an average of 8.0 years of musical experience 

(range = 1-22 years), having started playing music at an average age of 13.5 years (range = 4-23 
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years), and were practicing their instrument an average of 0.8 hours per week at the time of testing 

(range = 0-7 hours). Across all non-musicians, participants reported an average of 4.8 years of 

musical experience and were practicing an average of 0.4 hours per week. All participants were 

native English speakers or were highly fluent in English as second language speakers (n = 9; 7 

musicians).  

2.2 Procedures 

Participants completed all tests at the University of Manchester in a single three-hour session or split 

across two sessions. The study was approved by the University of Manchester Research Ethics 

Committee in accordance with the Declaration of Helsinki 2013. All participants provided informed 

consent.  

2.2.1 Otoscopy 

The ear canal and tympanic membrane were inspected visually to ensure normal anatomy, with no 

wax occlusion, foreign bodies, active infection, or other contraindications to the subsequent test 

battery.  

2.2.2 Tympanometry 

Tympanometry was performed using a GSI Tympstar diagnostic middle-ear analyser. Tympanic 

membrane compliances between 0.3-1.6 ml and peak pressures in the range -150 to +50 daPa were 

considered normal (Clark et al., 2007). Nine participants (four musicians) had slightly elevated (up to 

1.8 ml) or low (0.2 ml) compliance; however all had present otoacoustic emissions and met the study 

hearing level criteria and so were included in the analysis.  

2.2.3 Noise exposure 

A comprehensive estimate of lifetime noise exposure was obtained via an early version of the Noise 

Exposure Structured Interview (NESI; Guest et al., 2018a; see also Lutman et al., 2008). The NESI 
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prompts participants to identify noisy occupational and recreational activities (above ~ 80 dB A) that 

they have engaged in throughout their lifetime. For each activity, the participant identified periods 

in their life in which exposure habits were relatively stable (e.g. attending nightclubs aged 18-21), 

and provided an estimate of the frequency and duration of exposure for each life period. Noise 

exposure level was estimated based on vocal effort required to hold a conversation or, for personal 

listening devices, typical volume control setting. Participants were also asked to report usage and 

type of hearing protection devices, if any. For each activity; frequency, duration, level and protector 

attenuation were combined to generate units of noise exposure based on the equal energy principle: 

𝑈 = 10(𝐿−𝐴−90)/10 × 𝑌 × 𝑊 × 𝐷 × 𝐻/2080  

where U is cumulative noise exposure, L is estimated noise exposure in dB A, A is level of attenuation 

provided by hearing protection in dB, Y is years of exposure, W is weeks of exposure per year, D is 

days of exposure per week, H is hours of exposure per day, and 2080 corresponds to the number of 

hours in a working year.  

For the quantification of firearm exposure, the NESI uses the metric developed by Goley et al. (2011) 

that adjusts the A-weighted equivalent continuous exposure level for the greater kurtosis 

(peakedness) of impulsive noise (see Guest et al., 2018a for further details). Firearm exposure was 

incorporated with recreational and occupational noise exposure to obtain a measure of total lifetime 

noise exposure. Note that firearm use is relatively less common in the UK, with only 12 participants 

in the current sample reporting having ever fired a gun, and accounted for less than 1 unit of noise 

exposure for 9 of these participants. As such, there was no further examination of firearm exposure 

in the current experiment.  

One noise exposure unit is equivalent to one working year of exposure at a daily level of 90 dB A 

(hence L – 90 in the above equation). Units for occupation and recreational activities, and the 

combined total (including any firearm exposure), were log transformed to produce a normal 
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distribution (for further details on the NESI see; Guest et al., 2018a). As per Prendergast et al. (2018), 

participants with at least one log unit of total noise exposure (i.e., equivalent to 10 working years of 

exposure to 90 dB A) were classified as high noise exposure, and those with less than one log unit 

were classified as low noise exposure. 

2.2.4 Hearing thresholds 

Pure-tone air-conduction thresholds were measured at 0.25-8 kHz according to British Society of 

Audiology (2018) recommended procedures, using a GSI Arrow audiometer coupled to TDH-39 

supra-aural headphones with MX41 cushions. Normal hearing thresholds were defined as ≤20 dB HL 

for all frequencies. Four participants (two musicians) had a mild unilateral hearing loss (25-40 dB HL) 

which was restricted to 8 kHz for three participants, and at .5, 4 and 8 kHz for one other participant. 

All participants with a mild hearing loss were included in the analysis since hearing thresholds were 

accounted for as a predictor variable in exploratory linear regression models (see section 3.7.2 

Individual differences).  

Extended high frequency (EHF) thresholds were obtained using a three-alternative forced-choice 

paradigm via a MATLAB (Mathworks, Inc.) programme. Stimuli were delivered via Sennheiser HDA 

200 circum-aural headphones driven by a Creative E-MU 0202 USB external soundcard at a sample 

rate of 48 kHz. Thresholds were measured at 12 and 16 kHz using 1/3-octave bands of noise 

centered at each of these frequencies. Steady-state duration was 180 ms, with the addition of 10-ms 

raised-cosine onset and offset ramps. Stimulus levels were varied adaptively using a two-down, one-

up rule, with four initial turnpoints (6 dB step size) and 10 subsequent turnpoints (2 dB step size). 

Thresholds were calculated as the average stimulus level of the final 10 turnpoints. Thresholds were 

obtained for each ear separately, with the order of frequencies (12 and 16 kHz) and test ear (left and 

right) selected at random. Participants were initially given a short practice to familiarise themselves 

with the procedure. Participants were seated in a double-walled sound-attenuating booth for both 

PTA and EHF procedures.   
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2.2.5 Otoacoustic emissions 

Outer hair cell (OHC) function was assessed by distortion product otoacoustic emissions (DPOAEs) 

using an Otodynamics ILO v6 measurement system. The ILO probe microphone was calibrated with a 

2-cc cavity before each use. The frequency ratio of the two primary tones, f2/f1, was 1.22. Responses 

were recorded for f2 frequencies between 1 and 6 kHz, with two points per octave. The level of f2 

and f1 tones was 65 dB SPL and 55 dB SPL, respectively. The cubic distortion product (2f1-f2) 

amplitude was used as a measure of the DPOAE level. Ninety-six sweeps were measured for each 

frequency. DPOAEs were classified as present if the signal-to-noise (SNR) ratio was ≥3 dB. Only a 

small percentage (3%) of all DPOAEs were absent. On these occasions, the DPOAE level was set to 

the estimated system distortion level.  

2.2.6 Speech-in-noise perception 

The coordinate response measure (CRM; Bolia et al., 2000) task was used to measure SPiN abilities. 

The CRM incorporates meaningful speech stimuli, high overall sound levels, distracting talkers, and 

spatial cues. The latter three attributes of this test are pertinent to cochlear synaptopathy, since the 

loss of low-SR fibers may be detrimental to the temporal and level cues required for spatial 

processing, especially at high sound levels (Plack et al., 2014). Spatial cues are also pertinent to 

extended high frequency hearing (> 8 kHz), whereby sound localisation of meaningful speech cues 

may be reliant on high frequency energy (e.g. Middlebrooks, 2015; Monson et al., 2019). The task 

also uses a closed-set of stimuli with a simple vocabulary, meaning that the CRM is appropriate for 

non-native English speaking participants. All speech stimuli were spoken by native British-English 

talkers (Kitterick et al., 2010). 

Participants were presented with three concurrent speech utterances of the structure “Ready <call 

sign> go to <color><number> now”, in which there were eight different call signs, four different 

colors (Red, White, Blue and Green), and numbers ranging from 1-4. Participants were instructed to 
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listen for the speech utterance, which contained the call sign “Baron”, and to identify the color and 

number spoken by that talker. Responses were made by selecting the identified color and number 

from a 4x4 grid presented on a computer screen. The gender and identity of the target talker was 

randomly selected on each trial from four male and four female talkers. Two masker utterances 

always contained two different call signs, although the color or number could match that of the 

target talker. Stimuli were delivered via Sennheiser HD 650 circum-aural headphones driven by a 

Creative E-MU 0202 USB external soundcard at a sample rate of 44.1 kHz. The test was conducted in 

a double-walled sound-attenuating booth.  

Masker stimuli were presented at a combined level of 80 dB SPL, and in two spatial configurations; 

one where the maskers were presented centrally and one where they were spatially offset by -60 

and +60 degrees azimuth on either side of centre, as simulated by head-related transfer functions. 

The target was always presented centrally at a sound level which varied adaptively from trial-to-trial 

using a one-down, one-up rule, with four initial turnpoints (4 dB step size) and ten subsequent 

turnpoints (2 dB step size). Thresholds were calculated as the average SNR of the final 10 turnpoints. 

Central and offset spatial conditions were presented in separate blocks of trials and presented twice 

following an ABBA structure, with the offset condition always presented first and with an enforced 

break halfway through. Participants were given a short practice consisting of separate blocks of 

central and offset conditions to familiarise themselves with the procedure. 

2.2.7 Self-report measures 

2.2.7.1 Tinnitus 

Participants were asked whether they had ever experienced tinnitus (“Yes/No”), defined as “an 

occasional sensation of a ringing, roaring, or buzzing sound in the ears or head even though no such 

sound is present, for a minimum duration of five minutes”. Participants who answered “Yes” were 

asked whether they have tinnitus all the time, what caused them to experience tinnitus, and were 
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asked to complete the Tinnitus Handicap Inventory (THI; Newman et al., 1996). Participants who 

reported having experienced tinnitus previously, but for whom it was not present at the time of 

testing, were asked to reflect back on occasions when they had experienced tinnitus when 

completing the THI questionnaire.   

2.2.7.2 Hyperacusis 

Participants were asked whether they had ever experienced hyperacusis (“Yes/No”), defined as “an 

abnormal sensitivity to everyday sound levels or noises. Often there is also sensitivity to high pitched 

sounds. In some circumstances, certain sounds may become painfully loud.” Participants who 

answered “Yes” were also asked whether this was constant and what caused them to experience 

hyperacusis. All participants completed the Modified Khalfa Hyperacusis Questionnaire (HQ; Khalfa 

et al., 2002) to quantify hyperacusis severity.   

2.2.7.3 Hearing in noise difficulties 

Participants were asked whether they “find it difficult to follow a conversation if there is background 

noise, such as TV, radio, children playing”, answering with a “Yes/No” response. All participants were 

asked to complete a subset of questions from the Self-efficacy for Situational Communication 

Management Questionnaire (SESMQ; Jennings et al., 2014). Participants were asked to rate on a 

seven-point Likert scale how well they could hear in 6 challenging noisy situations (see 

Supplementary Materials 1). An average score was calculated for each participant to obtain a 

measure of the severity of hearing in noise difficulties.       

2.2.8 Electrophysiology 

2.2.8.1 Recording procedure 

ABRs were recorded using an ICS Chartr EP 200 (Otometrics-Natus) clinical system using ER3 insert 

earphones. A single-channel vertical montage configuration was used with the active electrode 
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placed at Fz (high forehead), the reference electrode on the ipsilateral mastoid, and the ground 

electrode on the contralateral mastoid. The reference and ground electrodes were switched for left 

and right ear stimulation. Electrode impedances were 2 kΩ or less in the majority of cases, and never 

more than 5 kΩ, to allow good data quality in all participants. Participants lay in a comfortable 

supine position and were asked to remain still throughout the recordings, and were encouraged to 

fall asleep. The measurement took place in a double-walled sound-attenuating booth. 

Click stimuli were 100 μs in duration and presented in alternating polarity at a rate of 11.1/s. Stimuli 

were presented at 60 and 80 dB nHL, to both left and right ears, in four separate blocks of trials. 

Responses were amplified with a gain of 50k and band-pass filtered between 0.1 and 1.5 kHz. Data 

were collected over a 20 ms epoch, with recording beginning 2 ms before stimulus onset. A 

minimum of 6000 sweeps were conducted for each ear and each stimulus level, with additional 

repetitions added for each rejection until a total of 6000 sweeps were obtained. An average of the 

6000 sweeps was taken to form an average waveform for each ear and stimulus level. 

2.2.8.2 Response identification 

Wave I and V from each participants’ average waveform, for each ear and click intensity, were 

identified using an automated peak- and trough-picking procedure in MATLAB (Mathworks, Inc.). 

Time windows for wave I and V peaks and troughs were specified based on the grand average 

waveforms for each stimulus intensity across all participants. The time windows for identifying the 

peak of wave I were 1.5 to 2.6 ms and 1.1 to 2.1 ms post stimulus onset for 60 and 80 dB nHL click 

intensities, respectively. Wave I troughs were 0.2 to 1.2 ms post wave I peak for both 60 and 80 dB 

nHL click intensities. Wave V peaks were 5.2 to 6.6 ms and 4.9 to 6.2 ms post stimulus onset for 60 

and 80 dB nHL click intensities, respectively. On occasions, more than one peak or inflection was 

identified within the time window for wave V peaks which corresponded to the identification of 

wave IV or a wave IV/V blended morphology. The automated procedure identified Wave V peak as 

the later occurring peak/inflection within the time window.  Wave V troughs were 0.5 to 1.5 ms and 
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0.4 to 1.8 ms post wave V peak for 60 and 80 dB nHL click intensities, respectively. Each participant’s 

average waveform for each ear and click intensity was visually inspected to verify that the algorithm 

had correctly identified peaks and troughs. Wave I and V amplitudes were calculated from peak-to-

trough, and used to determine wave I/V amplitude ratio for each participant. Wave I growth was 

calculated by subtracting the average wave I amplitude for the 60 dB nHL click from the average 

wave I amplitude for the 80 dB nHL click, for each participant.       

2.3 Data analysis 

All statistical analyses were performed using SPSS (IBM Corp.). Repeated measures ANOVAs with 

two between-subject factors – musicians vs. non-musicians, and low vs. high noise exposure – were 

used to assess hearing thresholds, otoacoustic emissions, SPiN abilities from the CRM task, and 

electrophysiological measures. Greenhouse-Geisser corrected values are reported for violations of 

sphericity.  Main effects were assessed using pairwise comparisons with α automatically adjusted for 

multiple comparisons using Bonferroni corrections (i.e. α = .05). Interactions were assessed using 

post-hoc t-tests with Bonferroni corrections for multiple comparisons applied manually. Bonferroni 

corrections are very conservative, which increases the risk of Type-II error when many comparisons 

are conducted, and it may not be appropriate to apply corrections over a range of different 

measures when a number of different statistical procedures are used (Armstrong, 2014). 

Accordingly, post-hoc Bonferroni corrections were applied on a measure-by-measure basis with 

corrected α-values reported for each individual measure (McDonald, 2014). 

Chi-square tests were used to determine whether the proportions of participants assigned to 

different groups based on self-report (e.g. tinnitus vs. no-tinnitus) varied between musicians and 

non-musicians, and low and high noise exposure groups.  

For dependent variables with a single measure, such as levels of noise exposure, spatial release from 

masking on the CRM, THI scores, HQ scores, and average hearing in noise difficulty; scores were 
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assessed using independent samples t-tests to determine differences between musicians and non-

musicians, and low and high noise-exposure groups. Differences between musicians and non-

musicians with low and high noise exposures (i.e. four group comparison) were assessed using a 

one-way ANOVA. Mann-Whitney U-tests and Kruskal-Wallis tests were used on occasions where 

data was non-normally distributed.       

Note that due to occasional technical errors during measurement recording, a small amount of data 

was lost for certain tests, hence there is slight variation in degrees of freedom between different 

measures.  

3. Results 

3.1 Noise exposure 

Log-transformed occupational noise exposure scores were significantly higher for musicians (median 

= -.09; min = -1.31, max = 1.60) compared to non-musicians (median = -.64; min = -3.00, max = 1.39) 

[Mann-Whitney Test: U = 807, p < .001, r = .459]. However, the proportion of participants classified 

as low and high noise exposure was not significantly different between musicians (low n = 50; 65.8%) 

and non-musicians (low n = 30; 63.8%) [χ2(1) = .049, p = .825, V = .020]. Recreational noise exposure 

scores were not significantly different between musicians (mean = .62; SD = .70) and non-musicians 

(mean = 0.85; SD = .73) [t(121) = -1.694, p = .093, d = .313]. Total noise exposure was also not 

significantly different between musicians (mean = .81; SD = .79) and non-musicians (mean = .90; SD = 

.70) [t(121) = -.775, p = .440, d = .141]. Note that the biggest contribution to total noise exposure for 

both musicians and non-musicians was from recreational activities, hence the similarity of total 

noise exposure across the two groups. The mean log-transformed total noise-exposure score for the 

low noise exposure group was .46 (SD = .37; min = -.65; max = .98) and for the high noise exposure 

group was 1.55 (SD = .42; min = 1.00; max = 2.65).      

3.2 Hearing thresholds 
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Mean PTA and EHF thresholds split by musicianship and noise exposure groups are shown in Figure 

1. For standard PTA thresholds (.25-8 kHz), the repeated measures ANOVA showed no significant 

main effects of musicianship or noise exposure, and no significant interactions (all p > .05).    

For EHF thresholds (12 and 16 kHz), the repeated measures ANOVA showed no significant main 

effects of musicianship or noise exposure (both p > .05), but there was a significant interaction 

between musicianship and noise exposure [F(1, 119) = 4.206, p = .042, ηp
2 = .034]. Post-hoc t-tests 

showed that musicians with high noise exposure (mean = 35.22 dB SPL, SD = 6.63) had  better 

thresholds than non-musicians with high noise exposure (mean = 40.07 dB SPL, SD = 7.88) [t(41) = -

2.174, p = .035, d = .665], however this effect was not significant after controlling for multiple 

comparisons (Bonferroni correction; α = .05/6 = .008). There were no other significant differences 

between high and low noise exposed musicians and non-musicians. No other significant interactions 

were observed (all p > .05). 

[Figure 1.] 

3.3 Otoacoustic emissions 

Mean DPOAE levels for 1-6 kHz split by musicianship and noise exposure groups are shown in Figure 

2. A repeated measures ANOVA revealed no significant main effects of musicianship or noise 

exposure, and no significant interactions (all p > .05). 

[Figure 2.] 

3.4 Speech-in-noise perception 

Figure 3 shows the mean SNR values for central and offset conditions of the CRM task, split by 

musicianship and noise exposure groups. A repeated measures ANOVA showed a significant main 

effect of masker position [F(1, 119) = 1012.183, p < .001, ηp
2 = .895] with better performance in the 
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spatially offset condition (mean = -13.96 dB, SD = 4.32) compared to the central condition (mean = -

.22 dB, SD = 2.72). No other significant main effects or interactions were observed (all p > .05). 

For the spatial release from masking measure (SRFM; i.e. central-offset difference), independent 

samples t-tests showed no significant difference between musicians and non-musicians [t(121) = 

.063, p = .950, d = .011] and no significant difference between high and low noise exposure groups 

[t(121) = -.666, p = .507, d = .128]. A one-way ANOVA with four groups (musicians low exposure, 

musicians high exposure, non-musicians low exposure, non-musicians high exposure) was also not 

significant [F(3, 119) = .679, p = .567, η2 = .017].   

[Figure 3.] 

3.5 ABR wave amplitudes 

Grand average ABR waveforms split by musicianship and noise exposure group are shown in Figure 

4. Mean amplitudes for waves I and V, and wave I/V ratios, are shown in Figure 5. 

[Figure 4.] 

3.5.1 Wave I amplitude 

A repeated measures ANOVA revealed a main effect of stimulus level [F(1, 98) = 407.676, p < .001, 

ηp
2 = .806] with significantly smaller wave I amplitudes for 60 dB nHL clicks (mean = .08 μV, SD = .04) 

compared to 80 dB nHL clicks (mean =  .28 μV, SD = .10). The  main effects of musicianship and noise 

exposure were non-significant, and there were no significant interactions (all p > .05). 

The difference between wave I amplitudes for 60 and 80 dB nHL clicks was calculated to determine a 

measure of wave I growth, showing no significant main effects of musicianship or noise exposure, 

and no interactions (all p > .05).     

3.5.2 Wave I/V ratio 
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The repeated measures ANOVA revealed a main effect of stimulus level [F(1,98) = 193.155, p < .001, 

ηp
2 = .663] with significantly smaller wave I/V ratios for the 60 dB nHL clicks (mean = .27 μV, SD = .19) 

compared to 80 dB nHL clicks (mean = .67 μV, SD = .28). There was also a main effect of musicianship 

[F(1,98) = 4.940, p = .029, ηp
2 = .048] with significantly greater wave I/V ratio for musicians (mean = 

.51 μV, SD = .23) compared to non-musicians (mean = .42 μV, SD = .12). This effect was driven by 

musicians having slightly larger wave I amplitudes and slightly smaller wave V amplitudes than non-

musicians (both non-significant; p > .05). There were no other significant main effects or interactions 

(all p > .05). 

[Figure 5.] 

3.6 Self-report measures 

Differences in mean THI scores, HQ scores and SIN difficulty ratings between musicians and non-

musicians, split by low and high noise exposure groups, are shown in Figure 6. Note that tinnitus and 

hyperacusis severity appears to be higher (i.e. worse) for musicians compared to non-musicians, 

irrespective of noise exposure.    

[Figure 6.] 

3.6.1 Tinnitus 

Eighty-eight participants (71.5%) reported having experienced tinnitus (constant tinnitus n = 4; 

3.3%). Of these 88 participants, 70 (79.5%) reported that tinnitus had occurred abruptly following 

exposure to a loud event (e.g. nightclub, concert etc.), 4 (4.5%) reported that it occurred gradually, 

and 14 (15.9%) reported that the cause was unknown. Chi-square tests confirmed that the 

proportion of participants who reported having experienced tinnitus was not significantly different 

between musicians (n = 56; 73.7%) and non-musicians (n = 32; 68.1%) [χ2(1) = .447, p = .504, V = 

.060], and was not significantly different between low noise exposure (n = 55; 68.8%) and high noise 

exposure groups (n = 33; 76.7%) [χ2(1) = .878, p = .349, V = .084].  The proportion of participants who 



25 
 

reported having experienced tinnitus was not significantly different between musicians and non-

musicians with low and high levels of noise exposure [χ2(3) = 6.144, p = .105, V = .223]. 

For those who reported having experienced tinnitus, THI scores were significantly higher (i.e. more 

severe tinnitus) for musicians (median score = 12) than non-musicians (median score = 8) (Mann-

Whitney Test: U = 623, p = .017, r = .254). There were no significant differences in THI scores 

between low and high noise exposure groups (Mann-Whitney Test: U = 903.5, p = .972, r = .004), and 

there were no significant differences between low and high noise exposed musicians and non-

musicians [Kruskal-Wallis Test: χ2(3) = 6.152, p = .104, η2 = .038]. 

3.6.2 Hyperacusis 

Twenty-nine participants (23.6%) reported experiencing hyperacusis (constant hyperacusis n =2; 

1.6%). Of these, 28 (96.6%) reported that the cause was unknown, and one (3.4%) reported that it 

occurred gradually. Chi-square tests showed that the proportion of participants who reported having 

experienced hyperacusis was not significantly different between musicians (n = 20; 26.3%) and non-

musicians (n = 9; 19.2%) [χ2(1) = .828, p = .363, V = .082]. The proportion of participants who 

reported having experienced hyperacusis was significantly higher in the high noise exposure group 

(n = 16; 37.2%) compared to the low noise exposure group (n = 13; 16.3%) [χ2(1) = 6.819, p = .009, V 

= .235]. Non-musicians with low noise exposure had the smallest proportion of participants 

reporting having experienced hyperacusis (n = 3; 10.0%) compared to non-musicians with high noise 

exposure (n = 6; 35.3%), musicians with high noise exposure (n = 10; 38.5%) and musicians with low 

noise exposure (n = 10; 20.0%) [χ2(3) = 7.916, p = .048, V = .254]. 

For the hyperacusis questionnaire, there were significantly higher HQ scores (i.e. more severe 

hyperacusis) for musicians (median score = 26) compared to non-musicians (median score = 18) 

(Mann-Whitney Test: U = 1301.5, p = .012, r = .227). There were no significant differences in HQ 

scores between low and high noise exposure groups (Mann-Whitney Test: U = 1466, p = .178, r = 
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.122), but there was a significant difference in HQ scores between musicians and non-musicians with 

high and low noise exposure [Kruskal-Wallis Test: χ2(3) = 9.290, p = .026, η2 = .053]. HQ scores were 

lower for non-musicians with low noise exposure (median score = 13) compared to musicians with 

low noise exposure (median score = 25) (Mann-Whitney Test: U = 487.5, p = .009, r = .292) and 

musicians with high noise exposure (median score = 33.5) (Mann-Whitney Test: U = 230, p = .009, r = 

.351), although these differences were not significant after controlling for multiple comparisons 

(Bonferroni correction; α = 0.05/6 = .008). There were no other significant differences between 

groups (all p > .008). 

3.6.3 Hearing in noise difficulties 

The proportion of participants who reported hearing in noise difficulties was significantly higher for 

musicians (n = 27; 35.5%) compared to non-musicians (n = 7; 14.9%) [χ2(1) = 6.181, p = .013, V = 

.224], but there were no significant differences between low noise exposure (n = 25; 31.3%) and high 

noise exposure (n = 9; 20.9%) groups [χ2(1) = 1.489, p = .222, V = .110]. Musicians with low noise 

exposure had the highest proportion of self-reported hearing in noise problems (n = 21; 42.0%) 

compared to musicians with high noise exposure (n = 6; 23.1%), non-musicians with low noise 

exposure (n = 4; 13.3%) and non-musicians with high noise exposure (n = 3; 17.7%) [χ2(3) = 9.344, p = 

.025, V = .276].  

When asked to rate how well they could hear in different noisy situations, musicians reported worse 

hearing in noise abilities (median score = 5.17) compared to non-musicians (median score = 5.50) 

(Mann-Whitney Test: U = 1326.50, p = .017, r = .216). There were no significant differences in self-

reported hearing in noise abilities between high and low noise exposure groups (Mann-Whitney 

Test: U = 1648.50, p = .704, r = .034), and there were no significant differences between musicians 

and non-musicians with high and low levels of noise exposure [Kruskal-Wallis Test: χ2(3) = 7.599, p = 

.055, η2 = .039]. 
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3.7 Exploratory analysis 

3.7.1 ABR wave latencies 

Previous research has suggested that ABR wave latency could be a useful metric of noise-induced 

hearing damage (Skoe and Tufts, 2018), and has been proposed to be a more sensitive measure of 

cochlear synaptopathy than ABR wave amplitudes (Mehraei et al., 2016). We therefore analyzed the 

latency of wave I and wave V peaks, and the wave I-V interpeak latency, extracted using the peak-

picking procedure in MATLAB (Mathworks, Inc.). Mean peak latencies for waves I and V, and the 

wave I-V interpeak latency, are shown in Figure 7. 

[Figure 7] 

3.7.1.1 Wave I peak latency 

A repeated measures ANOVA revealed a significant main effect of stimulus level only [F(1,114) = 

800.931, p < .001, ηp
2 = .875] with significantly delayed wave I peaks for 60 dB nHL clicks (mean = 

2.03 ms, SD = .20) compared to 80 dB nHL clicks (mean = 1.61 ms, SD = .13). The main effects of 

musicianship and noise exposure were not significant, and there were no significant interactions (all 

p > .05). 

3.7.1.2 Wave V peak latency 

Similar to wave I peak latency, the repeated measures ANOVA showed a significant main effect of 

stimulus level on wave V peak latency [F(1,115) = 550.443, p < .001, ηp
2 = .827] with significantly 

delayed wave V peaks for 60 dB nHL clicks (mean = 6.01 ms, SD = .23) compared to 80 dB nHL clicks 

(mean = 5.57 ms, SD = .23). The main effect of noise exposure was also found to be significant 

[F(1,115) = 7.977, p = .006, ηp
2 = .065] with delayed wave V latencies for the high noise exposure 

group (mean = 5.86 ms, SD = .19) compared to the low noise exposure group (mean = 5.76 ms, SD = 
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.22). The main effect of musicianship was not significant, and there were no significant interactions 

(all p > .05). 

3.7.1.3 Wave I-V interpeak latency 

The repeated measures ANOVA revealed a significant main effect of noise exposure only [F(1,114) = 

4.214, p = .042, ηp
2 = .036] with a larger interpeak latency for the high noise exposure group (mean = 

4.02 ms, SD = .19) compared to the low noise exposure group (mean = 3.95 ms, SD = .20). There 

were no other significant main effects or interactions (all p > .05). 

3.7.2 Highest and lowest noise exposures 

The average total noise exposure for the participant sample was 0.84 (SD = .64) log units of energy. 

Given the normal distribution of total noise exposure in this participant sample, this means that a 

large proportion of participants were close to the cut-off criteria for low and high noise exposure 

groups (i.e. 1 log-unit of total noise exposure), which could explain why few effects of noise 

exposure were observed. To address this issue, we re-ran the analysis with the top and bottom 20% 

of participants from the total noise exposure distribution (musicians n = 32, non-musicians n = 20). 

The mean log-transformed noise exposure score for the low noise exposure group was 0.05 (SD = 

0.25; min = -0.65; max = 0.30) and for the high noise exposure group was 1.79 (SD = 0.35; min = 1.31; 

max = 2.65).   

The results from this sub-sample of participants closely followed those from the entire participant 

sample (see Supplementary materials 2). Novel findings from this sub-sample included the main 

effect of noise exposure on DPOAE levels [F(1,48) = 11.702, p = .001, ηp
2 = .196], where levels were 

significantly lower for the high noise exposure group (mean = 8.79 dB SPL, SD = 3.02) compared to 

the low noise exposure group (mean = 12.05 dB SPL, SD = 3.18). For completeness, DPOAE noise 

levels and SNRs were also analyzed, showing no effect of noise exposure on the DPOAE noise level 

[F(1,48) = .168, p = .684, ηp
2 = .003], but there was an effect of noise exposure on the SNR [F(1,48) = 
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8.199, p = .006, ηp
2 = .146]. Accordingly, the main effect of noise exposure on DPOAE levels was not 

due to the high noise exposure group having different DPOAE noise levels.  

Mean HQ scores were also found to be significantly higher for the high noise exposure group (mean 

= 30.81, SD = 20.57) compared to the low noise exposure group (mean = 19.19, SD = 11.83) 

[t(39.909) = -2.496, p = .017, d = .692].  

3.7.3 Individual differences 

Twenty-eight non-musicians reported having some level of musical experience, which could explain 

why there were very few differences found between musicians and non-musicians. To address this 

potential confound,  musicianship and noise exposure were assessed on a continuous scale (as per 

Yeend et al., 2017), with  Spearman’s rho correlations conducted between years of musical 

experience, total noise exposure, THI scores, HQ scores, hearing in noise difficulty scores, mean 

tympanic membrane compliance and mean tympanic peak pressure to account for middle-ear 

function, average low PTA (.25-1 kHz), average high PTA (2-4 kHz), average EHF thresholds (12 and 

16 kHz), average DPOAE levels (1-6 kHz), spatial release from masking from the CRM task, average 

wave I amplitudes at 80 dB nHL, average wave I/V ratio at 80 dB nHL, and average wave I and V 

latencies, for the whole participant sample. The correlation matrix is shown in Figure 8a. Bonferroni 

corrections for multiple comparisons would result in α = .05/120 = 4.17 x 10-4, which could inflate 

Type II error rate. Therefore, to correct for multiple comparisons we applied the false discovery rate 

(FDR) method with a p-value of .05 and a q-value of .10 (McDonald, 2014).  

Years of musical experience was not significantly related to any measures after applying FDR 

corrections. Noise exposure was significantly correlated with average ABR wave V latency (rs = .293, 

n = 120, p = .001; Figure 8b) and average DPOAE level (rs = -.259, n = 123, p = .004; Figure 8c). 

Average DPOAE level was also significantly correlated with average high PTA (rs = -.254, n = 123, p = 
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.005) and average EHF thresholds (rs = -.338, n = 123, p < .001). Significant correlations were also 

observed between all self-report measures; THI, HQ and hearing in noise difficulties (all p ≤ .001).  

Note that average tympanometric compliance was significantly correlated with average ABR wave V 

latency (rs = .315, n = 120, p < .001) and average high PTA thresholds (rs = .296, n = 123, p = .001). We 

therefore conducted partial correlations between total lifetime noise exposure and average ABR 

wave V latency, and average DPOAE levels and average high PTA thresholds, while controlling for 

average tympanometric compliance. The levels of significance were unchanged when controlling for 

tympanometric compliance.  

[Figure 8.] 

Separate multiple linear regression analyses were also conducted for proxy measures of cochlear 

synaptopathy, including SPiN abilities (SRFM from the CRM task), wave I amplitude and wave I/V 

ratio of the ABR for the 80 dB nHL click, average ABR wave V latency, THI score, HQ score, and self-

reported hearing in noise difficulty. Predictor variables included  gender, mean tympanic membrane 

compliance, mean tympanic peak pressure, average low PTA thresholds, average high PTA 

thresholds, average EHF thresholds, average DPOAE levels, years of musical experience, total 

lifetime noise exposure, and wave I amplitude of the ABR for the 80 dB nHL click (except for the 

regression models where dependent variables were electrophysiological measures). As with the 

correlation matrix, we applied the false discovery rate (FDR) correction with a p-value of .05 and a q-

value of .10 for each regression model.  

The regression model including wave V latency as the dependent variable was found to be significant 

[F(9,110) = 4.813, p < .001, R2  = .283], with gender, tympanometric pressure and lifetime noise 

exposure as significant predictor variables after accounting for FDR (all p < .05 and q < .01;   see 

Supplementary Materials 3). To examine the effect of gender, an independent samples t-tests 

showed that males had significantly delayed ABR wave V latencies (mean = 5.89 ms, SD = .18) 
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compared to females (mean = 5.71 ms, SD = .20) [t(118) =  -5.100, p < .001, d = .939]. Males also 

showed significantly higher levels of noise exposure (mean = .98, SD = .67) compared to females 

(mean = .73, SD = .59) [t(118) = -2.196, p = .030, d = .400].  Spearman’s rho correlations were also 

conducted between total log noise exposure and ABR wave V latency for males and females 

separately (see Figure 8c), revealing a significant correlation for males (rs = .352, n = 55, p = .008), 

but not for females (rs = .147, n = 65, p = .243).  

The regression model including hyperacusis score as the dependent variable was also found to be 

significant [F(10,108) = 2.032, p = .037, R2  = .158]. The only significant predictor after FDR correction 

was average high frequency (2-8 kHz) PTA thresholds (β = -.305, t = -2.793, p = .006). 

4. Discussion 

The aim of the current study was to explore the effects of noise exposure on self-report, behavioral 

and electrophysiological measures of hearing damage, including cochlear synaptopathy, in early-

career musicians and non-musicians. Our results support previous findings from our laboratory 

which provide little evidence of noise-induced cochlear synaptopathy in young normal hearing 

adults (Guest et al., 2019, 2018c, 2018b, 2017; Prendergast et al., 2019, 2018, 2017b, 2017a).Despite 

musicians displaying some minor differences from non-musicians in the ABR, musicians do not show 

altered SPiN compared to non-musicians, and there were few significant interactions with noise 

exposure. These null effects of musicianship may be due to similar levels of total lifetime noise 

exposure between musicians and non-musicians. Similar performance between musicians and non-

musicians was observed even when comparing participants with the highest and lowest levels of 

noise exposure, and when analysing associations between noise exposure, years of musical 

experience, and proxy measures of cochlear synaptopathy. Nevertheless, musicians were more likely 

to report experience of- or more severe- tinnitus, hyperacusis and/or hearing in noise difficulties 

compared to non-musicians, irrespective of noise exposure. In addition, the exploratory analysis 

showed that high levels of noise exposure - the majority of which is from recreational activities - 
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negatively affected OHC function, as measured by DPOAEs.  Furthermore, increased ABR wave V 

latency was associated with higher levels of noise exposure, for males only. 

4.1 No effect of noise exposure on proxy measures of cochlear synaptopathy 

Several studies from other research groups have also failed to support the hypothesis that cochlear 

synaptopathy is linked to lifetime noise exposure in normal hearing young adults (Fulbright et al., 

2017; Grinn et al., 2017; Yeend et al., 2017). However, animal studies are more consistent at 

demonstrating the effects of noise exposure on auditory nerve function and anatomy (e.g. Kujawa 

and Liberman, 2009), and there are some studies in young adults that purportedly show the effects 

of noise exposure on proxy measures of cochlear synaptopathy (Bramhall et al., 2017; Grose et al., 

2017; Liberman et al., 2016). These inconsistent findings have been discussed in depth in previous 

research and review articles (Bramhall et al., 2019a; Hickox et al., 2017; Le Prell, 2019), which 

provide several possible explanations for our null findings, as summarised below. 

4.1.1 Young adults are less susceptible to noise-induced cochlear synaptopathy 

Recent evidence suggests that primates are more resilient to cochlear synaptopathy compared to 

rodents (Valero et al., 2017), which may be due to a combination of genetic, environmental, and 

anatomical differences (Abreu-Silva et al., 2011; Bramhall et al., 2019a). Dobie and Humes (2017) 

surmised that the noise levels required to induce cochlear synaptopathy in mice (e.g. ~100 dB SPL 

octave band noise for 2 hours; Kujawa and Liberman, 2009) would exceed OSHA limits when 

correcting for inter-species audiometric differences. Specifically, it was estimated that humans 

require ~114 dB SPL continuous exposure for 2 hours in order to induce cochlear synaptopathy. 

Most individuals are unlikely to be exposed to these high sound levels through common recreational 

and occupational activities (and at least not without sufficient hearing protection for the latter; 

Control of Noise at Work Regulations, 2005). For classical musicians - as per the majority of 

musicians in the current study - typical average noise equivalent exposures are 75 to 98 dB A 
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(McBride et al., 1992; Pawlaczyk-Łuszczyńska et al., 2011; Royster et al., 1991; Schmidt et al., 2011). 

On the contrary, the military veterans included in the study by Bramhall et al. (2017) were exposed 

to high peak-intensity military noise and firearms, which could explain the observed reduction in 

ABR wave I amplitude compared to non-veterans.  

A second possibility is that cochlear synaptopathy does occur in humans, but this may be more 

related to an aging auditory system than to noise exposure. Studies that have included a younger 

cohort of participants, including the study presented here, have found little evidence of a link 

between noise exposure and proxy measures of cochlear synaptopathy (e.g. Prendergast et al., 

2017a, 2017b), whereas studies that have found a relation between these measures tended to be 

slightly older (Gu et al., 2012; Schaette and McAlpine, 2011; Valderrama et al., 2018). It is difficult to 

disentangle the effects of aging and noise exposure, since the two are closely related (Prendergast et 

al., 2019). Nevertheless, Johannesen et al. (2019) recently showed that decreasing wave I growth 

was associated with increasing age, but not with increasing noise exposure. Similarly, some of the 

weak effects of noise exposure on electrophysiological measures found by Prendergast et al. (2017a) 

were not significant after controlling for age.  

4.1.2 Young adults are resilient to the effects noise-induced cochlear synaptopathy 

Even if cochlear synaptopathy does occur in young normal hearing adults, it has been proposed that 

the effects on perceptual abilities, such as SPiN, may be negligible (Grose et al., 2017; Oxenham, 

2016; Valderrama et al., 2018). Instead, it has been shown that superior auditory skills such as 

amplitude modulation detection and temporal fine structure processing, and superior cognitive 

abilities such as working memory, attention and language skills, may be more predictive of SPiN 

abilities (Valderrama et al., 2018; Yeend et al., 2017). It is possible that superior cognitive and/or 

auditory processing skills in humans may offset, or even supersede, the detrimental effects of noise-

induced cochlear synaptopathy (Beach, 2018; Kamerer et al., 2019).  
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4.1.3  The effects of cochlear synaptopathy are difficult to detect in young normal hearing adults 

An alternative explanation for the null findings is that noise-induced cochlear synaptopathy is 

difficult to detect due to the high levels of variability between individuals (Prendergast et al., 2019). 

Compared to precisely controlled animal studies, human participant samples are much more 

genetically and anatomically diverse, and have much more varied environments (e.g. noise 

exposure, exposure to ototoxic chemicals, health and lifestyle factors etc.). Additionally, the pattern 

of noise exposure in humans is much more irregular and impossible to accurately monitor across the 

lifespan. With the additional prospect of synaptic repair in humans (Kaas, 2001; Martino et al., 2011; 

Rosa and Bonfanti, 2018), and uncertainty as to whether repeated noise exposure has an additive or 

non-linear cumulative effect, it is challenging to anticipate the health of the auditory nerve in 

relation to noise exposure in humans.  

The specificity and sensitivity of various proxy measures of cochlear synaptopathy have also been 

scrutinised. For example, wave I amplitudes of the ABR might not be determined by low-SR auditory 

nerve fibers (Bourien et al., 2014), which may instead have a role in controlling the efferent system 

(Carney, 2018). Caution should also be exercised in the interpretation of wave I/V ratios in relation 

to tinnitus/hyperacusis (Schaette and McAlpine, 2011), since the central gain hypothesis has not 

been fully validated. There is also an ongoing argument as to the which ABR montage configuration 

yields the most robust and reliable ABR wave amplitudes for assessing auditory nerve function, 

where it has been suggested that a horizontal montage (Laughlin et al., 1999) and/or electrode 

placement on- or near to- the tympanic membrane using a ‘tiptrode’ produces a larger wave I 

recording (Ferguson;, 1989; Minaya and Atcherson, 2015; Prendergast et al., 2018). However, 

Prendergast et al. (2018) demonstrated only very slight increases in reliability for wave I amplitude 

when using tiptrodes compared to electrodes placed on the mastoid (as in the current experiment), 

with both vertical ABR montage configurations producing excellent intraclass correlation 
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coefficients. Given that the canal tiptrodes are more costly and can cause some discomfort, it is not 

clear that such equipment is necessary for the recording of ABR waves I or V. 

In relation to SPiN measures, Prendergast et al., (2019, 2017b) suggest that the association between 

these measures and noise exposure might only be observed for certain listening tasks with highly-

challenging listening conditions (e.g. time compressed and reverberated speech; Liberman et al., 

2016). This seems less likely for the CRM task used in the current study, since the condition with 

spatially congruent target and distracting speakers produced high SNRs (i.e. high difficulty), but was 

not related to noise exposure.  

4.1.4. Measures of lifetime noise exposure are imperfect 

As with other retrospective measures of noise exposure, the NESI may have provided erroneous 

measures of lifetime noise exposure. However, there is a stark difference between low and high 

exposure groups in terms of lifetime energy of exposure, with the high noise exposure group having 

~15 times more exposure (not log transformed) than the low noise exposure group. This difference 

is even greater when considering participants in the top and bottom 20% of noise exposures across 

the distribution; equating to ~70 times more exposure (not log-transformed) in the high noise 

exposure group compared to low. As such, it seems unlikely that the effects of lifetime noise 

exposure would be eradicated by some imprecision in self-reported noise exposure. Furthermore, 

we were able to demonstrate some effects of noise exposure in the current experiment, such as ABR 

wave V latency, DPOAE levels, and the prevalence and severity of hyperacusis (see section 4.2). 

Similarly, previous experiments from our laboratory have demonstrated correlations with EHF 

thresholds (Prendergast et al., 2017a) and with tinnitus prevalence (Guest et al., 2017), suggesting 

that the NESI is a valid and reliable measure of noise exposure.  

There has also been criticism that the NESI does not capture information relating to TTS and 

temporary tinnitus following noise exposure, which may be a prerequisite for noise-induced damage 
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(Kujawa and Liberman, 2009). In the current experiment, the majority of participants who 

experienced temporary tinnitus reported that this was due to exposure to a loud event (70/88; 

~80%). Yet, experience of temporary tinnitus was not different between low and high noise 

exposure groups, and there were no significant correlations between tinnitus severity and noise 

exposure, ABR amplitudes or SPiN abilities. Likewise, Yeend et al. (2017) demonstrated that neither 

self-reported TTS following noise exposure nor tinnitus were predictive of SPiN abilities (see also Le 

Prell et al., 2018). It should be noted, however, that our definition of tinnitus (i.e. having experienced 

a ringing/buzzing in the ears for at least 5 minutes at any point in the participants’ lives) could be too 

broad, which could explain the high prevalence of tinnitus in this participant sample, and could also 

lead to a high degree of individual variability in terms of symptom severity, and hence the lack of an 

effect of noise exposure on tinnitus measures. It may have been beneficial to use stricter criteria for 

tinnitus, such as reporting frequent tinnitus (i.e. at least once a week) or constant tinnitus (although 

this was only 4 participants in our sample). 

4.2 Potential noise-induced hearing damage  

4.2.1 The effects of noise exposure on ABR wave latency  

Similar to Skoe and Tufts (2018), we showed that high levels of noise exposure did not have a 

significant impact on ABR wave amplitudes, but rather noise exposure may affect ABR wave 

latencies. On the contrary, we only found an effect of noise exposure on wave V latency (and thus 

wave I-V interpeak latency), whereas Skoe and Tufts (2018) showed that both wave I and V latencies 

were affected by previous noise exposure. Delays to ABR wave latencies as a result of peripheral 

damage (e.g. IHC loss) might be expected to affect all waves of the ABR (Burkard et al., 1997).  

Instead, our findings suggest a delayed propagation of the action potential along the auditory 

brainstem pathway which occurs central to the auditory nerve. While this finding seems unlikely to 

be due to cochlear synaptopathy, since wave I amplitudes and latencies were unaffected, it is 

difficult to ascertain the exact mechanism of this effect. Prendergast et al. (2017a) also found a 
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significant correlation between noise exposure and ABR wave V latency, although this effect was 

non-significant after controlling for the effect of age. Since participants in the current experiment 

were relatively young and the age-range was narrow, the effect of aging is less likely to explain 

delayed central propagation, and indeed the correlation between noise exposure and ABR wave V 

latency persists after controlling for age [r(117) = .259, p = .004].  

Stressing the auditory system by increasing ABR stimulus presentation rate (J. H. Kim et al., 2013; 

Lasky, 1997; Shi et al., 2013; Skoe and Tufts, 2018) or presenting the ABR stimulus in various levels of 

background noise (Mehraei et al., 2016) may help to tease out the effects of noise exposure on 

synaptic function and neural conduction at different stages of the auditory pathway. For example, 

Skoe and Tufts (2018) showed a correlation between noise exposure and rate-dependent changes to 

wave I-V interpeak latency, theorizing that noise exposure could lead to demyelination of the central 

auditory system without affecting audiometric thresholds (see S. E. Kim et al., 2013).  However, 

measuring ABR wave latencies for multiple stimulus presentation rates, and/or in multiple 

background noise levels, is probably not a feasible method for assessing sub-clinical hearing loss in a 

clinical setting. 

Interestingly, the correlation between noise exposure and wave V latency was only significant for 

males in the current experiment. This may be in part due to males reporting slightly higher levels of 

noise exposure than females, and so the effects of noise exposure on ABR wave latency were more 

pronounced for this group.  

4.2.2 The effects of noise exposure on outer hair cell function 

Further non-synaptopathic effects of noise exposure were found for OHC function. In particular, the 

exploratory analysis showed that participants with the highest levels of noise exposure had poorer 

DPOAEs compared to participants with the lowest levels of noise exposure. This finding is further 

supported by the significant negative correlation between noise exposure and average DPOAE level. 
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Note that  DPOAE measures  indicated clinically normal OHC function for all participants in the 

current experiment i.e. DPOAE SNRs ≥ 3 dB for the majority of frequencies tested. Sub-clinical OHC 

dysfunction is more common in young normal hearing listeners with high levels of noise exposure 

compared to those with low levels of noise exposure (Hamdan et al., 2008; Job et al., 2009; Lapsley 

Miller et al., 2006; Lucertini et al., 2002; Mansfield et al., 1999).  

Our results also revealed a significant negative correlation between average DPOAE level and 

average high-frequency (2-8 kHz) PTA and EHF (12 and 16 kHz) thresholds. Although hearing 

thresholds were not linked to noise exposure, these data support well-established evidence that 

OHC function is fundamental to hearing thresholds (Stebbins et al., 1979).  

Reduced OHC function and elevated PTA and EHF thresholds did not have any effect on ABRs or SPiN 

performance in the current experiment. However, elevated PTA and EHF thresholds could 

potentially explain some of the electrophysiological and behavioural findings which have been 

attributed to cochlear synaptopathy in previous studies. For example, Bramhall et al. (2017) found 

elevated PTA thresholds between 2-6 kHz in military veterans with high levels of noise exposure 

compared to non-veterans with lower levels of noise exposure, which could explain the observed 

reduction in ABR wave I amplitudes in veterans compared to non-veterans (although wave I 

amplitudes were adjusted for OAE levels in this experiment). Therefore, elevated hearing thresholds 

and/or OHC dysfunction within the clinically ‘normal’ range might make it problematic to use ABR 

wave I reduction as a proxy measure of cochlear synaptopathy, and should be accounted for in the 

analysis. These findings also offer clinical utility for assessing hearing function below 25 dB HL and 

greater than 8 kHz as an early marker of hearing deficits (Le Prell et al., 2013; Mehrparvar et al., 

2011; Moore et al., 2017), which is not necessarily related to noise-induced damage. 

4.2.3 The effects of noise exposure on self-reported hyperacusis 
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Another significant effect of noise exposure was found for hyperacusis, whereby the high noise 

exposure group were more than twice as likely to report having experienced hyperacusis compared 

to the low noise exposure group. The exploratory analysis also revealed that participants with the 

highest levels of noise exposure reported more severe hyperacusis than those with the lowest noise 

exposures. However, there was no significant correlation between HQ scores and noise exposure, 

nor with any of the electrophysiological measures included in the test battery. As such, this effect is 

unlikely to support the central-gain hypothesis (Hickox and Liberman, 2014), and the cause is 

uncertain.  

4.3 No effects of musicianship on hearing measures 

In addition to the null effects of noise exposure on SPiN in the current study, there were also no 

differences between musicians and non-musicians, and no interactions between noise exposure and 

musicianship. This could be due to the finding that total lifetime noise exposure was not significantly 

different between musicians and non-musicians. Based on previous research, it was hypothesized 

that musical training may be able to compensate for the detrimental effects of noise exposure on 

SPiN (Grose et al., 2017; Valderrama et al., 2018; Yeend et al., 2017), or that noise exposure may 

reduce musicians’ advantage for SPiN (Skoe et al., 2018). Since total noise exposure was similar 

between musicians and non-musicians, it would be reasonable to predict enhanced SPiN for 

musicians in the current study.  

While there are many studies that advocate enhanced SPiN in musicians, regardless of noise 

exposure (Bidelman et al., 2014; Clayton et al., 2016; Parbery-Clark et al., 2011, 2009b, 2009a; Slater 

et al., 2015; Strait et al., 2010; Swaminathan et al., 2015), there are others that show little-to-no 

effect of musicianship (Boebinger et al., 2015; Couth et al., 2019; Madsen et al., 2019, 2017; Ruggles 

et al., 2014; Yeend et al., 2017). There are several possible explanations for these discrepant 

findings. First, it has been pointed out that musicians’ benefit for SPiN over non-musicians may be 

very small in some studies (e.g. < 1 dB SNR; Parbery-Clark et al., 2009b) and so might not be a 



40 
 

particularly robust finding (Madsen et al., 2019). Speech-in-noise tests also vary between studies in 

terms of task demands, target speech stimuli, number and type of maskers, characteristics of the 

masking noise (e.g. informational vs. energetic masking), and the spatial separation between the 

target and masking speakers (e.g. centrally aligned vs. offset; Madsen et al., 2019; Swaminathan et 

al., 2015).  

The CRM task used in the current experiment was comparable to the SPiN task used by 

Swaminathan et al. (2015), using both spatially and offset distracting speakers whose speech 

utterances were highly similar to the target speaker (i.e. high informational masking). Swaminathan 

et al. (2015) also showed equal performance for musicians and non-musicians in centrally aligned 

conditions, but in contrast showed better performance for musicians in spatially offset conditions 

(i.e. greater SRFM). In Swaminathan et al. (2015), distracting stimuli were spatially offset by 15 

degrees azimuth on either side of centre, compared to 60 degrees in the current study. Musicians’ 

mean SNRs for the spatially offset condition in the current study (SNR = -14.2 dB) were comparable 

to the musicians in Swaminathan et al.  (SNR = -15.1 dB), whereas non-musicians’ SNRs for the 

spatially offset condition were much higher in the current study (SNR = -13.6 dB) than the non-

musicians in Swaminathan et al. (SNR = -8.5 dB). Accordingly, musicians may reach maximum SRFM 

benefit by 15 degrees masker separation, whereas non-musicians may require up to 60 degrees of 

masker separation to achieve the same level of SRFM benefit. By testing finer degrees of separation 

between target and distractor speakers, it may be possible to ascertain the effects of musicianship 

on SRFM.  

Similar to there being a high degree of inter-individual variability in noise exposure, there could also 

be a high degree of heterogeneity in musicianship for both musician and non-musician groups, which 

could explain the null effects in the current study (Levitin, 2012; Ruggles et al., 2014). We did not 

place any strict criteria on the definition of a ‘musician’ or ‘musicianship’, choosing to focus on a 

group of individuals who were in the early stages of pursuing a career in music, and so instrument 
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class, years of playing, hours of practice, and the age that musical training began was variable within 

this group. Zhang et al. (2018) have recently tried to establish a general consensus for the term 

“musician”, suggesting that the most robust definition is someone who has at least six years of 

musical expertise.  For the non-musician group in the current experiment, there  were 28 

participants who had  learned to play a musical instrument at some point during their lives, and 17 

of these had at least 6 years of musical experience. Musical training in childhood has been shown to 

improve cognitive abilities (Bailey and Penhune, 2012; Bergman Nutley et al., 2014; Forgeard et al., 

2008), which could persist into adulthood (Miendlarzewska and Trost, 2014). Accordingly, there may 

have been overlap between musician and non-musician groups in terms of auditory and cognitive 

skills, resulting in similar SPiN performance between these groups. To address this limitation, we 

examined musicianship on a continuous scale (i.e. years of musical experience) across the whole 

participant sample, showing no significant correlations with any measures. However, years of 

playing an instrument does not necessarily equate to high musical skill or ability.  It would have been 

beneficial to include a range of tests to assess musical, auditory and cognitive skills in the current 

test battery (as per Yeend et al., 2017).   

It is also important to emphasise that the cross-sectional design of the current study can only 

provide a snapshot of hearing function in relation to musicianship and noise exposure. Indeed, it was 

surprising that total noise exposure was similar for musicians and non-musicians, despite musicians 

showing higher levels of occupational noise exposure, and it was not our intention to match noise 

exposure between these groups. This finding was due to the relatively high levels of recreational 

noise exposure compared to occupational noise exposure, for both musicians and non-musicians, 

where both groups were at an age (e.g. 18-25 years) and period in life (e.g. university 

undergraduate) where they were starting to experience high levels of recreational exposure (e.g. 

concerts and nightclubs). Crucially, this finding highlights the importance of estimating both 

occupational and recreational noise dose when investigating the effects of lifetime noise exposure, 

rather than assuming that differences in occupational exposure alone will ensure distinct levels of 
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total noise exposure. Moreover, the data presented here represents the first of three participant 

visits, where the test battery is being repeated once a year as musicians progress through an 

intensive period of musical training at the start of their careers. This longitudinal study design will 

provide a better insight into the accumulative effects of musical experience, noise exposure, and 

inter-individual risk of noise-induced damage, where it is anticipated that lifetime noise exposure 

will steadily increase for musicians (especially occupational exposure), but may start to decelerate 

for non-musicians.  

4.4 Musicians report more hearing complaints 

Consistent with previous research, musicians were more likely to self-report experience of - and/or 

more severe - hearing problems such as tinnitus, hyperacusis and hearing in noise difficulties 

(Camera et al., 2019; Couth et al., 2019; Greasley et al., 2018; Jansen et al., 2009; Kähäri et al., 2003; 

Laitinen, 2005; Laitinen and Poulsen, 2008). These findings were not related to noise exposure, and 

musicians with low noise exposure were actually more likely to report hearing in noise difficulties.  

For tinnitus and hyperacusis severity measures, higher scores for musicians is unlikely to be 

explained by the central gain hypothesis since there was no correlation between these measures 

and wave I/V ratios, plus musicians had significantly greater wave I/V ratios compared to non-

musicians, which would suggest a reduction in central gain for musicians. There are several studies 

that have demonstrated heightened brainstem auditory evoked potentials in musicians compared to 

non-musicians, in particular the frequency following response, whereby musical training fine-tunes 

how sound is processed subcortically, leading to enhancement of acoustic features (for a review see 

Sanju and Kumar, 2016). However, altered electrophysiological functioning for musicians did not 

translate into enhanced SPiN abilities in the current study. Including measures of midbrain and 

cortical auditory-evoked potentials in future studies could be useful for determining the effects of 

musicianship - and noise exposure - on auditory processing, where central gain could occur at later 

stages of the auditory pathway (Chambers et al., 2016).  
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The most likely explanation for worse self-reported hearing problems in musicians is due to 

musicians being more aware and/or concerned about hearing problems, and thus being more likely 

to report hearing problems compared to non-musicians (Chesky et al., 2009; Greasley et al., 2018; 

Laitinen, 2005; Laitinen and Poulsen, 2008). This could also explain the observed correlations 

between self-report measures, whereby those who are more aware/concerned will consistently 

score more highly across these different measures of hearing problems. 

4.5 Conclusions 

Lifetime noise exposure does not appear to be related to ABR proxy measures of cochlear 

synaptopathy in normal-hearing young adults. That is not to say that noise exposure is not a 

concern, since we did observe a decrease in OHC function, increased ABR wave V latency, and a 

higher prevalence and severity of hyperacusis with higher levels of noise exposure, most of which 

was from recreational activities. These indices of noise-induced damage would otherwise be ‘hidden’ 

by having a normal audiogram. Closely monitoring OHC function when hearing thresholds are 

clinically normal could provide a timely measure of noise-induced hearing damage, especially for 

individuals with high levels of noise exposure, such as musicians. Furthermore, by examining the 

effects of noise exposure on hearing function longitudinally, it may be possible to determine 

whether musicians are more susceptible to hearing problems, and thus develop interventions to 

protect hearing longevity. 
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Figure captions 

Figure 1. Mean PTA thresholds and EHF thresholds for musicians (a and b) and non-musicians 

(c and d). Low noise exposure groups are represented by square symbols with solid lines, and high 

noise exposure groups are represented by triangle symbols with broken lines. Error bars represent 

95% confidence intervals. Color version available online. 

Figure 2. Mean DPOAE levels (line graphs) and noise floor (shaded areas) for a) musicians and 

b) non-musicians. DPOAE level for low noise exposure groups are represented by square symbols 

with solid lines, and high noise exposure groups are represented by triangle symbols with broken 

lines. DPOAE noise floors for low exposure groups are represented by shaded areas with a solid line 

and high noise exposure groups are represented by shaded areas with a broken line.  Error bars 

represent 95% confidence intervals for DPOAE levels. Color version available online. 

Figure 3. Mean SNRs for the CRM task for low noise exposed musicians (purple bars), high 

noise exposed musicians (green bars), low noise exposed non-musicians (blue bars) and high noise 

exposed non-musicians (orange bars). SNRs for centrally aligned masking conditions are represented 

by solid shading and spatially offset masking conditions are represented by broken shading. More 

negative values indicate better performance. Error bars represent 95% confidence intervals. Color 

version available online. 

Figure 4. Grand average ABR waveforms for 60 dB nHL click stimuli (top panels; a and b) and 

80 dB nHL click stimuli (bottom panels; c and d). Musicians’ ABR waveforms are shown in the left 

panels (a and c), with low noise exposed musicians represented by solid purple lines and high noise 

exposed musicians represented by broken green lines.  Non-musicians’ ABR waveforms are shown in 

the right panels (b and d), with low noise exposed musicians represented by solid blue lines and high 

noise exposed musicians represented by broken orange lines.  Shaded areas represent 95% 
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confidence intervals. Wave I and V amplitudes were measured from peak to subsequent trough, as 

demonstrated in panel c).  Color version available online. 

Figure 5. Mean ABR amplitudes for a) wave I, b) wave V, and c) the wave I/V ratio for low 

noise exposed musicians (purple bars), high noise exposed musicians (green bars), low noise 

exposed non-musicians (blue bars) and high noise exposed non-musicians (orange bars). Wave 

amplitudes for the 60 dB nHL click stimulus are represented by broken shading and 80 dB nHL click 

stimulus are represented by solid shading. Error bars represent 95% confidence intervals. Color 

version available online. 

Figure 6. Mean scores on self-report measures a) Tinnitus Handicap Inventory, b) Hyperacusis 

Questionnaire, and c) Hearing in noise difficulties for low noise exposed musicians (purple bars), high 

noise exposed musicians (green bars), low noise exposed non-musicians (blue bars) and high noise 

exposed non-musicians (orange bars). For a) and b) higher scores indicate more severe 

tinnitus/hyperacusis, for c) lower scores indicate more severe hearing in noise difficulties. Error bars 

represent 95% confidence intervals. Color version available online. 

Figure 7. Mean ABR peak latencies for a) wave I, b) wave V, and c) the wave I-V interpeak 

latency for low noise exposed musicians (purple bars), high noise exposed musicians (green bars), 

low noise exposed non-musicians (blue bars) and high noise exposed non-musicians (orange bars). 

Wave latencies for the 60 dB nHL click stimulus are represented by broken shading and 80 dB nHL 

click stimulus are represented by solid shading. Error bars represent 95% confidence intervals. Color 

version available online. 

Figure 8. a) Correlation matrix between test battery measures for the whole participant 

sample. Red squares indicate positive correlations and blue squares indicate negative correlations. 

Significant correlations are indicated by * (p < .05 and q < .10). Scatter plots for total lifetime noise 

exposure against b) average wave V latency and c) DPOAE level. Data is shown for males (blue 
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squares/blue dotted line) and females (pink crosses/pink dashed line). The overall regression line is 

shown in black. R values in the inset figure legends represent Spearman’s rho correlations, with * 

indicating a significant correlation (p < .05 and q < .10). Color version available online. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Supplementary Materials 1 

Subset of the questions from the Self-efficacy for Situational Communication Management 

Questionnaire (SESMQ; Jennings 2005) used to assess self-perceived hearing in noise difficulties. 

 

Please imagine yourself in each of the following situations and answer the questions. 

You are having a family dinner in your home.  There is more than one conversation occurring at a 

time. 

How well can you hear in this situation? 

Not well at all 1 2 3 4 5 6 7 Very well 

 

You are at a wedding reception with 200 guests. Your friend/family member starts talking to you. 

How well can you hear in this situation? 

Not well at all 1 2 3 4 5 6 7 Very well 

 

You are in a restaurant with a family member or friend. You are seated in a dim and noisy spot. 

How well can you hear in this situation? 

Not well at all 1 2 3 4 5 6 7 Very well 

 

You are at home watching television with a family member. She/he turns and speaks to you. 

How well can you hear in this situation? 

Not well at all 1 2 3 4 5 6 7 Very well 

 

You are waiting for a train/plane at a busy station. Your friend is sitting beside you and says 

something without looking at you. 

How well can you hear in this situation? 

Not well at all 1 2 3 4 5 6 7 Very well 

 

You hold a party in your home. Someone you do not know very well starts up a conversation. She/he 

puts one hand over her/his mouth when they are speaking. 
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How well can you hear in this situation? 

Not well at all 1 2 3 4 5 6 7 Very well 
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Supplementary Materials 2 

Results for the exploratory analysis of the top and bottom 20% of participants from the total noise 

exposure distribution. Statistical analyses reflect those of the whole participant sample: repeated 

measures ANOVAs for PTA, EHF thresholds, DPOAE levels, ABR wave I amplitudes, ABR wave I/V 

ratios, ABR wave I and wave V latencies, and the CRM task (Table 1); independent samples t-tests 

and oneway ANOVAs for total log noise exposure, spatial release from masking, THI scores, HQ 

scores and SPiN scores (Table 2); chi-square tests for prevalence of self-reported tinnitus, 

hyperacusis and speech-in-noise difficulties (Table 3). For simplicity, only the effects of interest are 

presented; noise exposure, musicianship and the noise exposure by musicianship interaction. 

Analysis of further main effects and interactions for each measure are available upon request. 

The findings closely match those of the whole participant sample. Novel findings from this sub-

sample included the main effect of noise exposure on DPOAE levels [F(1,48) = 11.702, p = .001, ηp
2 = 

.196], where levels were significantly lower for the high noise exposure group (mean = 8.79 dB SPL, 

SD = 3.02) compared to the low noise exposure group (mean = 12.05 dB SPL, SD = 3.18). Mean HQ 

scores were also found to be significantly higher for the high noise exposure group (mean = 30.81, 

SD = 20.57) compared to the low noise exposure group (mean = 19.19, SD = 11.83) [t(39.909) = -

2.496, p = .017, d = .692]. Non-musicians with high noise exposure also had the greatest proportion 

of participants reporting having experienced tinnitus (n = 10; 100%) compared to non-musicians with 

low noise exposure (n = 5; 50%), musicians with high noise exposure (n = 11; 68.75%) and musicians 

with low noise exposure (n = 14; 87.50%) [χ2(3) = 8.694, p = .034, V = .409]. 
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Table 1 Repeated measures ANOVA tests for the exploratory analysis including main 

effects of noise exposure, musicianship and the noise exposure x musicianship interaction. 

Values in bold indicate a significant effect. 

Measure 

Noise exposure Musicianship Noise exposure*Musicianship 

F p ηp
2 F p ηp

2 F p ηp
2 

PTA threshold 0.559 0.458 0.012 0.594 0.445 0.012 0.678 0.414 0.014 

EHF threshold 1.558 2.180 0.031 0.016 0.900 0.000 8.647 0.005 0.153 

DPOAE level  11.702 0.001 0.196 0.989 0.325 0.020 1.589 0.214 0.032 

ABR wave I amplitude 0.175 0.677 0.004 3.902 0.055 0.085 0.200 0.657 0.005 

ABR wave I/V ratio 0.512 0.478 0.012 5.036 0.030 0.107 0.027 0.870 0.001 

ABR wave I latency 3.052 0.088 0.068 1.854 0.181 0.042 0.008 0.930 0.000 

ABR wave V latency 8.566 0.005 0.166 0.300 0.587 0.007 0.606 0.441 0.014 

CRM task 0.001 0.811 0.000 0.468 0.497 0.010 0.058 0.811 0.001 

 

Table 2  Independent samples t-tests between high and low noise exposure groups/ 

musicians and non-musicians, and one-way ANOVAs tests to explore the interaction 

between noise exposure and musicianship. These tests were conducted for variables with 

one level in the dependent variable of the exploratory analysis. Values in bold indicate a 

significant effect. 

Measure 

Low vs. High noise exposure Musicians vs. Non-musicians Noise exposure*Musicianship 

t p d t p d F p η2 

Total noise exposure -20.608 0.000 5.716 -0.605 0.548 0.169 155.841 0.000 0.907 

SRFM -0.602 0.550 0.167 0.531 0.598 0.150 0.269 0.847 0.017 

THI scores 0.145 0.885 0.046 0.592 0.558 0.185 0.172 0.915 0.014 

HQ scores -2.496 0.017 0.692 0.904 0.370 0.266 2.352 0.084 0.128 

Hearing in noise score 1.288 0.204 0.357 -0.112 0.911 0.032 0.688 0.564 0.041 

 

Table 3 Chi-square tests for the exploratory analysis including main effects of noise 

exposure, musicianship and the noise exposure x musicianship interaction. Values in bold 

indicate a significant effect. 

Measure 

Low vs. High noise exposure Musicians vs. Non-musicians Noise exposure*Musicianship 

χ2 p V χ2 p V χ2 p V 

Tinnitus 0.433 0.510 0.091 0.068 0.795 0.036 8.694 0.034 0.409 

Hyperacusis 5.026 0.025 0.311 0.000 1.000 0.000 5.067 0.167 0.312 

Hearing in noise score 1.038 0.308 0.141 0.026 0.872 0.022 1.412 0.703 0.165 
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Supplementary Materials 3 

Table 4 Exploratory linear regression models for self-report proxy measures of 

cochlear synaptopathy 

Variable 

  THI score   HQ score   Hearing in noise score 

 R2 = .085, F(10,74) = .688, p = .732  R2 = .158, F(10,108) = 2.032, p = .037  R2 = .128, F(10,108) = 1.591, p = .119 

  B β t   B β t   B β t 

Gender  -.911 -.035 -.286  1.887 .051 .520  -.004 -.002 -.023 

Tymp compliance  -.350 -.008 -.065  3.445 .059 .580  .108 .041 .392 

Tymp pressure  .097 .096 .808  .158 .128 1.419  -.003 -.051 -.554 

Low PTA  .878 .232 1.747  .191 .034 .346  .024 .095 .935 

High PTA  -.936 -.288 -1.949  -1.407 -.305 -2.793**  .058 .274 2.470* 

EHF  -.043 -.028 -.209  .133 .061 .580  -.020 -.205 -1.928 

DPOAE level  -.283 -.100 -.752  -.576 -.142 -1.365  .025 .138 1.305 

wI amplitude  7.247 .057 .473  21.307 .114 1.234  .263 .031 .330 

Years of musicianship  .139 .060 .519  .677 .210 2.342*  -.025 -.171 -1.870 

Total noise exposure   -1.969 -.100 -.813   2.403 .083 .869   -.020 -.015 -.154 

 * p < .05, although non-significant after FDR correction. ** p < .05 and q < .10 

 

 

Table 5 Exploratory linear regression models for behavioural proxy measure of 

cochlear synaptopathy 

Variable 

  SRFM 

 R2 = .047, F(10,108) = .528, p = .867 

  B β t 

Gender  -.692 -.078 -.747  

Tymp compliance  .441 .032 .291  

Tymp pressure  .022 .076 .788  

Low PTA  -.014 -.011 -.101  

High PTA  .131 .118 1.018  

EHF  -.032 -.061 -.548  

DPOAE level  .008 .009 .078  

wI amplitude  2.576 .058 .585  

Years of musicianship  .019 .025 .257  

Total noise exposure   1.111 .160 1.575   
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Table 6 Exploratory linear regression models for electrophysiological proxy measure 

of cochlear synaptopathy 

Variable 

  wI amplitude   wI/V ratio   wV latency 

 R2 = .094, F(9,109) = .1.256, p = .269  R2 = .068, F(9,109) = .877, p = .548  R2 = .283, F(9,110) = 4.813, p < .001 

  B β t   B β t   B β t 

Gender  -.017 -.084 -.837  -.008 -.015 -.149  .130 .306 3.430** 

Tymp compliance  -.086 -.275 -2.692**  -.109 -.124 -1.200  .151 .227 2.495** 

Tymp pressure  .000 -.028 -.303  -.001 -.061 -.648  -.001 -.044 -.539 

Low PTA  -.002 -.056 -.544  -.007 -.080 -.766  -.002 -.033 -.357 

High PTA  .001 .021 .187  .004 .062 .542  .005 .092 .926 

EHF  9.623E-5 .008 .076  .001 .029 .268  .001 .057 .590 

DPOAE level  -.001 -.055 -.512  .005 .081 .747  .006 .132 1.372 

Years of musicianship  .001 .066 .712  .009 .178 1.893  -.002 -.066 -.803 

Total noise exposure   .006 .039 .393   .049 .113 1.129   .080 .240 2.763** 

** p < .05 and q < .10 
 

 

 


