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Abstract 15 

Colorado was one of the first US states to legalize the industrial-scale cultivation of 16 

Cannabis spp. for recreational purposes. In March 2018, there were 609 indoor Cannabis 17 

cultivation facilities (CCFs) in operation in Denver County with a recorded 550,000 mature 18 

plants (higher than 8 inches) under cultivation at any given time. It is known that cultivation 19 

of Cannabis spp. produces emissions of a group of highly reactive hydrocarbons, 20 

monoterpenes. There have been limited studies that have quantified mixing ratios of emitted 21 

monoterpenes in air outside CCFs. A field campaign was conducted in August 2016 in 22 

Denver County focused on six different CCF clusters near the intersection of interstate 23 

highways I-25 and I-70 during which a total of 150 ambient air samples were collected. 24 

Monoterpene mixing ratios near CCFs were ~408±203 pptv; 4-8 times higher than samples 25 

collected from a “background” site located at the Denver City Park (75±25 pptv). The 26 

composition of samples taken near CCFs were dominated by d-limonene (30%), -myrcene 27 

(20%), and -pinene (15%), which is similar to previously reported emission factors for 28 

Cannabis spp. Since -myrcene was only detected in leaf enclosure studies, indoor CCF 29 

observations and ambient samples near CCFs and not detected at a background site, this 30 

particular compound could be used as a tracer for the Denver Cannabis production industry. 31 

The monoterpene speciation in ambient measurements varied across Denver suggesting 32 

differences in emissions between different Cannabis spp., or different growth stages. Given 33 

the observed variabilities in both composition and emission rates, it is critical for the 34 

accuracy of emissions inventories to develop strain specific emission factors. This 35 

information, coupled with detailed information on each CCF, would greatly reduce the 36 

uncertainties currently present in monoterpene emission estimates for the Cannabis industry 37 

and its potential impact on air quality. 38 
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 39 
Introduction 40 

On January 1
st
 2014, the cultivation, processing, and sale of Cannabis for recreational 41 

use became legal in the state of Colorado. There were 360 facilities growing Cannabis for 42 

medical purposes in Denver County at the end of 2013. By 2018 the industry expanded to 43 

608 medical and recreational Cannabis Cultivation Facilities (CCFs) in Denver County 44 

(CDOR, 2018). These CCFs are all registered and licensed via the Colorado Department of 45 

Revenue (DOR), with a recorded total of >550,000 mature (>8 inches) Cannabis plants under 46 

cultivation in Denver County at any given time (Hartman et al., 2018). These new CCFs tend 47 

to be clustered around major highways, which offer ease of access for incoming raw 48 

materials and to the markets for end products. Where CCFs abut residential neighbourhoods, 49 

complaints to Colorado Department of Public Health and Environment (CDPHE) regarding 50 

odour nuisance have soared (Murray, 2016; Rusch, 2016) as the volatile compounds 51 

responsible for the characteristic smell of Cannabis are released and dispersed from CCF 52 

ventilation systems. 53 

There has historically been considerable interest in the volatile organic compounds 54 

(VOCs) found in Cannabis spp. and its products, and many previous studies have measured 55 

these compounds in dried plant material and essential oils (Hood et al., 1973; Turner et al., 56 

1980; Ross and ElSohly, 1996; Rice and Koziel, 2015). Over 100 different compounds have 57 

been identified in the headspace above these materials; the most common of which are 58 

monoterpenes (C10H16)that include: -pinene, -pinene, -myrcene, d-limonene, and cis-59 

ocimene; sesquiterpenes (C15H24) including -caryophyllene, -farnesene, and -humulene; 60 

and the terpene alcohols (C10H18O) such as linalool, borneol, and terpineol (Hood et al., 61 

1973; Turner et al., 1980; Ross and ElSohly, 1996; McPartland and Russo, 2001; Rice and 62 

Koziel, 2015). It has also been reported that the more odiferous (such as nonanal, decanol, 63 

cymene, and benzaldehyde) compounds need only be present in low mixing ratios, but to be 64 

discernible to humans and animals (Rice and Koziel, 2015). 65 

Only a handful of studies, however, have investigated emissions from growing 66 

Cannabis spp. plants. Three of these measured mixing ratios of volatiles inside growing and 67 

processing rooms in cultivation facilities. The first study took place in small (illicit) 68 

operations with ~100 plants per room found mixing ratios of monoterpenes as high as 100 69 

ppbv (Martyny et al., 2013), i.e. over an order of magnitude higher than levels observed in 70 

high-emitting natural ecosystems such as forests (Ortega et al., 2014; Yanez-Serrano et al., 71 

2015; Acton et al., 2016; Emmerson et al., 2016; Yanez-Serrano et al., 2018). The second 72 



study reported average monoterpene levels in CCF budding and flowering rooms to be ~360 73 

ppbv (Southwellb et al., 2017). Most recently, researchers measured monoterpene mixing 74 

ratios between 20 ppbv and 1,000 ppbv inside four CCFs in California and Nevada 75 

(Samburova et al., 2019).  76 

Wang et al. (2019a) measured emissions of volatiles directly from individual live plants 77 

of four different Cannabis spp. strains enclosed in chambers. The authors found that although 78 

the compounds d-limonene, and -myrcene were the most commonly emitted compounds 79 

from each strain, the relative emission rates varied between strains. Total monoterpene 80 

emission rates from plants in the vegetative stage also varied by strain and had a range of 4.9-81 

8.7 gC dwg
-1

 h
-1

 (dwg is dry weight in grams). This is actually higher than most pine trees 82 

in Colorado (Guenther et al., 1995; Guenther et al., 2006; Ortega and Helmig, 2008; Ortega 83 

et al., 2008). 84 

In subsequent work, Wang et al. (Wang et al., 2019a) developed a monoterpene 85 

emissions inventory of CCFs across Colorado and estimated that total emissions could be as 86 

high as 362 tons year
-1

 for Denver county alone. There is considerable uncertainty in this 87 

estimate as assumptions were made in the number of plants per facility (0-50,000), dry 88 

weights per plant (1-2500 g) and emission capacity (10-100 g dwg
-1

 h
-1

). Prior to the 89 

introduction of this industry, it was estimated that Denver County had total emissions of 90 

biogenic VOCs (BVOCs) of ~265 tons year
-1

 (IWDW, 2017). Thus, the addition of the 91 

Cannabis industry could increase BVOC emissions by up to 362 (+136%) tons year
-1

 in 92 

Denver County (Wang et al., 2019a). Monoterpenes are highly reactive; their atmospheric 93 

lifetimes range from seconds to hours and the products of their oxidation reactions include 94 

secondary air pollutants such as ground-level ozone and particulate matter (PM) (Seinfeld 95 

and Pandis, 2006). When Wang et al. (Wang et al., 2019a) included monoterpene emissions 96 

from CCFs in an air quality model in the configuration used by the State of Colorado and 97 

EPA, they demonstrated these emissions were sufficient to increase hourly average ozone 98 

levels by as much as 1 ppbv per 1000 tons per year of monoterpenes released from CCFs.  99 

Given the considerable uncertainties in CCF emissions estimates and the importance of 100 

understanding their impacts on local air quality, we carried out a series of ambient sampling 101 

studies in the vicinity of CCFs in Denver County, home to 42% of CCFs and 50% of 102 

Cannabis plants in the state of Colorado (CDOR, 2018). These experiments were designed to 103 

determine the composition of monoterpenes released into the atmosphere from active CCFs 104 

to constrain model predictions (Wang et al., 2019a) and reduce uncertainties associated with 105 



emission factors (Wang et al., 2019b). This study focused on Park Hill, River North Art 106 

District, Sunnyside, Lincoln Park and Northeast areas across Denver County each of which 107 

contain high numbers of CCFs.  108 

 109 

Methods 110 

2.1 Sampling 111 

Ambient air samples were collected onto sorbent cartridges from various locations in 112 

the Denver urban area during August 2016 (see Table 1 and Fig. 1). The stainless-steel 113 

cartridges (from Markes International, Llantrisant, UK) were loaded with ~400 mg of Tenax 114 

TA and Carbograph 5TD in series, to optimise the capture of terpenoids. Air was drawn into 115 

the cartridges using small battery-powered pumps, which were placed on a portable platform 116 

~1m above the ground. To reduce the effect of losses due to ozone on the adsorbent surfaces, 117 

filters impregnated with potassium iodide were used immediately upstream of the sorbent 118 

tubes (Pollmann et al., 2005). Two samples were simultaneously collected at each sampling 119 

point at approximately hourly intervals, using one low- and one high-flowrate of ~140 and 120 

~300 cm
3
 min

-1
 respectively. Pump flow rates (used to calculate sample volume) were 121 

checked periodically during the campaign period and found to remain stable within 1 ml min
-122 

1
. Before sampling, clean cartridge tubes were kept capped at both ends and stored in sealed 123 

containers. Once used, they were re-capped, transferred to a second sealed container, and 124 

kept refrigerated until analysis. The total time from collection to analysis was no longer than 125 

one week for any sample. This methodology is consistent with the EPA’s TO-17 sampling 126 

protocol for toxic organic compounds in ambient air by cartridges (USEPA, 1999). 127 

 128 

2.2 Sampling locations 129 

Sampling points were selected based on locations of registered CCFs (CDOR, 2019), 130 

with latitudes and longitudes confirmed in the field using handheld GPS. Figure 1 shows the 131 

clusters of CCFs targeted in this study, the 6 sampling locations and the background (BG) 132 

site. Details pertaining to sampling dates, times, and locations can be found in Table 1 and 133 

S1.  134 

All experiments were conducted in Denver County near the I-70 highway and to the 135 

northwest, west, and northeast of central Denver as shown in Fig. 1. Selection of the CCF 136 

sampling sites were determined by ease of access to sufficient radial locations at which to 137 

collect samples. In experiments 1-3, paired samples were collected radiating in upwind and 138 

downwind directions from a central CCF. Depending on the street layout, sampling points 139 



were either aligned in a north-south or southwest-northeast direction to align as closely as 140 

possible with the prevailing wind. Sampling points were spaced ~150-200 m apart, and each 141 

was visited only once. Experiments 4, 5, and BG (background) consisted of the collection of 142 

paired samples at a single point, at hourly intervals over an 8-hour period (roughly 08:00-143 

16:00 Local Time, LT). Experiment BG was conducted at Denver City Park (104.943ºW, 144 

39.751ºN) where the nearest CCF was 2 km away. 145 

Experiment 6 focused on the Park Hill area of Denver County. In this experiment 146 

samples were taken at two points near CCFs (19 m and 103 m) just to the north of the Park 147 

Hill residential area, and at two further points within it (433 m and 655 m). Sampling 148 

alternated between these sites resulting in 2-hourly, rather than hourly, samples at each. 149 

Experiment 6 was motivated by the high number of odour complaints from local Park Hill 150 

residents (Murray, 2016; Rusch, 2016). 151 

 152 

2.3 Analysis method and instrument  153 

 Cartridges containing the ambient air samples were thermally desorbed and analyzed 154 

by a Gas Chromatograph (GC) (Agilent Technologies, model 7890A) coupled to both a Mass 155 

Spectrometer (MS) (model 5975C) and Flame Ionization Detector (FID), following published 156 

protocols (Harley et al., 2014). Thermal desorption (TD) was achieved by heating the tubes to 157 

275°C in a UNITY TD (model UNITY, Markes International, Llantrisant, UK). The analytes 158 

were then focused onto a small cryotrap, which was then rapidly heated to 300 °C and 159 

injected on to the GC. Helium was used as the carrier gas in the capillary column (RESTEK 160 

Rtx-5 model 10224, 30 m, 0.32 mm, ID, 0.25 m film thickness). The GC oven temperature 161 

cycle started at 35 °C and was held at that temperature for 1 minute, subsequently increasing 162 

at 10 ºC per minute to 260 ºC for each cartridge. Ion fragments and retention time on the 163 

column were detected and recorded by MS and FID to optimize capability to distinguish 164 

different species present in the sample. To account for changes in MS sensitivity and 165 

potential losses during the adsorption and desorption processes, 2 ml of an internal standard 166 

(decahydronaphthalene (DHN)), was added to each GC sample. Additional cartridges 167 

containing 100 scc (130 ml at local atmospheric pressure) of a camphene (214.6 ppbv) and 168 

isoprene (335 ppbv) gas standard were processed with each experiment for calibration 169 

purposes. VOC mixing ratios in the sample were deduced by analyzing peak areas and 170 

comparing them against those recorded for either camphene (m/z = 93) or isoprene (m/z = 67) 171 

depending on m/z of the detected VOC and correcting for sample volume for each sample. 172 



The analysis method and calculations followed the protocol developed by Harley et al. 173 

(2014) for separation and quantification of low-mixing ratio VOCs that elute at similar times. 174 

The retention time and major ion fragments for specific VOCs taken from the National 175 

Institute of Standards and Technology (NIST) database and a previous study (Harley et al., 176 

2014) were used to distinguish the individual monoterpenes (Table S2). The lower detection 177 

limits (LDL) of GC-MS samples are taken to be three standard deviations of blank values. 178 

The LDL of terpenes is 4 pptv for a 7 liters samples size. Below these limits, a non-detected 179 

(ND) symbol is reported in the results. 180 

Particular attention was given to distinguishing between d-limonene and -181 

phellandrene, which co-elute. Following the procedure of Harley et al. (2014), a second 182 

major d-limonene peak at m/z=68 was used to calculate the mixing ratio of d-limonene and 183 

thus accurately determine the mixing ratios of each compound. Fragment ion signals of 184 

isoprene (m/z = 67) and sesquiterpenes (m/z = 93 and 133) were also detected in samples by 185 

GC-MS, but are not reported here. The isoprene signal at m/z = 67 has a strong co-elution 186 

with other (anthropogenic) VOCs at almost identical retention times, and the sesquiterpene 187 

fragment signals were not of sufficient magnitude to identify individual sesquiterpenes from 188 

the NIST database. Thus, this study only reports specific monoterpene mixing ratios and 189 

composition in the samples. 190 

The results show no apparent breakthrough effect in the high-flowrate samples with a 191 

difference in total monoterpene mixing ratios < ±10% between the two pump flowrates. All 192 

results presented here use only the low-flowrate pump data (N=74) to avoid system error. In 193 

one single case, the low-flowrate cartridge failed to capture the BVOCs, so the high flowrate 194 

data was used. 195 

 196 

2.4 Meteorological Data and back-trajectory estimate 197 

Meteorological data for each sampling period were obtained from the National 198 

Weather Service (NWS) and Road/Runway Weather Information System (RWIS) networks 199 

(Utah, 2019). Wind speed, wind direction, and temperature data from the nearest 200 

meteorological station were used to identify the up-wind and down-wind directions and the 201 

source locations for the samples, and to estimate back-trajectories. A full list of available 202 

weather stations in the vicinity is given in Table S3.  203 

Due to the short life time of monoterpenes in the urban area, back-trajectories are only 204 

calculated for 3 hours duration using the approximation given in Eq. 1 (Stohl, 1998; 205 



Walmsley and Mailhot, 2010). At each time step, the current air mass location x and y and the 206 

u and v downwind and crosswind windspeed vectors from the nearest meteorological site at 207 

time t0 are used to calculate the previous location x’ and y’ at time t0-t. Here, the timestep t 208 

is 5 minutes. The u and v vectors are calculated from Eq. 2 using the wind direction (wwd) 209 

and wind speed (ws) data from the closest weather station in time to the sampling location.  210 

 
                   

                   
       Eq.1 211 

 
                                    

                                    
     Eq.2 212 

 213 

3 Results 214 

3.1 The ambient monoterpenes mixing ratios and CCFs 215 

 Table S1 shows the location, sample duration and mixing ratios (pptv) for all 216 

individual monoterpenes detected and the total amount of monoterpenes identified for each 217 

sample. Total monoterpene mixing ratios ranged from 44-926 pptv, with the lowest levels 218 

found at the BG site (average of 75±25 pptv from 8 samples). Excluding this site, the average 219 

monoterpene mixing ratios were 408±203 pptv (from 67 samples). Figure 2 shows that 220 

morning (6:00-11:00 LT) monoterpene mixing ratios are strongly correlated with the distance 221 

to the closest upwind CCF (R
2
 = 0.78, p-value << 0.001, where the p-value is derived from 222 

the null hypothesis in F-test the probability of no relationship between the two variables that 223 

we observed). As expected from Gaussian plume dispersion models, mixing ratios decrease 224 

as the square of the distance from the source increases. As shown in Fig 2, mixing ratios at 225 

the BG site (2,260 m from the nearest CCF) varied between 66-116 pptv. By contrast, mixing 226 

ratios >500 pptv, i.e. approximately 5 times that of BG mixing ratios, were found at distances 227 

of 5-100 m downwind of the closest CCF. At a distance of 5 m, the average and standard 228 

deviation of mixing ratio were 632±163 pptv (N=5); at 12 m, these were 626±215 pptv (N=8), 229 

and at 100-200 m, these were 392±104 pptv (N=10). The relatively high standard deviations 230 

are reflections of different emission rates from the different CCFs and the number of 231 

additional CCFs that lie on the back-trajectory and thus contribute to the monoterpenes 232 

sampled at a particular location. 233 

Experiment 2, located at the River North Art District, was conducted near an isolated 234 

CCF with no other CCFs within 1.5 km. Two samples were taken together simultaneously 235 

every 30 minutes from 6:15 to 9:00 LT at 8 different locations resulting in a total of 16 236 

samples. 6 of these locations were either directly upwind or downwind of the CCF. Figure 3A 237 



shows the sampling time, distance from the CCF (marked by a green diamond) and total 238 

monoterpene mixing ratios for each of these 6 sample locations. During this experiment, the 239 

windspeed ranged from 0.9-2.6 m s
-1

 (average of 1.5 m s
-1

) and the average wind direction 240 

(211º±37º) is indicated by the blue arrow. As expected, total monoterpene mixing ratios were 241 

highest at 5 m downwind of the CCF peaking at 823 ppt and decreased with downwind 242 

distance (682 ppt at 107 m; 534 ppt at 239 m). These levels are ~4-7.5 times higher than the 243 

maximum recorded at the BG site (116 pptv). The mixing ratios gradient upwind of the CCF 244 

was 410-550 ppt over a similar distance. During the sampling period, the wind direction is 245 

consistent and wind speed is slow. Thus, it is likely that emissions from this CCF also 246 

diffused upwind of the CCF.  247 

Figure 3B shows the monoterpene composition at the closest (5 m and -31 m) and 248 

farthest (239 m and -282 m) distances of upwind and downwind sampling locations shown in 249 

Fig. 3A. If the sample taken at 5 m distance from the CCF is representative of the emission 250 

flux, it is evident that the fraction of -myrcene decreases rapidly with distance. At the same 251 

time, - and -pinene, and to a lesser extent camphene and p-cymene comprise more of the 252 

total fraction of monoterpenes. This is consistent with the relative reactivities of the 253 

monoterpenes with the highly reactive -myrcene oxidizing far more rapidly than the more 254 

stable compounds such as - and -pinene. The atmospheric lifetime of -pinene is ~5 that 255 

of -myrcene against both the OH radical and ozone (Hites and Turner, 2009; Hens et al., 256 

2014; Yanez-Serrano et al., 2018).  257 

The experiment times in this study varied from 6:00-9:00 LT or 8:00-15:00 LT, but 258 

measurements collected between 8:00-9:00 LT are available for all experiments. At this hour, 259 

the samples are least impacted by photochemistry losses that occur later in the day and by 260 

dilution with the mid-day development of the planetary boundary layer (PBL). The PBL 261 

heights for all experiments were estimated by the HYSPLIT model with High-Resolution 262 

Rapid Refresh (HRRR) meteorological data (NOAA, 2019) and showed in Fig. S1. Although 263 

the modeled PBL in the BG experiment is higher than others at 8:00-9:00 LT, the lower PBL 264 

from 10:00-15:00 LT cannot explain the lowest monoterpene mixing ratios detected in BG 265 

experiment. Therefore, the PBL in different experiments is a weaker force than other factors. 266 

The distance to emission source, wind directions, and photochemistry dominate the ambient 267 

monoterpene mixing ratios in our samples and provided an opportunity to investigate the 268 

emission source strengths of CCFs upwind of all experimental locations. Figure 4 shows the 269 

average mixing ratios for all experimental sites using only data from these times. Taking 270 



wind speed and direction data from the closest meteorological site, we estimated 3-hour back 271 

trajectories at 8:00, 8:30 and 9:00 LT for each of these sites. These are shown in Fig. S2. The 272 

back-trajectory paths were analyzed to identify known CCFs located along the pathway that 273 

therefore contributed to the air samples taken. The average number of CCFs along each back-274 

trajectory are indicated by grey bars shown in Fig. 4. The 3-hour back-trajectories from the 275 

BG site (Fig. S2) do not pass over any CCFs, providing confidence that this measurement is 276 

not influenced by CCF emissions. The wind direction data from the Denver International 277 

Airport (DIA) were consistent with the results of the back-trajectories. In table S4, the 278 

meteorological data from DIA also showed that the wind direction in experiments 1-6 were 279 

mainly from the southwest and during the BG experiment it was mainly from the east.  280 

As the number of Cannabis spp. plants under cultivation in individual CCFs is not 281 

publicly available, the relative source strength of each CCF could not be determined. 282 

Nevertheless, there was a strong correlation between the maximum measured mixing ratios 283 

(of 403-864 pptv) with the number of contributing CCFs in the northern region of Fig. 4. 284 

These mixing ratios are ~3-8 times higher than those at the BG site. Interestingly, experiment 285 

5 had similar total monoterpene mixing ratios as the other experiments, but appeared to be 286 

influenced by about 30 CCFs. This could be the result of the number, strain, or growth stage 287 

of the plants in those CCFs, or the activities or venting practices at the time of the 288 

measurement.  289 

 290 

3.2 Monoterpene composition  291 

Figure 4 shows the composition of monoterpenes based on the average of 292 

measurements taken from 8:00-9:00 LT at each experimental site within 200 m of the CCF. 293 

Compared to the BG site, the samples taken near CCF clusters had higher proportions of d-294 

limonene (18-35%), -pinene (16-32%), p-cymene (6-16%) and 3-carene (4-12%), but 295 

fractions of -pinene and eucalyptol were lower. The dominant monoterpene, however, 296 

differed between the CCF sites with - and -pinene (up to 27% and 17%) dominating in the 297 

western and north-western part of the Denver County (experiments 1 and 5), and -myrcene 298 

and d-limonene (up to 20% and 33%) in northern of the Denver County (experiments 2 and 299 

4). Experiment 6 at north-eastern part of the city also showed a relatively large proportion of 300 

sabinene (12%), a minor contribution elsewhere. The differences in terpene compositions 301 

associated with the different CCF cluster locations suggest a mixture of Cannabis ssp. strains 302 

under cultivation across Denver. Thujene, camphene, -myrcene, and 3-carene were 303 



observed in the vicinity of CCFs, but were below detection limits at the BG site, suggesting 304 

that the monoterpene composition from the Cannabis industry in Denver differs from the 305 

other local vegetation, such as landscaping, lawns, trees and gardens. 306 

Figure 5(A) shows the composition of monoterpene and terpenoids emissions 307 

measured by (Wang et al., 2019b) from four Cannabis spp. strains: Critical Mass (CM), 308 

Lemon Wheel (LW), Elephant Purple (EP), and Rockstar Kush (RK). The dominant 309 

compounds among these strains were-myrcene (20-60%), eucalyptol (18-40%) and d-310 

limonene (3%-10%). Figure 5(B) shows the same data as Fig 4, but normalized to percentage 311 

(%) for comparison. Comparing the compositions of ambient air and enclosure samples, it 312 

appears that-myrcene is ubiquitous between strains but absent from background air in 313 

Denver (BG site on Fig. 5(B)) and may therefore be exclusive to Cannabis in an urban 314 

context. Interestingly, the proportion of sabinene measured at experiment 6 was similar to 315 

that from the Critical Mass strain (Wang et al. 2019b).  316 

Figure 5 (C) presents monoterpene compositions measured in indoor grow rooms of 317 

four different CCFs in the US states of California and Nevada (Samburova et al., 2019). 318 

Their results indicate that different monoterpene compounds dominate in each of the CCFs: 319 

-myrcene (CCF 1: 55% and 3: 42%), -pinene (CCF 2: 68%), and d-limonene (CCF 4: 58%) 320 

as the composition of BVOCs emitted from Cannabis spp. varies by strain, growth stage, 321 

growth environment and agronomic practice. This result may explain the reason for the lack 322 

of eucalyptol found in the ambient environment despite being seen in direct emissions from 323 

all four strains tested by Wang et al. (2019b). -myrcene was detected in all samples from 324 

Cannabis spp. Fig. 5(A)-(C) show that -terpinene and terpinolene were present in the direct 325 

emissions sampled from Cannabis spp. plants and from grow rooms, but were not detected in 326 

the ambient measurements.  327 

 Figure 6 show the hourly fractional monoterpene composition for experiments 4-6, 328 

and at the BG site from 08:00-15:00 LT. Total mixing ratios are reported at the top of each 329 

bar. Peak mixing ratios were recorded at 09:00 LT at all experiments (10:00 LT at 330 

experiment 6 which was only sampled 2-hourly). Mixing ratios generally fall in the afternoon 331 

across the experiments due to increasing PBL height and photochemical loss. There is an 332 

anomaly to this pattern ass seen in experiment 5 where secondary peaks occur at 12:00 and 333 

14:00 LT. It may be that the relatively constant mixing ratios seen at experiment 5 were due 334 

to the close proximity of the sampling to the ventilation outlet of the CCF (~5 m) Inside 335 

CCFs, the environment is typically maintained at constant conditions of light, temperature 336 



and CO2 concentrations, but other activities such as plant movement, harvesting, trimming 337 

and air handling can contribute to how emissions are vented into the ambient atmosphere.  338 

 The monoterpene fractional compositions of experiments 4 and 5 also changed with 339 

time. In experiment 5, the fraction of -myrcene was 10% at 8:00 LT, increased to 62% at 340 

noon, and then decreased to 45% by 15:00 LT. Experiment 4 showed a similar pattern in that 341 

d-limonene and -myrcene were low in the morning, but increased to their peak mixing ratios 342 

at noon. This mid-day increase at noon cannot be explained by photochemistry, as -myrcene 343 

and d-limonene have higher rate constants (shorter lifetimes) than -pinene and -pinene at 344 

ambient conditions. Thus, this could be the result of compositional changes at the emission 345 

source. Some previous laboratory and field studies have shown that the monoterpene 346 

emission fraction from a plant are known to be environmental condition dependent, such as 347 

light, temperature and insect (Sharkey et al., 1991; Staudt et al., 1997; Jones et al., 2011; 348 

Yanez-Serrano et al., 2018), but the Cannabis plants in this study is unknown. 349 

 350 

3.3 Comparison with air quality model predictions  351 

Figure 7A shows the measured hourly monoterpene mixing ratios for experiments 1-6 352 

between 06:00-15:00 LT with the BG samples (taken between 08:00-15:00 LT) shown as 353 

black dots. In the early morning hours, from 6:00-9:00 LT, the median mixing ratios of total 354 

monoterpenes were 444 to 505 pptv, with an inter quartile range (IQR; Q3-Q1) of 135 to 282 355 

pptv (6:00-9:00 LT). From 10:00 LT, monoterpene mixing ratios decreased initially due to 356 

the dilution effect of the evolution of the PBL and then from the increase in photochemical 357 

loss rates. By contrast, experiment 5 exhibited two peaks (668 and 680 pptv at 12:00-13:00 358 

LT and 14:00-15:00 LT respectively), most likely due to the close proximity of the sampling 359 

point to the CCF ventilation outlet preventing chemical loss or dilution prior to sampling.  360 

We previously reported monoterpene mixing ratios across Denver County simulated 361 

by the Western Air Quality Study model (ENVIRON and AlpineGeophysics, 2017) when 362 

estimated CCF emissions were included (Wang et al., 2019a). Although the modeling episode 363 

is in 2011 that covers a different period than this study in 2016, it still provides a qualitative 364 

comparison between predictions from an estimated inventory and real-world measurements 365 

providing context for that inventory. Figure 7B and 7C compare modeled hourly mixing 366 

ratios in August (with and without CCF emissions) with those measured here. As shown in 367 

Fig. 7B, the median mixing ratio without CCF emissions was 88 pptv at 06:00 LT and 12 368 

pptv at 12:00 LT across all relevant grid cells, which is similar to the data from the BG site 369 



(median = 67.5 and IQR = 34.5). When Denver CCF emissions of 362 tons year
-1

 were 370 

included in the model (Fig. 7C), the median rose to 511 pptv at 06:00 LT and 40 pptv at 371 

12:00 LT, very close to the average of the samples collected at CCF sites at 06:00 LT (505 372 

pptv) although somewhat lower than observations at 12:00 LT (165 pptv).  373 

 374 

4 Conclusion  375 

 This is the first study to provide evidence of elevated outdoor mixing ratios of 376 

monoterpenes in the vicinity of CCFs in Denver where the Cannabis industry is legalized. 377 

The results recorded total monoterpene mixing ratios are ~4-8 times higher around CCFs than 378 

observed at a background location. Monoterpene mixing ratios decreased ~1.5 pptv per meter 379 

distance away from each individual CCF. While the total number of CCFs within 500 m 380 

strongly correlated with measured mixing ratios, some clusters of CCFs had higher than 381 

expected mixing ratios in the vicinity. This is likely due to differences in emission source 382 

strengths due to differences in the number, strain and growth stage of plants, and crop 383 

management activities taking place in each CCF. This information is currently unavailable to 384 

the research community and could not be used in this study. Analysis of monoterpene 385 

composition showed geographic variability suggesting that different clusters of CCFs may 386 

have different monoterpene emission profiles due to variability in strains or life cycle. One 387 

monoterpene, -myrcene, was identified in samples taken downwind of CCFs. But this 388 

compound was not detected in background measurements at a site remote from CCFs. Since 389 

-myrcene and its oxidized products have been measured in leaf enclosure studies and inside 390 

CCFs,it could be a potential tracer for CCF emissions in the ambient environment (Boge et 391 

al., 2013).  392 

 The sampling studies reported here were limited in both time and space. Future 393 

campaigns across more sample locations and during different seasons would be beneficial to 394 

better understanding the impact CCF emissions have on terpene mixing ratios in Denver. Our 395 

study, however, clearly demonstrates that emissions from growing Cannabis spp. are 396 

detectable at measurable mixing ratios at distances from CCFs, suggesting this single 397 

industry strongly influences the composition of the urban atmosphere in Denver. Given the 398 

fairly unique “signature” of compounds from Cannabis spp. and the proximity to clusters of 399 

CCFs we are confident that the VOCs we sampled did indeed originate from CCFs.  400 

Our findings suggest that the introduction and rapid growth of previously niche 401 

industries (e.g. artisan coffee roasters, craft breweries, etc that are highly odiferous) can also 402 



be expected to have similar impacts. Previous studies have also shown the usage of volatile 403 

chemical products (VCPs), such as acetone, chlorinated hydrocarbons, monoterpene and 404 

aldehydes, in household cleaning and personal care products affect VOC mixing ratios in 405 

urban areas (McDonald et al., 2018). McDonald et.al showed that monoterpenes mixing ratio 406 

in indoors measurement in Los Angeles was ~7-9 ppb, which is higher than in forest in 407 

Colorado (Ortega et al., 2014) but lower than indoor CCF (20-1,000 ppb) (Samburova et al., 408 

2019). Another urban ambient measurement study in New York City indicated that a spike 409 

signals of monoterpene and other VCPs in excess of 3.5 ppb (Shah et al., 2019). Therefore, 410 

we suggest an urgent need for more studies and better understanding, already in place for 411 

existing traditional industries and products, to protect urban populations from increasing 412 

exposure to these chemicals and their secondary air pollutants. 413 
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Table 1. The summary of sampling dates, duration, number of sampling points and distance 

to the closest meteorological site. 

Experiment  Date  Sample 

duration 

(minutes) 

Sample 

count 

Numbers of 

sampling 

locations (sites) 

Distance to 

Meteorological 

site  

Meteorological 

Site Identification  

1 Aug 2, 2016 

6:10-12:10 LT 

55 20 10 1.7 km CO144 

2 Aug 11, 2016 

6:15-9:00 LT 

30 16 8 2.8 km CO144 

3 Aug 15, 2016 

6:10-9:00 LT 

30 16 8 4 km AENC2, CO011 

4 Aug 10, 2016 

7:35-16:10 LT 

50 32 2 1.7 km CO003 

5 Aug 17, 2016 

7:45-15:35 LT 

50 16 1 1.5 km CO006 

6 Aug 3, 2016 

7:54-16:13 LT 

50 34 4 1.7 km CO003 

BG Aug 19, 2016 

7:45-15:20 LT 

50 16 1 2.6 km CO003 

 

  



 

 

Fig. 1 Map of Denver, CO showing sampling locations listed in Table 1 (yellow stars), 

medical cannabis cultivational facilities (CCFs, red crosses), recreational CCFs (green 

triangles), and meteorological sites (black dots). The total number of CCFs in Denver County 

are given in parentheses. The base map was supplied by Esri (Esri, 2013). 

  



 
Fig. 2 Monoterpene mixing ratios in samples taken between 06:00-11:00 LT for all 

experimental sites versus distance to the closest upwind CCF. Note that both axes are log 

scale. The curved line is the predicted regression model whose equation is shown in the left 

of the plot area. The null hypothesis (p-value) is the probability of there being no relationship 

between the two observed variables. 

  



 
Fig. 3 Experiment 2: Panel (A) shows the sampling locations (red dots), corresponding 

mixing ratios and sampling times. Also shown are the upwind (-) and downwind (+) 

distances (meters) from the CCF (green diamond). The blue arrow indicates the average wind 

direction during the sampling period. Panel (B) shows fractional monoterpene composition at 

the two closest and two farthest sampling distances. The base map was supplied by Esri (Esri, 

2013) 
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Fig. 4 The average total mixing ratios (pptv) of individual monoterpene and terpenoid, and 

the number of samples at each experiment between 8:00-9:00 LT. The estimated number of 

CCFs along the estimated back-trajectories (Fig. S2) are shown by the grey bars. The base 

map was supplied by Esri (Esri, 2013) 

 

  



 

 
Fig. 5 (A) The monoterpene and terpenoid composition (%) of emissions from Critical Mass 

(CM), Lemon Wheel (LW), Elephant Purple (EP), and Rockstar Kush (RK; Wang et al., 

2019b). and (B) in ambient air samples taken at experiments 1–6 and BG. (C) The 

monoterpene composition (%) in the grow room of four different indoor facilities measured 

by Samburova et al. (Samburova et al., 2019). 
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Fig. 6 Monoterpene composition from experiments (A) 4, (B) 5, (C) 6, and (D) background 

(BG) between 08:00 and 15:00 LT. The numbers on the top of each bar are the total 

monoterpene mixing ratios (pptv). 
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Fig. 7 (A) Measured hourly timeseries of monoterpene mixing ratios (pptv) at 6 experiments 

(box plot) and from the background (BG) site (black circles). The number on the top of each 

box is samples number. Predicted monoterpene mixing ratios (pptv) at the sampling sites 

simulated by the western air quality study model (WAQS 2011b) (ENVIRON and 

AlpineGeophysics, 2017) (B) in the absence of CCF emissions, and (C) with predicted 

monoterpene emissions of 362 ton year
-1

 (Wang et al., 2019a). The black cross in each 

boxplot is the mean of each box, and open circles denote outliers (>Q3 + 1.5x inter quartile 

range (IQR)). 

A B C 



Table S1. The details of measurement date, time, locations, and the total and explicit monoterpene mixing ratio (pptv) 

 

 

Date latitude longitude Start Time Sample Time Experiment Flow rate (ccm) T (degC)

Total 
monoterpene thujene alpha-pinene camphene sabinene beta-pinene beta-myrcene d 3-carene p-cymene d-limonene beta-phellandrene eucalyptol

8/2/16 39.778525 -104.99948 6:10 0:55 1 140 18 393 19 107 43 5 53 16 18 45 87 ND ND
8/2/16 39.778397 -105.00159 6:10 0:55 1 140 18 445 23 119 44 10 52 14 25 60 99 ND ND

8/2/16 39.778525 -104.99948 7:45 0:55 1 140 22 624 26 201 63 11 78 16 40 61 128 ND ND
8/2/16 39.778397 -105.00159 7:45 0:55 1 140 22 543 29 119 62 15 71 17 33 60 136 ND ND
8/2/16 39.776583 -104.99944 8:50 0:55 1 140 25 392 22 74 44 11 56 10 25 54 96 ND ND
8/2/16 39.775576 -104.99934 8:50 0:55 1 140 25 430 23 79 40 9 51 11 23 53 141 ND ND
8/2/16 39.774296 -104.99949 8:50 0:55 1 140 25 515 12 46 22 20 49 7 12 22 324 ND ND
8/2/16 39.780115 -104.99927 10:05 0:55 1 140 28 226 11 36 18 6 22 11 9 31 82 ND ND
8/2/16 39.781952 -104.99933 10:05 0:55 1 140 28 213 11 26 15 7 19 7 8 28 92 ND ND
8/2/16 39.779458 -105.00506 11:15 0:55 1 140 31 198 17 24 6 20 15 14 7 31 66 ND ND

8/11/16 39.764605 -104.98091 6:15 0:30 2 140 17 550 11 97 46 ND 56 116 23 34 167 ND ND

8/11/16 39.764942 -104.98046 6:15 0:30 2 140 17 416 11 117 45 ND 48 37 23 57 65 14 ND
8/11/16 39.762729 -104.98332 6:50 0:30 2 140 18 410 14 99 42 ND 54 11 24 46 120 ND ND
8/11/16 39.763659 -104.98213 6:50 0:30 2 140 18 461 15 99 52 ND 37 67 24 50 118 ND ND
8/11/16 39.76545 -104.97973 7:25 0:30 2 140 20 682 18 227 63 5 52 19 45 66 187 ND ND
8/11/16 39.766338 -104.97866 7:25 0:30 2 140 20 534 19 135 58 5 52 11 36 67 151 ND ND
8/11/16 39.76462 -104.98009 8:30 0:30 2 140 22 823 20 133 46 11 60 233 40 52 227 ND ND
8/11/16 39.764981 -104.98069 8:30 0:30 2 140 22 505 20 101 37 27 50 57 31 44 138 ND ND

8/15/16 39.782 -104.859 6:10 0:30 3 140 16 654 9 114 29 ND 51 207 20 42 180 ND ND

8/15/16 39.782 -104.861 6:10 0:30 3 140 16 442 8 93 20 ND 44 91 27 31 128 ND ND
8/15/16 39.779 -104.859 7:00 0:30 3 140 16 303 8 101 19 ND 40 6 11 36 82 ND ND
8/15/16 39.779 -104.861 7:00 0:30 3 140 16 337 8 84 24 ND 41 22 23 31 105 ND ND
8/15/16 39.784 -104.859 7:50 0:30 3 270 18 333 10 96 27 ND 40 26 15 43 76 ND ND
8/15/16 39.786 -104.859 7:50 0:30 3 140 18 391 14 103 28 8 45 24 26 52 91 ND ND
8/15/16 39.788 -104.859 8:30 0:30 3 140 22 339 14 68 19 7 35 52 16 43 85 ND ND
8/15/16 39.79 -104.859 8:30 0:30 3 140 22 360 10 86 23 ND 40 28 15 57 102 ND ND

8/10/16 39.777721 -104.96233 7:35 0:50 4 140 22 681 29 144 71 12 93 46 49 67 155 14 ND

8/10/16 39.777721 -104.96179 7:35 0:50 4 140 22 630 31 126 37 33 103 37 59 35 169 ND ND
8/10/16 39.777721 -104.96233 8:35 0:50 4 140 26 865 28 135 44 10 68 147 50 68 306 8 ND
8/10/16 39.777721 -104.96179 8:35 0:50 4 140 26 661 27 116 36 11 68 69 35 90 201 8 ND
8/10/16 39.777721 -104.96233 9:30 0:50 4 140 29 492 24 82 27 10 32 49 40 74 137 18 ND
8/10/16 39.777721 -104.96179 9:30 0:50 4 140 29 926 23 97 35 9 48 194 44 74 389 14 ND
8/10/16 39.777721 -104.96233 10:25 0:50 4 140 30 253 7 35 14 ND 8 46 9 39 95 ND ND
8/10/16 39.777721 -104.96179 10:25 0:50 4 140 30 500 9 54 12 ND 22 117 15 39 223 9 ND
8/10/16 39.777721 -104.96233 12:30 0:50 4 140 34 144 3 19 8 ND 5 33 ND 22 54 ND ND
8/10/16 39.777721 -104.96179 12:30 0:50 4 140 34 525 5 42 16 ND 31 148 9 51 223 ND ND

8/10/16 39.777721 -104.96233 13:20 0:50 4 140 34 391 8 57 22 ND 23 93 24 32 134 ND ND
8/10/16 39.777721 -104.96179 13:20 0:50 4 140 34 198 5 29 8 ND 23 15 29 39 51 ND ND
8/10/16 39.777721 -104.96233 14:20 0:50 4 140 32 218 5 42 15 ND 12 34 17 35 58 ND ND
8/10/16 39.777721 -104.96179 14:20 0:50 4 140 32 173 5 29 ND 5 18 27 19 12 58 ND ND
8/10/16 39.777721 -104.96233 15:20 0:50 4 140 33 214 ND 41 9 ND 11 37 9 34 73 ND ND
8/10/16 39.777721 -104.96179 15:20 0:50 4 140 33 148 8 27 24 ND 5 20 7 15 43 ND ND

8/17/16 39.730705 -105.01388 7:45 0:50 5 140 21 702 18 165 46 12 121 70 68 75 125 ND ND
8/17/16 39.730705 -105.01388 8:45 0:50 5 140 24 712 24 134 28 37 90 104 34 147 113 ND ND
8/17/16 39.730705 -105.01388 9:45 0:50 5 140 27 444 7 66 10 ND 28 144 8 53 128 ND ND

8/17/16 39.730705 -105.01388 10:45 0:50 5 140 28 479 6 50 10 ND 16 229 6 40 124 ND ND
8/17/16 39.730705 -105.01388 11:45 0:50 5 140 30 666 ND 37 ND 5 17 417 ND ND 190 ND ND
8/17/16 39.730705 -105.01388 12:45 0:50 5 140 31 434 ND 33 ND ND 9 243 ND 22 128 ND ND
8/17/16 39.730705 -105.01388 13:45 0:50 5 140 32 680 5 62 12 ND 14 349 5 54 179 ND ND
8/17/16 39.730705 -105.01388 14:45 0:50 5 140 32 360 ND 54 ND ND 12 162 ND 17 114 ND ND

8/3/16 39.770228 -104.92952 7:54 0:50 6 140 21 410 29 69 24 49 41 17 17 34 130 ND ND
8/3/16 39.769301 -104.92952 7:54 0:50 6 140 21 383 35 69 25 42 9 11 79 42 70 ND ND
8/3/16 39.76553 -104.92952 8:54 0:50 6 140 24 303 24 54 24 17 24 8 12 50 90 ND ND

8/3/16 39.763845 -104.92952 8:54 0:50 6 140 24 583 44 75 33 63 77 14 26 86 164 ND ND
8/3/16 39.770228 -104.92952 9:54 0:50 6 140 27 585 15 76 35 6 24 165 15 69 180 ND ND
8/3/16 39.769301 -104.92952 9:54 0:50 6 140 27 290 19 60 18 6 20 11 12 43 100 ND ND
8/3/16 39.76553 -104.92952 10:55 0:50 6 140 29 231 12 32 17 6 14 27 16 34 74 ND ND
8/3/16 39.763845 -104.92952 10:55 0:50 6 140 29 128 11 26 9 ND 6 11 6 23 36 ND ND
8/3/16 39.770228 -104.92952 12:18 0:50 6 140 31 101 6 14 5 ND ND 12 ND 15 50 ND ND
8/3/16 39.769301 -104.92952 12:18 0:50 6 140 31 165 7 19 ND ND 5 19 7 25 84 ND ND
8/3/16 39.76553 -104.92952 13:20 0:50 6 140 33 107 6 11 5 ND ND 27 7 16 35 ND ND
8/3/16 39.763845 -104.92952 13:20 0:50 6 140 33 103 ND 12 5 ND ND 17 5 20 44 ND ND

8/3/16 39.770228 -104.92952 14:20 0:50 6 140 34 206 ND 25 10 ND 16 42 12 ND 101 ND ND
8/3/16 39.769301 -104.92952 14:20 0:50 6 140 34 211 ND 20 12 ND ND 32 10 36 100 ND ND
8/3/16 39.76553 -104.92952 15:23 0:50 6 140 34 164 6 22 6 ND ND 17 12 33 69 ND ND
8/3/16 39.763845 -104.92952 15:23 0:50 6 140 34 145 8 19 8 ND ND 14 9 33 54 ND ND
8/3/16 39.765 -104.92952 15:27 0:45 6 140 34 188 11 27 9 ND 14 9 12 28 77 ND ND

8/19/16 39.7505 -104.9435 7:45 0:50 BG 140 15 108 ND 25 ND ND 12 ND ND 17 36 ND 17
8/19/16 39.7505 -104.9435 8:35 0:50 BG 140 16 116 ND 27 ND ND 9 ND 8 20 24 ND 27
8/19/16 39.7505 -104.9435 9:30 0:50 BG 140 17 66 ND 10 ND ND ND ND ND 12 18 ND 25
8/19/16 39.7505 -104.9435 10:25 0:50 BG 140 19 80 ND 10 ND ND ND ND ND 7 35 ND 28

8/19/16 39.7505 -104.9435 11:55 0:50 BG 140 21 69 ND 8 ND ND ND ND ND 12 19 ND 29
8/19/16 39.7505 -104.9435 12:50 0:50 BG 140 22 56 ND 7 ND ND ND ND ND 10 10 ND 28
8/19/16 39.7505 -104.9435 13:40 0:50 BG 140 23 44 ND 8 ND ND ND ND ND 15 22 ND ND
8/19/16 39.7505 -104.9435 14:30 0:50 BG 140 25 63 ND 10 ND ND ND ND 6 14 16 ND 18



Table S2 The GC-MS retention time and fragment of explicit monoterpenes 1 

 2 

Table S3 Colorado meteorological stations 3 

  4 

  5 

Terpene 
Retention 

time (min)

fragment 
ion used for 
quantitation

fragment(%)

thujene 8.4 93 28.6
alpha-pinene 8.56 93 26.3

camphene 8.89 93 18.8
sabinene 9.3 93 26.6

beta-pinene 9.43 93 25.5
beta-myrcene 9.54 93 23.7

alpha-phellandrene 9.93 93 32.1

alpha-terpinene 10.13 93 15.4

p-cymene 10.28 119 38.8
d-limonene 10.32 68, 93 12

beta-phellandrene 10.36 93 34
eucalyptol 10.43 93 6

cis-beta-ocimene 10.56 93 22.4

gamma-terpinene 10.87 93 20

terpinolene 11.38 121 14.5
caryophyllene 16.9 93 -

Site Longititude Latitude Altitude (m)
Time period 

(min)

KBJC -105.10417 39.90085 1692 20

KAPA -104.84841 39.55991 1789 5

KDEN -104.65622 39.84658 1647 5

KEIK -105.05033 40.01169 1550 20

KBDU -105.22582 40.03943 1612 20

KFTG -104.55000 39.78333 1709 60

KMNH -104.63389 39.21667 2152 20

KBKF -104.75806 39.71331 1700 60

AENC2 -104.85572 39.82425 1608 60

LOOC2 -105.25028 39.72417 2287 60

CTPC2 -105.08406 39.41908 2154 60

BTAC2 -105.36139 40.01806 2052 60

CO006 -105.01654 39.74421 1583 10

CO003 -104.94333 39.78024 1597 10

CO148 -105.00041 39.71298 1594 10

CO144 -104.98839 39.79054 1584 10

CO146 -105.09575 39.78393 1627 10

CO011 -104.81014 39.77152 1643 10

CO024 -104.82871 39.69712 1702 10

CO145 -104.95799 39.68458 1632 10

CO161 -104.91108 39.64095 1706 10



Table S4 Denver airport meteorological information at 8:00-9:00 LT and PBL in Denver 6 
County estimated by HISPLIT model. 7 
 8 

 9 

 10 
  11 

 

8:00-9:00 LT 

Experiment 

Wind 

Direction 

Wind Speed 

(m/s) 
PBL (m) 

1 W 3.5 177 

2 WSW 3.5 103 

3 WSW 2.2 50 

4 SW 6.2 77 

5 WSW 3.1 101 

6 S 2.7 123 

BG ESE 1.3 528 



 12 

Fig. S1. The hourly PBL height (m) in Denver for all experiments. The data is from 13 

HYSPLIT model (NOAA, 2019) for all experiments. 14 

 15 

 16 
  17 



 18 

 19 

Fig. S2. The 3 hours back-trajectory pathways for all experiments (Table 1) ending at 8:00 20 

LT (blue circle), 8:30 LT (green circle) and 9:00 LT (red circle) for all experiments. The 21 

back-trajectories are calculated using local weather station data. The yellow stars are the 22 

sampling location, the black dots are the meteorological sites the green triangles are the 23 

recreational CCFs, and the red crosses are the medical CCFs. The base map was supplied by 24 

Esri (Esri, 2013) 25 

 26 

 27 
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Table 1. The summary of sampling dates, duration, number of sampling points and distance to 

the closest meteorological site. 

Experiment  Date  Sample 

duration 

(minutes) 

Sample 

count 

Numbers of 

sampling 

locations (sites) 

Distance to 

Meteorological 

site  

Meteorological 

Site Identification  

1 Aug 2, 2016 

6:10-12:10 LT 

55 20 10 1.7 km CO144 

2 Aug 11, 2016 

6:15-9:00 LT 

30 16 8 2.8 km CO144 

3 Aug 15, 2016 

6:10-9:00 LT 

30 16 8 4 km AENC2, CO011 

4 Aug 10, 2016 

7:35-16:10 LT 

50 32 2 1.7 km CO003 

5 Aug 17, 2016 

7:45-15:35 LT 

50 16 1 1.5 km CO006 

6 Aug 3, 2016 

7:54-16:13 LT 

50 34 4 1.7 km CO003 

BG Aug 19, 2016 

7:45-15:20 LT 

50 16 1 2.6 km CO003 
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Fig. 1 Map of Denver, CO showing sampling locations listed in Table 1 (yellow stars), medical 

cannabis cultivational facilities (CCFs, red crosses), recreational CCFs (green triangles), and 

meteorological sites (black dots). The total number of CCFs in Denver County are given in 

parentheses. The base map was supplied by Esri (Esri, 2013). 

  

Figure



 
Fig. 2 Monoterpene mixing ratios in samples taken between 06:00-11:00 LT for all experimental 

sites versus distance to the closest upwind CCF. Note that both axes are log scale. The curved 

line is the predicted regression model whose equation is shown in the left of the plot area. The 

null hypothesis (p-value) is the probability of there being no relationship between the two 

observed variables. 

  



 
Fig. 3 Experiment 2: Panel (A) shows the sampling locations (red dots), corresponding mixing 

ratios and sampling times. Also shown are the upwind (-) and downwind (+) distances (meters) 

from the CCF (green diamond). The blue arrow indicates the average wind direction during the 

sampling period. Panel (B) shows fractional monoterpene composition at the two closest and two 

farthest sampling distances. The base map was supplied by Esri (Esri, 2013) 

 

  

A B 



 
 

Fig. 4 The average total mixing ratios (pptv) of individual monoterpene and terpenoid, and the 

number of samples at each experiment between 8:00-9:00 LT. The estimated number of CCFs 

along the estimated back-trajectories (Fig. S2) are shown by the grey bars. The base map was 

supplied by Esri (Esri, 2013) 

 

  



 

 
Fig. 5 (A) The monoterpene and terpenoid composition (%) of emissions from Critical Mass 

(CM), Lemon Wheel (LW), Elephant Purple (EP), and Rockstar Kush (RK; Wang et al., 2019b). 

and (B) in ambient air samples taken at experiments 1–6 and BG. (C) The monoterpene 

composition (%) in the grow room of four different indoor facilities measured by Samburova et 

al. (Samburova et al., 2019). 
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Fig. 6 Monoterpene composition from experiments (A) 4, (B) 5, (C) 6, and (D) background (BG) 

between 08:00 and 15:00 LT. The numbers on the top of each bar are the total monoterpene 

mixing ratios (pptv). 
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Fig. 7 (A) Measured hourly timeseries of monoterpene mixing ratios (pptv) at 6 experiments 

(box plot) and from the background (BG) site (black circles). The number on the top of each box 

is samples number. Predicted monoterpene mixing ratios (pptv) at the sampling sites simulated 

by the western air quality study model (WAQS 2011b) (ENVIRON & Alpine., 2017) (B) in the 

absence of CCF emissions, and (C) with predicted monoterpene emissions of 362 ton year
-1

 

(Wang, Wiedinmyer, Ashworth, Harley, Ortega, Rasool, et al., 2019). The black cross in each 

boxplot is the mean of each box, and open circles denote outliers (>Q3 + 1.5x inter quartile range 

(IQR)). 
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