

HCI.Tools
Strategies and Best Practices for Designing,
Evaluating and Sharing Technical HCI Toolkits
CHI 2017 Workshop

Organizers:

Dr. Nicolai Marquardt – University College London, UK
Dr. Steven Houben – Lancaster University, UK
Prof. Michel Beaudouin-Lafon – Univ. Paris-Sud & CNRS / Inria, FR
Dr. Andrew Wilson – Microsoft Research, USA

Paper Reference:

Nicolai Marquardt, Steven Houben, Michel Beaudouin-Lafon, and
Andrew D. Wilson. 2017. HCITools: Strategies and Best Practices
for Designing, Evaluating and Sharing Technical HCI Toolkits. In
Proceedings of the 2017 CHI Conference Extended Abstracts on
Human Factors in Computing Systems (CHI EA '17). ACM, New
York, NY, USA, 624-627.

DOI: https://doi.org/10.1145/3027063.3027073

Paper: https://dl.acm.org/citation.cfm?id=3027073

Human-centered Toolkit Design
Henrik Mucha

OWL University of Applied
Sciences

Lemgo, Germany
henrik.mucha@hs-owl.de

Karsten Nebe
Rhine-Waal University of

Applied Sciences
Kamp-Lintfort, Germany

karsten.nebe@hochschule-
rhein-waal.de

ABSTRACT
Human-computer interaction (HCI) is a tool-intensive
domain. The multitude of perspectives yields a significant
diversity in terms of processes, methods, and tools. Toolkits
can support practitioners in selecting and applying
appropriate tools for specific tasks. However, in order to be
used effectively, toolkits must be designed well. Given the
heterogeneous perspectives within the HCI community, we
propose to start by differentiating between methodical and
technical toolkits. Further, we argue for embracing human-
centered design methods (methodical toolkits) to
systematically develop high-quality (technical) toolkits.
Finally, we focus on challenges and opportunities by
presenting examples from many years of working on
methodical toolkits for design and usability engineering.
Our intention is to share research experiences on
methodical toolkits and juxtapose it with the technical
toolkit expertise of the workshop participants. Thus, we
hope to steer the discussion towards a holistic
understanding that promotes toolkits as a research method
for HCI and, ideally, develop a tool-chain that supports the
systematic design of high-quality technical toolkits.

Author Keywords
human-computer interaction; design; human-centered
design; usability engineering; toolkits.

ACM Classification Keywords
D.2.2 Design Tools and Techniques

INTRODUCTION
Human-computer interaction brings together people from
various backgrounds equipped with their very own
processes, methods, and tools. Frankly, this can be blessing
and curse at the same time. But we embrace the
opportunities which arise from multidisciplinary
collaboration more than we fear the possibility of failure.

Our approach towards researching, designing and
evaluating interactive systems can be described as tool-
supported human-centered design (HCD). While the
principles of HCD are thoroughly described by the ISO
standard [3] we want to shed light upon our concept of
human-centered tool-support for the design of interactive
systems. Most generally speaking, one needs the right tool
at the right time for the job one seeks to accomplish. Given
the vast number of methods and tools [16] within our
domain, toolkits can be regarded as facilitators.

What is a toolkit in general and what is it for us?
Toolkits are capable of bridging the gap between concept
design and full implementation by facilitating rapid
prototyping and the exploration of novel designs without in-
depth technical knowledge [5,10,15]. However, to make our
point, we propose a differentiation between technical and
methodological toolkits.

Technical toolkits are platforms for rapid prototyping
comprising hardware and software building blocks.

Methodical toolkits are collections of methods together with
information on when and how to apply them.

As with many terms we are concerned with (e.g. design) the
term toolkit leaves ample room for interpretation. Since we
like to bring a new perspective to the discussion, this
differentiation seems somewhat necessary. Our goal is to
find ways to systematically produce high-quality toolkits.
To this end, we firstly need to establish a common ground
for the discussion. This, we achieve by agreeing upon what
a toolkit is and what is not (or should be or should not be)
and how we go about designing toolkits. Taking this
thought further, we state that both are inter-connected.
Technical toolkits are the tools used by the users to create a
specific outcome while methodical toolkits define the
overall process of methods, for which technical toolkits
need to be developed. They share common goals and should
not be considered in isolation: Speeding up the process
while being easy-to-use; mitigating engineering challenges;
lowering the entry bar for engagement; allowing to easily
experiment, build and evaluate; improving the quality of the
solution; improving interdisciplinary skills; creating a
common understanding about the relevance of HCD while
at the same time supporting the process with tools for its
implementation.

,Paste the appropriate copyright/license statement here. ACM now
supports three different publication options:
• ACM copyright: ACM holds the copyright on the work. This is the

historical approach.
• License: The author(s) retain copyright, but ACM receives an

exclusive publication license.
• Open Access: The author(s) wish to pay for the work to be open

access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement
assuming it is single-spaced in Times New Roman 8-point font. Please do
not change or modify the size of this text box.
Each submission will be assigned a DOI string to be included here.

Why are we interested in toolkits?
Löwgren [7] reasonably distinguishes between engineering
design and creative design. The former applies wherever
the problem is comprehensively described and the mission
is to find one solution to the problem. The latter is
described as a tight interplay between problem setting and
problem solving where the design space is explored via
many parallel ideas and concepts. With each of the authors
coming from opposing ends of this spectrum, our
collaboration pursues a synthesis of both approaches on a
methodical level. Our prime vehicle of scientific and
methodical exchange is our shared interest in toolkits. More
precisely, we are interested in toolkits as a research method
for HCI. Following the research through design approach,
we can state that communication among the HCI research
and practice community relies heavily on research artifacts
[18]. Building theses artifacts requires technical tools as
well as, and this is important to us, process and method
knowledge - hence our distinction between technical and
methodical toolkits. Ideally, toolkits are collections of tools
developed or curated by experts to put (experts and) non-
experts in places where they can more easily create research
artifacts without having to tediously learn highly specific
skills.

Figure 1 Tool-supported HCD

What is our contribution to the workshop topic?
We propose tool-supported HCD for the design of technical
toolkits because ultimately, toolkits are interactive systems.
Interactive systems must be designed with the user in focus.
Therefore, toolkit designers should rely on established
practices. In this regard, HCD appears to be the most
suitable procedure to yield high-quality toolkits. Our
intention is to share research experiences on methodical
toolkits and juxtapose it with the technical toolkit expertise
of the workshop participants. Thus, we hope to steer the
discussion towards a holistic understanding that promotes
toolkits as a research method for HCI. How this could
unfold in practice is illustrated in Figure 1.

Why is our contribution relevant?
If we understand research artifacts as the primary entity of
idea exchange in HCI, we can conclude that the ability to
create such artifacts should not be exclusive to highly
specialized experts. Having said this, the significance of

toolkits as facilitators becomes apparent. However,
effective facilitation requires solid toolkit design. We claim
that the latter is most effectively achieved by applying
appropriate human-centered methods to the development of
technical toolkits as well as to the creation of any research
artifact. Thus, actors of the HCI community may directly
benefit from the work of colleagues with different
backgrounds and skills by easily and correctly applying (or
tailoring) their methods and tools. Toolkit design must
consider the entire process of context of use, requirements,
design and evaluation to produce high quality toolkits. In
other words, there is a distinct need for thoroughly designed
tool-chains which address the entire process. Following this
proposal, we would enable the community to systematically
and collaboratively produce high-quality research artifacts,
which then serve to communicate ideas, attitudes and
solutions to the practice community. Taking this thought
even further, we could ultimately use these thoroughly
designed toolkits, methodically and technically, in a
participatory manner to actively create awareness for the
HCI approach and support the establishment of HCD in e.g.
organizational settings.

CHALLENGES AND OPPORTUNITIES

Challenge 1: Toolkits as a Research Method for HCI
Having engaged in toolkit design and evaluation ourselves
we can state that building a path towards tool-supported
research first and foremost assumes to overcome the lack of
common language in terms of methods and tools among the
HCI community. Often we find ourselves talking about the
same activity or outcome but calling it by different names.
This is certainly owed to historical disciplinary perspectives
[13]. It is one of the reasons why we proposed the
distinction between technical and methodical toolkits in the
first place. By doing so we add complexity but we also
clarify our standpoint. HCD offers a framework to
systematically understand such different perspectives and
should therefore be applied to toolkit design. It provides an
opportunity to foster collaboration through understanding.
Establishing such a common ground may result in great
opportunities to push the envelope of the field. By
emphasizing the interplay of process and artifacts can
elevate our communication in terms of transparency,
traceability and reproducibility with the goal of motivating
and attracting e.g. students, business partners, and many
more to adopt the human-centered mindset.

Challenge 2: Designing and Building Toolkits
Generally speaking, to design something of quality requires
a clear and robust notion of the needs you want to satisfy
and whom you are designing for. A standardized process
for this is HCD (‘engineering design’ [7]). At the same
time, HCD provides leeway for exploring design spaces in a
more creative manner (‘creative design’ [7]). In a nutshell,
it is a framework that offers guidance for design and
development activities. However, it comes to live only
through the people who apply it. This is also the reason why
although standardized it is often applied incorrectly due to a

lack of knowledge or resources [13, 14]. Thoroughly
designed toolkits could be a remedy. Hence, the challenge
would be to find a way to systematically design high quality
technical and methodical toolkits, which achieve the
aforementioned goals. The opportunity in the context of this
workshop could be to identify a tool-chain that may
facilitate toolkit design.

Challenge 3: Methods for Evaluating Toolkits
Current attempts to evaluate toolkits comprise efforts to
compare different toolkits with one another [17]. We would
rather argue for a usability testing approach. Following this
idea, when evaluating toolkits, we must focus on three
aspects: Quality of outcome for the toolkit’s purpose
(intended users, their tasks and intended outcome); but
also, quality of outcome for the process, which may include
more stakeholders (receiver of the outcome) than just the
intended user; Chain of information. Input & output. To
support the whole process of transformation of information
in a holistic tool-driven approach. During the workshop we
want to discuss strategies to ensure and implement the
testing perspective in toolkit design.

SUCCESSFUL TOOLKITS
In order to further elaborate on our proposed categorization,
we present a number of toolkits for each category,
technical, methodical and hybrid, that in our own
experience worked well with clients and students alike.

Toolkit 1: Technical Toolkits
We present examples from our domain, which is
predominantly concerned with software design and
usability engineering. We focus on interface prototyping
software that supports code-less prototyping of GUIs
acknowledging recent developments towards a human-
centered approach. These tools are quite often also used by
non-experts (design or HCD). We chose two popular
examples, Axure [2] and Adobe XD [1] to make our point.
These products are relevant because both go beyond pixel
design. Adobe XD and Axure have increasingly adopted a
process approach, i.e they integrated features that support
testing and collaboration as part of a coherent workflow.
Both products do not only address the designer but whole
teams. They inherently uphold usability and user experience
practices. This can be considered a success in terms of
human-centred tool design. However, they do not yet
represent an entire tool-chain in the sense that we propose
beforehand.

Toolkit 2: Methodical Toolkits
We present one example of a hands-on methodical toolkit
which enhanced our educational work with students but did
also contribute to designing our very own toolkit presented
in the Toolkit 3 part. Sprint [6] is a hands-on guide to the
focused and effective application of the human-centered
design approach in practice. It lays out how the Google
Ventures team conducts design sprints as a consulting
service for start-ups that struggle with developing their
product. Essentially a design sprint is a five-day workshop,

a variation of commonly known design thinking workshops.
Each day is dedicated to accomplishing another goal in the
development process. Each step encompasses different
methods which have to be performed in order to move to
the next phase. Sprints are literally compressed versions of
the HCD process. What makes it so interesting is that it
delivers quick and tangible results. Participants spend a
given amount of time working intensively on a specific
task. At the end of this focused period of time they can see
or experience the artifacts they created, a pile of sticky
notes, paper prototypes, etc. This quality conveys a feeling
of efficiency and satisfaction for everyone involved and
fulfils all requirements of a valuable experience. In absence
of scientific evaluation, we can only tell from our
experience that the sprint format works. Methods such as
Crazy Eights bear great potential for motivating people who
are usually reluctant to pick up pen and paper. The
combination of story-telling and detailed tutorials makes it
easy to apply and tailor design sprints.

Toolkit 3: UX Method Toolkit
The UX Method Toolkit is the result of Henrik’s master
thesis [9]. For the most part it is a methodical toolkit which
employs digital and analogue means to support HCD
projects. It comprises 16 HCD methods. As a whole they
constitute an entire HCD process. Most methods are
suitable to be conducted during UX workshops with users
unfamiliar with the methodology. The methods are
represented as physical trading cards, digital method pages,
and a database entry. All representations are interlinked.
These artifacts are shipped in a sturdy briefcase
emphasizing the physical presence and contributing to the
overall user experience. The Toolkit provides multiple
tools to navigate the collection and theoretically the domain
itself. First, a visual selection tool – the method map –
assigns the methods to phases. Second, QR codes link
analogue and digital content. Third, an interactive
infographic visualizes appropriate method sequences. These
tools facilitate the application of the methods by providing
video tutorials, print-able templates, and method-related
metrics. This toolkit seeks to combine methodical and
technical elements. It is an examination of the interplay of
different toolkits within HCI. It is relevant in terms of
lessons learned: It is hard to systematically evaluate
toolkits with users; talking about methods can be difficult
due to a lack of common language; one cannot draw a
clear border between disciplines; one has to get the why
and how-to across as efficiently as possible.

ABOUT THE AUTHORS
Henrik Mucha currently works as a research associate at
the Institute Industrial IT (inIT) in Lemgo, Germany where
he is part of the HCI Lab. Henrik holds degrees in Industrial
Design (Dipl.-Des., University Duisburg-Essen) and
Usability Engineering (M.Sc., Rhine-Waal University of
Applied Sciences). His current work is concerned with
human-machine interactions in industrial contexts [8]. His
interest in toolkits is e.g. expressed by his master thesis UX

Method Toolkit: User Experience Methods for Human-
centered Design Workshops [9]. Generally, Henrik’s
research and starting doctoral thesis revolve around the
question of how design methodology and concepts such as
UX can be applied to the design of industrial human-
machine interactions. Karsten Nebe is full time professor
for Usability Engineering and Digital Fabrication (since
2011) at the Rhine-Waal University of Applied Sciences,
Faculty of Communication and Environment in Kamp-
Lintfort, Germany. He was working as Usability Engineer
since 2002 and did his doctoral thesis in the field of
integrating usability engineering and software engineering
[13]. He is head of the degree program “Usability
Engineering, M.Sc.” and an active member of various DIN,
ISO/IEC working groups related to HCD. Since 2014 he is
the director of the FabLab Kamp-Lintfort. (Expert member
(besides others) in ISO/TC 159/SC 4/WG 28 (Joint between
ISO/IEC JTC 1/SC 7 and ISO/TC 159/SC 4) Common
Industry Formats for Usability Reports, and ISO/TC
159/SC 4/WG 6 Human-centred design processes for
interactive systems).

SUGGESTIONS FOR TOPICS
• Discussion of the proposal to ‘understand’ toolkits as a

way to perform HCD in a tool-supported way
(methodical and technical)

• Define the framework for chain of (future) tools
• Report on current developments in ISO committees

with regards to toolkits

REFERENCES
1. Adobe XD. Retrieved February 2, 2017 from:

http://www.adobe.com
2. Axure. Retrieved February 2, 2017 from:

https://www.axure.com/
3. DIN EN ISO 9241. 2010. Ergonomics of human-

system interaction, Part 210: Human-centred design for
interactive systems.

4. Holger Fischer, Karsten Nebe, Florian Klompmaker.
2007. A Holistic Model for Integrating Usability
Engineering and Software Engineering. In Proceedings
of the International Conference on Human Computer
Interaction (HCII); Orlando, Florida, USA

5. Steven Houben, Nicolas Marquardt. 2015.
WATCHCONNECT: A Toolkit for Prototyping
Smartwatch-Centric Cross-Device Applications. In
Proceedings of CHI’15, ACM Press Pages 1247-1256

6. Jake Knapp. 2016. Sprint. How to solve Big Problems
and Test New Ideas in just Five Days. Bantam Press

7. Jonas Löwgren. 1995. Applying Design Methodology
to Software Development. In Proceedings of DIS 1995
ACM Press (1995), 87-95.

8. Henrik Mucha, Sebastian Büttner, Carsten Röcker.
2016. Application Areas for Human-Centered Assistive
Systems. In Human-Computer Interaction –

Perspectives on Industry 4.0. Workshop at i-KNOW
2016 Graz, Austria, Oct 2016.

9. Henrik Mucha. 2015. UX Method Toolkit: User
Experience Methods for Human-centred Design
Workshops. Master Thesis: Rhine-Waal University of
Applied Sciences

10. Brad Myers, B. A., Scott E. Hudson, S. E., Randy
Pausch, R. 2000. Past, Present, and Future of User
Interface Software Tools. In ACM Transactions on
Computer-Human Interaction 7, 1, 3–28.

11. Karsten Nebe, Snigdha Baloni. 2016. Agile Human-
Centred Design: A Conformance Checklist. In
Proceedings of International Conference on Human
Computer Interaction (HCII); Toronto, Canda

12. Karsten Nebe, Volker Paelke. 2011. Key Requirements
for Integrating Usability Engineering and Software
Engineering. In Proceedings of International
Conference on Human Computer Interaction (HCII);
Orlando, Florida, USA

13. Karsten Nebe. 2009. Integration von Usability
Engineering und Software Engineering: Konformitäts-
und Rahmenanforderungen zur Bewertung und
Definition von Softwareentwicklungsprozessen. Book
(Ph.D. Thesis); Shaker Verlag 2009; 383228074X

14. Karsten Nebe, Dirk Zimmermann. 2007. Suitability of
Software Engineering Models for the Production of
Usable Software. In Proceedings of the Engineering
Interactive Systems - IFIP WG 13.2 1st Conference on
Human Centred Software Engineering; Salamanca,
Spain

15. Jakob Nielsen. 1993. Usability Engineering. Morgan
Kaufmann Publishers.

16. Neville A. Stanton, Paul M. Salmon, Laura A. Rafferty,
Guy H. Walker, Chris Baber, Daniel P. Jenkins. 2005.
Human Factors Methods: A Practical Guide for
Engineering and Design. Ashgate Publishing
Company, Burlington

17. Brian Tidball, Pieter J. Stappers, Ingrid Mulder. 2010.
Models, Collections and Toolkits for Human Computer
Interaction. Paper presented at The 24th BCS
Conference on Human Computer Interaction -
HCI2010. HCI-Educators Workshop. Dundee,
Scotland.

18. John Zimmerman, Jodi Forlizzi, Shelley Evenson.
2007. Research Through Design as a Method for
Interaction Design Research in HCI. In Proceedings of
CHI’07, ACM Press, Pages 493 – 502

1

Code and Contribution in Interactive Systems Research
James Fogarty

Computer Science & Engineering
DUB Group | University of Washington

jfogarty@cs.washington.edu

ABSTRACT
The scale and complexity of interactive systems research often
require care in distinguishing: (1) the code that implements
a system, versus (2) the research contribution demonstrated
or embodied in a system. This position paper for the CHI 2017
workshop on #HCI.Tools reflects on this contrast and some
common forms of contribution in interactive systems research.
We explore several forms of interactive systems contribution
based in differentiating: (1) what a system accomplishes,
versus (2) how it accomplishes that. We argue some interactive
systems should be considered sketches that use code as a
medium to explore their research contributions, while others
embody their contributions more directly in their code.
Finally, we argue the progress and impact of our field requires
diverse forms of contribution across interactive systems.
INTRODUCTION
The scale and complexity of modern interactive systems is
daunting along several dimensions. Weiser characterized
important aspects of this in a trend from many-to-1 (i.e., many
people sharing a single device), to 1-to-1 (i.e., each person
with a dedicated device), to 1-to-many (i.e., each person having
many devices), to many-to-many (i.e., many people connected
through many devices) [14]. As technology enters later stages
of this trend, researchers now explore interactive systems
that span multiple devices, require massive volumes of data
to enable seemingly simple interactions, or require entire social
networks before key aspects of their design can surface. Such
barriers to real-world deployment of interactive systems
create important challenges for interactive systems research.

This reflection focuses primarily on the relationship between
code and contribution. Interactive systems research generally
contains both, but they are not always well-distinguished.
Prior discussions include consideration of the limitations of
usability testing [6], examination of common pitfalls in
evaluating interactive systems [11], and discussion of technical
HCI research as an activity of invention that contrasts with
activities of discovery [8]. Additional discussion considers
how these challenges manifest or can be magnified in social
computing systems [1], with their corresponding need for a
critical mass of participation [7]. Our reflection is intended
to complement existing discussions without contradiction.

This position paper first considers the case where code is
closely linked to contribution. It then explores cases where
the link is less direct. Consistent with the workshop’s proposal
to explore conceptual roles for toolkits in HCI research, we
examine several forms of interactive systems contribution
based in a differentiation of: (1) what a system accomplishes,
versus (2) how it accomplishes that. We conclude with brief
comments on our prior interactive systems research as a
background for participation in the #HCI.Tools workshop.
WHEN CODE IS THE CONTRIBUTION
Some interactive systems research contributions are directly
manifested in code. Although these are a minority, they are
important for both: (1) their own research value and impact,
and (2) the contrast they can provide for other styles of
research. A well-known example is the $1 Recognizer, a
template-based unistroke gesture recognizer implemented
in approximately 100 lines of code [15]. The paper has been
widely cited, both in applications that use the recognizer
and in later extensions of the underlying recognition technique.
A project website also hosts community implementations of
the recognizer in multiple programming languages. The
contribution and impact of this research thus directly results
from solving a technical challenge in code that people can
easily adopt and adapt in their applications and contexts.
Replication, Validation, and Extension
Discussions of replication within the CHI community often
focus on experimental replication, which remains relevant in
our current context. For example, the $1 Recognizer’s project
website includes data to replicate its performance experiments.
But contributions associated with code also provide opportunity
for stronger validation: each future use of that code in a new
application, or in a context beyond the original research,
validates the underlying research contribution. This validation
is riskier and therefore stronger than simply re-executing the
original data analysis or replicating the prior experiment.

Figures 1 and 2 illustrate this using a simple visual language
we develop in figures throughout this paper. In Figure 1, we
distill the contribution of the $1 Recognizer down to a circle.
The circle is filled (i.e., purple) to indicate that contribution is
novel. In contrast, we will use empty circles (i.e., white)
to illustrate components of a system that are not themselves
novel (e.g., replicate a prior result, otherwise already known).
Figure 2 illustrates this in a research progression based on
the $1 Recognizer. This progression begins with Protractor, a
recognizer informed by techniques in the $1 Recognizer [9].
Protractor is then used in implementing Gesture Script, a
novel tool for interactively authoring compound gestures [10].

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
Presented at the CHI 2017 Workshop on #HCI.Tools: Strategies and Best
Practices for Designing, Evaluating, and Sharing Technical HCI Toolkits.

2

At each step in this progression, previously novel elements
(i.e., filled circles) become already known (e.g., the circle
illustrating Gesture Script’s use of Protractor is now empty).
Gesture Script is itself novel (i.e., the large circle is filled),
uses several known techniques (i.e., empty inner circles),
and requires several underlying innovations (i.e., filled inner
circles). Many other progressions similarly trace back to the
$1 Recognizer, and such illustrations can be considered at
multiple scales. If we were to “zoom in” on Protractor
relative to the $1 Recognizer, we would see they have many
identical inner circles, but Protractor includes a novel
closed-form similarity metric (i.e., a novel inner circle).
WHEN CODE IS NOT THE CONTRIBUTION
Most interactive systems contributions do not correspond so
directly to their code. Identifying the contributions of a system
can therefore be considered in terms of: (1) what a system
accomplishes (i.e., the outer circle and its novelty), and
(2) how a system accomplishes that (i.e., the inner circles
and their novelty). We consider three important combinations.

Figure 3 illustrates the easiest case, for which interactive
systems researchers often strive, and for which interactive
systems reviewers are often most comfortable. The illustrated
system accomplishes novel functionality (i.e., the outer circle,
the what), enabled in part by novel techniques (i.e., the inner
circles, the how). Such contributions can often be motivated
either bottom-up (i.e., introducing novel inner techniques
and then novel outer functionality they enable) or top-down

(i.e., introducing novel outer functionality and then novel
inner techniques required to achieve that functionality).
At the scale of a paper, validation can often focus on either
the outer circle (i.e., the what) or the inner (i.e., the how).
Researchers therefore have flexibility in deciding what to
highlight. Individual reviewers may prefer novelty with regard
to either the what (i.e., the outer circle) or the how (i.e., the
inner circles), but a system that makes novel contributions
in both is more robust to such variation in reviewer taste.

Figure 4 illustrates a system that uses known techniques to
accomplish novel functionality. The challenge for researchers
and reviewers is deciding whether the outer circle (i.e., the
what) is a significant contribution (i.e., versus the case where
both outer and inner circles are already known). Reasonable
people may disagree regarding significance of contribution
in the outer circle, but it seems inappropriate to dismiss any
contribution because “we already know” the inner circles.
Such work is sometimes dismissed as “obvious”, but if no
prior work has previously combined these pieces into the
resulting functionality, a more appropriate question is whether
that novel functionality is a significant contribution.

Figure 5 conversely illustrates a system that applies novel
techniques in the context of known overall functionality. The
challenge is deciding whether improvements to the inner circles
are a significant contribution, and it seems inappropriate to
dismiss that potential because the outer circle “has been done”.
Such work is sometimes dismissed as “just engineering”,
but a more appropriate question is whether the implications
of novel inner techniques make them a significant contribution.
These can include advances in performance or robustness,
but a researcher is often wise to show how advances impact
functionality (i.e., to convert this into our first case by showing
how inner contributions enable novelty in the outer circle).

Figure 2: Protractor extends techniques introduced in the
$1 Recognizer. It is therefore novel (i.e., filled), while also
replicating and extending the $1 Recognizer (i.e., now shown
as empty). Gesture Script then directly replicates Protractor
as part of a larger system that also includes other components.
Some of those are already known (i.e., are also empty), while
some are novel (i.e., filled). The overall functionality presented
by Gesture Script is also novel (i.e., the large circle is filled).

Figure 3: Interactive systems that include both novel functionality
(i.e., the outer what) and novel techniques (i.e., the inner how)
can often be motivated and validated in either contribution.

Figure 4: When underlying techniques are known (i.e., the
inner how), the question is whether their combination in new
functionality is a significant contribution (i.e., the outer what).

Figure 5: When applied in known overall functionality (i.e., the
outer what), the question is whether implications of novel inner
techniques are a significant contribution (i.e., the inner how).

Includes novel techniques

Achieves novel functionality

Includes known techniques

Achieves novel functionality

Includes novel techniques

Achieves known functionality

Figure 1: The $1 Recognizer’s contribution closely corresponds
to its code, allowing re-use of its solution to a technical problem.

3

Scale and Sketching
Given the above forms of contribution, we now return to
the problem of scale and complexity. If a researcher’s
intended contribution is the outer circle (i.e., the what), then
elements of inner circles may be irrelevant. For example,
consider a system that requires persistent storage, but has
no interesting requirements of that storage. A decision to
use a local file, a local database, or a cloud database will
impact the system’s code, but is irrelevant to its research
contribution. Conversely, if the intended contribution is an
inner circle (i.e., the how), details of an outer circle may be
irrelevant. Overall, a researcher is generally not developing
a product and will make choices that impact code according
to whatever is most expedient without sacrificing the research
contribution. Instead of criticizing this as “research code”, or
demanding unreasonable standards, we must remember the
researcher pursues different goals than a product developer.

We believe many interactive systems developed in research
should be considered sketches, as described by Buxton [2].
Sketches allow rapid exploration of many possibilities, with
each sketch surfacing its key properties for critique. Sketches
are also intentionally left ambiguous in many ways, with
additional details to be defined if the idea is further pursued.
This property expedites sketching because it allows proceeding
without spending time or resources defining details. It also
improves critique by remaining focused on important aspects.

Figure 6 extends prior examples to illustrate this, using dashed
circles to show sketched elements. The system includes novel
and concrete techniques, but other elements remain sketched.
The system works well enough to demonstrate the proposed
functionality and to validate the novel techniques that were
developed. But fully achieving its proposed functionality
still requires additional work implementing known techniques
(i.e., dashed inner empty circles) and additional research
addressing remaining challenges (i.e., dashed inner filled
circles). Most research systems are sketches in this regard,
emphasizing key contributions while leaving other aspects
underdeveloped. Many demonstrations are also sketches,
aiming to validate the contribution of an inner circle by
sketching multiple outer circles that are potentially enabled.
Visions and Realizations
Even more than a sketch, a technology vision suggests a
direction while leaving many unanswered questions in how
such a vision will actually be achieved. Figure 7 illustrates
this with larger holes in the vision. Realizing the vision thus

requires both: (1) research that addresses known challenges
(i.e., circles that were sketched in the vision), and (2) research
that defines and then addresses the larger holes in the vision.

Although the difference between a sketch and a vision is
obvious at the extremes, the boundary between them is unclear
and likely based in a judgment regarding the size of the holes.
In visions with larger holes, it is increasingly likely the outer
circle (i.e., the what, the vision) will be significantly changed
in its realization (e.g., by implications of the specific inner
circles developed in pursuing the vision), and therefore should
often be considered a novel contribution. But even when a
realization remains close to an original vision, there are often
contributions in the inner circles needed to achieve that vision.
DISCUSSION
We have aimed to unpack common forms of contribution in
interactive systems research, arguing those contributions are:
(1) distinct from each other, and (2) often distinct from the
code that is used as a medium to demonstrate or manifest a
contribution. Our reflection is motivated by challenges we
observe in researchers and reviewers conflating these aspects
of work. If researchers believe their contributions are in one
regard, while reviewers consider them in another, resulting
mutual frustration generally undermines progress in our field.

In focusing on differentiating the what from the how, we
have intentionally not engaged questions of validating either
form of contribution. We have also not engaged questions
of how much sketching is acceptable in a system, versus what
aspects of a system must be more complete to be considered
a contribution. Such questions seem better addressed in more
specific contexts where they can be grounded in details of the
work, but several points can be discussed more generally.
Irrelevant Detail and Irrelevant Replication
Some common pitfalls emerge when: (1) the difference
between code and contribution is confused, or (2) notions of
replicability in experimental contexts are misapplied in
interactive systems. Consider the sketch from Figure 6, with
a pair of novel techniques (i.e., solid filled inner circles).
These techniques are intended as contributions and should be
thoroughly reported so they can be understood and considered
by reviewers. But desire for thoroughness sometimes leads
reviewers to probe irrelevant details of a sketch. A known
technique (i.e., a solid empty inner circle) has previously
been validated. Use of a known technique is further
validation, and it is likely inappropriate to expect the
current work to explicitly revisit its validation. Similarly, the
sketched inner circles should be considered only to the
extent they impact the intended contribution. The choice of

Figure 6: Many research systems are sketches supporting a
research contribution. This example includes concrete and novel
contributions (i.e., solid inner filled circles) as part of a larger
system sketching novel functionality. Dashed elements need
additional work before they are fully achieved, but the sketch
allows critique to focus on the current contributions.

Includes novel techniques

Sketches additional techniques

Sketches novel functionality

Figure 7: Research visions leave larger holes, in the form of
more questions that need to be answered to realize the vision.

Vision Realization

4

how to implement these techniques, in the current sketch
and in any future realizations, obviously impacts the code
of such systems. But probing at unresolved details of these
sketches, or attempting to evaluate such irrelevant details, is
often obscuring the work’s actual contribution.
Promoting Diverse Forms of Contribution
The long-term health and impact of our field requires all of
the forms of contribution considered here. Visions can inspire
other researchers to pursue a direction, allowing the field to
explore and understand that space more quickly and effectively
than waiting for the original researcher to “fill in the holes”.
Research systems that sketch relationships between what
(i.e., their outer circles) and how (i.e., their inner circles)
similarly allow the field to better explore and understand such
relationships without them being hindered or obscured by
other irrelevant details. But visions and sketching have limits.
Achieving a full realization may reveal that prior sketches
were incomplete or incorrect in important aspects of an idea.
Full realizations also allow confident incorporation of prior
work in new explorations, a contrast to stacking sketches that
may eventually crumble under their own incompleteness.
Full realizations thus enable both direct impact of the current
research and future exploration of additional research.

From this perspective, it seems strange and unfortunate for
our field to simultaneously lament: (1) a perception among
researchers that innovation and novelty are limited by
questions of validation that seem to work against exploring
new directions, and (2) a perception among researchers that
progress is limited by novelty fetishes that seem to work
against building upon what is already known in pursuing
deeper understanding and impact. We obviously need both,
need authors and reviewers to be clear which is pursued,
and need discussions of contribution and validation to be
based in how specific work contributes to this balance.
PRIOR INTERACTIVE SYSTEMS RESEARCH
We look forward to workshop discussions of these and other
perspectives on interactive systems. As background, our prior
interactive systems research includes toolkits for sensor-based
statistical models [5], exploration of tool challenges applying
machine learning in everyday applications [12], techniques
enabling graphical interfaces composed of mutually untrusted
elements [13], a gesture authoring tool [10], and techniques
and tools enabling pixel-based interpretation and runtime
modification of graphical interfaces (e.g., [3,4,16]).
ACKNOWLEDGMENTS
This reflection began as a discussant talk in the HCIC 2011
workshop. We thank Sean Munson and Jacob O. Wobbrock for
their persistent encouragement to prepare a written version of this
reflection. This work was supported in part by the National Science
Foundation under awards IIS-1053868 and SCH-1344613.

REFERENCES
1. Michael S. Bernstein, Mark S. Ackerman, Ed H. Chi, and

Robert C. Miller. (2011). The Trouble with Social Computing
Systems Research. Extended Abstracts of the ACM Conference
on Human Factors in Computing Systems (CHI 2011), 389–398.

2. Bill Buxton. (2007). Sketching User Experiences: Getting the
Design Right and the Right Design. Morgan Kaufmann.

3. Morgan Dixon and James Fogarty. (2010). Prefab:
Implementing Advanced Behaviors Using Pixel-Based
Reverse Engineering of Interface Structure. Proceedings of
the ACM Conference on Human Factors in Computing
Systems (CHI 2010), 1525–1534.

4. Morgan Dixon, Gierad Laput, and James Fogarty. (2014).
Pixel-Based Methods for Widget State and Style in a
Runtime Implementation of Sliding Widgets. Proceedings of
the ACM Conference on Human Factors in Computing
Systems (CHI 2014), 2231–2240.

5. James Fogarty and Scott E. Hudson. (2007). Toolkit Support
for Developing and Deploying Sensor-Based Statistical
Models of Human Situations. Proceedings of the ACM
Conference on Human Factors in Computing Systems
(CHI 2007), 135–144.

6. Saul Greenberg and Bill Buxton. (2008). Usability
Evaluation Considered Harmful (Some of the Time).
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2008), 111–120.

7. Jonathan Grudin. (1988). Why CSCW Applications Fail:
Problems in the Design and Evaluation of Organizational
Interfaces. Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW 1988), 85–93.

8. Scott E. Hudson and Jennifer Mankoff. (2014). Concepts, Values,
and Methods for Technical Human-Computer Interaction
Research. In Ways of Knowing in HCI. Springer, 69–93.

9. Yang Li. (2010). Protractor: A Fast and Accurate Gesture
Recognizer. Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2010), 2169–2172.

10. Hao Lü, James Fogarty, and Yang Li. (2014). Gesture Script:
Recognizing Gestures and their Structure Using Rendering
Scripts and Interactively Trained Parts. Proceedings of the
ACM Conference on Human Factors in Computing Systems
(CHI 2014), 1685–1694.

11. Dan R. Olsen, Jr. (2007). Evaluating User Interface Systems
Research. ACM Symposium on User Interface Software and
Technology (UIST 2007), 251–258.

12. Kayur Patel, Naomi Bancroft, Steven M. Drucker, James
Fogarty, Andrew J. Ko, and James A. Landay. (2010). Gestalt:
Integrated Support for Implementation and Analysis in Machine
Learning. Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST 2010), 37–46.

13. Franziska Roesner, James Fogarty, and Tadayoshi Kohno.
(2012). User Interface Toolkit Mechanisms for Securing
Interface Elements. Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST 2012), 239–250.

14. Mark Weiser and John Seely Brown. (1996). The Coming
Age of Calm Technology. Xerox PARC.

15. Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li.
(2007). Gestures Without Libraries, Toolkits or Training: A
$1 Recognizer for User Interface Prototypes. Proceedings of
the ACM Symposium on User Interface Software and
Technology (UIST 2007), 159–168.

16. Xiaoyi Zhang, Anne Ross, James Fogarty, Anat Caspi, and
Jacob O. Wobbrock. (2017). Interaction Proxies for Runtime
Repair and Enhancement of Mobile Application Accessibility.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2017), To Appear.

Research on HCI Toolkits and Toolkits for HCI Research:
A Comparison

Ulrich von Zadow, Raimund Dachselt
Interactive Media Lab Dresden
Technische Universität Dresden

Dresden, Germany
{firstname}.{lastname}@tu-dresden.de

ABSTRACT
In this position paper, we categorize toolkits in HCI research
into two types. The first type, which we will call Research
Toolkits, enable development of interfaces based on entirely
new paradigms. In contrast, Toolkits for Research speed up
development by encapsulating common code revealed dur-
ing research, enabling faster iterations and research partici-
pation by more people. Put another way, Research Toolkits
demonstrate research, while Toolkits for Research aid—and
sometimes enable—research. This paper describes properties
of the two toolkit types and examines criteria for evaluation
in the light of these properties. Our discussion is based on
publications on toolkit evaluation, on sample HCI toolkits,
on industry works that cover toolkit design, and on our own
experiences in writing toolkits.

ACM Classification Keywords
H.5.2. User Interfaces

Author Keywords
User Interface Systems Evaluation; Toolkits; Frameworks

INTRODUCTION
Toolkits are instrumental in enabling us to build user inter-
faces quickly, hiding complexity and codifying best practices.
Toolkit research is therefore an important research subject,
and historically, toolkit ideas that first appeared in research
have seen remarkable use in industry. One example for an
indisputable success in this area is the story of GUI interface
builders, the graphical editors that allow us to place UI ele-
ments in dialogs. The first interface builders were developed
in research projects (e.g., Buxton et al.’s MenuLay [2] and
Xerox PARC’s Trillium system [6]), before they evolved to
the systems that are integrated into virtually every major UI
toolkit today.

Copyright is held by the author/owner(s). Presented at the HCI.Tools 2017 workshop
in conjunction with ACM CHI 2017. May 7, Denver, Colorado, USA.

Like other tools, interface builders work because they save
their users from reinventing the wheel again and again. Tool-
kits make building UIs easier and enable the construction of
larger systems [10, 11]. If designed correctly, they channel cre-
ativity, making known-good paths more accessible and helping
to focus research [4, 10, 11].

An examination of prior work suggests that two types of tool-
kits have evolved in the HCI community, for which we use the
terms Research Toolkits and Toolkits for Research. Research
Toolkits enable development of interfaces based on entirely
new paradigms, such as proxemic interaction [9] or zoomable
user interfaces [14]. The corresponding publications have new
abstractions and concepts as major contributions and use con-
crete toolkits to demonstrate their usefulness. On the other
hand, Toolkits for Research essentially encapsulate common
concepts found during development of (often short-lived) re-
search prototypes, thus enabling faster iterations and research
participation by more people. The goal in this case is a practi-
cal, usable toolkit that makes it easier to conduct research in a
certain area.

This position paper gives evidence for the existence of the two
distinct toolkit types and compares them concerning goals,
properties and criteria for evaluation. To evaluate and discuss
current practices, we examine a sampling of toolkit publica-
tions as well as publications on toolkit evaluation. In addition,
we look at works on toolkit best practices from an indus-
try perspective as well as our own experience in writing and
maintaining a moderately successful Post-WIMP UI toolkit—
libavg1—over a course of 15 years. Together, this provides
grounding for a discussion in which we examine criteria for
the evaluation for both types of toolkits.

EXAMPLE HCI TOOLKIT PUBLICATIONS
To understand the current state of toolkit evaluation, we ex-
amined a sampling of toolkit publications with respect to the
benefits claimed and the methods used to evaluate them. These
were:

• GroupKit [12], a groupware toolkit,
• PyMT [5], a toolkit for touch-based user interfaces,
• the Proximity Toolkit [9], which enables building applica-

tions based on proxemics, and
1www.libavg.de

1

mailto:ulrich.zadow@tu-dresden.de

• the ZOIL Framework [14], a toolkit for zoomable user in-
terfaces.

While these toolkits cover a wide variety of application cases
and research subjects, the publications share remarkable simi-
larities. All of them claim abstractions as major contribution:
GroupKit abstracts away all network and connectivity issues,
PyMT has persistent event objects, the Proximity Toolkit hides
sensing hardware and delivers high-level proxemics data, and
ZOIL’s central abstraction is a zoomable canvas that contains
the complete UI. In all cases, the source code is available
under a permissive license.

Most the toolkits we looked at (GroupKit, Proximity Toolkit,
ZOIL) are validated empirically using comparatively simple
example applications often written by students at the respective
research labs. Thus, they can argue that they are easy to
use, since it is possible for students to use them. Conversely,
they cannot empirically argue that they are useful for larger
systems. The PyMT paper is an exception in that it additionally
describes somewhat larger applications developed outside of
the lab and deployed in public venues.

We can clearly categorize GroupKit and PyMT as Toolkits for
Research, while the Proximity Toolkit and the ZOIL frame-
work fit our definition of Research Toolkits. GroupKit and
PyMT focus on practical usability (the GroupKit paper specif-
ically states that it encapsulates common code revealed during
research). Both also have a longer history of use before the
actual publication and the authors made an effort to maintain
them long after publication: GroupKit was maintained for ten
years, while PyMT is still maintained, albeit under the name
Kivy.

In contrast, the Proximity Toolkit and ZOIL enable develop-
ment of interfaces based on entirely new paradigms, and they
exist to prove that this is possible in general. There is a clear
novelty to the abstractions they provide. The concrete toolkit
is therefore less important than the theoretical contribution.
Perhaps accordingly, both research toolkits in our sample were
maintained for less than two years after publication.

WORK ON TOOLKIT EVALUATION
We can find criteria for toolkit design and evaluation in several
HCI publications, the foremost of these being Olsen’s 2007
paper on toolkit evaluation [11]. This paper is cited in the
CHI reviewing guide and as such is the closest to a standard
for toolkit evaluation that we have. Olsen enumerates a num-
ber of ways toolkits can demonstrate usefulness, which we
paraphrase here:

• Demonstrate importance: The importance of a toolkit
hinges on the number of potential users, on meaningful
target tasks, and on the situations in which it can be used.

• Problem not previously solved: A toolkit can claim novelty,
i.e., demonstrate that it is the first tool for the task.

• Generality: Importance increases if the toolkit can claim to
support multiple user populations and/or target tasks.

• Reduce solution viscosity: Toolkits can claim to support
faster iterations, e.g., by allowing rapid changes in designs.

• Empower new design participants: If a toolkit allows people
to work on a solution that previously couldn’t, e.g., by
making hard problems tractable, this makes it useful.

• Power in combination: Allowing users to combine building
blocks to create a larger solution quickly can make a toolkit
useful.

• Scalability: Toolkits should demonstrate that they can be
used to tackle large problems.

Olsen further argues for the publication of incomplete toolkits.
His view is that missing features are inevitable in research
toolkits for workload reasons, and further, that incompatibility
with legacy code is to be expected and the "price of progress".

If we apply Olsen’s criteria to the different toolkit types we
identified, we find that most criteria apply to both types. One
exception is novelty, which is essential for Research Toolkits
but less easy to achieve when building a Toolkit for Research.
Further, Toolkits for Research cannot have missing features
or be unusable for compatibility reasons in major use cases,
since their goal is practical usefulness.

Myers et al.’s paper on User Interface Software Tools [10],
published in 2000, is at its heart a call for Post-WIMP UI
toolkits, and much of the work is concerned with the transition
from WIMP to the more varied world of today’s UIs. How-
ever, it also contains a number of criteria for evaluating tools.
Among these are the concepts of threshold (how difficult is
it to learn system use) and ceiling (how much can be done
using the tool). In addition, the authors argue that tools "in-
fluence the kinds of user interfaces that can be created" and
can therefore be used to promote the use of known good con-
cepts. Further, they make the point that building tools needs
"significant experience with, and understanding of, the tasks
they support".

In his paper "Toolkits and Interface Creativity" [4], Green-
berg examines the role of toolkits in fostering programmer
creativity. He argues that good tools are "a language that in-
fluences [programmers’] creative thoughts": "Simple ideas
become simple for them to do, innovative concepts become
possible, and designs will evolve as a consequence." The work
is based on several groupware toolkits (including GroupKit)
initially developed in-house to enable rapid iterations during
research. From this experience, he derives a number of design
guidelines for toolkit design:

• Base toolkits on "lessons learned from one-off system de-
sign".

• Make an effort to create good, clean APIs, since APIs "cre-
ate the language that people will use to think about design".

• Embed toolkits within "well-known languages and program-
ming paradigms".

• Disseminate tools: Make them available, well-documented,
make it easy to "quickly get going".

• "Recognize toolkit creation as an academic contribution":
"Currently, toolkit development is rarely rewarded in the
major interface conferences, for toolkits are typically per-
ceived as software that just package already known ideas."

2

Greenberg’s focus is clearly on Toolkits for Research: He
describes toolkits built to directly support in-house research
and subsequently disseminated and published and argues for
compatibility with existing systems. In contrast to Olsen, he
does not particularly emphasize novelty. Further, he consid-
ers compatility to "well-known languages and programming
paradigms" to be important, contradicting Olsen’s view that
incompatibility with legacy code is the "price of progress" and
thus not an issue.

BEST PRACTICES IN INDUSTRY
In addition to the research publications above, we looked
at a number of sources that describe toolkit design from an
industry standpoint. These are a talk by J. Bloch (among
others designer of the Java Collections Framework) on API
design [1], a chapter on reuse in R. Glass’ Book on Software
Engineering [3], and a blog post by J. Atwood2, founder of
stackoverflow.com.

Finally, we base our arguments on our own experience in de-
veloping and maintaining a software framework, libavg3. This
toolkit was originally written starting in 2003 to support devel-
oping software for museum exhibits, and essentially combines
an efficient 2D scene graph with first-class support for touch
input and easy scripting in Python. It is moderately success-
ful in industry (use, e.g., by ART+COM AG4, Archimedes
Exhibitions GmbH5, and Garamantis GmbH6) and has been
used it to build several hundred exhibits. Since 2013, we
have been using it extensively at the Interactive Media Lab
Dresden, among others as technological basis for a number of
publications (e.g., [7, 8, 13]).

A number of Olsen’s criteria (among them easy iterations,
new design participants, combinable building blocks and scal-
ability) clearly apply to real-world toolkits as well. However,
there are a number of additional aspects that make toolkits
successful in practice.

First, industry publications consider the design of reusable
components to be very hard and recommend trials in varying
scenarios. Glass [3] refers to this as "Rules of Three": "(a) It is
three times as difficult to build reusable components as single
use components, and (b) a reusable component should be tried
out in three different applications before it will be sufficiently
general to accept into a reuse library", and Atwood2 affirms:
"We think we’ve built software that is a general purpose solu-
tion to some set of problems, but we are almost always wrong.
We have the delusion of reuse". This is in contrast to toolkit
publications that claim toolkit use only in the author’s lab.

Second, toolkits often need to maintained for extended periods
of time, and therefore, maintainability is important. In our
experience with libavg, a significant amount of time is spent
adapting the toolkit to the changing world around it: As ex-
amples, since libavg’s inception in 2003, touch has become
an important input method, GPUs have become immensely
2https://blog.codinghorror.com/rule-of-three/
3https://www.libavg.de/
4http://artcom.de/
5https://www.archimedes-exhibitions.de/
6https://www.garamantis.com/

more powerful, and various technologies in use have become
unmaintained or been superseded by more powerful, mod-
ern ones. Time spent maintaining software is overhead. It is
therefore important that this requires minimal effort, and that
makes appropriate internal abstractions and readable, well-
documented code critical.

Third, API usability is important. Bloch [1] emphasizes the
importance of designing an easy-to-use and powerful API
for the first public release: "Public APIs, like diamonds, are
forever. You have one chance to get it right so give it your
best". He therefore promotes a user-centered approach to API
design, structures "requirements as use-cases" and suggests
the equivalent of paper-prototyping for APIs: "Code the use-
cases against your API before you implement it" as well as
expert reviews: "Show your design to as many people as you
can".

DISCUSSION
Both the HCI toolkits we examined and the works on toolkit
evaluation give evidence towards the existence of two clearly
different toolkit types that need different criteria for evaluation.
Olsen’s criteria favor new abstractions and concepts as major
contributions and therefore fit very well to Research Toolkits.
A number of Olsen’s criteria are also important in both cases:
For instance, a large potential user population, the ability to
combine building blocks to create larger solutions and the
scalability to large problems are important in both cases.

However, several criteria do not fit in the case of Toolkits
for Research: Since they are meant to be practically usable,
compatibility with legacy code becomes important and missing
features hinder acceptance. Further, since they are designed
in response to concrete needs in prototype development, it
may be harder for them to demonstrate novelty. Greenberg
hints at this when he writes: "Currently, toolkit development is
rarely rewarded in the major interface conferences, for toolkits
are typically perceived as software that just package already
known ideas"[4]. Still, Greenberg’s publication as well as our
own experiences in building and maintaining in-house toolkits
suggest that they can play an important role in speeding up
research and channeling creativity.

Should we be interested in this type of toolkit for our commu-
nity, it may be beneficial to look at best practices in industry
for additional criteria. In this case, examining toolkit main-
tainability and API usability (based on sound API design prin-
ciples) may give us candidates. The PyMT paper also gives
evidence that Toolkits for Research may in some cases be
able to demonstrate scalability to larger problems empirically:
Toolkit publications later in the toolkit’s lifecycle might make
it feasible to write larger applications and even demonstrate
practical use by a non-captive audience, i.e., outside of the
original research lab.

CONCLUSION
Based on a sample of toolkit publications as well as publica-
tions on toolkit evaluation, we have categorized toolkits in
HCI research into two distinct types, which we have named
Research Toolkits and Toolkits for Research. Further, we have

3

compared these types concerning development goals and prop-
erties and looked at works on toolkit best practices from an
industry perspective. Based on this research as well as our
own experiences in toolkit development, we have additionally
discussed criteria for the evaluation of both types of toolkits.

ACKNOWLEDGMENTS
We wish to thank Ulrike Kister and rest of the IMLD for
fruitful discussions on the subject of HCI toolkits.

REFERENCES
1. Joshua Bloch. 2006. How to Design a Good API and

Why It Matters. In Companion to the 21st ACM
SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications (OOPSLA ’06).
ACM, New York, NY, USA, 506–507. DOI:
http://dx.doi.org/10.1145/1176617.1176622

2. W. Buxton, M. R. Lamb, D. Sherman, and K. C. Smith.
1983. Towards a Comprehensive User Interface
Management System. SIGGRAPH Comput. Graph. 17, 3
(July 1983), 35–42. DOI:
http://dx.doi.org/10.1145/964967.801130

3. Robert L. Glass. 2002. Software Engineering: Facts and
Fallacies. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

4. Saul Greenberg. 2007. Toolkits and interface creativity.
Multimedia Tools and Applications 32, 2 (2007), 139–159.
DOI:http://dx.doi.org/10.1007/s11042-006-0062-y

5. Thomas E. Hansen, Juan Pablo Hourcade, Mathieu
Virbel, Sharath Patali, and Tiago Serra. 2009. PyMT: A
post-WIMP Multi-touch User Interface Toolkit. In
Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces (ITS ’09). ACM, New
York, NY, USA, 17–24. DOI:
http://dx.doi.org/10.1145/1731903.1731907

6. D. A. Henderson, Jr. 1986. The Trillium User Interface
Design Environment. SIGCHI Bull. 17, 4 (April 1986),
221–227. DOI:http://dx.doi.org/10.1145/22339.22375

7. Ulrike Kister, Patrick Reipschläger, Fabrice Matulic, and
Raimund Dachselt. 2015. BodyLenses: Embodied Magic
Lenses and Personal Territories for Wall Displays. In
Proceedings of the 2015 International Conference on

Interactive Tabletops & Surfaces (ITS ’15). ACM, New
York, NY, USA, 117–126. DOI:
http://dx.doi.org/10.1145/2817721.2817726

8. Ricardo Langner, Ulrich von Zadow, Tom Horak, Annett
Mitschick, and Raimund Dachselt. 2016. Content Sharing
Between Spatially-Aware Mobile Phones and Large
Vertical Displays Supporting Collaborative Work. In
Collaboration Meets Interactive Spaces, Craig Anslow,
Pedro Campos, and Joaquim Jorge (Eds.). Springer
International Publishing, 75–96. DOI:
http://dx.doi.org/10.1007/978-3-319-45853-3_5

9. Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proximity toolkit:
prototyping proxemic interactions in ubiquitous
computing ecologies. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology (UIST ’11). ACM, New York, NY, USA,
315–326. DOI:
http://dx.doi.org/10.1145/2047196.2047238

10. Brad Myers, Scott E. Hudson, and Randy Pausch. 2000.
Past, Present, and Future of User Interface Software Tools.
ACM Trans. Comput.-Hum. Interact. 7, 1 (March 2000),
3–28. DOI:http://dx.doi.org/10.1145/344949.344959

11. Dan R. Olsen, Jr. Evaluating User Interface Systems
Research. In Proc. UIST ’07. ACM, 251–258. DOI:
http://dx.doi.org/10.1145/1294211.1294256

12. Mark Roseman and Saul Greenberg. 1996. Building
Real-time Groupware with GroupKit, a Groupware
Toolkit. ACM Trans. Comput.-Hum. Interact. 3, 1 (March
1996), 66–106. DOI:
http://dx.doi.org/10.1145/226159.226162

13. Ulrich von Zadow and Raimund Dachselt. 2017. GIAnT:
Visualizing Group Interaction at Large Wall Displays. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA. DOI:
http://dx.doi.org/10.1145/3025453.3026006

14. Michael Zöllner, Hans-Christian Jetter, and Harald
Reiterer. 2011. ZOIL: A Design Paradigm and Software
Framework for Post-WIMP Distributed User Interfaces.
Springer London, London, 87–94.

4

http://dx.doi.org/10.1145/1176617.1176622
http://dx.doi.org/10.1145/964967.801130
http://dx.doi.org/10.1007/s11042-006-0062-y
http://dx.doi.org/10.1145/1731903.1731907
http://dx.doi.org/10.1145/22339.22375
http://dx.doi.org/10.1145/2817721.2817726
http://dx.doi.org/10.1007/978-3-319-45853-3_5
http://dx.doi.org/10.1145/2047196.2047238
http://dx.doi.org/10.1145/344949.344959
http://dx.doi.org/10.1145/1294211.1294256
http://dx.doi.org/10.1145/226159.226162
http://dx.doi.org/10.1145/3025453.3026006

Paper accepted, toolkit abandoned.

Roman Rädle & Clemens N. Klokmose
Department of Digital Design and Information Studies

Aarhus University, Aarhus, Denmark
roman.raedle@cc.au.dk, clemens@cavi.au.dk

ABSTRACT
Developing and maintaining HCI toolkits is a challenging
task. In this position paper, we present three types of chal-
lenges that potentially turn toolkits into abandonware: orga-
nizational, institutional, and technological challenges. We de-
rive the challenges from our own experiences in developing
HCI toolkits and they have been consolidated based on the
three sample toolkits Squidy, HuddleLamp, and Webstrates.
We describe the overall goals of the toolkits and their applica-
tion areas, report on their uses and the current state of devel-
opment, and link them to the challenges. We conclude with
questions for the HCITools workshop.

Author Keywords
Abandonware; toolkits; frameworks; libraries; enabling
technology.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Third-party software like libraries, frameworks, and toolkits1

often make the foundation of research prototypes used in HCI
research. They enable researchers to explore new ways and
ideas of computing systems to improve interaction between
humans and computers. More general, in the fast-advancing
field of computer science it is nearly impossible nowadays
to have a complete understanding of inner-workings of com-
puting hardware or software algorithms. A third-party soft-
ware thus can provide a level of abstraction that allows re-
searchers to build prototypes with complex computations –
like 3d transformation, server/client or peer-to-peer commu-
nication, image- and video-processing, artificial intelligence,
or machine learning – even with only basic programming
skills.

1We will use toolkit, library, and framework synonymously in this
paper as existing definitions lack clear distinction or contradict each
other.

HCITools: Strategies and Best Practices for Designing, Evaluating and Sharing Tech-
nical HCI Toolkits. Workshop in conjunction with CHI ’17.

For example, OpenCV is a framework that implements hun-
dreds of computer vision algorithms in C/C++. It provides
them to the community in a comparatively low-effort appli-
cation programming interface (API) and for real-time com-
puter vision processing. In the past, the OpenCV library
was mainly for vision-based processing, hence the name open
source computer vision. Nowadays, the library also imple-
ments neural networks for machine learning. Programmers
can use the library without prior or extensive knowledge in
computer vision and i.e. apply image processing algorithms
to an input image such as canny edges. Beyond the C/C++
API, various open source libraries bind to OpenCV and make
it accessible in other programming languages like Java or C#
(e.g., Emgu CV).

OpenCV is a great example of a successful project that went
from research to industry, and myriads of commercial, open
source or research projects use it. A large community main-
tains it, continuously develops new algorithms, and publishes
stable releases on a public website.

Large communities maintaining software, however, is very
unusual for projects originating from research. This entails
a risk, especially when toolkits are part of a research paper
contribution. From our experience, it happens very often that
building a project from source code or running it fails due to
“out-of-date” third-party libraries, libraries that are not avail-
able for download anymore, or projects do not support the lat-
est version of a runtime environment like the Common Lan-
guage Runtime (CLR for .NET), Java Runtime Environment
(JRE), or use deprecated Web standards. Such toolkits devel-
oped in research projects are deemed to end as abandonware
where the authors stop working on it and reported bugs will
not get fixed after the associated paper was accepted.

Despite this risk, HCI toolkits have many potentials and play
an essential role in advancing HCI. They are often a great
source of inspiration and help researchers to think outside the
box. Duval argues that “[...] innovation in general – is that
[...] sometimes just showing somebody a concept is all that
you have to do to start an evolutionary path. And once peo-
ple get the idea of ’hey we can do that’, then somebody does
something, somebody does something better, that just keeps
developing.” (Duval 2011 as cited in [1])

In retrospect, much of our research has been inspired by HCI
toolkits. The Proximity Toolkit by Marquardt et al. [7] is
an excellent example (the accompanying paper has around 70
citations at ACM DL). We have used it for a study to investi-
gate the effect of body movements on users’ spatial memory
while navigating large virtual information spaces [9]. It al-

lowed as to rapidly test various interaction techniques during
a focus group and leverage the group to discuss pros and cons
of each interaction. The toolkit helped to choose an interac-
tion technique appropriate to answer the research question.

In the remainder of this position paper, we will introduce
three challenges that are potential causes for abandonware,
report our experience in creating software toolkits for HCI,
and conclude with questions that we would like to discuss
with participants during the workshop.

CHALLENGES AND OPPORTUNITIES
Resonating with Duval’s statement above, we believe that
HCI toolkits are catalysts for innovation and spark new ideas.
However, in this position paper, we also want to emphasize on
three challenges that HCI toolkits face before they eventually
become abandonware.

Organizational
Open source projects need a large community to maintain
code, and ideally more than one responsible person (main-
tainers) who take the lead on the project and divide the work-
load equally among each other. They are responsible for ac-
cepting pull requests, continuously check the quality of the
source code, make sure the project builds correctly, put new
releases online, and define goals for future developments. An
important and often criticized aspect of open source software
is the lack of proper documentation or working examples. In
the case of poor or no documentation, programmers who use
the toolkit have to dig through the source code manually to
decode and understand how it should be used.

Institutional
The reusability of research toolkits is often limited for scenar-
ios presented in their accompanying research papers, which
impedes the possibility of using them in new and meaningful
ways. We believe there are a number of institutional factors
that impede the continued development of toolkits. Firstly,
time is a precious resource in academia and scientists who
pursue an academic career are often confronted with the bal-
ancing act between community service by offering toolkits to
be used freely and advancing the career by increasing pub-
lication count and boosting the h-index. Secondly, paying
developers to maintain a toolkit or renting proper build in-
frastructure (e.g., continuous integration server) is costly and
may be difficult to budget on research grants. Thirdly, contin-
ued work on an already published system or toolkit may be
discouraged as it is considered incremental rather than novel
work.

Technological
The technological challenges also often impede with the
reuse of toolkits. For example, runtime environments depre-
cate or special hardware is required to run it but is not avail-
able for purchase anymore. Or infrastructure like code repos-
itories disappear. Changes in the technological landscape can
also impact the reuse of toolkits when technology emerges,
and suddenly previously popular technology fades away. A
few years ago TCL/TK was fashionable, but nowadays it is

rarely used. This can likewise happen to current mainstream
technology (e.g., HTML5 or Unity3d).

EXPERIENCE WITH HCI TOOLKIT DEVELOPMENT
We have worked on several research toolkits that reached
various levels of maturity, which also led to a consolidation
of challenges as mentioned earlier. We present three of our
toolkits by describing their overall goal, report on their uses
and the current state of development, and link them back to
the challenges.

Squidy – Open Source but Concluded
Squidy [6]2 is an interaction library which eases the design
of post-WIMP or “natural user interfaces” by unifying var-
ious device drivers, frameworks, and tracking toolkits in a
common toolkit. It provides a visual design environment for
visually connecting input devices to filters (e.g., a Kalman fil-
ter or a gesture recognizer) and map them to an output (e.g.,
Microsoft PowerPoint) (see Figure 1). Squidy offers diverse
input modalities such as multi-touch input, pen interaction,
speech recognition, laser pointer-, eye- and gesture-tracking.
The visual user interface hides the complexity of the techni-
cal implementation from the user by providing a simple visual
language based on high-level visual data flow programming
combined with zoomable user interface concepts. Further-
more, Squidy offers a collection of ready-to-use devices, sig-
nal processing filters, and interaction techniques. The trade-
off between functionality and simplicity of the user interface
is especially addressed by utilizing the concept of semantic
zooming which enables dynamic access to more advanced
functionality on demand. Thus, developers, as well as in-
teraction designers, are able to adjust the complexity of the
Squidy user interface to their current need and knowledge.

Figure 1. Squidy’s user interface with a pipe-and-filter metaphor to vi-
sually connect nodes (filters and input and output devices) (left), a prop-
erty view per node to change settings during runtime (top-right), and a
debug view to inspect current data flow between nodes (bottom-right).

Squidy was used to design the interaction for the artistic in-
stallation Globorama [5]3. It was deployed for a week dur-
ing the Ideenpark 2008 “Zukunft Technik Entdecken” (Fu-
ture Discover Technology) at the fair trade center in Stuttgart,
which was sponsored by ThyssenKrupp. The installation was
2[6] has 54 citations on Google Scholar (accessed 02/17/2017)
3[5] has 54 citations on Google Scholar (accessed 02/17/2017)

exposed from May 17th to May 25th, and around 290.000
people were visiting the Ideenpark. It was used to allow a
single user to control a world map application. This appli-
cation was projected onto a 360-degree panoramic display
where users could navigate to particular locations all over the
world.

Figure 2. Everyday widgets: advising key holder (top), TakeCare flower
(bottom). Interaction were designed with Squidy.

Squidy was also employed during several university classes
and courses to allow non-programmers to design everyday
widgets (see Figure 2). For example, an advising key holder
(top) reports on weather and outside lighting conditions or a
TakeCare flower pot (bottom) gives agency to a flower, which
expresses feelings like “It is too dark” or “I’m hot.”

A summative evaluation of Squidy showed the applicability
also for programmers with little programming experience.
It offers a low barrier to entry for beginners with its visual
pipe-and-filter metaphor (low threshold [8]), but also enables
experienced programmers to implement advanced interaction
techniques (high ceiling [8]).

However, the project is no longer maintained. Keeping up-to-
date with third-party libraries of supported input and output
devices was tedious (technological). Also, build- and con-
tinuous integration servers had to be maintained (organiza-
tional). The project ended with the end of the research fund-
ing and authors had to move on with other research projects
(institutional).

HuddleLamp – Open Source and Ongoing
Another example is HuddleLamp [10]4, which is a desk lamp
with an integrated low-cost RGB-D camera that detects and
identifies mobile displays (e.g., smartphones or tablets) on
tables and tracks their positions and orientations with sub-
centimeter precision. Users can add or remove off-the-shelf,
web-enabled devices in an ad-hoc fashion without prior in-
stallation of custom hardware (e.g., radio modules, IR mark-
ers) or software. Because of HuddleLamp’s web-based pair-
ing, adding a new device is simply done by opening an URL
on the device and putting it on the table so that it is visible to
the camera.

HuddleLamp was demonstrated at ITS 2014 and has been
used for research studies (e.g., [11]). Apart from the hy-
brid sensing pipeline presented in the research paper, Hud-
dleLamp contributes a visual editor to rapidly change the
pipeline and test and try out different settings for each pro-
cessing step (see Figure 3).

Figure 3. HuddleLamp’s visual editor to change the processing pipeline
and to rapidly test different processing filter settings.

This project is still ongoing and used in research projects,
but the public source code is currently not maintained. Un-
fortunately, Creative does no long manufacture the supported
Senz3D camera (technological), which requires implement-
ing a new input node to allow tracking with an alternative
camera (e.g., Microsoft Kinect v2).

Webstrates – Open Source and Highly Active
Webstrates [4]5 is the most recent toolkit and under active de-
velopment. It has reached a state beyond prototypical use.
Webstrates presents an alternative take on the future of web
use and development. In Webstrates, changes to the Docu-
ment Object Model (DOM) of webpages (called webstrates)
are persisted across reloads and synchronized to other clients
of the same webstrate. This includes changes to embedded
JavaScript and CSS. Webstrates addresses the challenge that
while web technologies have become increasingly powerful,
technologies such as server-side scripting have turned the web
into a sophisticated application platform rather than a user-
driven hypermedia system [2] as envisioned by Tim-Berners
Lee.
4[10] has 56 citations on Google Scholar (accessed 02/17/2017)
5[4] has 12 citations on Google Scholar (accessed 02/17/2017)

Webstrates was originally developed to prototype a reitera-
tion of Kay and Goldberg’s vision of interaction with com-
puters as being interaction with personal dynamic media [3],
but with an emphasis on shareability. We therefore referred
to this reiteration as shareable dynamic media (SDM). The
core principles of SDM are “Malleability: users can appro-
priate their tools and documents in personal and idiosyn-
cratic ways; Shareability: users can collaborate seamlessly
on multiple types of data within a document, using their own
personalized views and tools; and Distributability: tools and
documents can move easily across different devices and plat-
forms.” [4]

Since the original publication Webstrates has gone from being
a proof-of-concept to a robust web framework used in multi-
ple research projects internationally and by the paper authors
for their daily activities (e.g., note taking, lectures, presenta-
tions, teaching material, and rapid prototyping).

To become more than a one-time affair, a full-time devel-
oper implements new features and maintains the quality of
the code. The development is covered by research funding
and costs approximately $70.000 per year. The paper authors
also dedicate a significant portion of their time to advance
Webstrates and to define future directions together with the
full-time developer.

Potential Measure of HCI Toolkits
In contrast to Squidy and HuddleLamp, the public interest in
Webstrates and its community of users is growing. At the
time of writing, the GitHub repository has eight forks, and
more than 50 people bookmarked it. Of course, GitHub forks
and bookmarks should not be stressed too much as a reliable
measure of the success of Webstrates. But unlike commer-
cially sold hardware and software and their success measured
by a company’s revenues, it is difficult to quantify the success
of an HCI toolkits. Measuring a toolkit’s success could be
based on a jury assessing it according to pre-defined metrics
(e.g., generalizability to other application areas) or ranking it
by how often it is used in research prototypes.

CONCLUSION
As argued in this position paper, we believe that the viability
of HCI toolkits developed in research is largely constrained
by the three presented challenges: organizational, institu-
tional, and technological. However, we also believe in the
power of HCI toolkits. They serve as factual manifestations
of the advancement of socio-technical systems and help the
HCI community (and industry) to crystallize a shared vision
for HCI, and herewith we are emphasizing on Duval’s state-
ment at the beginning of this position paper.

In the workshop, we would like to share our experiences in
building HCI toolkits and discuss the presented challenges
with participants. We would further like to spark discussion
around the legacy of HCI toolkits. How can we, as HCI re-
search community, preserve the genealogy of HCI toolkits?
Does it make sense to start an encyclopedia of HCI toolkits
that answer questions like (i) What does a particular toolkit
do?, (ii) What did the authors inspire to create it?, and (iii)
How did it push the field forward?

REFERENCES
1. Barnet, B., and Moulthrop, S. Memory Machines: The

Evolution of Hypertext. Anthem Press, 2013.

2. Bouvin, N. O., and Klokmose, C. N. Classical
hypermedia virtues on the web with webstrates. In
Proceedings of the 27th ACM Conference on Hypertext
and Social Media, HT ’16, ACM (New York, NY, USA,
2016), 207–212.

3. Kay, A., and Goldberg, A. Personal dynamic media.
Computer 10, 3 (Mar. 1977), 31–41.

4. Klokmose, C. N., Eagan, J. R., Baader, S., Mackay, W.,
and Beaudouin-Lafon, M. Webstrates: Shareable
dynamic media. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software &
Technology, UIST ’15, ACM (New York, NY, USA,
2015), 280–290.

5. König, W., Rädle, R., and Reiterer, H. Interactive design
of multimodal user interfaces. Journal on Multimodal
User Interfaces 3, 3 (2010), 197–213.

6. König, W. A., Rädle, R., and Reiterer, H. Squidy: A
zoomable design environment for natural user interfaces.
In CHI ’09 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’09, ACM (New York, NY,
USA, 2009), 4561–4566.

7. Marquardt, N., Diaz-Marino, R., Boring, S., and
Greenberg, S. The proximity toolkit: Prototyping
proxemic interactions in ubiquitous computing
ecologies. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’11, ACM (New York, NY, USA, 2011), 315–326.

8. Myers, B., Hudson, S. E., and Pausch, R. Past, present,
and future of user interface software tools. ACM Trans.
Comput.-Hum. Interact. 7, 1 (Mar. 2000), 3–28.

9. Rädle, R., Jetter, H.-C., Butscher, S., and Reiterer, H.
The effect of egocentric body movements on users’
navigation performance and spatial memory in
zoomable user interfaces. In Proceedings of the 2013
ACM International Conference on Interactive Tabletops
and Surfaces, ITS ’13, ACM (New York, NY, USA,
2013), 23–32.

10. Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer, H., and
Rogers, Y. Huddlelamp: Spatially-aware mobile
displays for ad-hoc around-the-table collaboration. In
Proceedings of the Ninth ACM International Conference
on Interactive Tabletops and Surfaces, ITS ’14, ACM
(New York, NY, USA, 2014), 45–54.

11. Rädle, R., Jetter, H.-C., Schreiner, M., Lu, Z., Reiterer,
H., and Rogers, Y. Spatially-aware or
spatially-agnostic?: Elicitation and evaluation of
user-defined cross-device interactions. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems, CHI ’15, ACM (New York, NY,
USA, 2015), 3913–3922.

Technology and Community in Toolkits for
Musical Interface Design

Andrew P. McPherson
Centre for Digital Music

Queen Mary University of London, UK
a.mcpherson@qmul.ac.uk

Fabio Morreale
Centre for Digital Music

Queen Mary University of London, UK
f.morreale@qmul.ac.uk

ABSTRACT
This position paper discusses toolkits for creating digital musi-
cal instruments. Musical interaction imposes stringent techni-
cal requirements on interactive systems, including high spatial
and temporal precision and low latency. Social and community
factors also play an important role in musical interface toolk-
its, including design sharing and the ability of performers and
composers to count on the longevity of an instrument. This
paper presents three examples of musical interface toolkits, in-
cluding our own Bela, an open-source embedded platform for
ultra-low-latency audio and sensor processing. The paper also
discusses how the requirements of specialist musical interface
toolkits relate to more general HCI toolkits.

ACM Classification Keywords
H.5.5. Sound and Music Computing: Systems; H.5.1. Multi-
media Information Systems: Evaluation/Methodology

Author Keywords
Toolkit, digital musical instrument, embodied interaction,
maker community, latency, longevity, pluggable communities.

INTRODUCTION
Musical interaction presents a number of interesting opportuni-
ties and challenges for HCI. Many digital musical instruments
(DMIs), like their acoustic counterparts, are useful case stud-
ies in embodied interaction: extended practice leads to the
instrument becoming a transparent extension of the musician’s
body, where the operations of manipulating the instrument
become automatic, allowing the musician to focus on higher-
level musical actions [20]. Musical interaction also places
stringent technical demands on digital systems, including spa-
tial and temporal precision, high sensor and audio bandwidth,
predictability and low latency [7].

Toolkits for creating DMIs have become increasingly common
[18, 21, 19, 2, 23, 13, 5], with different projects aimed at a
variety of musical contexts and technical skill levels. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI 2017, May 6-11, 2017, Denver, CO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4655-9/17/05 ...$15.00.
http://dx.doi.org/10.1145/3025453.3026056

toolkits share a desire to enable musicians who are not engi-
neers to create their own high-quality instruments by solving
common technical challenges and optimising for the qualities
musicians find important.

DMI toolkits provide a common platform for instrument cre-
ators to share designs, which serves both research and artistic
goals. It takes time for performers to acquire expertise on a
new instrument, and encouraging composers to write music
for a new instrument requires assurance that the instrument
will remain in existence for the piece to continue to be played
[15].

In the DMI community, published papers typically contain
insufficient detail to fully replicate an instrument design, espe-
cially in regard to aesthetic choices and fine details of crafts-
manship which are important to the performer experience but
might not follow established scientific processes. Some online
DMI repositories have been created1 inspired by more general
sharing platforms such as Instructables,2 however this remains
an outstanding challenge for the DMI community. DMI toolk-
its, by providing a common platform for designers, reduce the
barriers to exchanging fully functioning designs.

This position paper explores the current state of musical inter-
face toolkits and their relation to more general HCI toolkits.

1For example, Muzhack by Arve Knudsen: https://muzhack.com
2http://www.instructables.com

Figure 1. Bela, which consists of a custom hardware board (“cape”) on
a BeagleBone Black running specialised software.

https://muzhack.com
http://www.instructables.com

We discuss both technical and social challenges for toolkit
design, including the central role of the user community in
sustaining a viable toolkit. We then present three established
toolkits, including our own Bela3 (Figure 1), an open-source
embedded hardware platform for ultra-low-latency audio and
sensor processing [13]. We conclude with suggestions for
toolkit designers and topics for discussion at the workshop.

THREE CHALLENGES FOR HCI TOOLKITS
The technical and social challenges we discuss in this section
are particularly important for musical interface toolkits, but
also apply to HCI toolkits more generally.

Latency
Action-to-sound latency (delay) is a critically important factor
in DMI design. Wessel and Wright recommended that DMIs
exhibit no more than 10ms latency with no more than 1ms
jitter (variation in latency) [24]. An experiment with a digi-
tal percussion instrument confirmed these recommendations,
showing that performers rated an instrument with consistent
10ms latency the same as one with under 1ms latency, but that
20ms and 10ms ± 3ms of jitter both rated significantly lower,
even when performers did not identify an audible delay [7].

The effects of excess latency include making the instrument
feel less responsive, reducing its perceived quality, and po-
tentially disrupting the sensorimotor processes needed for
accurate performance. Latency can also be used for deliberate
effect: for example, in a multimodal smartphone interface,
adding latency to the tactile feedback channel made virtual
buttons feel heavier [8].

Surprisingly, 15 years after Wessel’s recommendation of less
than 10±1ms latency, many commonly used tools for creat-
ing DMIs do not meet this standard [14] with jitter posing a
particular problem. Achieving low and consistent latency also
remains an issue for embodied interaction in other contexts.

Longevity
Many experimental DMIs are designed to be used for only
a few performances, but some continue to be used for many
years. Once a DMI is created, there is typically little incentive
to upgrade its hardware and software, as any change to form or
behaviour might disrupt its familiarity to the performer. When
DMIs are built using laptops or mobile devices, however, the
aim of long-term stability comes into conflict with the need
for regular system updates.

Hardware toolkits based on embedded processors (e.g. [2,
13]) provide a potential solution by allowing the instrument to
operate standalone without a computer. Ideally, the instrument
can be maintained indefinitely on this dedicated hardware. In
practice, keeping a DMI toolkit operational over many years
remains a challenge. Toolkit design considerations include:
high reliability, minimum external hardware or software de-
pendencies, rapid setup time (especially when revisiting an
instrument after a long period of disuse) and availability of
spare parts. The last consideration points to the value of open-
source hardware designs [17], or at least the use of commodity
hardware where possible.
3http://bela.io

Another question for toolkit designers is whether they seek to
support prototyping, extended use, or both. Few mass-market
commercial products would be built with HCI toolkits, but at
least in the DMI community, it is not uncommon for a toolkit
to be used for both prototyping and subsequent production on
a scale of dozens or even hundreds of instruments.

Community
The utility of a toolkit cannot be assessed solely by its techni-
cal specifications, nor even by the quality of its documentation.
An active and cooperative user community also plays a major
role in making a toolkit useful to new designers [4, 10]. The
success of open-source platforms like Arduino and Processing
owes as much to their vibrant online communities as to their
engineering features. These communities contribute by pub-
lishing example code, providing technical support, creating
hardware and software accessories, and helping the original
designers maintain the core platforms.

In [17] we explore the process of creating a community around
an open-source platform based on our experiences with Bela
[13] (described below). We observed that the Bela community
grew not only around the intrinsic features of Bela itself, but
also through connecting to other established open-source tools.
We describe this process as pluggable communities: growing
a new community in discrete leaps by leveraging established
communities around other tools.

THREE MUSICAL INSTRUMENT TOOLKITS
Many musical interface toolkits have been created. The three
mentioned here are all open source, publicly available toolkits
for creating standalone musical instruments, and all three are
still in regular use.

Satellite CCRMA
Satellite CCRMA [2] is a platform for building musical instru-
ments which eliminates the need for a computer. It consists
of an ARM Linux distribution with several popular audio pro-
gramming environments preinstalled, and it is accompanied
with a set of example materials for creating instruments [1].
Originally created for the BeagleBoard4 single-board com-
puter, it has since been released for the popular Raspberry
Pi. Instruments built with Satellite CCRMA frequently make
use of an Arduino5 microcontroller board for gathering sensor
data, with the Raspberry Pi responsible for audio processing.

Satellite CCRMA is in regular use by DMI designers. Its web-
site6 links to performances of instruments built with it, and a
wiki and online forum provide a means for the community to
share knowledge. Its use of the widely available Raspberry
Pi, with no dependence on custom hardware, means that the
platform itself should be maintainable for years to come, and
that software should be easily shared amongst different users.
Leaving to the designer decisions on sensors and other ex-
ternal hardware provides significant flexibility, but with the
tradeoff of placing responsibility on the designer to maintain
and document their own hardware contributions.
4http://beagleboard.org
5http://arduino.cc
6https://ccrma.stanford.edu/~eberdahl/Satellite/

http://bela.io
http://beagleboard.org
http://arduino.cc
https://ccrma.stanford.edu/~eberdahl/Satellite/

Hoxton OWL
The Hoxton OWL [23] is an open-source programmable audio
effects pedal. More recently, it has also been released as
a synth module in the popular Eurorack form factor. Like
Satellite CCRMA, the OWL is designed for creating musical
instruments and audio processing systems, and features a large
example library and an active online community.7

In contrast to Satellite CCRMA, the OWL is a complete hard-
ware unit based on a custom (though open source) design.
Thus, where DMI creators using Satellite CCRMA would
likely add their own sensors and other hardware, OWL cre-
ators will typically work with the existing controls and focus
on software development. Though this reduces the variety
of interactive systems that can be created, it makes design
sharing especially straightforward. Since the OWL pedal is
a self-contained device in a robust stage box, it is likely that
any designs running on it can be maintained for many years,
though the ability to edit code on the device will remain de-
pendent on a working computer-based compiler toolchain.

Bela
Our lab has created Bela [13] (Figure 1), an embedded plat-
form for ultra-low-latency audio and sensor processing. Bela
is based on the BeagleBone Black8 single-board computer
with a custom expansion board (“cape”) providing stereo au-
dio I/O with onboard speaker amplifiers, 8 channels each of
16-bit analog I/O and 16 digital I/Os. It uses the Xenomai real-
time Linux kernel extensions to process audio and sensor data
at higher priority than anything else on the board, including
the Linux kernel itself.

The signature feature of Bela is its extremely low latency, un-
der 1ms round-trip for audio or down to 100µs for analog
and digital data, with less than 25µs of jitter, outperforming
other computer audio environments [14]. It also features an on-
board, browser-based IDE with support for C/C++, PureData
and SuperCollider programming languages, and an in-browser
oscilloscope. Like Satellite CCRMA, Bela is designed for cre-
ating self-contained musical instruments, where the designer
attaches their own sensor hardware and Bela handles all the
computation that would normally be performed by a laptop
and a microcontroller board like Arduino.

The platform that later became Bela was originally created for
the D-Box, a musical instrument designed to be modified and
hacked by the performer [25]. In a CHI 2017 paper [17], we
describe the process of developing it from a single-function
device to a maker community platform, gradually broadening
its scope and improving usability. In April 2016, Bela suc-
cessfully launched on Kickstarter with the support of over 500
backers. Hardware and open-source design plans are available
for sale and download,9, and we maintain a library of example
projects and an online forum10 for community support and
idea exchange.

7https://hoxtonowl.com
8https://beagleboard.org/black
9https://shop.bela.io and http://bela.io/code, respectively

10http://forum.bela.io

OUR RELATED WORK
The Augmented Instruments Laboratory,11 led by the first au-
thor, is a research team within the Centre for Digital Music
at Queen Mary University of London. An augmented instru-
ment is a traditional musical instrument whose capabilities
have been technologically extended, maintaining the familiar-
ity and cultural connotations of the original instrument while
extending its capabilities.

In addition to Bela [13], described in the preceding sec-
tion, our previous projects include several augmented in-
struments including the magnetic resonator piano [15],
an electromagnetically-actuated acoustic grand piano and
TouchKeys [12], a sensor kit adding multi-touch sensing to
the surface of the piano keyboard. Our research also encom-
passes studies of performer-instrument interaction in solo [7]
and group [16] settings and studies of audience perception of
performance [3].

CONCLUSION: POSITION ON TOOLKITS
As creators of an open-source DMI toolkit, we are especially
interested in the potential for toolkits to broaden access to
interactive system design. HCI toolkits, including those for
creating musical interfaces, contribute to and benefit from
larger trends in maker culture [9]. Here we set out two specific
arguments for possible discussion at the workshop.

Toolkits need a two-way dialogue with their communities
User-centred and participatory design methodologies have
long histories in HCI, so to say that a toolkit should respond
to the needs of its community borders on cliché. In fact,
we would argue that there is a risk in being too reactive to
perceived user requirements. It has long been observed that
people use technology in unexpected ways, and this process
of appropriation has influenced HCI design methods [6]. Sim-
ilarly, the history of music is replete with examples of people
playing instruments in unexpected ways [25]. Performers,
upon encountering a new instrument, explore its creative op-
portunities and constraints [11], but they should not be ex-
pected to imagine hypothetical capabilities of instruments that
do not yet exist [15].

We argue that HCI toolkits, while being sensitive to community
needs, should also express the creative intentions of the toolkit
designer. This way, the designer not only contributes new ideas
back to the community, they also provide unique “signature
features” that may improve the uptake of their tools [17].

No toolkit is aesthetically neutral
Every musical instrument encourages certain possibilities
while discouraging others. Some constraints are obvious: the
piano can only play 88 discrete notes, and does not allow the
performer to shape them after they are struck. Others are less
obvious: patterns of notes in piano music are typically those
which fit the shape of the hand, which are different than the
patterns likely to be convenient on a wind or string instrument.
Similarly, even if two DMIs can control identical dimensions
of the sound, their differing physical designs might encourage
different choices of actions.

11http://www.eecs.qmul.ac.uk/~andrewm

https://hoxtonowl.com
https://beagleboard.org/black
https://shop.bela.io
http://bela.io/code
http://forum.bela.io
http://www.eecs.qmul.ac.uk/~andrewm

Tuuri et al. [22] distinguish between push effects which force
or guide the user to particular choices, versus pull effects which
relates to the ease of conceiving how an action relates to an
output. Music programming languages, supposedly able to
create any sound, may nonetheless exhibit strong pull effects
by making certain structures and actions easier than others.
For that reason we might speculate that every computer music
language has its own signature sound.

More broadly, we would argue that toolkit designers can and
should embrace the aesthetic influence of their toolkits. A
good toolkit might allow the creation of many different types
of systems with widely varying aesthetics, but certain possi-
bilities will always be more obvious than others. Rather than
striving for an elusive neutrality, toolkit creators might do best
to acknowledge their own personal outlook and the influence
it is likely to have on designers and end users.

ACKNOWLEDGEMENTS
This work was funded by EPSRC under grant EP/N005112/1
(Design for Virtuosity: Modelling and Supporting Expertise
in Digital Musical Interaction).

REFERENCES
1. Edgar Berdahl. 2014. How to Make Embedded Acoustic

Instruments.. In Proc. NIME.

2. Edgar Berdahl and Wendy Ju. 2011. Satellite CCRMA: A
Musical Interaction and Sound Synthesis Platform.. In
Proc. NIME.

3. S Astrid Bin, Nick Bryan-Kinns, and Andrew McPherson.
2016. Skip the Pre-Concert Demo: How Technical
Familiarity and Musical Style Affect Audience Response.
In Proc. NIME.

4. Leah Buechley and Benjamin Mako Hill. 2010. LilyPad
in the wild: how hardware’s long tail is supporting new
engineering and design communities. In Proceedings of
the 8th ACM Conference on Designing Interactive
Systems. ACM, 199–207.

5. Filipe Calegario, Marcelo M Wanderley, Stéphane Huot,
Giordano Cabral, and Geber Ramalho. 2017. A Method
and Toolkit for Digital Musical Instruments: Generating
Ideas and Prototypes. IEEE MultiMedia 24, 1 (2017).

6. A. Dix. 2007. Designing for appropriation. In Proc.
British HCI Group Conf. on People and Computers.

7. Robert H Jack, Tony Stockman, and Andrew McPherson.
2016. Effect of latency on performer interaction and
subjective quality assessment of a digital musical
instrument. In Proceedings of the Audio Mostly 2016.

8. Topi Kaaresoja and Stephen Brewster. 2010. Feedback
is... late: measuring multimodal delays in mobile device
touchscreen interaction. In International Conference on
Multimodal Interfaces.

9. Stacey Kuznetsov and Eric Paulos. 2010. Rise of the
expert amateur: DIY projects, communities, and cultures.
In Proc. NordiCHI.

10. Silvia Lindtner, Garnet D Hertz, and Paul Dourish. 2014.
Emerging sites of HCI innovation: hackerspaces,
hardware startups & incubators. In Proc. CHI.

11. T. Magnusson. 2010. Designing Constraints: Composing
and Performing with Digital Musical Systems. Computer
Music J. 34 (2010), 62–73. Issue 4.

12. A. McPherson, A. Gierakowski, and A. Stark. 2013. The
space between the notes: adding expressive pitch control
to the piano keyboard. In Proc. CHI.

13. Andrew McPherson and Victor Zappi. 2015. An
environment for submillisecond-latency audio and sensor
processing on BeagleBone Black. In Proc. AES 138th
Conv.

14. Andrew P McPherson, Robert H Jack, Giulio Moro, and
others. 2016. Action-Sound Latency: Are Our Tools Fast
Enough?. In Proc. NIME.

15. Andrew P McPherson and Youngmoo E Kim. 2012. The
problem of the second performer: Building a community
around an augmented piano. Computer Music Journal 36,
4 (2012), 10–27.

16. Fabio Morreale, Antonella De Angeli, Raul Masu, Paolo
Rota, and Nicola Conci. 2014. Collaborative creativity:
The music room. Personal and Ubiquitous Computing 18,
5 (2014).

17. Fabio Morreale, Giulio Moro, Alan Chamberlain, Steve
Benford, and Andrew P. McPherson. 2017. Building a
Maker Community Around an Open Hardware Platform.
In Proc. CHI.

18. Axel Mulder. 1995. The I-Cube system: moving towards
sensor technology for artists. In Proc. of the Sixth
Symposium on Electronic Arts (ISEA 95).

19. D. Newton and M. T. Marshall. 2011. Examining How
Musicians Create Augmented Musical Instruments. In
Proc. NIME.

20. Luc Nijs, Micheline Lesaffre, and Marc Leman. 2009.
The musical instrument as a natural extension of the
musician. In Proc. Interdisciplinary Musicology.

21. Dan Overholt. 2006. Musical interaction design with the
Create USB interface. In Proc. ICMC.

22. Kai Tuuri, Jaana Parviainen, and Antti Pirhonen. 2017.
Who Controls Who? Embodied Control Within
Human–Technology Choreographies. Interacting with
Computers (2017).

23. Thomas Webster, Guillaume LeNost, and Martin Klang.
2014. The OWL programmable stage effects pedal:
Revising the concept of the on-stage computer for live
music performance.. In Proc. NIME.

24. D. Wessel and M. Wright. 2002. Problems and Prospects
for Intimate Musical Control of Computers. Computer
Music Journal 26, 3 (2002), 11–22.

25. Victor Zappi and Andrew McPherson. 2014. Design and
Use of a Hackable Digital Instrument. In Proc. Live
Interfaces.

The Toolkit / Audience Challenge
David Ledo, Lora Oehlberg, Saul Greenberg

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada, T2N 1N4
{david.ledo, lora.oehlberg, saul.greenberg}@ucalgary.ca

ABSTRACT
A variety of HCI toolkits help designers and developers au-
thor particular styles of interactive systems. However, the de-
sign, use and evaluation of toolkits are fraught with many
challenges. This paper focuses on a subset of challenges that
arise from the fit between the toolkit and its intended audi-
ence. These challenges include the skill set of that audience,
the resources they have, and how they learn. We illustrate
these challenges via three toolkits: Phidgets, d.Tools, and the
Proximity Toolkit.

Author Keywords
Toolkits; Prototyping Tools.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
Miscellaneous; Prototyping.

INTRODUCTION
Toolkits are means of encapsulating design concepts to help
a developer realize particular styles of interaction design
without undue effort [2]. The developer chooses a toolkit to
design within HCI genres and/or to exploit interaction tech-
niques. Broad genres include GUIs, physical / tangible inter-
faces, and ubicomp. Interaction techniques are narrower,
such as gesture recognition and input sensing. Toolkits range
in how they can be accessed [3], and can include:
− traditional programming, usually through coding via a

functional or object-oriented API;
− coding support tools, such as SDKs with interface builders,

widget sets, and physical building blocks (e.g. electronics);
− authoring tools that minimize coding by providing a

higher-level means for authoring interactivity or for creat-
ing interactive behaviours (e.g. visual programming
[5,7,15] or programming by demonstration [4,16]);

− high-level tools that supports debugging and understand-
ing of the run-time system state, for example, Papier-Ma-
che [6] and the Proximity Toolkit [11] provide visualiza-
tions that allows the end-developer to monitor, record, and
even modify runtime information (e.g. sensor data, notifi-
cations, variables, etc.).

Yet there is another important way that toolkits vary: their
intended audience. Understanding the toolkit’s audience is
critical, for it will influence how the toolkit will be used,
what support tools should be offered, learnability, and even
how the toolkit should be evaluated.

NOTABLE TOOLKITS
Our interests lie in toolkits that let the end-developer create
ubicomp-style physical interfaces that: gather data from the
real world (e.g. sensors); respond in software and physical
objects (e.g. visualizations, motors); and support creating be-
haviours linking the two. We consider three toolkits within
this genre that will act as running examples to discuss various
toolkit/audience challenges: Phidgets [3], d.Tools [5] and the
Proximity Toolkit [11].
Phidgets
Fitchett and Greenberg [3] introduced Phidgets in 2001.
Phidgets comprise both hardware and software. Hardware in-
cludes USB-based circuit boards that provide different sen-
sors and actuators. The software includes an API for inter-
acting with each type of board. The API controls the board’s
components (e.g. rotating a servo motor to a particular angle)
and delivers changes to sensor values as events. The software
includes graphical widgets representing each board for de-
velopers to view and test the hardware counterpart.

Phidgets originated from frustrations its authors had in cre-
ating early tangible user interfaces. To build such interfaces,
developers had to be knowledgeable in many areas, includ-
ing circuitry, micro-programming, networking, etc. Acquir-
ing that knowledge came at a high cost and time demand.
Thus, Greenberg and Fitchett designed Phidgets with com-
puter programmers as its audience in mind – people who do
not necessarily understand electronics but are proficient in
writing event-driven object-oriented software [3]. They de-
signed Phidgets to mimic traditional UI widget program-
ming, as it would then be easy for developers to integrate into
their existing workflow.

Phidgets became a commercial product, one which is now
widely recognized and used within the HCI community.
Other researchers have since incorporated Phidgets into their
own platforms [5,12].

d.Tools
d.Tools [5] is a high-level authoring tool, which (in part) in-
corporates Phidgets. A designer prototypes interactive be-
haviours by manipulating state-diagrams that move through
different outputs based on sensor interpretations. d.Tools’
audience is interaction designers – people without special-
ized engineering or programming knowledge who want to
quickly iterate through the early designs of functional inter-
active objects [5]. d.Tools is widely cited in HCI. It was later

extended into Exemplar [4], which incorporated pattern
recognition and programming by demonstration.
The Proximity Toolkit
The Proximity Toolkit [11] audience is highly specialized re-
searchers investigating the design of proxemic interactions.
Proxemic interaction imagines a world of devices and inter-
action behaviors that have fine-grained knowledge of nearby
people and devices: how devices and people move into
range, their precise distance from one another, their identity,
and even their relative orientation. The toolkit encapsulates
and abstracts sensor data (e.g. Vicon, Kinect), as relations
between entities. Developers can focus on designing proxe-
mic-aware applications rather than the setup and complex
programming of tracking equipment and its data.

The Proximity Toolkit includes an event-driven API that in-
forms the system of changes in proxemic values for different
entities. Developers can monitor objects that move in the en-
vironment at runtime, either by showing numeric changes in
variables of interest, or by interacting with a visualization
showing all tracked entities and the proxemic relations be-
tween them. It also eases development by recording and stor-
ing tracked data, which can then be replayed as a simulation.
The authors and their colleagues developed a large number
of proxemic interaction techniques and applications [1,10] to
investigate how proxemic interactions can be applied to other
domains, such as advertising [17], and remote controls [8].
THE TOOLKIT/AUDIENCE CHALLENGES
Prototyping toolkits often refer to their end-developer in a
range of ways: programmer, designer, developer, end-user,
maker, researcher, etc. Regardless of how the expected end-
developer is labelled, toolkits need to define and understand
their target audience. Indeed, Olsen [14] argues for the im-
portance of understanding situation, tasks, and user when
creating a toolkit. Below are a few sample challenges that
can help unpack attributes about the primary end-developer
and how it relates to the toolkit.

Challenge 1. End-Developer Skills
Myers et. al. [13] argue that one aspect of evaluating a toolkit
is its threshold and ceiling. Threshold refers to the developer
effort to get started, while the ceiling defines how much can
be done using the tools. Ideally, a toolkit would have a low
threshold and high ceiling. Yet the notions of threshold and
ceiling are actually relative to the skills of the end-developer.

Toolkits often extend existing programming languages,
which affect the threshold for the end-developer. With
Phidgets, originally built atop Visual Basic, the end-devel-
oper would have a very low ceiling only if they were profi-
cient in Visual Basic and its interface builder. In contrast, an
interaction designer with no programming background
would find the threshold high, as they would have to learn to
program before using Phidgets. The commercialized version
of Phidgets mitigated this issue somewhat by making its API
accessible to a broader audience skilled in different program-
ming platforms: core languages (e.g., C#, Java), mobile (iOS,

Android), scripting (Python), multimedia platforms (Flash),
etc. d.Tools further reduce the threshold for non-program-
mers by providing an authoring environment that substituted
programming with state-diagrams.

High ceilings also depend on the audience. Toolkits offer
high ceilings through flexibility and expressiveness, but this
only works when the end-developer has design skills in the
area that the toolkit is trying to open. For example, the Prox-
imity Toolkit offers a high ceiling for proxemic interaction
development via: a myriad of proxemic variables; relation-
ships between people, devices and objects; and flexible con-
figuration of the physical sensing environment. It assumes its
end-developers have knowledge in proxemic theory and how
to apply it to interaction design. If the developer does not
have that knowledge, the richness of the Proximity Toolkit
can easily become a liability. This is especially true if the
end-developer wants to take the path of least resistance,
where the toolkit guides them to ‘do the right thing, away
from the wrong things’ [13].
Challenge 2. End-Developer Resources
Toolkits may rely on commercial or DIY hardware. Some-
times the underlying technologies can be acquired with ease
and at reasonable cost (e.g. Phidgets). However, other
toolkits assume a larger infrastructure (e.g. the Proximity
Toolkit requires a dedicated room and specialized hardware
such as the Vicon motion tracking system). As the required
resources and costs increase, the expected audience will nar-
row to only those very interested in the area.

Challenge 3: End-Developer Learning
Another consideration is how the end-developer will learn
the toolkit.

First, end-developers need to learn what the toolkit offers
over and above its base platform. For example, Phidgets and
the Proximity Toolkit both offer an API to particular capa-
bilities, and they must be learned, along with the patterns that
best exploits that API. While D.Tools offers the state dia-
gram approach, that too must be learned.

Second, end-developers also need to make sense of the over-
all data, automated processes, etc. as provided by the toolkit.
For example, various ubicomp-oriented toolkits exploit sen-
sor data, often delivered as low-level, frequently updated
variables. Yet, learning what that sensor data means (espe-
cially if it is noisy) can be quite challenging, for that data
must be related to real-world phenomena. This is partially
why toolkits provide high-level tools that visualize and/or
aggregate sensor data [6,11] or store information for further
scrutiny [9,11]. To illustrate, the Proximity Toolkit shows a
visualization of all objects in a scene, and how the proxemic
variables (i.e., aggregated sensor values) track the proxemic
relations between those objects. The end-developer can view
the visualization to learn and understand the changes as they
occur, which become references for creating the new system.

Third, research-oriented systems often assume knowledge of
an underlying design paradigm. Phidgets and d.tools assume

some knowledge and experience in physical and tangible
user interfaces. The Proximity Toolkit assumes some
knowledge in Proxemics theory and proxemic interaction.
However, the toolkits themselves do not offer easy ways to
acquire that knowledge, except perhaps by referring to exter-
nal resources such as publications.

Toolkits must be constructed with learnability in mind,
which depends on the intended audience. They need to give
the end-user an idea of what is possible, help make sense of
(and debug) the data, and include resources to help new users
understand the toolkit. Thus, the toolkit should offer a broad
range of simple example systems, extensive documentations,
repositories of examples, video tutorials, etc., as well as pub-
lished papers of the design space supported by the toolkit.
SUGGESTED WORKSHOP TOPIC
Based on the above challenges, we propose the following
topic for the workshop: who is the audience, and how does
the toolkit design fit that audience? The prior challenges doc-
ument only a few examples of concerns related to the end-
developers. We expect workshop members will suggest other
concerns, and elaborate on the ones mentioned here.

For example, toolkit evaluation is a great concern for many
toolkit researchers, especially because submitted toolkit pub-
lications are usually accepted only if they are accompanied
by a convincing evaluation of the toolkit. However, evalua-
tion without the context of the intended audience is a some-
what pointless (and perhaps misleading) exercise. To illus-
trate, various toolkits are evaluated by illustrating how end-
developers can quickly create prototypes within a short pe-
riod of time. Yet, such an evaluation is meaningful only if
the intended audience has the core skills behind the toolkit,
is able to learn the toolkit quickly, and has the resources al-
ready on hand. In many toolkit papers, the audience doing
the evaluation was prepared a priori. For example, Phidgets
were evaluated by showing how undergraduate students cre-
ated many Phidget prototypes quickly. Those students were
already knowledgeable in Visual Basic (skills), were given a
collection of Phidget hardware and cables ahead of time (re-
sources), and were provided with lectures illustrating the tan-
gible interface genre along with a step by step tutorial of how
to use Phidgets (learnability). The Proximity Toolkit was
evaluated by illustrating graduate student projects: those stu-
dents were also prepared in a manner similar to the Phidgets
study, and the specialized equipment required was already in
place. d.Tools performed two evaluations with audiences
knowledgeable in design, and were also prepared and sup-
ported. The first audience comprised participants with gen-
eral design experience who were assigned particular tasks to
do. The second were students in a masters-level HCI design
course. In all the above cases, the context of the chosen au-
dience approached a ‘best case’ for evaluation.
AUTHOR BACKGROUND AND POSITION
David Ledo is a PhD student at the University of Calgary
working under supervision of Lora Oehlberg and Saul

Greenberg. During his undergraduate, he took part in build-
ing toolkits (e.g. [9]), while during his masters he worked
with the Proximity Toolkit, creating remote control applica-
tions [8]. Given his training and practice, he often creates li-
braries and wrappers for different tasks (e.g. visualization,
networking). As part of teaching an undergraduate class in
advanced HCI, David created a toolkit for his students to
connect mobile devices and Phidgets to author new smart in-
teractive objects. As part of his PhD topic, he works on cre-
ating prototyping tools for interaction designers to author
smart interactive objects using mobile devices instead of
electronic processors or components [7].

Lora Oehlberg is an Assistant Professor at the University of
Calgary. Her research focuses on interactive tools and tech-
nologies that support creativity, innovation, and multi-disci-
plinary collaboration in domains such as interaction design,
maker communities, and health care. Due to Lora’s research
background in product design theory and methodology, she
cares about how prototyping tools and toolkits fit into real-
world interaction design practice. She is interested in the in-
tersection of interaction design and product design practice –
when designers want to use prototyping tools to define the
behavior and form of interactive physical objects.

Saul Greenberg is a Faculty Professor and Emeritus Profes-
sor in the Department of Computer Science at the University
of Calgary. While he is a computer scientist by training, the
work by Saul and his students typify the cross-discipline as-
pects of Human Computer Interaction, Computer Supported
Cooperative Work, and Ubiquitous Computing. He and his
crew are well known for their development of: toolkits for
rapid prototyping of groupware and ubiquitous appliances;
innovative and system designs based on observations of so-
cial phenomenon; articulation of design-oriented social sci-
ence theories; and refinement of evaluation methods.
REFERENCES
1. Till Ballendat, Nicolai Marquardt, and Saul Greenberg.

Proxemic interaction: designing for a proximity and ori-
entation-aware environment. Proc. ACM ITS 2010.

2. Saul Greenberg. Toolkits and interface creativity. Mul-
timedia Tools and Applications, 2007.

3. Saul Greenberg and Chester Fitchett. Phidgets: easy de-
velopment of physical interfaces through physical widg-
ets. Proc. ACM UIST 2001.

4. Björn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. Authoring Sensor-based Interactions
by Demonstration with Direct Manipulation and Pattern
Recognition. Proc. ACM CHI 2007.

5. Björn Hartmann, Scott R. Klemmer, Michael Bernstein,
Leith Abdulla, Brandon Burr, Avi Robinson-Mosher,
and Jennifer Gee. Reflective Physical Prototyping
Through Integrated Design, Test, and Analysis. Proc.
ACM UIST 2006.

6. Scott R. Klemmer, Jack Li, James Lin, and James A.
Landay. 2004. Papier-Mache: Toolkit Support for Tan-
gible Input. Proc. ACM CHI 2004.

7. David Ledo, Fraser Anderson, Ryan Schmidt, Lora
Oehlberg, Saul Greenberg, and Tovi Grossman. Pineal:
Bringing Passive Objects to Life with Embedded Mo-
bile Devices. Proc. ACM CHI 2017.

8. David Ledo, Saul Greenberg, Nicolai Marquardt, and
Sebastian Boring. Proxemic-Aware Controls: Design-
ing Remote Controls for Ubiquitous Computing Ecolo-
gies. Proc. ACM MobileHCI 2015.

9. David Ledo, Miguel Nacenta, Nicolai Marquardt, Se-
bastian Boring, and Saul Greenberg. The HapticTouch
Toolkit: Enabling Exploration of Haptic Interactions.
Proc. ACM TEI 2012.

10. Nicolai Marquardt, Till Ballendat, Sebastian Boring,
Saul Greenberg, and Ken Hinckley. Gradual Engage-
ment between Digital Devices as a Function of Proxim-
ity: From Awareness to Progressive Reveal to Infor-
mation Transfer. Proc. ACM ITS 2012.

11. Nicolai Marquardt, Robert Diaz-Marino, Sebastian Bor-
ing, and Saul Greenberg. 2011. The proximity toolkit:
prototyping proxemic interactions in ubiquitous compu-
ting ecologies. Proc. ACM UIST 2011.

12. Nicolai Marquardt and Saul Greenberg. Distributed
Physical Interfaces with Shared Phidgets. Proc. ACM
TEI 2007.

13. Brad Myers, Scott E. Hudson, and Randy Pausch. Past,
Present, and Future of User Interface Software Tools.
ACM ToCHI 7, 1: 3–28, 2000.

14. Dan Olsen. Evaluating user interface systems research.
Proc. ACM UIST 2007.

15. Raf Ramakers, Kashyap Todi, and Kris Luyten. Paper-
Pulse: An Integrated Approach for Embedding Elec-
tronics in Paper Designs. Proc. ACM CHI 2015.

16. Valkyrie Savage, Colin Chang, and Björn Hartmann.
Sauron: Embedded Single-camera Sensing of Printed
Physical User Interfaces. Proc. ACM UIST 2013.

17. Miaosen Wang, Sebastian Boring, and Saul Greenberg.
Proxemic Peddler: A Public Advertising Display That
Captures and Preserves the Attention of a Passerby.
Proc. ACM PerDis 2012.

Malleable User Interface Toolkits for Malleable
Cross-Surface Interaction

James R. Eagan
LTCI, Telecom ParisTech, Université Paris-Saclay

75013 Paris, France
james.eagan@telecom-paristech.fr

ABSTRACT
Existing user interface toolkits are based on a single user inter-
acting with a single machine with a relatively fixed set of input
devices. Today’s interactive systems, however, can involve
multiple users interactive with a heterogeneous set of input,
computational, and output capabilities across a dynamic set
of different devices. The abstractions that help programmers
create interactive software for one kind of system do not neces-
sarily scale to these new kinds of environments. New toolkits
designed around these new kinds of environments, however,
need to be able to bridge existing software and libraries or
recreate them from scratch. In this position paper, we examine
these new constraints and needs and look at three strategies
for software toolkits that help to bridge existing toolkit models
to these new interaction paradigms.

Author Keywords
user interface toolkits, cross-surface interaction, instrumental
interaction, malleable software

INTRODUCTION
The design of current user interface toolkits has changed rela-
tively little since the first graphical user interfaces first began
to appear: users interact with interface controls, or widgets,
using a pointing device and a keyboard. While these toolkits
have seen minor improvements over time, such as handling
pointing with a finger or performing gestures, the overall de-
sign approach has changed little.

A programmer creates an interface using a collection of wid-
gets. They typically come from a standard set of pre-defined
widgets, but programmers may propose their own set of supple-
mental widgets. They may modify the behavior of an existing
widget in some small way, such as a custom list view that
might show font names rendered in the relevant font. Or they
may provide wholly new behaviors, such as a double-ended
range slider or an interactive graph view.

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.
Every submission will be assigned their own unique DOI string to be included here.

Ultimately, however, the applications programmers create are
heavily influenced by the set of widgets provided by the toolkit.
These widgets, however, were designed around at a time when
one user interacted with one machine, and applications con-
sisted of a single process running on that machine.

These assumptions start to break down in the context of
multi-surface or cross-device interactions, where a logical
application—from the user’s point of view—might involve
processes running across multiple devices, such as a phone,
tablet, tabletop, wall, or motion tracking system.

Moreover, adapting an existing application’s interaction or
functionality to handle unanticipated usage scenarios may be
cumbersome. A user who wishes to add a new toolbar button
for a frequently-used task, or a teacher who wishes to extend
an email client’s data detectors [5,6] to link course numbers to
an intranet course management website, or a technical writer
who wishes to reference BibTeX citations in email client or
presentation tool would be hard-pressed to do so without mod-
ifying existing applications’ source code.

Currently, developers of systems that permit such kinds of
interaction in new environments or such malleable interfaces
must create explicit support on an ad-hoc basis. We need to
provide programmers the appropriate tools and abstractions on
such concepts that make creating future applications feasible
in the same way the current UI toolkits greatly reduced the
barriers to making graphical user interfaces.

THREE CHALLENGES FOR TOOLKIT RESEARCH
We view three primary challenges for toolkit research in such
future applications: handling the heterogeneity of future ap-
plication contexts with multiple users, multiple machines, and
multiple interaction modalities; making software more mal-
leable to support users’ own particular needs in their own
situated contexts; and bridging between the current state-of-
the-art and future development models.

Multiple users, machines, interaction modalities
Application developers can no longer make the assumption
that there will be one user, interacting with a single machine
using a single mouse and a single keyboard. Applications in
multi-surface environments, for example, may run on one or
multiple machines, and the number of machines present may
evolve during a single interaction session.

1

Figure 1: Multi-surface interaction with the BrainWall: multi-
ple users interact with a table, wall-sized display, and physical
interface props.

Figure 1 shows a real user scenario from our work with Sub-
stance Grise to create the BrainWall application [3]: A neuro-
scientist has the latest 3D brain scans of healthy and unhealthy
brains on her smartphone. She enters the room and places
her phone on an interactive tabletop to bring her data into the
environment. Around the table, she and her colleagues arrange
the brains to better facilitate comparison. To get a better view
of the brains, she and her colleagues move in front of a wall-
sized display that mirrors the display on the table, showing a
high-resolution image of the brain scans. A colleague uses a
wooden chopstick to point at a related structure on a plastic
model of a brain, causing all of the brains displayed on the
wall and table to re-orient their 3D views to that part of the
brain. Another colleague takes out a tablet and selects one of
the brains on the wall. On his tablet, he begins annotating the
different structures and changing their colors, using the tablet
as a personal workspace before sharing them with the group.

As this scenario shows, the BrainWall application actually
consists of multiple applications running on multiple devices:
a data provider on the neuroscientist’s phone, an organizer on
the tabletop, a viewer on the wall, a 3D tracker for the physical
brain and pointer, and an annotator on the colleague’s tablet.

Even without each of these individual components, the applica-
tion would continue to function but without that component’s
capabilities. A scientist could continue to sort brains without
the wall, or view the brains without the 3D tracker, etc. These
devices may dynamically come and go, as when the colleague

takes out a tablet to join the environment and annotate brains,
or if the neuroscientist leaves the room to take a phone call.

Moreover, each of these different devices offers a different
computational and interactional profile, with different memory,
storage, processing, communication, input, or output character-
istics. An application developer must manage the complexities
of this heterogeneity and dynamicity manually.

To help with these challenges and to provide developers with a
set of abstractions that simplify data sharing strategies and dif-
ferent functionalities between devices, discovery, and interac-
tion, we created the Shared Substance prototype [3], described
below. While this approach reduces the barrier to creating
multi-surface applications, programmers must master a new
“data-oriented programming” model and still must explicitly
manage the specifics of data sharing strategies (such as via
local replication or remote querying). Some of these details
may require specific consideration from the programmer. For
the rest, we need to develop a collection of appropriate ab-
stractions much as undo managers have freed programmers
from needing to explicitly support such capabilities.

Making software malleable
Current applications are designed for a particular context of
use, with developers making a certain set of assumptions about
how the software will be used. It is not possible, however, for
designers to foresee and anticipate the myriad ways that a user
may make use of the software.

Current software toolkits provide relatively little support for
end-users to extend the capabilities of their software. Some
systems do provide support for users to create macros to au-
tomate certain actions, as in Microsoft’s Office suite or with
AppleScript interfaces, but these are limited to the customiza-
tion hooks that developers explicitly embed in their software
and maintain as a separate set of functionalities. As such,
developers must work explicitly to support these features and
thus expose a larger surface area for potential bugs.

Some applications do provide support for plugins, but these
interfaces are up to the individual application developer. Each
application developer must create her own infrastructure for
detecting loading, unloading, and sandboxing such plugins on
an ad-hoc basis. As a result, each application, if it provides
a plugin interface at all, offers a differing degree of access to
program concepts and objects, and each modification creator
must learn the specific intricacies of that particular program.

What is missing is explicit support in the toolkit to create gen-
eralizable application objects that programmers can re-use. In
the 1980’s and 90’s, it was common for applications to provide
their own “macro” capabilities, where users could automate
their software using “macro” scripts. Each application pro-
vided its own set of capabilities, using its own specific macro
scripting language. Today, Mac applications built with the
standard Cocoa toolkit are automatically scriptable using Ap-
pleScript and support a standard set of universal objects and
commands common to GUI applications: opening windows,
selecting the frontmost document, clicking buttons, etc.

2

If application developers explicitly support it, they can add
higher-level concepts as messages in an email program or todo
items in a task manager. Nonetheless, application developers
must explicitly provide such support, and the user is limited to
the specific hooks provided by the developer.

Supporting such kinds of customization should be an auto-
matic consequence of using standard toolkit elements and
design patterns for interactive software. If a user wishes to,
for example, overlay subtitles downloaded from the internet
on a movie file downloaded from the iTunes store, it should be
feasible for the user to be able to connect a subtitles loader to
the video playback controller, even if the application developer
did not anticipate such a feature.

Recreating the universe
We have created various toolkits that attempt to explore these
concepts [2–4]. One of the challenges in creating new ways
of building interactive software is the bootstrapping problem.
If the toolkit is completely built from scratch, all applications
in the environment need to be created from scratch. This
approach offers great flexibility, but requires significant devel-
opment effort and tends to lead to “toy” examples.

The Shared Substance [3] environment is an example of this
kind of toolkit. Shared Substance is based on a data-oriented
programming model similar to object-oriented programming
in the sense that data associated with program concepts can be
grouped together into objects and can have associated methods.
In data-oriented programming, however, these methods are
separable from the underlying data. Thus, an object running
on a tabletop might offer a different set of functionalities than
an object running on a smartphone, despite using the same
underlying set of data. Data itself are organized into trees,
providing a scene graph that can be shared across the different
devices in a multi-surface environment.

Shared Substance programmers thus choose which subtrees to
make available to other devices. The toolkit provides builtin
discovery capabilities. When data are shared, or new devices
become available, programs can either replicate the data by
maintaining a cloned copy that must be kept in sync with its
source, or they can mount the data, assuring that the original
always maintains an authoritative copy of the data. Adding
new functionality involves associating new Facets, or collec-
tions of methods, that can be attached to different parts of the
data.

While this approach provides a set of transparent abstractions
that frees the programmer from many of the challenges of
multi-surface interactions, it does require programmers to
think about and write software in a very different way. We
found that the mental gymnastics of contorting one’s brain
into a new way of thinking hindered the development of soft-
ware in this environment. Moreover, any new capabilities or
applications, such as displaying a new kind of data on the wall,
involved writing the code from scratch.

Bridging to legacy software: Scotty
Scotty [2] uses a different philosophy. Its goal is two-fold: to
provide a test-bed for exploring instrumental interaction [1]
and to provide a toolkit for the development of malleable

applications. Rather than create a toolkit from scratch built
around these concepts, we built Scotty as a meta-toolkit that
grafted new capabilities into Cocoa. Thus, existing Cocoa
applications can benefit from Scotty’s new capabilities without
modification of their source code.

Scotty thus is able to give arbitrary Cocoa applications the
ability to load Scotty plugins that can be built using concepts
of instrumental interaction. Scotty instrument plugins draw
upon the Scotty toolkit to provide lenses into the underlying
application’s objects, views, and controllers. As such, creating
the subtitles modification described above is “simply” a matter
of identifying the playback window’s playback controller to
extract the current time. Scotty itself provides tools for help-
ing a plugin developer to inspect and make sense of a host
application’s interface and core program objects. Adding this
new functionality is thus a matter of attaching a transparent
overlay window, loading a Python module that decodes subti-
tles, etc. In about 150 lines of Python code, a programmer can
“teach” Quicktime Player to load subtitles from an external file,
overlay them on the screen, and integrate them to the playback
of the movie.

This approach has the advantage of quickly being able to take
advantage of the full ecosystem of existing Mac applications.
In theory, researchers are not bound by what they can develop.
If an existing program offers the core functionality necessary,
it should be straightforward to incorporate it into a research
prototype.

The reality, of course, is different: design choices made by the
original developers are invisible. Shoe-horning them into a
new environment, with different core assumptions and core
values, can involve considerable effort. In the case of instru-
mental interaction, for example, Mac applications just aren’t
designed with this style of interaction in mind. A developer
may end up spending as much effort adapting an existing ap-
plication to a new interaction paradigm as she would have
implementing a proof of concept. Only in hindsight can she
evaluate whether that effort is worth the benefits of having a
real application running in a real environment versus a func-
tional proof-of-concept research prototype.

Webstrates
In between these two approaches, we built Webstrates as a sort
of putty to build shareable dynamic media on top of existing
web technologies. Developers can take advantage of existing
knowledge of HTML, JavaScript, and CSS to build webstrates
in this new environment. The learning curve to at least be
functional in this environment is relatively low. Moreover,
existing web applications and libraries are readily available
so long as they meet or can be made to meet certain core
assumptions of Webstrates (notably that the DOM in a web
browser is no longer ephemeral).

Webstrates combines several appealing properties for the ex-
ploration of new kinds of applications: it is compatible with
a large selection of applications that meet the requirements
above, developers can leverage their existing knowledge and
experience, web environments present a relatively low barrier

3

to entry, and the webstrate canvas itself is a relatively open
environment in which developers can experiment freely.

In contrast to a strict bridge such as Scotty, where applica-
tion developers must fit within the constraints of the Cocoa
development environment first, and then figure out how to
express their new interactions within its concepts, Webstrates
allow developers to focus first on their concepts, and then on
the constraints of the web framework. Both approaches use a
bridging approach to bootstrap the development environment,
but Webstrates finds a more lightweight balance than does
Scotty.

CONCLUSIONS
Modern toolkits need to break the core assumptions implicit
in historical interface toolkits. No longer do we live in a world
of a single user at a single keyboard and mouse, interacting
on his or her own. Multiple users may interact with multiple
devices each in dynamic environments with different interac-
tive and computational properties. The interactive metaphors
that worked in historic environments do not necessarily hold
up in the face of these new additions. We thus need to build
new toolkits to help programmers build interactive software
that can handle these changing constraints.

We have presented a collection of three toolkits that we have
built, deployed, and published. Through this experience, we
have explored different styles of implementing new interaction
models and new ways of modeling interactive software; and
new ways of building off of the existing set of tools that have
been created over the course of the WIMP and early post-
WIMP era.

ACKNOWLEDGEMENTS
[Redacted for review.]

REFERENCES
1. Beaudouin-Lafon, M.: Instrumental interaction: an

interaction model for designing post-wimp user interfaces.
In: CHI ’00: Proceedings of the SIGCHI conference on
Human factors in computing systems. pp. 446–453. ACM,
New York, NY, USA (2000)

2. Eagan, J.R., Beaudouin-Lafon, M., Mackay, W.E.:
Cracking the cocoa nut: user interface programming at
runtime. In: Proceedings of the 24th annual ACM
symposium on User interface software and technology. pp.
225–234. UIST ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2047196.2047226

3. Gjerlufsen, T., Klokmose, C.N., Eagan, J., Pillias, C.,
Beaudouin-Lafon, M.: Shared substance: developing
flexible multi-surface applications. In: Proceedings of the
2011 annual conference on Human factors in computing
systems. pp. 3383–3392. CHI ’11, ACM, New York, NY,
USA (2011),
http://doi.acm.org/10.1145/1978942.1979446

4. Klokmose, C., Eagan, J., Baader, S., Mackay, W.,
Beaudouin-Lafon, M.: Webstrates: Shareable Dynamic
Media. In: ACM (ed.) ACM Symposium on User Interface
Software and Technology (UIST). pp. 280–290. UIST ’15

Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, Charlotte, United States
(Nov 2015), https:
//hal.archives-ouvertes.fr/hal-01242672

5. Nardi, B.A., Miller, J.R., Wright, D.J.: Collaborative,
programmable intelligent agents. Communications of the
ACM 41(3), 96–104 (1998)

6. Pandit, M.S., Kalbag, S.: The selection recognition agent:
Instant access to relevant information and operations. In:
Proceedings of the 2Nd International Conference on
Intelligent User Interfaces. pp. 47–52. IUI ’97, ACM, New
York, NY, USA (1997),
http://doi.acm.org/10.1145/238218.238285

4

http://doi.acm.org/10.1145/2047196.2047226
http://doi.acm.org/10.1145/1978942.1979446
https://hal.archives-ouvertes.fr/hal-01242672
https://hal.archives-ouvertes.fr/hal-01242672
http://doi.acm.org/10.1145/238218.238285

Looking for the Right Toolkit at the Right Time

Fabio Paternò

CNR-ISTI, HIIS Laboratory

Via Moruzzi 1, 56124 Pisa, Italy

fabio.paterno@isti.cnr.it

ABSTRACT

I have been working for several years in the area of tools

for supporting design, development, and evaluation of

interactive systems. In this position paper following the

suggested format, I report on my personal view on the

workshop topics based on such experience.

Author Keywords

End user development, cross-device user interfaces, model-

based design.

ACM Classification Keywords

H.5.2 [Information Interfaces and Presentation]: User

Interfaces - Interaction styles.

THREE CHALLENGES/OPPORTUINITIES

End User Development

The design and development of flexible software able to

match the many possible users’ needs is still a difficult

challenge. It is almost impossible to identify all the

requirements at design time and, in addition, such

requirements are not static since user needs are likely to

change/evolve over time, and designers have to consider the

wide variability of the possible contexts of use. Indeed, the

explosion of mobile technologies has made it possible for

people to access their applications from a variety of

contexts of use that differ in terms of available devices,

things, and services, and that require specific actions when

various types of events occur. Thus, it is not possible to

guarantee a complete fit between the initially designed

system and actual needs at any given time. As a result, it is

important to design interactive software through methods

and tools capable of dynamically and quickly responding to

new requirements without spending vast amounts of

resources, and which are able to consider that boundaries

between design-time and run-time have become more and

more blurred. Achieving this can increase the impact of

software development companies since their applications

can more easily penetrate many markets thanks to their

ability to be customized directly by domain experts.

End-User Development (EUD) [1] approaches can help to

solve such issues by enabling the possibility of customizing

software applications by domain experts that have not

experience in programming. Users’ backgrounds can vary

from management, engineering, construction, education,

research, health, insurance, sales, administration or other

areas. On the one hand, such users share a common

requirement for software to support their common tasks,

which may vary rapidly, and some of them cannot even be

anticipated at design time, but discovered only during

actual use. On the other hand, current slow software

development cycles and the lack of domain knowledge on

the part of software developers are limitations to addressing

the requirements of the different users. Thus, EUD can

reduce time and costs needed for customizations and

increase their quality by avoiding potential

misunderstandings between final users and developers.

Cross-device User Interfaces

The increasing availability of various types of devices in

our daily life is often a missed opportunity since current

applications are limited in supporting seamless task

performance across them. Users often perceive device

fragmentation around them rather than an ecosystem of

devices that supports their activities. In order to address

such issues a number of frameworks, platforms, and

authoring environments have been proposed, mainly in

research environment. The goal is to facilitate design and

development of multi-device user interfaces. Responsive

design is not enough to address such issues since its basic

assumption is that the user at a given time interacts with

only one device, such device may vary over time, and thus

it provides the possibility of easily modifying the

presentation mainly according to the screen size. In cross-

device design such assumption no longer holds, and the

goal is to allow developers to create applications that allow

users to interact with many devices at the same time, and

the various parts of the user interfaces distributed across the

different devices can keep their state synchronized.We can

distinguish various types of multi-device user interfaces

depending on the features that they support: migratory user

interfaces are able to dynamically migrate from one device

to another in order to follow users’ movements while

preserving their state; distributed user interfaces allow users

to interact with an application through multiple devices at

the same time; cross-device user interfaces are distributed

user interfaces, with the additional capability to synchronise

their state, so that the interactions through some element in

one device update the state of the corresponding elements

(if any) in another device. Such categories are not mutually

exclusive, so for example it is possible to have user

interfaces that are both migratory and cross-device.

Model-based User Interfaces

Model-based approaches [2] have been proposed to manage

the increasing complexity derived from user interfaces in

multi-device environments. They have also been considered

in W3C for standardization in order to ease their industrial

adoption. The main idea is to provide a small general

conceptual vocabulary to support user interface developers

in the design process. The resulting logical descriptions can

then be transferred into a variety of implementation

languages with the support of automatic transformations,

thereby hiding the complexity deriving from the

heterogeneous languages and devices, and sparing

developers the need to learn all the details of such

implementation languages. Thus, they can be useful to

obtain more accessible applications as well since they make

more explicit the semantics and the role of the various user

interface elements, which is also important for access

through assistive technologies.

One important contribution in the area of intelligent user

interfaces was Supple [3], which provided a tool able to

consider aspects related to the user and the device at hand

for generating a personalized version of the interactive

application. However, the combined explosion of mobile

technologies and Internet of Things has posed new

challenges to address since there is a variety of contextual

aspects to consider when generating interactive

applications. More recently, a generative approach with

semantic interaction descriptions for obtaining user

interfaces for smart things was proposed [4] but again it

assumed some previous knowledge of the smart things to

address, and thus lacked the ability to support

customization for dynamic contexts of use.

Other authors have more focused on how the use of model-

based UI development approaches can improve the

experience of users interacting with context-dependent,

multi-platform applications. Recent contributions [5]

presented a UI development framework for ambient

applications integrated with a user modelling system, in

order to provide usability predictions during early

development stages.

One issue in model-based techniques is that because

heuristics are often involved in the generation process, the

connection between specification and final result can be

problematic to understand and control. Programmers must

also learn a new language for specifying the models, which

raises the threshold of their use. However, the importance

of such approach is demonstrated by its adoption, to some

extent, by a widely used languages as HTML 5. Indeed,

one of the main HTML 5 features is the introduction of

more semantics tags, which better express the purpose of

the possible user interface elements. On the other hand,

HTML 5 is still limited with respect to the potentialities of

model-based approaches since it mainly considers only

graphical user interfaces, while languages such as MARIA

[6] can be used also for generating multimodal user

interfaces [7] as well.

THREE SUCCESSFUL TOOLKITS

The Context Toolkit

The Context Toolkit [8] aimed at facilitating the

development and deployment of context-aware

applications. The Context Toolkit was among the earliest

supports for developing context-enabled applications by

providing a library to facilitate integration with sensors. It

was one of the first attempts to support developers in

creating applications able to consider not only the events

that occur on the screen but also those that are generated in

the surrounding environment.

The authors defined context as environmental information

that is part of an application's operating environment and

that can be sensed by the application. It consisted of context

widgets and a distributed infrastructure that hosted the

widgets. Context widgets are software components that

provide applications with access to context information

while hiding the details of context sensing. In the same way

GUI widgets insulate applications from some presentation

concerns, context widgets insulate applications from

context acquisition concerns. To summarize, the main

features of the Context Toolkit were: encapsulation of

sensors; access to context data through a network API;

abstraction of context data through interpreters; sharing of

context data through a distributed infrastructure; storage of

context data, including history; basic access control for

privacy protection.

It initially considered a limited set of events and led to meld

the context awareness code with the application. More

recently, the Context Toolkit has been augmented with

support to facilitate development and debugging of context-

dependent applications [9]. Programming abstractions,

called Situations, expose an API supporting both developers

and designers to provide application adaptivity without

coping with low-level code.

Scratch

Scratch [10] is a visual programming language developed

by the MIT Media Lab, which targets students, scholars,

and teachers parents to easily create animations, games,

and similar applications. Thus, it represents a useful tool for

a range of educational and entertainment purposes., and it

can be a way for introducing to the more advanced world of

computer programming. Scratch represents an example of

tool for end user development environment based on the

jigsaw puzzle metaphor, in particular in creating interactive

applications with multimedia content. In this metaphor,

each software components is seen as a piece of a puzzle and

the shapes of the various pieces provide the cognitive hints

needed to understand the possible compositions. As such,

non-expert users can easily associate each puzzle piece with

the component it represents. While this metaphor supports

more complex configurations than the ones supported by

the pipeline metaphor, one disadvantage is that it has

constrained capability for limited expressiveness. Indeed,

the pieces of the puzzle have a limited number of interfaces

(i.e. sides), thereby restricting the set of possible

programming expressions. AppInventor [11] has then

exploited such metaphor to support the development of

functionalities triggered by events on an app user interface.

While in Scratch and AppInventor the puzzles pieces are

used to represent low-level programming constructs, a

different approach has been proposed in Puzzle [12], in

which it has been adopted to support development of

Internet of Things applications on smartphones:, and the

elements are associated with high-level functionalities that

can also control various actuators. Thus, Puzzle has been

designed to facilitate the composition of various pieces

through a touch interface for a screen with limited size.

Each possible puzzle piece represents a high-level

functionality that can be composed, and its shape and

colours indicate the number of inputs and outputs and the

information type of information that they can communicate.

Thus, the tool provides a usable solution but is limited to

the composition of functionalities for which a puzzle piece

has been provided.

Supple

One important contribution in the area of intelligent user

interfaces was Supple [3], which provided a tool able to

consider aspects related to the user and the device at hand

for generating a personalized version of the interactive

application.

Supple uses decision-theoretic optimization to

automatically generate user interfaces adapted to a person's

abilities, devices, preferences, and tasks. In particular,

SUPPLE can generate user interfaces for people with motor

and vision impairments and the results of our laboratory

experiments show that these automatically generated,

ability-based user interfaces significantly improve speed,

accuracy and satisfaction of users with motor impairments

compared to manufacturers' default interfaces. It takes a

functional specification of the interface, the device-specific

constraints, a typical usage trace, and a cost function. The

cost function is based on user preferences and expected

speed of operation. SUPPLE’s optimization algorithm finds

the user interface, which minimizes the cost function while

also satisfying all device constraints.

The SUPPLE authors then focused on how to exploit

SUPPLE in order to support disabled users, for example, by

automatically generating user interfaces for a user with

impaired dexterity based on a model of her actual motor

abilities. More generally, we can consider adaptation useful

for both permanent and temporary disabilities. An example

of temporary disability is when the user has to move fast

and interact with a graphical mobile device. Thus, the

user’s visual attention cannot be completely allocated to the

interaction.

BRIEF OVERVIEW OF MY PAST WORK

The goal of my research work has been to bring human

values such as usability and accessibility in the design and

development of interactive technologies.

At the beginning, my main research area was model-based

design of interactive applications. I developed the

ConcurTaskTrees notation for specifying task models and

also designed an associated environment (CTTE) to support

the development and analysis of task models specified

through this notation, which has been widely used in

various industries and universities in various parts of the

world (with 26000 downloads). The tool has been applied

in several application domains including ERP, interactive

safety-critical systems (for example in air traffic control
1
),

and the language has been the input for a W3C standard in

the area (http://www.w3.org/TR/task-models/). I also

worked on the design of the MultiModal TERESA and

MARIA languages and the associated tools, whose main

purpose is to support designers of multi-device, multi-

modal interactive applications starting with user interface

logical descriptions.

A considerable amount of work has also been dedicated to

mobile guides. I designed the first museum mobile guide in

Italy for the Marble Museum. Then, various solutions for

this type of guide have been further designed, some in

collaboration with local museums, which exploit various

technologies for location awareness, collaboration and

multimodal interaction.

From this type of experience I have broaden my interests to

ubiquitous interactive systems. In particular, to address

issues related to multi-device environments by proposing

original solutions for migratory and cross-device user

interfaces, which allow seamless access through a variety of

devices ranging from wearable to large public displays, and

dynamic allocation of interactive components across them. I

also edited and wrote part of a book on Migratory

Interactive Applications for Ubiquitous Environments

published by Springer Verlag.

In parallel, another research topic in which I have played a

pioneering role is end-user development, in which area I

coordinated a European Network of Excellence (EUD-net).

I also co-edited (together with Henry Lieberman from MIT,

and Volker Wulf from University of Siegen) one of the

best-known books on End User Development (widely

cited), and carried out various research studies in the area.

In this area I have actively worked at the design of various

authoring environments and tools, such as Puzzle for

intuitively editing interactive applications from a

smartphone, or a mashup tool for creating new Web

applications by composing existing components using the

1
 https://www.eurocontrol.int/ehp/?q=node/1617

familiar copy-paste interaction across them. More recently,

I have focused on how to personalize context-dependent

applications through trigger-action rules [13].

SUGGESTIONS FOR TOPICS FOR DISCUSSION

I see room for discussion at the workshop from different

perspectives. One perspective is to consider the main

technological trends and how they impact on the design of

user interface toolkits. For example, we are in the Internet

of Things time, which means more and more surrounded by

various types of sensors, objects, devices and services that

can be associated dynamically to meet user’s expectations.

Are current toolkits able to sufficiently support the design

and development of applications for such environments ?

Another perspective is to analyse trends and solutions in

this area through the threshold/ceiling criteria (the

“threshold” is how difficult it is to learn how to use the

toolkit, and the “ceiling” is how much can be done using

the toolkit) [14]. Various toolkits have been criticized

because they have high threshold and low ceiling, which

means they require considerable effort for learning how to

use them, and then in the end they support limited

functionalities. What approaches should be considered to

invert this situation and obtain low threshold / high ceiling

solutions ?

One further perspective is to focus on the main attributes

that user interface toolkits should have, and thus they can

be useful to design an evaluation framework for toolkits.

Such attributes are usually important both for the toolkits

and the applications that they allow developers to obtain.

Example of attributes that seem particularly relevant are:

coverage, consistency, interoperability, usability,

customizability, extensibility, and scalability.

REFERENCES

1.H. Liebermann, F. Paternò, V. Wulf. “End-User

Development”, Springer, Dordrecht, 2006

2.J.Fonseca (Ed.) (2010) Model-Based UI XG Final Report,

W3C Incubator Group Report 2010.

3.Krzysztof Gajos and Daniel S. Weld. SUPPLE:

automatically generating user interfaces. In IUI '04:

Proceedings of the 9th international conference on

Intelligent user interface, pages 93-100, New York, NY,

USA, 2004. ACM Press.

4.Simon Mayer, Andreas Tschofen, Anind K. Dey, and

Friedemann Mattern: User interfaces for smart things--A

generative approach with semantic interaction

descriptions, ACM Transactions on Computer-Human

Interaction (TOCHI) 21 (2), 12, 2014.

5.Marc Halbrügge, Michael Quade, Klaus-Peter

Engelbrecht, Sebastian Möller, Sahin Albayrak,

Predicting user error for ambient systems by integrating

model-based UI development and cognitive modelling

Proceedings Ubicomp’16, pp.1028-1039, ACM Press

6.F. Paternò, C. Santoro, L.D. Spano, "MARIA: A

Universal Language for Service-Oriented Applications in

Ubiquitous Environment", ACM Transactions on

Computer-Human Interaction, Vol.16, N.4, November

2009, pp.19:1-19:30, ACM Press,

7.M Manca, F Paternò, C Santoro, LD Spano. Generation of

multi-device adaptive multimodal web applications.

International Conference on Mobile Web and Information

Systems, 218-232

8.D. Salber, A. K. Dey, and G. D. Abowd: The Context

Toolkit: Aiding the Development of Context-Enabled

Applications. CHI 1999: 434-441

9.A. K. Dey, and A. Newberger: Support for context-aware

intelligibility and control. CHI 2009: 859-868

10.M. Resnick, J. Maloney, A. Monroy-Hernandez et al.,

“Scratch: programming for all,” Communications of the

ACM, vol. 52, no.11, pp. 60–67, 2009.

11.App Inventor MIT, 2012, http://appinventor.mit.edu/.

12.Danado J., Paternò F., Puzzle: Puzzle: A Mobile

Application Development Environment using a Jigsaw

Metaphor, Journal of Visual Languages and Computing,

25(4), pp.297-315, 2014.

13.Giuseppe Ghiani, Marco Manca, Fabio Paternò, Carmen

Santoro: Personalization of Context-dependent

Applications through Trigger-Action Rules. ACM

Transactions on Computer-Human Interaction (ACM

TOCHI), 2017.

14.B. A. Myers, S. E. Hudson and R. Pausch: Past, Present

and Future of User Interface Software Tools, ACM

Transactions on Computer Human Interaction. March,

2000. 7(1). pp. 3-28.

http://www.eecs.harvard.edu/~kgajos/papers/2004/supple-iui04.pdf
http://www.eecs.harvard.edu/~kgajos/papers/2004/supple-iui04.pdf
https://scholar.google.it/citations?view_op=view_citation&hl=en&user=SToKj14AAAAJ&sortby=pubdate&citation_for_view=SToKj14AAAAJ:hqOjcs7Dif8C
https://scholar.google.it/citations?view_op=view_citation&hl=en&user=SToKj14AAAAJ&sortby=pubdate&citation_for_view=SToKj14AAAAJ:hqOjcs7Dif8C
https://scholar.google.it/citations?view_op=view_citation&hl=en&user=SToKj14AAAAJ&sortby=pubdate&citation_for_view=SToKj14AAAAJ:hqOjcs7Dif8C
http://appinventor.mit.edu/

Decomposing Interactive Systems
Philip Tchernavskij

LRI, Univ. Paris-Sud, CNRS,
Inria, Université Paris-Saclay

F-91400 Orsay, France
philip.tchernavskij@lri.fr

ABSTRACT
I argue that systems-oriented HCI should explore software
engineering principles and architectures that emphasize user
interaction over designer control. Many researchers have ar-
gued that user-empowering interaction should decouple tools
from the objects they act on. Implementing this decoupling
requires actively subverting the traditional architectures of
interactive systems, including the encapsulation of interac-
tive systems into closed applications, and the overly coupled
event-driven programming model. I present a sketch of an ar-
chitecture where interaction instruments are a first-class object
to address these issues.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User-centered design

Author Keywords
Toolkits; Interaction paradigms; Software architecture;

INTRODUCTION
Interactive systems, which nowadays are primarily desktop,
mobile, and web applications, are notoriously inflexible: they
encapsulate a fixed user interface to manipulate a predefined
type of data, with little user control over the configuration
and capabilities of the software. Beaudouin-Lafon argues
that “the only way to significantly improve user interfaces is to
shift the research focus from designing interfaces to designing
interaction.” [2] He outlines several challenges for moving
towards novel interactive systems in HCI research, among
them developing novel interaction architectures, which sup-
port interaction at the tool and middleware level: “Interactive
systems are by definition open: they interact with the user (or
users) and often with other programs. They must therefore
adapt to various contexts of use, both on the users side and on
the computer side. [. . .] I believe it is critical that we define
interaction architectures that give more control to end users,
that are more resistant to changes in the environment, and

Submitted to CHI 2017 - DO NOT CITE - DO NOT DISTRIBUTE

that scale well. I call these three properties reinterpretability,
resilience and scalability.” [2]

Consider a user writing a document, who decides she wants
to add a figure. She may have several applications with so-
phisticated illustration tools, but none of them allows her to
just draw the figure directly on the “paper” of the document.
If she is writing a math report, she can write formulae in her
word processor, but she cannot ask it to evaluate them. By
contrast, when interacting with the physical world, people
spontaneously extend their capability to manipulate particular
objects by adding tools, and use tools and objects in ways that
they were not necessarily designed for. Can we achieve such
flexibility in software systems? Can we decompose interactive
systems into components such that users can compose them in
ways that correspond to their idiosyncratic needs?

Allowing users to actively de-compose and re-compose sys-
tems is a way of letting them do more with less. Indeed, this
would let users: replace basic tools that exist in many varia-
tions across a system with the one they prefer, e.g., they can
choose their preferred way of picking and applying colors
rather than the one imposed by each application they use;
select and combine parts of different systems coming from
different vendors to support their particular workflow; and
adapt tools to contexts they were not designed for, e.g., use a
statistical graphing tool to create drawings.

In software architecture, flexibility is the quality of being able
to change a system by adding, rather than modifying parts [6,
p. 35]. Gjerlufsen et al. distinguish between flexibility at
design-time and runtime [10]. Whereas design-time flexibility
is advantageous to engineers who will need to reuse and extend
a system architecture, runtime flexibility can allow users to
extend the capabilities of a system in use. Therefore, to create
reinterpretable systems we should develop toolkits that shift
flexibility towards users rather than towards designers and
developers.

In this paper, I critique asepcts of common interaction architec-
tures, and sketch a critical alternative. I argue that the applica-
tion model of software and event-driven programming create
static systems where user-facing flexibility is exceptional. I
describe an architecture based on interaction instruments that
users can freely appropriate and combine according to their
needs.

1

CRITIQUING INTERACTIVE SOFTWARE
Today, most of our interactions with the digital world are me-
diated by applications (apps for short). Apps make for static,
closed systems, where there is typically one user, one device,
a prescribed set of tools, and one or more digital artifacts, such
as a document. Apps are isolated from the environment in
which they are used. Their internals are encapsulated by a
strict interface for input and output. To work on a document
stored in a file, an app has to load the file and create an internal
representation that it can change. This encapsulation strictly
limits how apps can be combined. Apps can be sequenced,
i.e. a file output by one app can be loaded by another (if the
formats are compatible), but they cannot concurrently work
with the same file. On the output side, apps each have their
own window, so their content cannot be mixed or exchanged,
except through copy-paste — which duplicates, rather than
shares, content. Some apps share content through a remote
database, but then bear the burden of maintaining consistency
between the database and their internal state. This is more
akin to a distributed app than an open environment.

As apps couple what you can do (commands) with what you
can do it to (content), they implement procedures rather than
tools and materials. Procedures are idealized descriptions of
how work is done. In real life, the boundaries between differ-
ent types of work are porous, and people constantly add tools,
materials, and collaborators to expand their capabilities. Apps
are too rigid and monolithic for flexible interactive systems.

Gat argues that apps accumulate complexity because they are
closed systems [9]. Since each app defines all the available
tools in its particular domain, vendors end up competing on
having the most features. According to Gat, the app model
inevitably leads to large systems that function poorly. In prac-
tice, since it is impossible to meet the needs of every member
of some particular community of practice, apps ends up being
designed from a one-size-fits-all approach.

At the programming language level, the most common model
for defining interactions is event-driven programming. Event-
driven programming chains together statement of the form
“When this input event happens on this graphical object,
do that”. In other words, event-driven interactions are pro-
grammed by creating design-time bindings between concrete
user actions and concrete commands. This programming
model creates strong coupling between tools and their targets
by binding objects and input methods to particular interactions
in program code. It also creates interactions that are opaque to
users, because they have no knowledge of which bindings are
in effect at any point in time.

Several programming models have been developed as alterna-
tives to event-driven programming, such as functional reactive
programming [8, 7] and hierarchical state machines [4]. These
models attempt to improve on the limitations of event-driven
programming for maintainable and flexible code, but do not
address the user-facing flexibility of tools.

The app model is the result of common architectures and soft-
ware engineering principles that have good properties for engi-
neers and developers, but not for users. From an engineering

perspective, the app model is very reasonable: Encapsulation
means that each application can be developed with the assump-
tion that it exists in a vacuum. It creates less opportunities
for users to cause errors, and allows designers to keep a lot of
control over how their software is used.

The limitations of the app model cannot be addressed at the
level of individual systems. Rather, we should investigate and
demonstrate alternative programming models and architec-
tures that embed qualities such as reinterpretability, resilience,
and scalability.

EXAMPLES OF RELEVANT SYSTEMS AND TOOLKITS
There are many cases of research advocating for and investi-
gating user-facing flexibility. For example, Meyrowitz [14] cri-
tiqued the monolithic aspect of hypertext systems at the time,
and Gat [9] argued for abolishing the division between users
and programmers. The early Butttons system [13] demon-
strated how to create and exchange small interactive compo-
nents; Wulf et al. [17] created an architecture supporting the
notion of “casual programmer”; Newman et al. [15] describe
a system that encourages opportunistic uses of resources dis-
covered in a ubicomp environment; Shared Substance [10]
provides a flexible environment for multi-surface interaction.

I emphasize the next two examples as they are particularly rel-
evant to the approach descibed in the next section: Olsen gives
an analysis of how the Unix operating system model, where
“everything is a file”, allows users to compose and extend
(terminal-based) tools flexibly: “In the UNIX environment all
commands are expected to read ASCII text from standard input
and write ASCII to standard output. By unifying everything
around ASCII text it was possible to build a wide range of
pluggable tools that would store, extract, search, edit, and
transform text. Because programs output readable text, users
could readily see how some other program could manipulate
such output for purposes not considered by the creators. This
recognition of potential new uses in information, coupled with
standard tools for text manipulation, is very powerful.” [16]
This principle of designing systems from small composable
parts is echoed in both functional and object-oriented program-
ming, but is rarely present in graphical user interfaces.

Webstrates [12] is an example of an interaction architecture
that shifts flexibility to users. It is a web server that supports
real-time sharing of a large class of HTML documents: any
change made to the Document Object Model (DOM) of a
page loaded in a web browser is sent to the server, stored, and
broadcast to the other browsers that have loaded that page.
Webstrates turns the web into a medium where sharing and
transclusion, the ability to include one document within an-
other, are basic properties of the document model. Klokmose
et al. show that this shareable medium can serve as a build-
ing block to create multi-user, multi-device systems that are
extensible and reconfigurable at run-time.

Webstrates demonstrates that a toolkit can use existing infras-
tructure to create a novel model of interactive software. In
the same vein, I argue that an interaction architecture where
reinterpretable tools are first-class objects can be created eco-
nomically by relying on existing platforms, e.g., the web.

2

A SKETCH OF REINTERPRETABLE TOOLS
The instrumental interaction model describes instruments as
the primary means of interacting with the digital world: “An
interaction instrument is a mediator or two-way transducer
between the user and domain objects. The user acts on the in-
strument, which transforms the user’s actions into commands
affecting relevant target domain objects. Instruments have
reactions enabling users to control their actions on the instru-
ment, and provide feedback as the command is carried out on
target objects” [1].

Interaction instruments are a good starting point for reinter-
pretable tools, because they are explicit objects, conceptu-
ally independent from apps, as opposed to the rules used by
event-driven programming to define the behavior of each do-
main object when clicked on, dragged, etc. The physical tool
metaphor also has the advantage that it is clear to users which
instruments are available and active at any given moment.

Instrumental interaction is a descriptive and generative model
that has been applied to design systems with novel interfaces,
such as a bimanual colored Petri-nets editor [3] or digital
curation on a tabletop [5]. In a toolkit for interaction instru-
ments, several questions for the entities and processes around
instruments occur:

● How is an instrument described?

● How are instruments decoupled from both the devices used
to manipulate them and the target objects they operate on?

● What are the user actions and commands that instruments
transduce?

Describing instruments
Instrumental interaction covers both physical and logical de-
vices. The latter consist of a graphical representation to show
their state and represent feedback, input channels to receive
user actions, and a logic for mapping actions on the instru-
ments to operations on the instrument’s target. There are
multiple abstractions that could implement this logical compo-
nent, such hierarchical state machines (HSM’s) [4, 11]. HSM’s
can be described as simple, isolated systems, which can be
composed to create more complex behaviors. Importantly,
instrument are defined independently of their concrete input
mechanisms and output targets.

The instrument chain
Instruments can be chained, e.g., a pen instrument can be
operated with a mouse or with a stylus. An action performed
through a chain of instruments might look like this: “Alice
clicks and drags the mouse to move the cursor instrument,
which operates the paintbrush instrument, which leaves a red
trail on the canvas.”

The instrument chain, from physical action to final result,
is continuously established, broken and re-created through
use. In real life, we grasp tools and assemble them, e.g.,
combine a pen and a ruler to draw a straight line. In software,
we implement the grasping metaphor with simple actions,
e.g., clicking to select. A toolkit for instrumental interaction
should have a richer set of elementary gestures and simple
rules to combine instruments into a chain. In particular, a

low-level collision-detection routine would determine when
objects overlap to establish (and break) the instrument chain:
The dragging instrument would activate the paintbrush when
clicked on top of it, and the paintbrush would determine that
it is over the canvas and lay ink on it.

User actions as signals
Once the chain of instruments is established, they can ex-
change actions and reactions. In event-driven programming,
events travel from manipulated objects to observers. This is
inappropriate for instruments, because instruments should not
limit what type of event can be applied to them. Functional
reactive programming extends the notion of events to signals —
time-varying streams of values. This seems more appropriate
for instruments: interaction is represented as a signal travelling
through the instrument chain.

If an instrument cannot distinguish between operating another
instrument or manipulating a domain object, this implies that
instrument input and output are isomorphic. At the end of the
instrument chain, the result of an action is some combination
of reading and writing to the target object’s state. We there-
fore model instrument operation in terms of mutating state:
Instruments send each other operations, which can be stated
as sequences of insertions, deletions, and updates. Return-
ing to the previous example, the dragging instrument changes
the position of the paintbrush instrument, and the paintbrush
adds brushstrokes to the canvas. Operations do not need to
be interpreted, as opposed to events. This means that the set
of possible operations is open, and can be extended by new
instruments.

With support for instruments at the operating system level,
interaction scenarios such as those described in the introduc-
tion become feasible. Under this architecture, applications
could be replaced by packages of instruments that fit a co-
herent domain, e.g., word processing or illustration. Users
are empowered to reuse, adapt, and combine instruments as
they see fit: One user may reuse a text cursor that supports his
most used editing commands for writing e-mails, filling out
forms, and taking notes; another may adapt a pen instrument
from a drawing suite to handwrite annotations when reviewing
homework; and a third may combine a word processing suite
and a math evaluation instrument to write math reports. The
ability to chain instruments further supports combining and
extending instrument behaviors, e.g., a pen instrument can be
used for freehand drawing, but chaining the same instrument
with a dragging instrument constrained by a geometric shape
turns it into a pen for drawing shapes.

CONCLUSION
Architectures are not neutral in implementing interaction. The
app model of software couples tools and the objects they ma-
nipulate at design-time. At a lower level, this coupling is re-
flected in the coupling between input and output in, e.g., event-
driven programming. This interaction architecture translates
into static systems that limit the ability of users to de-compose
and re-compose interactive systems. Shifting flexibility to-
wards users is an outstanding challenge for systems-oriented
HCI.

3

Interactive systems should leverage our natural ability to reuse,
adapt, and combine tools. The tool metaphor of instrumental
interaction is a good starting point for treating interactions
as first-class objects and making interactive systems more
flexible. By providing architectural support for interaction
instruments, I hope to demonstrate the power of this approach.
The ability to compose instruments should not only benefit end-
users, but would also motivate software producers to create
systems that are small and composable, rather than monolithic
and isolated [9].

ACKNOWLEDGMENTS
Thanks to Michel Beaudouin-Lafon for editing this paper. This
work was partially funded by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme grant n° 695464 ONE: Unified
Principles of Interaction.

REFERENCES
1. Michel Beaudouin-Lafon. 2000. Instrumental Interaction:

An Interaction Model for Designing Post-WIMP User
Interfaces. (2000), 446–453. DOI:
http://dx.doi.org/10.1145/332040.332473

2. Michel Beaudouin-Lafon. 2004. Designing Interaction,
Not Interfaces. In Proceedings of the Working Conference
on Advanced Visual Interfaces (AVI ’04). ACM, New
York, NY, USA, 15–22. DOI:
http://dx.doi.org/10.1145/989863.989865

3. Michel Beaudouin-Lafon and Henry Michael Lassen.
2000. The Architecture and Implementation of CPN2000,
a post-WIMP Graphical Application. In Proceedings of
the 13th Annual ACM Symposium on User Interface
Software and Technology (UIST ’00). ACM, New York,
NY, USA, 181–190. DOI:
http://dx.doi.org/10.1145/354401.354761

4. Renaud Blanch and Michel Beaudouin-Lafon. 2006.
Programming Rich Interactions Using the Hierarchical
State Machine Toolkit. In Proceedings of the Working
Conference on Advanced Visual Interfaces (AVI ’06).
ACM, New York, NY, USA, 51–58. DOI:
http://dx.doi.org/10.1145/1133265.1133275

5. Frederik Brudy, Steven Houben, Nicolai Marquardt, and
Yvonne Rogers. 2016. CurationSpace: Cross-Device
Content Curation Using Instrumental Interaction. In
Proceedings of the 2016 ACM on Interactive Surfaces and
Spaces (ISS ’16). ACM, New York, NY, USA, 159–168.
DOI:http://dx.doi.org/10.1145/2992154.2992175

6. Henrik Bærbak Christensen. 2010. Flexible, reliable
software: Using patterns and agile development. Taylor
and Francis(Chapman and Hall/CRC).

7. Evan Czaplicki and Stephen Chong. 2013. Asynchronous
Functional Reactive Programming for GUIs. In
Proceedings of the 34th ACM SIGPLAN Conference on

Programming Language Design and Implementation
(PLDI ’13). ACM, New York, NY, USA, 411–422. DOI:
http://dx.doi.org/10.1145/2491956.2462161

8. Conal Elliott and Paul Hudak. 1997. Functional Reactive
Animation. In Proceedings of the Second ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’97). ACM, New York, NY, USA, 263–273. DOI:
http://dx.doi.org/10.1145/258948.258973

9. Erann Gat. 2001. Programming Considered Harmful.
OOPSLA 2001 Feyerabend Workshop (2001).

10. Tony Gjerlufsen, Clemens N. Klokmose, James Eagan,
Clément Pillias, and Michel Beaudouin-Lafon. 2011.
Shared Substance: Developing Flexible Multi-Surface
Applications. (2011), 3383–3392. DOI:
http://dx.doi.org/10.1145/1978942.1979446

11. Clemens N. Klokmose and Michel Beaudouin-Lafon.
2009. VIGO: Instrumental Interaction in Multi-Surface
Environments. Association for Computing Machinery
(ACM). DOI:http://dx.doi.org/10.1145/1518701.1518833

12. Clemens N. Klokmose, James R. Eagan, Siemen Baader,
Wendy E. Mackay, and Michel Beaudouin-Lafon. 2015.
Webstrates: Shareable Dynamic Media. (2015), 280–290.
DOI:http://dx.doi.org/10.1145/2807442.2807446

13. Allan MacLean, Kathleen Carter, Lennart Lövstrand, and
Thomas Moran. 1990. User-tailorable Systems: Pressing
the Issues with Buttons. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’90). ACM, New York, NY, USA, 175–182. DOI:
http://dx.doi.org/10.1145/97243.97271

14. Norman K. Meyrowitz. 1989. The Missing Link: Why
We’re All Doing Hypertext Wrong. In The society of text:
hypertext, hypermedia, and the social construction of
information. MIT Press, 107–114.

15. Mark W. Newman, Jana Z. Sedivy, Christine M.
Neuwirth, W. Keith Edwards, Jason I. Hong, Shahram
Izadi, Karen Marcelo, and Trevor F. Smith. 2002.
Designing for Serendipity: Supporting End-user
Configuration of Ubiquitous Computing Environments.
In Proceedings of the 4th Conference on Designing
Interactive Systems: Processes, Practices, Methods, and
Techniques (DIS ’02). ACM, New York, NY, USA,
147–156. DOI:http://dx.doi.org/10.1145/778712.778736

16. Dan R. Olsen, Jr. 1999. Interacting in Chaos. interactions
6, 5 (Sept. 1999), 42–54. DOI:
http://dx.doi.org/10.1145/312683.312720

17. Volker Wulf, Volkmar Pipek, and Markus Won. 2008.
Component-based tailorability: Enabling highly flexible
software applications. International Journal of
Human-Computer Studies 66, 1 (2008), 1–22.

4

http://dx.doi.org/10.1145/332040.332473
http://dx.doi.org/10.1145/989863.989865
http://dx.doi.org/10.1145/354401.354761
http://dx.doi.org/10.1145/1133265.1133275
http://dx.doi.org/10.1145/2992154.2992175
http://dx.doi.org/10.1145/2491956.2462161
http://dx.doi.org/10.1145/258948.258973
http://dx.doi.org/10.1145/1978942.1979446
http://dx.doi.org/10.1145/1518701.1518833
http://dx.doi.org/10.1145/2807442.2807446
http://dx.doi.org/10.1145/97243.97271
http://dx.doi.org/10.1145/778712.778736
http://dx.doi.org/10.1145/312683.312720

The Evaluation of a Physiological Data Visualization
Toolkit for UX Practitioners: Challenges and Opportunities

Vanessa Georges

HEC Montréal

Montréal, Canada

vanessa.georges@hec.ca

François Courtemanche

HEC Montréal

Montréal, Canada

francois.courtemanche@hec.ca

Sylvain Sénécal

HEC Montréal

Montréal, Canada

sylvain.senecal@hec.ca

Pierre-Majorique Léger

HEC Montréal

Montréal, Canada

pml@hec.ca

Lennart Nacke

University of Waterloo

Waterloo, Canada

lennart.nacke@acm.org

Marc Fredette

HEC Montréal

Montréal, Canada

marc.fredette@hec.ca

ABSTRACT

The objective of this paper is to outline the challenges we

have encountered during the development and evaluation of

our Physiological Data Visualization (UX Heatmap) toolkit

and discuss the opportunities that emerged from our

experience. The main goal of the Physiological Data

Visualization toolkit is to allow simpler and richer

interpretation of physiological signals for UI evaluation, in

order to reduce the barriers associated with the use of

physiological measures in the fields of user experience

design and research. Following a user test with 11 UX

experts from the industry, we were able to better understand

how and in which contexts they would use the proposed UX

Heatmap toolkit in their practice.

Author Keywords

Interface design; heatmaps; physiological computing;

affective computing, toolkits.

ACM Classification Keywords

H.2.1Design; Experimentation; HCI; Human Factors;

Measurement; User interfaces. I.3.6 Computer graphics:

Methodology and Techniques.

INTRODUCTION
Measuring the emotional state of users during the

interaction is essential to the design of richer user

experience. Users’ emotional and cognitive states can be

inferred using physiological signals such as electrodermal

activity, heart rate, eye tracking, and facial expressions [1-

2]. These measures can provide important temporal

information to UX experts as to what the user is

experiencing throughout the interaction without

retrospective or social desirability bias [3]. However, these

measures are still difficult to contextualize and interpret as

they are not specifically associated with user behavior or

interaction states. Physiological signals also require a

certain degree of interpretation, as outputs need to be

processed in order to transition from raw data to useful

actionable insights. The objective of the proposed UX

Heatmap toolkit is to address these issues and help UX

experts incorporate physiological data in their user tests.

TOOLKIT OVERVIEW
Traditional gaze heatmaps are used in eyetracking as

intuitive representations of aggregated gaze data [4]. Their

main use is to help researchers and UX experts answer the

question: “Where in the interface do people tend to look?”

[5]. In the proposed UX Heatmap toolkit, the users’ gaze

now serves as a mean of mapping physiological signals

onto the user interface. The resulting heatmaps represent

the physiological signals’ distribution over the interface,

and can help answer the following question: “Where in the

interface do people tend to emotionally or cognitively react

more strongly?”

Toolkits aim at facilitating and fostering the adoption of

emerging and complex technologies to new and non-expert

populations [6]. Our toolkit aims to tackle the following

challenges regarding the use of physiological measures in

the prototyping and evaluation of user interfaces by UX

experts: (1) data synchronization of multiple signals from

various apparatus (e.g., visual attention using eyetracking

and arousal using electrodermal activity), (2) valid

physiological inferences (e.g., taking into account different

signal latencies), and (3) the interpretation and

contextualization of data using multiple types of

visualizations. We thus designed a visualization toolkit that

contextualizes physiological and behavioral signals to

facilitate their use, see figure 1 [7].

Paste the appropriate copyright/license statement here. ACM now supports

three different publication options:

• ACM copyright: ACM holds the copyright on the work. This is the

historical approach.

• License: The author(s) retain copyright, but ACM receives an

exclusive publication license.

• Open Access: The author(s) wish to pay for the work to be open

access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement

assuming it is single-spaced in Times New Roman 8-point font. Please do

not change or modify the size of this text box.

Each submission will be assigned a DOI string to be included here.

Figure 1. Screenshot of the UX Heatmap Toolkit Software Interface.

The Motives behind the Toolkit

Our recent work with industry has lead us to question a

major discrepancy between industry and academic

practices: while physiological measures are increasingly

used in research, the adoption of these methods as UX

evaluation tools remain uncommon in industry. From our

experience interacting with the industry, there is a growing

demand for more quantitative user research to provide data-

driven recommendations based on physiological data such

as eye tracking and emotional reactions. We therefore

wanted to understand what can be done to facilitate their

adoption in the industry.

Furthermore, physiological measures, in combination with

traditional methods, can help practitioners to better evaluate

the emotional dimension of user experience, which focuses

on emotional responses triggered by the system interaction

[8-10], as they each provide complementary information on

how users feel about a system, game, or web interface [11].

While traditional evaluation methods can offer episodic

data, i.e., before or after the interaction, physiological

measures can provide moment-to-moment information [12].

For example, the addition of physiological measures can

help practitioners identify the cognitive and emotional

reactions users experienced using an interface, while a post-
task interview can help delve further, after having identified

these emotions. Therefore, this toolkit was built for UX

experts, whose needs differ from those of academic

researchers. While the former’s needs are to analyze and

adequately communicate findings to improve user

experience, the latter’s interest resides in the validation and

understanding of phenomena, based on hypotheses [13].

PREVIOUS WORKS

Although there exists a series of HCI evaluations toolkits,

the majority do not include physiological measures. Most

usability toolkits simply guide the user toward the right tool

to use for his or her context. However, certain toolkits do

integrate physiological measures, tackling one aspect of the

problem at hand. Most researchers have concentrated their

efforts on finding ways to measure physiological signals

and interaction states synchronously. For example,

Kivikangas et al. [14] have developed a triangulation

system to interpret physiological data from video game

events. Dufresne et al. [15] have proposed an integrated

approach to eyetracking-based task recognition as well as

physiological measures in the context of user experience

research. Other researchers have also developed tools that

allow users’ to manually assign subjective emotional

ratings on visual interfaces [16] or to visualize emotional

reactions in terms of GUI widgets [17]. While these

research streams have produced interesting results, they are

not easily transferable to new contexts of use, as they are

based on internal information from the interactive system

(e.g., video game logs, application events, or areas of

interest). So, we looked to package and streamline this

process and provide an integrated solution for UX experts.

THE EVALUATION OF THE TOOLKIT

To evaluate the proposed UX Heatmap toolkit, we

conducted a study with eleven UX practitioners and

consultants. Each interview lasted about one hour and a

half, following a variation on the think aloud protocol,

cooperative evaluation [18]. As such, participants were

asked to talk through what they were doing; the interviewer

taking on a more active role by asking questions along the

way (e.g., ‘Why?’ ‘What do you think would happen?’).

UX experts were also asked to complete a user testing

evaluation report using the toolkit. The PowerPoint report

included a study summary, a research scenario and

qualitative data. Participants were first briefed on the task at

hand (i.e., complete a UX report for an online grocer using

the UX Heatmap toolkit), before going through the partially

completed report with the interviewer, to put them into

context and get a sense of what was required of them.

Participants had to complete two PowerPoint slides. The

physiological signal data set used for the evaluation was

collected in a previous study [19]. Practitioners were asked

to: (1) generate and select data visualizations to include in

their report using the toolkit, (2) interpret the results, and

(3) provide recommendations to the client. The remainder

of the time was used to discuss of the advantages and

disadvantages physiological measures as a UX evaluation

method, as well as the toolkit itself. This evaluation task

was added to help UX experts integrate the information on

physiological measures quickly and effectively, and to give

them a concrete opportunity to use the toolkit in order to

envision themselves using it in their own practice.

WHAT WE LEARNED

The goal behind the creation of the Physiological Data

Visualization toolkit was to bring physiological measures to

UX practitioners. Below are some of the findings we

uncovered during the evaluation process of this toolkit.

Having a clear understanding of: (1) the constraints and

limitations of potential user’s, as this may limit the extent

to which these users will consider the toolkits as a viable

addition to their practice. The way in which researchers

process and use information is quite different than the way

practitioners do. For example, the automatization of certain

functionalities (i.e. participant and layer creation), which

we saw as superfluous, or nice-to-haves, were seen as

crucial by practitioners in order to accelerate the

interpretation of the visualizations generated with our

toolkit. For researchers, this represent a minimal gain; as

for practitioners faced with short development cycles, this

is seen as saving, both time and money, two important

attributes when choosing new methodologies.

 (2) potential users’ context of use, as this may limit the

extent to which novice practitioners and researchers will

consider these technologies as a viable addition to their

projects. When asked about their intent to reuse the tool, ten

out of eleven practitioners interviewed stated that they

would use the toolkit in their practice. When inquired

further, six of them declared that their use of the tool would

depend on the projects, using it only in the interventions

where emotions are an important component or if clients

specifically requested them to use physiological signals.

This could translate into a steep and ever present learning

curve, as practitioners must re-learn how to use the toolkit

and materials associated with the data collection of

physiological signals at each use. As a result, it could be

challenging for practitioners to master the toolkit if only

used occasionally. Therefore, a barrier to entry exist for

professionals unable to justify the financial investment due

to sparse usage of such tools (i.e., eyetrackers, sensors).

Additional Challenges related to physiological measure

usage by UX experts: reliance on external sources and

tools can become an issue. For non-expert users, learning

how to correctly take ownership of a new technology using

a toolkit is already an endeavor; the addition to peripheral

techniques and methods creates a much higher learning

curve than they may have initially anticipated. Although the

Physiological Data Visualization toolkit makes

physiological measures more accessible to UX practitioners

by addressing the interpretation of signals, there remains a

need to better educate professional on some of the more

technical aspects of physiological measurements. Data

collection, experimental setup, and data extraction still have

to be overseen by UX experts, representing an important

time and financial constraints.

CONCLUSION

The objective of this paper was to highlight the challenges

we have encountered during the development and

evaluation of our Physiological Data Visualization toolkit

and discuss the opportunities that emerged from our

experience. Designing, building and sharing toolkits are a

great way to bring new technologies to the larger HCI

community. Understanding the end user is primordial to the

development of a toolkit that will truly reach its goal and

audience, which we uncover through the evaluation of out

toolkit, which makes discussions on the methods and

metrics that can be used to evaluate toolkits all the more

interesting. By pursuing our working with potential users

during the design and development phases of the toolkit,

our objective is to continue to reduce the barriers associated

with the use of physiological measures in the fields of user

experience design and research.

ACKNOWLEDGMENTS

Authors want to thank Brendan Scully for manuscript

revision and the UX practitioners who participated to this

study This work was supported by the CRSNG (Conseil de

recherches en sciences naturelles et en génie du Canada).

REFERENCES

1. Zhihong, Z., Pantic, M., Roisman, G.I. and Huang, T.S.

2009. A Survey of Affect Recognition Methods:

Audio, Visual, and Spontaneous Expressions. IEEE

Transactions on Pattern Analysis and Machine

Intelligence 31, 1: 39-58.

2. Calvo, R.A. and D'Mello, S. 2010. Affect Detection:

An Interdisciplinary Review of Models, Methods, and

Their Applications. Affective Computing, IEEE

Transactions on 1, 1: 18-37.

3. King, M.F. and Bruner, G.C. 2000. Social desirability

bias: A neglected aspect of validity testing. Psychology

and Marketing 17, 2: 79-103.

4. Nielsen, J. and Pernice, K. Eyetracking Web Usability.

New Riders, Berkeley, California, 2012.

5. Wooding, D.S. Fixation maps: quantifying eye-

movement traces Proceedings of the 2002 symposium

on Eye tracking research & applications, ACM, New

Orleans, Louisiana, 2002, 31-36.

6. Cartwright, William, et al. "Geospatial information

visualization user interface issues." Cartography and

Geographic Information Science 28.1 (2001): 45-60.

7. Georges, Vanessa, et al. "UX heatmaps: mapping user

experience on visual interfaces." Proceedings of the

2016 CHI Conference on Human Factors in

Computing Systems. ACM, 2016.

8. Février, F., N. Gauducheau, E. Jamet, G. Rouxel, and

P. Salembier, La prise en compte des affects dans le

domaine des interactions humain-machine. Le travail

humain, 2011. 74: p. 183-201.

9. Mahlke, S. and M. Minge, Consideration of Multiple

Components of Emotions in Human-Technology

Interaction, in Affect and Emotion in Human-Computer

Interaction, C. Peter and R. Beale, Editors. 2008,

Springer Berlin Heidelberg. p. 51-62.

10. Hassenzahl, M., The Interplay of Beauty, Goodness,

and Usability in Interactive Products. Human–

Computer Interaction, 2004. 19(4): p. 319-349.

11. Roto, Virpi, Marianna Obrist, and Kaisa Väänänen-

Vainio-Mattila. "User experience evaluation methods

in academic and industrial contexts." Proceedings of

the Workshop UXEM. Vol. 9. 2009.

12. Zhihong, Z., Pantic, M., Roisman, G.I. and Huang, T.S.

2009. A Survey of Affect Recognition Methods:

Audio, Visual, and Spontaneous Expressions. IEEE

Transactions on Pattern Analysis and Machine

Intelligence 31, 1: 39-58.

13. Roto, V., Vermeeren, A.P.O.S., Väänänen-Vainio-

Mattila, K., Law, E. and Obrist, M., Course notes: User

Experience Evaluation Methods - Which Method to

Choose? in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, (Paris, France,

2013), ACM.

14. Kivikangas, M., Nacke, L. and Ravaja, N. 2011.

Developing a triangulation system for digital game

events, observational video, and psychophysiological

data to study emotional responses to a virtual character.

Entertainment Computing 2, 1: 11-16.

15. Dufresne, A., Courtemanche, F., PromTep, S. and

Sénécal, S., Physiological Measures, Eye Tracking and

Task Analysis to Track User Reactions in User

Generated Content. in Measuring Behavior,

(Eindhoven, The Netherlands, 2010), 218-222.

16. Huisman, G., Hout, M.v., Dijk, E.v., Geest, T.v.d. and

Heylen, D. LEMtool: measuring emotions in visual

interfaces Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, ACM, Paris,

France, 2013, 351-360.

17. Cernea, D., Weber, C., Ebert, A. and Kerren, A.,

Emotion scents: a method of representing user

emotions on gui widgets. in IS&T/SPIE Electronic

Imaging, (2013), International Society for Optics and

Photonics, 86540F-86540F-86514.

18. Dix, Alan. Human-computer interaction. Springer US,

2009.

19. Desrocher, C., et al. "The influence of product type,

mathematical complexity, and visual attention on the

attitude toward the website: The case of online grocery

shopping." Fourteenth Pre-ICIS SIG-HCI Workshop,

Fort Worth, TX. 2015.

Playing the Tricky Game of Toolkits Research

Michael Nebeling
University of Michigan School of Information

nebeling@umich.edu

ABSTRACT
In this paper, I reflect on my experience from the past sev-
eral years conducting toolkit driven multi-device interaction
research that appeared in CHI and EICS. I discuss lessons
learned and share my perspective on the larger field of user
interface engineering, including what I think the main chal-
lenges and opportunities are with toolkits research and good
examples of it. I hope that sharing my perspective is useful
for the new generation of researchers interested in, and po-
tentially struggling with, doing engineering research in HCI.

Author Keywords
technical HCI; systems research; user interface toolkits.

BEFORE I GET STARTED
Toolkits and system-driven research is one of the most chal-
lenging, but perhaps also the most interesting, kinds of re-
search we have in HCI. It is challenging for many reasons:
results wise—because it takes a lot of time and effort to cre-
ate a system that can be studied to answer the research ques-
tions behind it, process wise—because every system is differ-
ent and there are too many technical, design and evaluation
challenges that cannot all be addressed at once and therefore
need to be well balanced, and publication wise—because the
resulting artifact is likely to come close to other systems and it
is neither an easy task for authors to articulate the differences
nor for reviewers to judge whether these are significant.

I learned this the hard way as a PhD student interested in de-
signing systems and tools that solve real-world problems. I
started out with publication attempts in web engineering and
HCI conferences, and was pushed between the two worlds
as neither wanted to accept my work. For web engineering,
I did too much on interfaces, and for HCI it was too much
engineering. I also think part of the problem was lack of a
clear research method. I did not think of system building as
a research method at the time; in fact, I was warned about it
and, depending on who I talk to, sometimes still struggle to
explain that even though my research involves a lot of engi-
neering, it is still research. When I was introduced to Alan
Hevner’s design science research, I thought that is what I was

#HCI.Tools 2017: Strategies and Best Practices for Designing, Evaluating and Sharing
Technical HCI Toolkits

doing. However, I still think that even with specific engineer-
ing committees at CHI and whole conferences such as EICS,
there is still a lot of confusion about the science part, and we
still have a hard time acknowledging systems research.

My PhD thesis [17] essentially developed around a set of
tools [21, 24, 25] that I designed to investigate new meth-
ods and techniques to create more flexible and adaptive in-
terfaces. I was interested in this topic because of the ongo-
ing proliferation of new computing devices, with many new
touch devices coming out in all kinds of form factors since
the iPhone started the trend in 2007. This was a risky PhD
topic for all the three reasons stated above; in particular, there
was already a long history of research into context-aware and
adaptive interfaces. However, existing research struggled to
meet the needs of practitioners and industry as the proposed
solutions did not always seem useful and practical. This in-
troduced me to two additional tools research challenges.

First, some of the tools that I created (e.g., jQMultiTouch [24]
and W3Touch [25]) were much more simple and practical
than a lot of the existing user interface research which was
based on more generic notions of context awareness and com-
plex model-based approaches. While my work seemed more
closely aligned with practitioner needs, it also seemed less
generalizable and, to some, probably even less “research-y.”

Second, some of the techniques that I created ended up being
similar to what is now called “responsive web design.” While
I would argue that my PhD thesis pioneered many of the con-
cepts, or at least developed them in parallel, it is difficult to
hold up this claim because of articles in popular science1 that
appeared before a Master’s thesis [31] was published in [22].

After my PhD thesis, I started to work on cross-device inter-
faces, which seemed like a natural follow-on and nice exten-
sion of my prior work on context-adaptive interfaces because
techniques had so far been limited to adapting interfaces to
one device at a time. As part of this research, I created a fam-
ily of XD tools that addressed all kinds of issues around the
design, development, and testing of cross-device interfaces.
For example, I created XDStudio [23], a new GUI builder for
visually designing distributed user interfaces for multi-device
environments such as meeting rooms or classrooms, investi-
gating simulated and cross-device authoring strategies. Af-
ter XDStudio, I created tools like XDKinect [26] to enable
rapid prototyping of cross-device interfaces using Kinect as
an intermediator, XDSession [20] to provide new tools for de-
veloping and testing cross-device interfaces based on useful

1https://alistapart.com/article/responsive-web-design

abstractions in a multi-device data session concepts, and XD-
Browser to enable end-users by making the concepts of dis-
tributed interfaces so far limited to toolkits directly available
in web browsers. In a first paper [19], I used XDBrowser to
study what kinds of cross-device interfaces end-users would
want to have given an existing single-device interface. This
study led to a first set of cross-device patterns. In a second
paper [18], I used XDBrowser to study how single-device
interfaces can be semi-automatically transformed into cross-
device interfaces based on the patterns.

OPPORTUNITIES FOR TOOLKITS RESEARCH
While most of the paper talks about challenges, let us start by
highlighting a few of the opportunities for toolkits research.

First, by doing research on novel kinds of user interfaces and
toolkits to support the creation of them we as researchers have
an important say in what the next generation of user interfaces
might be. For example, a lot of the research on multi-touch
was only made possible through new technologies such as
the DiamondTouch table [7] and toolkits such as Diamond-
Spin [30]. They formed the basis of a wide range of studies on
multi-touch interaction and collaborative tabletop interfaces
for many years and still continue to play a role even today.

Second, toolkits are important to push two primary aspects of
research: concepts and applications.

When examining a toolkit, I look for interesting new con-
cepts that make existing techniques significantly easier and/or
faster. In practice, jQuery and Bootstrap are two of the most
disruptive JavaScript and HTML/CSS toolkits we have in the
web development domain. The elegance, expressiveness, and
power of both found such wide adoption among develop-
ers and also researchers (jQMultiTouch [24], Weave [2]) that
some of the concepts made it to the HTML5 and CSS3 stan-
dards. In research, web automation and manipulation toolkits
like Chickenfoot [1] and CoScripter [14] had similar impact
due to their concepts being based on rendered web pages and
sloppy keywords rather than proper references to interface
elements in code. A lot of the research on end-user script-
ing and programming by demonstration was pushed by these
toolkits with Highlight [27] being an example that builds on
CoScripter to enable the desktop-to-mobile adaptation based
on end-user demonstration of desired interactions.

The other major question I ask about a toolkit is what kinds
of new applications it enables. For example, when looking at
cross-device toolkits such as Panelrama [32], Weave [2], and
WatchConnect [8], one thing to notice is the increased effort
to support cross-device interfaces around smartwatches. In
WatchConnect, this effort does not stop with toolkit support
in software. Rather, it also provides hardware support for
developers to create new kinds of smartwatch sensors.

CHALLENGES FOR TOOLKITS RESEARCH
Now let us turn to some of the challenges for toolkits re-
search. These range from practical, to technical, to method-
ical challenges. Another challenge is the writing of a toolk-
its paper itself. Despite some good pointers and recommen-
dations from senior researchers in the field [28, 9], my own

experience both as an author and as a reviewer for CHI and
EICS for many years shows that there is still little agreement
among researchers on what makes good systems research.

Staying Ahead of the Game
Toolkits research should always attempt to stay ahead of the
game. I have seen many “good” papers rejected because they
either did not significantly push the concepts, the applica-
tions, or both parts. It seems harder to “sell” a toolkit that
tackles an old problem, even though it might do it very well,
than a toolkit that tackles a new problem, even though it might
just be scratching the surface. So one way to alleviate short-
comings in toolkit design can be targeting cutting-edge inter-
action technologies. For example, I would say that the earlier
generation of multi-touch toolkits did not innovate with con-
cepts, but it enabled new applications. In the later generation
(e.g., Proton [12]), this shifted towards new concepts that es-
sentially enabled very similar applications, but did so in much
more innovative ways. This was quite similar with multi-
modal and multi-device toolkits. After crowdsourcing, it is
currently 3D printing and fabrication that receive a lot of in-
terest in systems research. Note that many of these technolo-
gies were not novel at the time; rather, we speak of the multi-
touch and 3D printing revolution. Interestingly, although IoT
definitely received a big push in industry, in toolkits research
this was not so much the case. The researchers that I know
worked on IoT toolkits (e.g., fabryq [16], Bluewave [6]) were
given a hard time making the unique challenges clear given
that a lot of the problems seemed to have already been ad-
dressed by prior multi-device research. Given the prolifera-
tion of new VR/AR consumer devices, it will be interesting
to see whether there will be another wave of VR/AR toolk-
its, perhaps focused on wearable devices, after the success
of projection-based toolkits such as RoomAlive [10]. In any
case, support for blending the physical and the digital de-
sign worlds will become more important in the future. Again,
WatchConnect [8] is a good example here as it supports both
software and hardware interface prototyping in one toolkit.

Balancing Toolkit Practicality and Generalizability
This goes back to what I said earlier about practical
vs. generic solutions. The literature on model-driven user in-
terface research is full of comprehensive approaches based on
complex models and multi-level abstractions. For example,
MARIA [29] is a versatile and powerful model-based frame-
work that was created based on many years of research. Yet,
the process required to define interfaces and the kinds of in-
terfaces that can be generated in the end often seem neither
practical nor complex. My stance on this is that less is more.
It is okay if a particular proposal does not provide full-fledged
support as long as the design rationale is sound and limita-
tions are clearly articulated. I find an elegant solution for a
well-scoped interface problem is more likely to generate con-
crete results and hence gain traction as long as it improves,
rather than trying to replace, existing workflows. As an in-
spiring example, I would like to mention the case of Adobe
Lightroom here [11], where studies with professional and se-
rious amateur photographers provided unique insights into
their existing patchwork processes and how to best provide
a solution that integrates well with Adobe Photoshop.

Designing for the Next Generation of Designers
Another common pitfall with toolkits research is not clearly
identifying the users. This was not so much a problem some
years ago when the distinction between users and developers
was clearer, but given that users nowadays often are both con-
sumers and producers thanks to enabling tools, the line be-
comes fuzzier. In the research on end-user programming, the
term “end-user” was commonly used to refer to non-technical
users as opposed to developers with programming skill. It can
help to put the research into the appropriate context by citing
relevant research in that domain (e.g., from [4]), but it is bet-
ter to make it explicit by clearly stating the assumed skill of
target users and ideally include studies that help identify the
needs of those users. This is something that I think was quite
well done in Snap-to-It [5]. It goes without saying that the
expectation will be that it is also those kinds of users that will
be recruited for testing a toolkit as part of the evaluation. For
many of my cross-device systems, I had to explain and jus-
tify why I studied with participants that only had experience
creating mobile and responsive interfaces rather than “real”
cross-device developers. It took some effort to convince re-
viewers that this generation of developers does not exist yet,
as the solutions so far are often still research prototypes and
it will take some time before they mature and are picked up.

Dealing with the Proliferation of New Toolkits
In some of the recently booming areas such as multi-touch
or cross-device interfaces, a large number of toolkits were
created and documented in the literature. In particular, in
the cross-device domain, many of them almost seem to have
been developed in parallel, without actually citing or build-
ing on top of each other. I remember presenting in the CHI
2014 session on multi-device interfaces and all of us were sur-
prised to see that we worked on toolkits pushing similar ideas
and developing many of the same features. I was surprised to
see the sheer number of cross-device toolkits that came out
in 2014 and 2015. I would say that in some areas the “mar-
ket” is saturated and any new attempt to publish a toolkit may
just be turned down as “yet another toolkit.” This does not
mean that there is no more need for new systems research,
but it will become increasingly difficult for a new toolkit to
be significantly different in the concepts that it proposes or
applications that it enables. Exceptions include the Weave
and WatchConnect toolkits mentioned earlier, where jQuery-
like device selection techniques, storyboard generation from
cross-device code [3], and support for hardware prototyping
of smartwatch interfaces added significant research value.

Releasing Toolkits to Facilitate Toolkits Research
Last, I wanted to raise the issue that most toolkits research I
know ended with the release of the toolkit for download. This
is necessary but not sufficient. It is necessary to enable others
to try out toolkits and do comparative evaluations, which is
often asked by reviewers despite the fact that many previous
systems are not actually available and only “exist” in research
papers. It is not sufficient, however, because in most cases
this is where the toolkits research actually begins. To truly
understand the capabilities and value proposition of a toolkit,
it is important to study how it is used by others than the toolkit

authors and a few study participants. The true value of Chick-
enfoot and CoScripter was revealed when others started to
adopt the ideas and build on top of those tools. Unfortunately,
in the multi-device domain, there are no such leading exam-
ples. Perhaps tools like Webstrates [13] and XDBrowser [19]
could grow into that role as they recently enabled some work-
shop activities at CHI and EICS. But we need more hands-on
and discussion-heavy workshops like XDUI, Cross-Surface
and now #HCI.Tools to foster discussion around those issues.

WORKSHOP CONTRIBUTION AND ACTIVITIES
In summary, I am excited about the #HCI.Tools workshop to
be held at CHI 2017. I would like to contribute my experience
and knowledge in the form of discussion or presentation of
selected research prototypes from my XD tools research.

Moreover, I would like to propose three types of activities that
I think would benefit #HCI.Tools workshop participants.

First, I have previously organized mock program committees
reviewing systems papers and run reading groups analyzing
examples of “good” toolkits papers. This would require some
prep work of participants, but could be limited to one paper,
e.g., WatchConnect [8] and a framework such as Olsen’s [28].

Second, I think it will be interesting to look at how toolk-
its research has evolved over time both in terms of design
and evaluation. An activity that extracts best practices and
guidelines from a larger corpus of papers could be based on
group work reviewing selected genres of toolkit papers, e.g.,
on multi-touch or cross-device interfaces, or time, e.g., before
and after Olsen’s framework appeared at UIST 2007.

Third, let us discuss new trends in toolkits research such as
blending the digital and the physical, and again the impact
on both design and evaluation. Interesting examples can be
found in the research on cross-device and proxemic interac-
tion, including WatchConnect and Proximity Toolkit [15].

ABOUT THE AUTHOR
Michael Nebeling is an Assistant Professor at the Univer-
sity of Michigan School of Information. He investigates new
methods, tools and technologies that enable users to interact
with information in more natural and powerful ways, and also
make it easier for designers to create more usable and effec-
tive user interfaces. As part of his research, he has created
many systems to support the design and evaluation of rich,
context-aware and adaptive, cross-device, multi-touch and
multi-modal gesture and speech interfaces. He is committed
to promoting engineering research within the HCI commu-
nity. He has been an Associate Chair for the CHI Technol-
ogy, Systems and Engineering subcommittee for CHI 2014-
2016. He was EICS 2015 Papers co-chair and EICS 2014
Late-Breaking Results co-chair. He has been a member of
the steering committee and Senior PC for EICS since 2016.

REFERENCES
1. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller,

R. C. Automation and Customization of Rendered Web
Pages. In Proc. UIST (2005).

2. Chi, P. P., and Li, Y. Weave: Scripting Cross-Device
Wearable Interaction. In Proc. CHI (2015).

3. Chi, P. P., Li, Y., and Hartmann, B. Enhancing
cross-device interaction scripting with interactive
illustrations. In Proc. CHI (2016).

4. Cypher, A., Dontcheva, M., Lau, T., and Nichols, J. No
Code Required: Giving Users Tools to Transform the
Web. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2010.

5. de Freitas, A. A., Nebeling, M., Chen, X. A., Yang, J.,
Ranithangam, A. S. K. K., and Dey, A. K. Snap-to-it: A
user-inspired platform for opportunistic device
interactions. In Proc. CHI (2016).

6. de Freitas, A. A., Nebeling, M., Ranithangam, A. S.
K. K., Yang, J., and Dey, A. K. Bluewave: Enabling
Opportunistic Context Sharing via Bluetooth Device
Names. In Proc. EICS (2016).

7. Dietz, P. H., and Leigh, D. Diamondtouch: a multi-user
touch technology. In Proceedings of the 14th Annual
ACM Symposium on User Interface Software and
Technology, UIST 2001, Disney’s BoardWalk Inn Resort,
Walt Disney World, Orlando, Florida, USA, November
11-14, 2001 (2001).

8. Houben, S., and Marquardt, N. Watchconnect: A toolkit
for prototyping smartwatch-centric cross-device
applications. In Proc. CHI (2015).

9. Hudson, S. E., and Mankoff, J. Concepts, Values, and
Methods for Technical Human–Computer Interaction
Research. Springer New York, New York, NY, 2014,
69–93.

10. Jones, B. R., Sodhi, R., Murdock, M., Mehra, R., Benko,
H., Wilson, A., Ofek, E., MacIntyre, B., Raghuvanshi,
N., and Shapira, L. Roomalive: magical experiences
enabled by scalable, adaptive projector-camera units. In
Proc. UIST (2014).

11. Kim, G. K. Early Research Strategies in Context: Adobe
Photoshop Lightroom. In Proc. CHI EA (2007).

12. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton: multitouch gestures as regular expressions. In
Proc. CHI (2012).

13. Klokmose, C. N., Eagan, J. R., Baader, S., Mackay,
W. E., and Beaudouin-Lafon, M. Webstrates: Shareable
dynamic media. In Proc. UIST (2015).

14. Leshed, G., Haber, E. M., Matthews, T., and Lau, T. A.
CoScripter: Automating & Sharing How-To Knowledge
in the Enterprise. In Proc. CHI (2008).

15. Marquardt, N., Diaz-Marino, R., Boring, S., and
Greenberg, S. The Proximity Toolkit: Prototyping
Proxemic Interactions in Ubiquitous Computing
Ecologies. In Proc. UIST (2011).

16. McGrath, W., Etemadi, M., Roy, S., and Hartmann, B.
fabryq: using phones as gateways to prototype internet
of things applications using web scripting. In
Proc. EICS (2015).

17. Nebeling, M. Lightweight Informed Adaptation:
Methods and Tools for Responsive Design and
Development of Very Flexible, Highly Adaptive Web
Interfaces. PhD thesis, ETH Zurich, 2012.

18. Nebeling, M. XDBrowser 2.0: Semi-Automatic
Generation of Cross-Device Interfaces. In Proc. CHI
(2017).

19. Nebeling, M., and Dey, A. K. XDBrowser: User-Defined
Cross-Device Web Page Designs. In Proc. CHI (2016).

20. Nebeling, M., Husmann, M., Zimmerli, C., Valente, G.,
and Norrie, M. C. XDSession: Integrated Development
and Testing of Cross-Device Applications. In
Proc. EICS (2015).

21. Nebeling, M., Matulic, F., and Norrie, M. C. Metrics for
the Evaluation of News Site Content Layout in
Large-Screen Contexts. In Proc. CHI (2011).

22. Nebeling, M., Matulic, F., Streit, L., and Norrie, M. C.
Adaptive Layout Template for Effective Web Content
Presentation in Large-Screen Contexts. In Proc. DocEng
(2011).

23. Nebeling, M., Mintsi, T., Husmann, M., and Norrie,
M. C. Interactive Development of Cross-Device User
Interfaces. In Proc. CHI (2014).

24. Nebeling, M., and Norrie, M. C. jQMultiTouch:
Lightweight Toolkit and Development Framework for
Multi-touch/Multi-device Web Interfaces. In Proc. EICS
(2012).

25. Nebeling, M., Speicher, M., and Norrie, M. C.
W3Touch: Metrics-based Web Page Adaptation for
Touch. In Proc. CHI (2013).

26. Nebeling, M., Teunissen, E., and Norrie, M. H. M. C.
XDKinect: Development Framework for
Cross-Device Interaction using Kinect. In Proc. EICS
(2014).

27. Nichols, J., Hua, Z., and Barton, J. Highlight: A System
for Creating and Deploying Mobile Web Applications.
In Proc. UIST (2008).

28. Olsen Jr., D. R. Evaluating User Interface Systems
Research. In Proc. UIST (2007).

29. Paternò, F., Santoro, C., and Spano, L. MARIA: A
Universal, Declarative, Multiple Abstraction-Level
Language for Service-Oriented Applications in
Ubiquitous Environments. TOCHI 16, 4 (2009).

30. Shen, C., Vernier, F., Forlines, C., and Ringel, M.
Diamondspin: An extensible toolkit for around-the-table
interaction. In Proc. CHI (2004).

31. Streit, L. Investigating Web Site Adaptation to Large
Screens. Master’s thesis, ETH Zurich, DOI:
10.3929/ethz-a-006250434, 2010.

32. Yang, J., and Wigdor, D. Panelrama: Enabling Easy
Specification of Cross-Device Web Applications. In
Proc. CHI (2014).

	front
	HCITools2017_paper_1
	HCITools2017_paper_2
	HCITools2017_paper_3
	Introduction
	Example HCI Toolkit Publications
	Work on Toolkit Evaluation
	Best Practices in Industry
	Discussion
	Conclusion
	Acknowledgments
	References

	HCITools2017_paper_4
	Introduction
	Challenges and Opportunities
	Organizational
	Institutional
	Technological

	Experience with HCI Toolkit Development
	Squidy – Open Source but Concluded
	HuddleLamp – Open Source and Ongoing
	Webstrates – Open Source and Highly Active
	Potential Measure of HCI Toolkits

	Conclusion
	REFERENCES

	HCITools2017_paper_5
	Introduction
	Three Challenges for HCI Toolkits
	Latency
	Longevity
	Community

	Three Musical Instrument Toolkits
	Satellite CCRMA
	Hoxton OWL
	Bela

	Our Related Work
	Conclusion: Position on Toolkits
	Toolkits need a two-way dialogue with their communities
	No toolkit is aesthetically neutral

	Acknowledgements
	REFERENCES

	HCITools2017_paper_6
	The Toolkit / Audience Challenge
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	Introduction
	Notable Toolkits
	Phidgets
	d.Tools
	The Proximity Toolkit

	The Toolkit/Audience Challenges
	Challenge 1. End-Developer Skills
	Challenge 2. End-Developer Resources
	Challenge 3: End-Developer Learning

	Suggested Workshop Topic
	Author Background and Position
	References

	HCITools2017_paper_7
	Introduction
	Three challenges for toolkit research
	Multiple users, machines, interaction modalities
	Making software malleable
	Recreating the universe
	Bridging to legacy software: Scotty
	Webstrates

	Conclusions
	Acknowledgements
	REFERENCES

	HCITools2017_paper_8
	HCITools2017_paper_9
	Introduction
	Critiquing Interactive Software
	Examples of Relevant Systems and Toolkits
	A sketch of reinterpretable tools
	Conclusion
	Acknowledgments
	References

	HCITools2017_paper_10
	The Evaluation of a Physiological Data Visualization Toolkit for UX Practitioners: Challenges and Opportunities
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	toolkit overview
	The Motives behind the Toolkit

	previous works
	the evaluation of the toolkit
	what we learned
	conclusion
	REFERENCES

	HCITools2017_paper_11
	Before I Get Started
	Opportunities for Toolkits Research
	Challenges for Toolkits Research
	Staying Ahead of the Game
	Balancing Toolkit Practicality and Generalizability
	Designing for the Next Generation of Designers
	Dealing with the Proliferation of New Toolkits
	Releasing Toolkits to Facilitate Toolkits Research

	Workshop Contribution and Activities
	About the Author
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

